Nothing Special   »   [go: up one dir, main page]

JP2013101883A - Positive electrode active material for lithium ion secondary battery - Google Patents

Positive electrode active material for lithium ion secondary battery Download PDF

Info

Publication number
JP2013101883A
JP2013101883A JP2011245867A JP2011245867A JP2013101883A JP 2013101883 A JP2013101883 A JP 2013101883A JP 2011245867 A JP2011245867 A JP 2011245867A JP 2011245867 A JP2011245867 A JP 2011245867A JP 2013101883 A JP2013101883 A JP 2013101883A
Authority
JP
Japan
Prior art keywords
compound
positive electrode
active material
electrode active
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2011245867A
Other languages
Japanese (ja)
Inventor
Masanari Oda
将成 織田
Toyotaka Yuasa
豊隆 湯浅
Hiroshi Kitagawa
寛 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011245867A priority Critical patent/JP2013101883A/en
Publication of JP2013101883A publication Critical patent/JP2013101883A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material excellent in cycle characteristics and high in safety.SOLUTION: A positive electrode active material for a lithium ion secondary battery includes: a compound A belonging to a Pnma space group and represented as chemical formula: LiMnFeMPO(in the formula, the relationships of 0<x≤1.2, 0<α<1.2, 0<β<1.2 and 0≤γ<1.2 are satisfied, and M represents Mg, Al, Ti or the like); and a compound B belonging to a Pnma space group and different from the compound A. When a lithium ion secondary battery manufactured using a positive electrode including the positive electrode active material is fully charged and an X-ray diffraction pattern of the positive electrode active material is measured, an intensity ratio I/Ibetween a peak intensity Iin a (200) face of a compound A comprising the compound A from which Li is desorbed, belonging to a Pnma space group and represented as chemical formula: LiMnFeMPO(in the formula, the relationships of 0≤y<0.06 and x>y are satisfied) and a peak intensity I in a (200) face of the compound B is more than 0.0001 and less than 1, and an average particle size of primary particles constituting the positive electrode active material is less than 500 nm.

Description

本発明は、リチウム二次電池用正極活物質、並びにその正極活物質を用いた正極及びリチウム二次電池に関する。   The present invention relates to a positive electrode active material for a lithium secondary battery, and a positive electrode and a lithium secondary battery using the positive electrode active material.

リチウムイオン二次電池は、軽量であることに加え、高い電圧を持ち、放電容量の点でも優れること等から、電子機器に広く使用されている。リチウムイオン二次電池の正極活物質として実用化されている材料には、例えばコバルト酸リチウムが挙げられる。しかし、コバルトは希少金属であり高コストであるため、脱コバルトを目指した正極活物質の開発が展開されている。近年では、LiNiOに代表される層状ニッケル系酸化物や、LiMnに代表されるスピネルマンガン系正極活物質の開発が進められている。しかし層状ニッケル系酸化物は、充電生成物がコバルト酸リチウムに比べ熱安定性に劣り、特に過充電時における安全性に課題がある。一方、スピネルマンガン系の正極活物質は、充電生成物の熱安定性に優れ安全性が高いものの、その実用容量は100mAh/g程度とコバルト酸リチウムに比べて小さい。 Lithium ion secondary batteries are widely used in electronic devices because of their light weight, high voltage, and excellent discharge capacity. An example of a material that has been put into practical use as a positive electrode active material of a lithium ion secondary battery is lithium cobaltate. However, since cobalt is a rare metal and expensive, development of a positive electrode active material aimed at decobalting has been developed. In recent years, the development of layered nickel-based oxides typified by LiNiO 2 and spinel manganese-based positive electrode active materials typified by LiMn 2 O 4 has been promoted. However, the layered nickel-based oxide has a charge product inferior in thermal stability as compared with lithium cobalt oxide, and has a problem in safety particularly during overcharge. On the other hand, although the spinel manganese-based positive electrode active material has excellent thermal stability of the charge product and high safety, its practical capacity is about 100 mAh / g, which is smaller than that of lithium cobalt oxide.

このような状況の中、近年、オリビン系化合物と総称される、化学式LiMPO(式中、MはMn、Fe等の遷移金属元素である)で表わされる含リチウム複合酸化物が注目を集めている。これは、同化合物の比重量エネルギー密度、及び比容量エネルギー密度が、スピネルマンガン系を上回るとともに、卓越した安全性も併せ持つためである。 Under such circumstances, in recent years, lithium-containing composite oxides represented by a chemical formula LiMPO 4 (wherein M is a transition metal element such as Mn and Fe), which is collectively referred to as an olivine-based compound, attracted attention. Yes. This is because the specific weight energy density and specific capacity energy density of the compound exceed that of the spinel manganese system and have excellent safety.

しかし、上記の正極活物質は、化合物自体のサイクル安定性は期待できるものの、充放電に伴うLiの挿入脱離によって生じる正極活物質の膨張・収縮が大きいという問題がある。例えば、(非特許文献1)では、LiFePOの格子体積変化率が充電前後において約6.8%あるとされている。同じオリビン系に属するLiMnPO等は、さらに充電前後での格子体積変化率が大きいことが知られている。このような正極活物質を用いた場合、サイクル数が増加すると、オリビン系化合物と、集電体や導電材との結着性が低下する恐れがある。結着性が低下すると、正極活物質と導電材との導電パスの破壊が起こり、電池の容量が低下し、電池寿命も短くなる可能性がある。 However, although the positive electrode active material can be expected to have cycle stability of the compound itself, there is a problem that the positive electrode active material is greatly expanded and contracted due to insertion and desorption of Li accompanying charge / discharge. For example, in (Non-Patent Document 1), the lattice volume change rate of LiFePO 4 is about 6.8% before and after charging. It is known that LiMnPO 4 or the like belonging to the same olivine system has a larger lattice volume change rate before and after charging. When such a positive electrode active material is used, when the number of cycles is increased, the binding property between the olivine compound and the current collector or conductive material may be reduced. When the binding property is lowered, there is a possibility that the conductive path between the positive electrode active material and the conductive material is broken, the battery capacity is lowered, and the battery life is shortened.

これに対し、(特許文献1)では、元素置換により膨張収縮を抑える報告がなされている。しかし、元素置換により膨張収縮を抑えても、一次粒子全体が膨張収縮を繰り返すことに変わりはなく、サイクルを重ねるごとに結着剤との結着性が低下することは避けられない。加えて、一次粒子が高抵抗化するためサイクル特性が低下する等の課題がある。   On the other hand, in (patent document 1), the report which suppresses expansion and contraction by element substitution is made. However, even if the expansion and contraction is suppressed by element substitution, the entire primary particle continues to expand and contract, and it is inevitable that the binding property with the binder decreases with each cycle. In addition, there is a problem that the cycle characteristics are deteriorated because the primary particles have high resistance.

また、(特許文献2)には、結着剤にアクリロニトリル系共重合体を含めることで、正極活物質と集電体との結着性を改善する方法が示されている。しかし、正極活物質自体の格子定数の変化を抑制する手法は述べられていない。   Patent Document 2 discloses a method of improving the binding property between the positive electrode active material and the current collector by including an acrylonitrile copolymer in the binder. However, there is no description of a method for suppressing changes in the lattice constant of the positive electrode active material itself.

したがって、正極活物質の膨張収縮を抑制し、サイクル特性を改善する技術は未だ報告されていない。   Therefore, a technique for suppressing the expansion and contraction of the positive electrode active material and improving the cycle characteristics has not been reported yet.

J. Electrochem. Soc., 148 (2001) A224J. Electrochem. Soc., 148 (2001) A224

特開2011−77030号公報JP 2011-77030 A 特開2010−272272号公報JP 2010-272272 A

上記従来の状況に鑑み、本発明は、サイクル特性に優れ、低コスト、高い安全性、及び長い電池寿命の全てを兼ね備えた、オリビン系化合物と総称される化学式LiMPO(式中、MはMn、Fe等の遷移金属元素である)で表される正極活物質、並びに当該活物質を用いた正極及びリチウムイオン二次電池を提供することを目的とする。 In view of the above-described conventional situation, the present invention has a chemical formula LiMPO 4 (generally referred to as an olivine-based compound) having excellent cycle characteristics, low cost, high safety, and long battery life. And a lithium ion secondary battery using the active material, and a positive electrode active material represented by a transition metal element such as Fe.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、正極活物質中のオリビン系化合物の一次粒子の内部あるいはその周囲に、同じPnma空間群に属す化合物であって、電池を満充電した時にもLiが脱離しない、部分的に不活性なオリビン系化合物を導入し、且つそのような不活性なオリビン系化合物の割合を規定することで、正極活物質を構成する一次粒子あるいは正極活物質全体の充放電時における膨張・収縮が緩和され、正極あるいは電池の膨張・収縮が抑制され、その結果サイクル特性が向上することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors found that a compound belonging to the same Pnma space group is present in or around the primary particles of the olivine-based compound in the positive electrode active material, Primary particles constituting a positive electrode active material by introducing a partially inactive olivine compound that does not desorb Li even when fully charged, and defining the proportion of such inactive olivine compound Alternatively, the present inventors have found that expansion / contraction during charging / discharging of the whole positive electrode active material is alleviated and expansion / contraction of the positive electrode or battery is suppressed, and as a result, cycle characteristics are improved, and the present invention has been completed.

すなわち、本発明は、Pnma空間群に属し、化学式LiMnαFeβγPO(式中、0<x≦1.2、0<α<1.2、0<β<1.2、0≦γ<1.2、MはMg、Al、Ti、Co、Ni、Cu及びZnの群から選択される一種類以上の元素である)で表される化合物Aと、Pnma空間群に属し、前記化合物Aとは異なる化合物Bと、を含むリチウムイオン二次電池用正極活物質であって、前記正極活物質を有する正極を用いたリチウムイオン二次電池を満充電し、前記正極活物質のX線回折パターンを測定した場合に、前記化合物AからLiが脱離した、Pnma空間群に属する化学式LiMnαFeβγPO(式中、0≦y<0.06、ただしx>yである)で表される化合物A’の結晶構造に起因する回折ピーク群と、化合物Bの結晶構造に起因する回折ピーク群とが観測され、その際、化合物Bの(200)面のピーク強度Iと、化合物A’の(200)面のピーク強度Iとの強度比I/Iが、0.0001<I/I<1であり、前記正極活物質を構成する一次粒子の平均粒径が500nm未満であることを特徴とする。 That is, the present invention belongs to the Pnma space group, and has the chemical formula Li x Mn α Fe β M γ PO 4 (where 0 <x ≦ 1.2, 0 <α <1.2, 0 <β <1.2 , 0 ≦ γ <1.2, where M is one or more elements selected from the group consisting of Mg, Al, Ti, Co, Ni, Cu, and Zn) and the Pnma space group A positive electrode active material for a lithium ion secondary battery comprising a compound B different from the compound A, wherein the lithium ion secondary battery using a positive electrode having the positive electrode active material is fully charged; When the X-ray diffraction pattern of the substance was measured, the chemical formula Li y Mn α Fe β M γ PO 4 (where 0 ≦ y <0.06, Where x> y) and diffraction caused by the crystal structure of compound A ′ And over click group, and diffraction peaks attributed to the crystal structure of the compound B is observed, in which the peak intensity I (200) plane of the compound B, compound peak intensity of (200) plane of the A 'I 0 The I / I 0 intensity ratio is 0.0001 <I / I 0 <1, and the average particle size of the primary particles constituting the positive electrode active material is less than 500 nm.

本発明により、正極活物質を構成する一次粒子、あるいは正極活物質全体の充放電時における膨張・収縮が緩和され、ひいては正極の膨張・収縮が抑制されるため、サイクル特性に優れたリチウムイオン二次電池を提供することができる。また、低コスト、大容量、高い安全性、長い電池寿命等の特性を併せ持つリチウムイオン二次電池を提供することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, the primary particles constituting the positive electrode active material or the entire positive electrode active material is relaxed in expansion / contraction during charging / discharging, and as a result, the expansion / contraction of the positive electrode is suppressed. A secondary battery can be provided. In addition, a lithium ion secondary battery having characteristics such as low cost, large capacity, high safety, and long battery life can be provided. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

実施例1で得られた正極活物質のX線回折パターンと化合物A及びA’のX線回折パターンを示す図である。2 is a diagram showing an X-ray diffraction pattern of a positive electrode active material obtained in Example 1 and X-ray diffraction patterns of compounds A and A ′. FIG.

以下、本発明を詳細に説明する。
本発明の正極活物質は、Pnma空間群に属し、化学式LiMnαFeβγPO(式中、0<x≦1.2、0<α<1.2、0<β<1.2、0≦γ<1.2、MはMg、Al、Ti、Co、Ni、Cu及びZnの群から選択される一種類以上の元素である)で表される化合物Aと、Pnma空間群に属し、前記化合物Aとは異なる化合物Bとを含むものである。
Hereinafter, the present invention will be described in detail.
The positive electrode active material of the present invention belongs to the Pnma space group and has the chemical formula Li x Mn α Fe β M γ PO 4 (where 0 <x ≦ 1.2, 0 <α <1.2, 0 <β <1 .2, 0 ≦ γ <1.2, where M is one or more elements selected from the group consisting of Mg, Al, Ti, Co, Ni, Cu and Zn), and the Pnma space The compound B belongs to the group and is different from the compound A.

そして、正極活物質を有する正極を用いたリチウムイオン二次電池を満充電し、その正極活物質のX線回折パターンを測定した場合に、化合物AからLiが脱離した、Pnma空間群に属する化学式LiMnαFeβγPO(式中、0≦y<0.06、ただしx>yである)で表される化合物A’の結晶構造に起因する回折ピーク群と、化合物Bの結晶構造に起因する回折ピーク群とが観測され、その際、化合物Bの(200)面のピーク強度Iと、化合物A’の(200)面のピーク強度Iとの強度比I/Iが、0.0001<I/I<1であり、且つ正極活物質を構成する一次粒子の平均粒径が500nm未満であることを特徴とする。化合物Bは、充放電に伴う活物質へのLiの挿入脱離時に膨張収縮しないために、複数サイクル後でも結着剤との結着性が良い。加えて、母相である化合物Aと同じPnma空間群に属し格子定数も近いため、母相との格子のマッチングが良好で、母相Aのサイクル安定性や、Li拡散性、充放電容量への悪影響が小さい。 When a lithium ion secondary battery using a positive electrode having a positive electrode active material is fully charged and the X-ray diffraction pattern of the positive electrode active material is measured, Li belongs to the Pnma space group from which Li is desorbed. A diffraction peak group resulting from the crystal structure of compound A ′ represented by the chemical formula Li y Mn α Fe β M γ PO 4 (where 0 ≦ y <0.06, where x>y); A diffraction peak group due to the crystal structure of the compound B is observed, and at this time, the intensity ratio I / I between the peak intensity I of the (200) plane of the compound B and the peak intensity I 0 of the (200) plane of the compound A ′. 0 is 0.0001 <I / I 0 <1, and the average particle size of primary particles constituting the positive electrode active material is less than 500 nm. Since compound B does not expand and contract during insertion and release of Li to and from the active material accompanying charge and discharge, the compound B has good binding properties with the binder even after a plurality of cycles. In addition, since it belongs to the same Pnma space group as the compound A, which is the parent phase, and the lattice constant is close, the lattice matching with the parent phase is good, and the cycle stability of the parent phase A, Li diffusibility, charge / discharge capacity can be improved. The adverse effect of is small.

なお、X線回折パターンを測定する際の満充電条件としては、例えば、正極活物質を有する正極を用い、負極に金属リチウムを用いたリチウムイオン二次電池を、前記正極の容量を1時間で充電できる電流値の10分の1の値で、金属リチウムからの電位差に換算して4.3Vまで、25時間を上限に充電を行う条件を採用することができる。   In addition, as a full charge condition at the time of measuring an X-ray diffraction pattern, for example, a positive electrode having a positive electrode active material and a lithium ion secondary battery using metallic lithium as a negative electrode is used. It is possible to employ a condition in which charging is performed at a maximum of 25 hours up to 4.3 V in terms of a potential difference from metallic lithium at a value of 1/10 of the current value that can be charged.

化合物Bは、化合物Aからなる一次粒子中に部分的に含まれていても良いし、化合物Aからなる一次粒子と、化合物Bからなる別の一次粒子とが集合して正極活物質を構成していても良い。あるいは、その両方の場合が混在した状態であっても良い。   The compound B may be partially contained in the primary particles composed of the compound A, and the primary particles composed of the compound A and other primary particles composed of the compound B gather to form a positive electrode active material. May be. Alternatively, both cases may be mixed.

化合物BのPnma空間群における格子定数は、化合物Aの格子定数よりも小さく、a軸方向が10.20Å〜10.33Å、b軸方向が5.98〜6.08Å、c軸方向が4.70〜4.82Åであることが好ましい。また、化合物Bは、(200)面の回折角度が、化合物A及び化合物A’の(200)面の回折角度のいずれとも異なり、かつ満充電状態においてLiが脱離しないことが好ましい。このような化合物Bは、化合物A、化合物A’およびこれらの組み合わせを構成物質として含む正極に下記処理を施すことで、正極中の活物質の一部を、Li脱離が阻害された領域に変化させることで形成することができる。   The lattice constant of Compound B in the Pnma space group is smaller than the lattice constant of Compound A, the a-axis direction is 10.20 to 10.33 inches, the b-axis direction is 5.98 to 6.08 inches, and the c-axis direction is 4. It is preferable that it is 70-4.82. In addition, it is preferable that the compound B has a diffraction angle of the (200) plane that is different from both the diffraction angles of the (200) plane of the compound A and the compound A ′, and Li does not desorb in a fully charged state. Such a compound B is obtained by subjecting a positive electrode containing compound A, compound A ′, and a combination thereof as a constituent material to the following treatment, so that a part of the active material in the positive electrode is brought into a region where Li elimination is inhibited. It can be formed by changing.

具体的には、例えば、上記化合物A、アセチレンブラック等の導電材、及びポリフッ化ビニリデン等の結着剤等を含む正極合剤スラリーを調製し、このスラリーを集電体に塗布して乾燥させることにより正極を作製する。そして、この正極を用いたリチウムイオン二次電池を満充電状態として化合物Aを化合物A’とした後の正極を、HOを含む電解液中で25℃〜240℃で加熱することにより部分的に化合物Bを形成することができる。加熱処理中は、電解液の温度は一定に保持しても、25℃〜240℃の範囲内で変化させながら処理しても良い。特に好ましい条件は、80℃の上記電解液中で20日間の加熱処理である。加熱温度が80℃より低い場合は、処理時間が20日より長くなる傾向があり、すなわち、低温では化合物Bの合成が長時間化する。一方、150℃を超える温度で加熱する場合は、比較的短時間で化合物Bを合成することができるが、電解液・電解質の反応が原因で、電極上に化合物B以外の物質が生成し、電極の抵抗が高くなる恐れがあるため、加熱温度は、好ましくは25℃〜150℃であり、最も好ましくは50℃〜80℃である。 Specifically, for example, a positive electrode mixture slurry containing a conductive material such as Compound A, acetylene black, and a binder such as polyvinylidene fluoride is prepared, and this slurry is applied to a current collector and dried. Thus, a positive electrode is produced. Then, the lithium ion secondary battery using this positive electrode is fully charged and the positive electrode after compound A is converted to compound A ′ is heated by heating at 25 ° C. to 240 ° C. in an electrolyte containing H 2 O. Thus, compound B can be formed. During the heat treatment, the temperature of the electrolytic solution may be kept constant or may be treated while being changed within a range of 25 ° C to 240 ° C. A particularly preferable condition is a heat treatment for 20 days in the above electrolytic solution at 80 ° C. When the heating temperature is lower than 80 ° C., the treatment time tends to be longer than 20 days, that is, the synthesis of Compound B takes a long time at a low temperature. On the other hand, when heating at a temperature exceeding 150 ° C., compound B can be synthesized in a relatively short time, but due to the reaction of the electrolyte / electrolyte, a substance other than compound B is produced on the electrode, Since there exists a possibility that the resistance of an electrode may become high, heating temperature becomes like this. Preferably it is 25 to 150 degreeC, Most preferably, it is 50 to 80 degreeC.

また、上記のごとく満充電状態として電解液中で化合物Aの加熱処理を行っても良いが、満充電ではない状態で、電解液中で加熱処理を行っても本発明に係るリチウムイオン二次電池用正極活物質を得ることができる。ただし、満充電状態で保持することにより得られる所定のピーク強度比I/Iを、満充電ではない状態での加熱処理によって得るためには、満充電状態での処理よりも長時間もしくは高温で、あるいはそれらを組み合わせた条件が必要となる傾向がある。 Further, as described above, the compound A may be heat-treated in the electrolytic solution in a fully charged state, but the lithium ion secondary according to the present invention may be performed even if the heat treatment is performed in the electrolytic solution in a state that is not fully charged. A positive electrode active material for a battery can be obtained. However, in order to obtain the predetermined peak intensity ratio I / I 0 obtained by holding in a fully charged state by a heat treatment in a state where it is not fully charged, it is longer or at a higher temperature than in a fully charged state. However, there is a tendency to require conditions that combine them.

さらに、上述の例では、材料合成の簡易化のため加熱によって化合物Aの一部を化合物Bに変換しているが、これに限定されず、他の手法によって化合物Bを合成しても良い。すなわち、加熱処理によって化合物Aから化合物Bが合成される詳細なメカニズムは定かではないが、電解質、電解液、添加剤あるいはこれら相互の反応物に由来する、PF、LiF、HF、PFO、C、CO、CF、COCOOPF等の物質と化合物Aとが化学反応を起こした結果、化合物Aの粒子内に化合物Bが生成するわけであるから、上記の各物質、あるいはそれらの組み合わせを用いて化合物Aを化学的に処理することにより、化合物Aの粒子内に化合物Bを生成させたり、化合物Bを別途合成することができる。別途合成した化合物Bは、続いて化合物Aと混合することにより本発明の正極活物質を得ることができる。 Furthermore, in the above-described example, a part of the compound A is converted to the compound B by heating for simplification of material synthesis. However, the present invention is not limited to this, and the compound B may be synthesized by other methods. That is, the detailed mechanism by which compound B is synthesized from compound A by heat treatment is not clear, but PF 5 , LiF, HF, PF 3 O derived from electrolytes, electrolytes, additives, or their mutual reaction products. , C 2 H 4 , CO 2 , C 2 H 5 F, C 2 H 5 OCOOPF 4 and the like and a chemical reaction with compound A result in the formation of compound B in the particles of compound A. From the above, by chemically treating Compound A using each of the above-mentioned substances or combinations thereof, Compound B can be produced in the particles of Compound A, or Compound B can be synthesized separately. Compound B synthesized separately can subsequently be mixed with Compound A to obtain the positive electrode active material of the present invention.

いずれの合成手法を用いたとしても、一次粒子の内部に化合物A及び化合物Bが含まれ、あるいは化合物Aの一次粒子と化合物Bの一次粒子とが混在した状態の正極活物質であって、満充電後の正極活物質のX線回折パターンの測定結果が、ピーク強度比に関して0.0001<I/I<1の条件を満たしているものであれば、本発明に係るリチウムイオン二次電池用正極活物質に包含される。 Regardless of which synthesis method is used, a positive electrode active material in which compound A and compound B are contained inside primary particles or primary particles of compound A and primary particles of compound B are mixed, If the measurement result of the X-ray diffraction pattern of the positive electrode active material after charging satisfies the condition of 0.0001 <I / I 0 <1 with respect to the peak intensity ratio, the lithium ion secondary battery according to the present invention Included in the positive electrode active material.

また、必要に応じて、本発明のリチウムイオン二次電池用正極活物質の表面に、リン酸リチウム化合物をさらに含ませることができる。これにより、電池特性を向上させることができる。リン酸リチウム化合物としては、LiPO、Li、LiPO、あるいはこれらの2種以上の組み合わせを用いることができる。正極活物質中のリン酸リチウム化合物の含有率は、化合物Aに対して2重量%未満とすることが好ましい。 Moreover, a lithium phosphate compound can further be included in the surface of the positive electrode active material for a lithium ion secondary battery of the present invention as necessary. Thereby, battery characteristics can be improved. As the lithium phosphate compound, Li 3 PO 4 , Li 4 P 2 O 7 , LiPO 3 , or a combination of two or more of these can be used. The content of the lithium phosphate compound in the positive electrode active material is preferably less than 2% by weight with respect to Compound A.

さらに、化合物A、A’及び化合物Bを含む正極活物質の一次粒子の表面には、導電性向上添加材として炭素を含む化合物を存在させることが好ましい。このような導電性向上添加材の原料の例としては、導電性を向上させることができるものであれば特に限定されるものではないが、スクロース等の糖類や、クエン酸、ショ糖、グラファイト、あるいはアセチレンブラック等のカーボンブラック、及びこれらの組合せ等を挙げることができる。導電性向上添加材の含有率は、化合物Aに対して1.5重量%〜10重量%の間であることが好ましい。   Furthermore, it is preferable to have a compound containing carbon as a conductivity improving additive on the surface of the primary particles of the positive electrode active material containing the compounds A, A ′ and the compound B. Examples of the raw material for the conductivity improving additive are not particularly limited as long as the conductivity can be improved, but saccharides such as sucrose, citric acid, sucrose, graphite, Or carbon black, such as acetylene black, these combinations, etc. can be mentioned. The content of the conductivity enhancing additive is preferably between 1.5 wt% and 10 wt% with respect to Compound A.

以上のような正極活物質を有する正極と、通常用いられる負極、電解液、セパレータ、容器等を組み合わせて、リチウムイオン二次電池を得ることができる。   A lithium ion secondary battery can be obtained by combining the positive electrode having the positive electrode active material as described above and a commonly used negative electrode, electrolyte, separator, container, and the like.

負極に用いる負極活物質としては、リチウムイオンの吸蔵及び放出をすることができる材料であれば特に限定されない。例えば、人造黒鉛、天然黒鉛、難黒鉛化炭素類、金属酸化物、金属窒化物、活性炭等が挙げられる。これらはいずれかを単独で、もしくは2種以上を混合して用いることができる。   The negative electrode active material used for the negative electrode is not particularly limited as long as the material can occlude and release lithium ions. Examples thereof include artificial graphite, natural graphite, non-graphitizable carbons, metal oxides, metal nitrides, activated carbon and the like. Any of these may be used alone or in admixture of two or more.

上記の負極活物質を、必要に応じて、結着剤、増粘剤、導電材、溶媒等と混合して負極合剤スラリーを調製した後、集電体に塗布して乾燥させ、所望の形状に切り出すこと等により負極を作製することができる。   The negative electrode active material is mixed with a binder, a thickener, a conductive material, a solvent, etc. as necessary to prepare a negative electrode mixture slurry, which is then applied to a current collector and dried to obtain a desired A negative electrode can be produced by cutting into a shape or the like.

リチウムイオン二次電池を構成するセパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートや不織布等が使用可能である。   As a separator constituting the lithium ion secondary battery, for example, a porous sheet or a nonwoven fabric made of a polyolefin such as polyethylene or polypropylene can be used.

リチウムイオン二次電池の電解液としては、従来の一般的な構成を採用することができる。通常、電解液は、LiPF等の電解質と、ビニレンカーボネート(以下、VC)等の添加剤と、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒等の溶媒とを含む。溶媒の種類や、電解質の種類及び組成、添加剤の種類等は、リチウムイオン二次電池用に用いられている物質であれば特に限定されるものではないが、電解質としては、例えばLiPF、LiBF、LiClO等のリチウム塩、あるいはこれらの組み合わせ等を用いることができ、この中でも特に電解質の一部にLiPFを用いることが好ましい。電解質の濃度は、リチウム塩が電解液中に含まれていれば特に限定されるものではないが、好ましくは電解液中0.4mol/L〜2.0mol/Lである。 A conventional general configuration can be adopted as the electrolyte of the lithium ion secondary battery. Usually, the electrolytic solution contains an electrolyte such as LiPF 6 , an additive such as vinylene carbonate (hereinafter, VC), and a solvent such as a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). The type of solvent, the type and composition of the electrolyte, the type of additive, and the like are not particularly limited as long as they are substances used for lithium ion secondary batteries. Examples of the electrolyte include LiPF 6 , Lithium salts such as LiBF 4 and LiClO 4 , or combinations thereof can be used, and among these, it is particularly preferable to use LiPF 6 as a part of the electrolyte. The concentration of the electrolyte is not particularly limited as long as the lithium salt is contained in the electrolytic solution, but is preferably 0.4 mol / L to 2.0 mol / L in the electrolytic solution.

電解液の溶媒に関しても、一般にリチウムイオン二次電池用に用いられる溶媒であれば特に限定されず適用可能であり、例えばEC、EMC、ジメチルカーボネート(以下、DMC)、ジエチルカーボネート(以下、DEC)等の有機溶媒、あるいはこれらの組み合わせ等を用いることができる。添加剤としても、リチウムイオン二次電池用に用いられる添加剤であれば特に限定されず、VCや、化学式CS等で表される不飽和スルトン、あるいはこれらの組み合わせ等を用いることができる。 The solvent of the electrolytic solution is not particularly limited as long as it is a solvent generally used for lithium ion secondary batteries. For example, EC, EMC, dimethyl carbonate (hereinafter, DMC), diethyl carbonate (hereinafter, DEC) are applicable. An organic solvent such as these or a combination thereof can be used. The additive is not particularly limited as long as it is an additive used for a lithium ion secondary battery. VC, unsaturated sultone represented by the chemical formula C 3 H 4 O 3 S, or a combination thereof Can be used.

以上の構成要素を用いて、コイン状、円筒状、角形状、アルミラミネートシート状等の種々の形状を有するリチウムイオン二次電池を組み立てることができる。   By using the above components, lithium ion secondary batteries having various shapes such as a coin shape, a cylindrical shape, a square shape, and an aluminum laminate sheet shape can be assembled.

以下、実施例及び比較例に基づいて、本発明をさらに詳細に説明する。本発明はその要旨を超えない限り、これらの実施例によって制限されるものではない。   Hereinafter, the present invention will be described in more detail based on examples and comparative examples. The present invention is not limited by these examples unless it exceeds the gist.

(実施例1)
(1)化合物Aの合成
マグネティックスターラー上で加熱したシリコーンオイルのオイルバスの中にビーカーを配置し、そのビーカー中で、トリエタノールアミン溶媒中にHPOを加えた溶媒Aを攪拌子で攪拌しながら加熱した。続いて、水にHPOを加えた液中に、硫酸鉄(II)七水和物を溶解させたFe源溶液と、水に酢酸リチウム二水和物及び硫酸マンガン(II)五水和物を溶解させた混合源溶液とをそれぞれ作製し、前記溶媒Aの中に同時に滴下した。
Example 1
(1) Synthesis of Compound A A beaker was placed in an oil bath of silicone oil heated on a magnetic stirrer, and in the beaker, a solvent A in which H 3 PO 4 was added to a triethanolamine solvent was added with a stirrer. Heated with stirring. Subsequently, an Fe source solution in which iron (II) sulfate heptahydrate is dissolved in a solution obtained by adding H 3 PO 4 to water, and lithium acetate dihydrate and manganese (II) sulfate pentahydrate in water A mixed source solution in which a hydrate was dissolved was prepared, and the solution was added dropwise to the solvent A at the same time.

滴下後の溶媒の温度は、150℃に保った。この際、合成したオリビン系化合物の組成比がLi:Mn:Fe:P=1:0.8:0.2:1となるように源溶液中の各元素のモル比を調整した。モル比の調整には、高周波誘導プラズマ発光分光分析法(ICP−AES分析)による組成比を参考にした。滴下が終了した後、さらに1時間、溶媒を150℃に保ちつつ攪拌を続け、その後PTFE製のオートクレーブ中に密閉して、200℃で加熱加圧した。   The temperature of the solvent after dropping was kept at 150 ° C. At this time, the molar ratio of each element in the source solution was adjusted so that the composition ratio of the synthesized olivine compound was Li: Mn: Fe: P = 1: 0.8: 0.2: 1. For the adjustment of the molar ratio, the composition ratio by high frequency induction plasma emission spectroscopy (ICP-AES analysis) was referred. After completion of the dropwise addition, stirring was continued while maintaining the solvent at 150 ° C. for another hour, and then sealed in a PTFE autoclave and heated and pressurized at 200 ° C.

加熱加圧後、オートクレーブの底部に沈殿物が得られた。沈殿物をろ過し、エタノールで入念に洗浄した後、120℃で2時間以上乾燥させることにより化合物Aを得た。化合物Aの一次粒子の平均粒径は50nmであった。   After heating and pressing, a precipitate was obtained at the bottom of the autoclave. The precipitate was filtered, washed thoroughly with ethanol, and then dried at 120 ° C. for 2 hours or more to obtain Compound A. The average particle size of the primary particles of Compound A was 50 nm.

得られた化合物Aについて、粉末X線回折法により相の同定を行った。測定の結果、化合物Aの回折パターンがオリビン型構造(空間群Pnma)に帰属することを確認した。   About the obtained compound A, the phase was identified by the powder X-ray diffraction method. As a result of the measurement, it was confirmed that the diffraction pattern of Compound A belongs to the olivine structure (space group Pnma).

(2)化合物Aを用いた正極の作製
続いて、100重量部の化合物Aに対し、導電性向上添加材として12重量部のスクロースを添加し、アセトンと共に33時間ボールミルで粉砕処理を行った。その後、試料をAr雰囲気中で700℃の温度で加熱し、化合物Aの一次粒子の表面に導電性向上添加材が形成された複合体材料を作製した。複合体材料の一次粒子の平均粒径は約50nmであった。
(2) Production of Positive Electrode Using Compound A Subsequently, 12 parts by weight of sucrose as a conductivity improving additive was added to 100 parts by weight of Compound A, and pulverized with acetone for 33 hours. Thereafter, the sample was heated at a temperature of 700 ° C. in an Ar atmosphere to prepare a composite material in which the conductivity enhancing additive was formed on the surface of the primary particles of Compound A. The average particle size of the primary particles of the composite material was about 50 nm.

上記複合体材料を80重量部、導電材としてアセチレンブラックを10重量部、結着剤を10重量部となるように秤量してスラリーを作製した。結着剤としては、結着性が確保できればどのような結着剤を用いても良かったが、例えばポリフッ化ビニリデンや、アクリロニトリル系共重合体などを用いることが好ましかった。このスラリーを、集電体であるアルミ箔上に塗布して正極を作製した。この際アルミ箔には、表面粗さとして平均粗さRaが0.3μm以上のアルミ箔を用いると結着性が特に優れ好ましかったが、本発明はRaが0.3μm以下のアルミ箔でも効果が認められた。   A slurry was prepared by weighing 80 parts by weight of the composite material, 10 parts by weight of acetylene black as a conductive material, and 10 parts by weight of a binder. As the binder, any binder can be used as long as the binding property can be ensured. For example, it is preferable to use polyvinylidene fluoride, acrylonitrile-based copolymer, or the like. This slurry was applied onto an aluminum foil as a current collector to produce a positive electrode. In this case, when the aluminum foil used had an average roughness Ra of 0.3 μm or more as the surface roughness, the binding property was particularly excellent and preferred. However, in the present invention, the aluminum foil with Ra of 0.3 μm or less was used. But the effect was recognized.

(3)化合物Bの形成
化合物Aを含む上記正極と、金属リチウムの負極とを用いて密閉性の高い二極式モデルセルを作製した。正極は15mmφの円形状に成型したものを用いた。また、セパレータには30μm厚みのポリプロピレン及びポリエチレンの積層セパレータを用いた。この二極式モデルセルを満充電した後、正極のみを取り出し、HOを含む電解液中で20日間、80℃で加熱した(以下、処理1と呼ぶ)。電解液としては、エチレンカーボネート(以下、EC)及びエチルメチルカーボネート(以下、EMC)の混合溶媒に、電解質であるLiPFと、添加剤であるビニレンカーボネート(以下、VC)を溶解させたものを用いた。
(3) Formation of Compound B Using the above positive electrode containing Compound A and a negative electrode of metallic lithium, a bipolar model cell having high airtightness was produced. The positive electrode used was molded into a circular shape of 15 mmφ. Further, a laminated separator of polypropylene and polyethylene having a thickness of 30 μm was used as the separator. After the bipolar model cell was fully charged, only the positive electrode was taken out and heated at 80 ° C. for 20 days in an electrolytic solution containing H 2 O (hereinafter referred to as treatment 1). As an electrolytic solution, a solution in which LiPF 6 as an electrolyte and vinylene carbonate (hereinafter, VC) as an additive are dissolved in a mixed solvent of ethylene carbonate (hereinafter, EC) and ethyl methyl carbonate (hereinafter, EMC). Using.

二極式モデルセルを満充電する条件としては、満充電時の正極の容量を1時間で充電できる電流値の10分の1の値で、金属リチウムからの電位差に換算して4.3Vまで、25時間を上限にして、定電流定電圧充電する条件(以下、充電条件1と呼ぶ)を採用した。この際、電流値が、満充電時の正極の容量を1時間で充電できると概算できる電流値(以下、1C電流値とする)の100分の1の値となった場合は、25時間に達せずとも充電を停止した。   As a condition for fully charging the bipolar model cell, the capacity of the positive electrode at full charge is 1/10 of the current value that can be charged in 1 hour, and converted to a potential difference from metallic lithium up to 4.3V , A constant current constant voltage charging condition (hereinafter referred to as charging condition 1) was adopted with an upper limit of 25 hours. At this time, if the current value becomes 1 / 100th of the current value (hereinafter referred to as 1C current value) that can be estimated that the capacity of the positive electrode at full charge can be charged in 1 hour, it will be 25 hours Charging stopped without reaching.

正極活物質の一次粒子における、処理1によって形成されLiの脱離が阻害された領域である化合物Bの割合を、粉末X線回折法を用いて測定した。すなわち、化合物AからLiが脱離した、Pnma空間群に属する化合物A’の(200)面と化合物Bの(200)面とのピーク強度比に基づき定量的に評価した。X線源にはCuKα線を用いた。   The ratio of Compound B, which is a region formed by treatment 1 and in which Li desorption was inhibited, was measured using a powder X-ray diffraction method in the primary particles of the positive electrode active material. That is, quantitative evaluation was performed based on the peak intensity ratio between the (200) plane of the compound A ′ belonging to the Pnma space group and the (200) plane of the compound B from which Li was eliminated from the compound A. CuKα rays were used as the X-ray source.

処理1を施した後の正極活物質のX線回折パターンを測定した。その結果を図1に示す。比較のため、処理1を施さない化合物Aと、処理1を施さないで充電条件1による充電を行った化合物A(すなわち、化合物A’)のX線回折パターンも示す。化合物Aの格子定数が、a、b及びc軸方向でそれぞれ10.40Å、6.05Å及び4.72Åであるのに対し、化合物Bの格子定数はa、b及びc軸方向でそれぞれ10.25Å、6.03Å及び4.77Åであることからも、化合物Bが化合物Aとは異なる物質であることが明らかとなった。また、化合物Bの(200)面のピーク強度Iと、化合物A’の(200)面のピーク強度Iとの強度比I/Iは、0.1であった。 The X-ray diffraction pattern of the positive electrode active material after treatment 1 was measured. The result is shown in FIG. For comparison, an X-ray diffraction pattern of Compound A not subjected to Treatment 1 and Compound A (that is, Compound A ′) charged under charging condition 1 without treatment 1 is also shown. The lattice constant of compound A is 10.40Å, 6.05Å and 4.72Å in the a, b and c axis directions, respectively, whereas the lattice constant of compound B is 10.0Å in the a, b and c axis directions, respectively. From the fact that it was 25Å, 6.03Å and 4.77Å, it became clear that Compound B is a substance different from Compound A. The intensity ratio I / I 0 between the peak intensity I of the (200) plane of compound B and the peak intensity I 0 of the (200) plane of compound A ′ was 0.1.

(4)リチウムイオン二次電池の諸特性
上記の正極を洗浄後、リチウムイオン二次電池の充放電特性を評価した。充電条件としては上述の充電条件1を用い、放電条件としては、正極活物質を有する正極を用い、負極に金属リチウムを用いたリチウムイオン二次電池のモデル電池を、前記正極の容量を1C電流値の10分の1の値で、金属リチウムからの電位差に換算して2.0Vまで、25時間を上限にして、定電流放電する条件(以下、放電条件1と呼ぶ)を用いた。容量の評価は、負極の金属リチウムを交換した二極式モデルセルを用いて、放充電を3サイクル繰り返すことで、初期化した後の値を示す。測定の結果、放電容量は145mAh/gであった。
(4) Characteristics of lithium ion secondary battery After washing the positive electrode, the charge / discharge characteristics of the lithium ion secondary battery were evaluated. As the charging condition, the above-described charging condition 1 is used. As the discharging condition, a positive battery having a positive electrode active material is used, and a lithium ion secondary battery model using metallic lithium as the negative electrode is used. A condition of constant current discharge (hereinafter referred to as discharge condition 1) was used with an upper limit of 25 hours up to 2.0 V in terms of a potential difference from metallic lithium at a value of 1/10 of the value. The evaluation of capacity shows a value after initialization by repeating discharge and charging for 3 cycles using a bipolar model cell in which the metallic lithium of the negative electrode is replaced. As a result of the measurement, the discharge capacity was 145 mAh / g.

初期化の後、1C電流値の2分の1の電流値で4.4Vの電圧まで定電流定電圧充電し、1C電流値の20分の1の電流値になった際に充電を停止し、1C電流値の2分の1の電流値で2Vまで定電流放電を行う充放電サイクルを100サイクル繰り返した(以下、サイクル条件1と呼ぶ)。その際に得られた2サイクル目の放電容量と、100サイクル目の容量比を測定した。その結果、容量比は97.2%であった。以上の結果を表1及び表2に示す。   After initialization, charge at a constant current and constant voltage up to a voltage of 4.4V at a current value that is half of the 1C current value, and stop charging when the current value becomes 1/20 of the 1C current value. A charge / discharge cycle in which constant current discharge was performed up to 2 V at a current value that was a half of the 1C current value was repeated 100 times (hereinafter referred to as cycle condition 1). The discharge capacity at the second cycle obtained at that time and the capacity ratio at the 100th cycle were measured. As a result, the capacity ratio was 97.2%. The above results are shown in Tables 1 and 2.

(実施例2)
化合物Aの合成法と、化合物Aを用いた正極の作製法は実施例1と同様としたが、合成後の化合物Aの組成比がLi:Mn:Fe:Mg:P=1:0.8:0.17:0.03:1となるように、混合源溶液にMgの硝酸塩をさらに溶解させ、源溶液中の各元素のモル比を調整した。化合物Aの一次粒子の平均粒径は50nmであった。その後、電池組成等はすべて同様として、満充電後の正極を電解液中で20日間、80℃で加熱した。
(Example 2)
The synthesis method of Compound A and the production method of the positive electrode using Compound A were the same as in Example 1, but the composition ratio of Compound A after synthesis was Li: Mn: Fe: Mg: P = 1: 0.8. : 0.17: 0.03: 1 Mg nitrate was further dissolved in the mixed source solution, and the molar ratio of each element in the source solution was adjusted. The average particle size of the primary particles of Compound A was 50 nm. Thereafter, the battery composition and the like were all the same, and the positive electrode after full charge was heated at 80 ° C. for 20 days in the electrolyte.

加熱処理後の正極活物質のX線回折パターンを測定した結果、化合物Bの格子定数はa、b及びc軸方向でそれぞれ10.23Å、6.00Å及び4.75Åであった。また、化合物Bの(200)面のピーク強度Iと、化合物A’の(200)面のピーク強度Iとの強度比I/Iは、0.1であった。 As a result of measuring the X-ray diffraction pattern of the positive electrode active material after the heat treatment, the lattice constant of Compound B was 10.23 mm, 6.00 mm and 4.75 mm in the a, b and c axis directions, respectively. The intensity ratio I / I 0 between the peak intensity I of the (200) plane of compound B and the peak intensity I 0 of the (200) plane of compound A ′ was 0.1.

また、上記正極を用いたリチウムイオン二次電池について、実施例1と同様に特性評価を行ったところ、放電容量は148mAh/gであった。さらに、実施例1に記載のサイクル条件1で充放電を100サイクル繰り返した後の容量比を測定した結果、97.4%であった。以上の結果を表1及び表2に示す。   The lithium ion secondary battery using the positive electrode was evaluated for characteristics in the same manner as in Example 1. As a result, the discharge capacity was 148 mAh / g. Furthermore, as a result of measuring the capacity ratio after repeating 100 cycles of charge and discharge under the cycle condition 1 described in Example 1, it was 97.4%. The above results are shown in Tables 1 and 2.

(実施例3)
化合物Aの合成法と、化合物Aを用いた正極の作製法は実施例1と同様としたが、合成後の化合物Aの組成比がLi:Mn:Fe:Zn:P=1:0.8:0.17:0.03:1となるように、混合源溶液にZnの硝酸塩をさらに溶解させ、源溶液中の各元素のモル比を調整した。化合物Aの一次粒子の平均粒径は50nmであった。その後、電池組成等はすべて同様として、満充電後の正極を電解液中で20日間、80℃で加熱した。
(Example 3)
The method for synthesizing compound A and the method for producing the positive electrode using compound A were the same as in Example 1, but the composition ratio of compound A after synthesis was Li: Mn: Fe: Zn: P = 1: 0.8. : Zn nitrate was further dissolved in the mixed source solution so as to be 0.17: 0.03: 1, and the molar ratio of each element in the source solution was adjusted. The average particle size of the primary particles of Compound A was 50 nm. Thereafter, the battery composition and the like were all the same, and the positive electrode after full charge was heated in an electrolytic solution at 80 ° C. for 20 days.

加熱処理後の正極活物質のX線回折パターンを測定した結果、化合物Bの格子定数はa、b及びc軸方向でそれぞれ10.23Å、6.08Å及び4.82Åであった。また、化合物Bの(200)面のピーク強度Iと、化合物A’の(200)面のピーク強度Iとの強度比I/Iは、0.1であった。 As a result of measuring the X-ray diffraction pattern of the positive electrode active material after the heat treatment, the lattice constant of Compound B was 10.23 mm, 6.08 mm and 4.82 mm in the a, b and c axis directions, respectively. The intensity ratio I / I 0 between the peak intensity I of the (200) plane of compound B and the peak intensity I 0 of the (200) plane of compound A ′ was 0.1.

また、上記正極を用いたリチウムイオン二次電池について、実施例1と同様に特性評価を行ったところ、放電容量は151mAh/gであった。さらに、実施例1に記載のサイクル条件1で充放電を100サイクル繰り返した後の容量比を測定した結果、96.9%であった。以上の結果を表1及び表2に示す。   Moreover, when the characteristic evaluation was performed similarly to Example 1 about the lithium ion secondary battery using the said positive electrode, the discharge capacity was 151 mAh / g. Furthermore, as a result of measuring the capacity ratio after repeating 100 cycles of charge and discharge under the cycle condition 1 described in Example 1, it was 96.9%. The above results are shown in Tables 1 and 2.

(実施例4)
化合物Aの合成法と、化合物Aを用いた正極の作製法は実施例1と同様としたが、合成後の化合物Aの組成比がLi:Mn:Fe:P=1:0.1:0.9:1となるように源溶液中の各元素のモル比を調整した。化合物Aの一次粒子の平均粒径は50nmであった。その後、電池組成等はすべて同様として、満充電後の正極を電解液中で20日間、80℃で加熱した。
Example 4
The method for synthesizing compound A and the method for producing the positive electrode using compound A were the same as in Example 1, but the composition ratio of compound A after synthesis was Li: Mn: Fe: P = 1: 0.1: 0. The molar ratio of each element in the source solution was adjusted to 9: 1. The average particle size of the primary particles of Compound A was 50 nm. Thereafter, the battery composition and the like were all the same, and the positive electrode after full charge was heated in an electrolytic solution at 80 ° C. for 20 days.

加熱処理後の正極活物質のX線回折パターンを測定した結果、化合物Bの格子定数はa、b及びc軸方向でそれぞれ10.33Å、6.00Å及び4.70Åであった。また、化合物Bの(200)面のピーク強度Iと、化合物A’の(200)面のピーク強度Iとの強度比I/Iは、0.01であった。 As a result of measuring the X-ray diffraction pattern of the positive electrode active material after the heat treatment, the lattice constant of Compound B was 10.33Å, 6.00Å and 4.70Å in the a, b and c axis directions, respectively. Further, the intensity ratio I / I 0 between the peak intensity I of the (200) plane of Compound B and the peak intensity I 0 of the (200) plane of Compound A ′ was 0.01.

また、上記正極を用いたリチウムイオン二次電池について、実施例1と同様に特性評価を行ったところ、放電容量は156mAh/gであった。さらに、実施例1に記載のサイクル条件1で充放電を100サイクル繰り返した後の容量比を測定した結果、96.9%であった。以上の結果を表1及び表2に示す。   Moreover, when the characteristic evaluation was performed similarly to Example 1 about the lithium ion secondary battery using the said positive electrode, the discharge capacity was 156 mAh / g. Furthermore, as a result of measuring the capacity ratio after repeating 100 cycles of charge and discharge under the cycle condition 1 described in Example 1, it was 96.9%. The above results are shown in Tables 1 and 2.

(実施例5)
実施例1と同様に化合物Aを合成した後、pH調整剤としてLiOHを加えpHを10.0としたイオン交換水中に化合物Aを加え1時間攪拌した。その後水溶液中に、リン酸水素二アンモニウムを溶解させたイオン交換水を加え、さらに1時間攪拌した後乾燥させた(以下、処理2)。なお、化合物Aの組成比はLi:Mn:Fe:P=1:0.8:0.2:1となるように源溶液中の各元素のモル比を調整した。化合物Aの一次粒子の平均粒径は50nmであった。化合物Aの表面に含まれるリン酸リチウム化合物はLiPOであった。LiPOの量は化合物Aに対して1重量%となるように、水溶液中のLiOHとリン酸水素二アンモニウムの量を調整した。そして、実施例1と同様にして正極を作製した。その後、電池組成等はすべて同様として、満充電後の正極を電解液中で20日間、80℃で加熱した。
(Example 5)
After compound A was synthesized in the same manner as in Example 1, compound A was added to ion-exchanged water having a pH of 10.0 by adding LiOH as a pH adjuster and stirred for 1 hour. Thereafter, ion exchange water in which diammonium hydrogen phosphate was dissolved was added to the aqueous solution, and the mixture was further stirred for 1 hour and then dried (hereinafter, treatment 2). The molar ratio of each element in the source solution was adjusted so that the composition ratio of Compound A was Li: Mn: Fe: P = 1: 0.8: 0.2: 1. The average particle size of the primary particles of Compound A was 50 nm. The lithium phosphate compound contained on the surface of Compound A was Li 3 PO 4 . The amounts of LiOH and diammonium hydrogen phosphate in the aqueous solution were adjusted so that the amount of Li 3 PO 4 was 1% by weight with respect to Compound A. A positive electrode was produced in the same manner as in Example 1. Thereafter, the battery composition and the like were all the same, and the positive electrode after full charge was heated at 80 ° C. for 20 days in the electrolyte.

加熱処理後の正極活物質のX線回折パターンを測定した結果、化合物Bの格子定数はa、b及びc軸方向でそれぞれ10.25Å、6.03Å及び4.77Åであった。また、化合物Bの(200)面のピーク強度Iと、化合物A’の(200)面のピーク強度Iとの強度比I/Iは、0.02であった。 As a result of measuring the X-ray diffraction pattern of the positive electrode active material after the heat treatment, the lattice constant of Compound B was 10.250.2, 6.03Å and 4.77Å in the a, b and c axis directions, respectively. The intensity ratio I / I 0 between the peak intensity I of the (200) plane of compound B and the peak intensity I 0 of the (200) plane of compound A ′ was 0.02.

また、上記正極を用いたリチウムイオン二次電池について、実施例1と同様に特性評価を行ったところ、放電容量は145mAh/gであった。さらに、実施例1に記載のサイクル条件1で充放電を100サイクル繰り返した後の容量比を測定した結果、97.5%であった。なお、ボールミル後の正極に上記の処理2を施した場合も同様の強度比I/Iが得られた。以上の結果を表1及び表2に示す。 Moreover, when the characteristic evaluation was performed similarly to Example 1 about the lithium ion secondary battery using the said positive electrode, the discharge capacity was 145 mAh / g. Furthermore, as a result of measuring the capacity ratio after repeating 100 cycles of charge and discharge under the cycle condition 1 described in Example 1, it was 97.5%. The same strength ratio I / I 0 was obtained when the above treatment 2 was applied to the positive electrode after ball milling. The above results are shown in Tables 1 and 2.

(実施例6)
実施例1と同様に化合物Aを合成した後、実施例5と同様にしてリン酸リチウム化合物(LiPO)を化合物Aに含有させた。なお、化合物Aの組成比はLi:Mn:Fe:Mg:P=1:0.82:0.15:0.03:1となるように、混合源溶液にMgの硝酸塩をさらに溶解させ、源溶液中の各元素のモル比を調整した。化合物Aの一次粒子の平均粒径は50nmであった。また、化合物Aの表面に含まれるLiPOの量が化合物Aに対して0.5重量%となるように、水溶液中のLiOHとリン酸水素二アンモニウムの量を調整した。そして、実施例1と同様にして正極を作製した。その後、電池組成等はすべて同様として、満充電後の正極を電解液中で20日間、80℃で加熱した。
(Example 6)
After compound A was synthesized in the same manner as in Example 1, lithium phosphate compound (Li 3 PO 4 ) was added to compound A in the same manner as in Example 5. In addition, Mg nitrate is further dissolved in the mixed source solution so that the composition ratio of Compound A is Li: Mn: Fe: Mg: P = 1: 0.82: 0.15: 0.03: 1, The molar ratio of each element in the source solution was adjusted. The average particle size of the primary particles of Compound A was 50 nm. Further, the amounts of LiOH and diammonium hydrogen phosphate in the aqueous solution were adjusted so that the amount of Li 3 PO 4 contained on the surface of Compound A was 0.5% by weight with respect to Compound A. A positive electrode was produced in the same manner as in Example 1. Thereafter, the battery composition and the like were all the same, and the positive electrode after full charge was heated in an electrolytic solution at 80 ° C. for 20 days.

加熱処理後の正極活物質のX線回折パターンを測定した結果、化合物Bの格子定数はa、b及びc軸方向でそれぞれ10.20Å、5.98Å及び4.72Åであった。また、化合物Bの(200)面のピーク強度Iと、化合物A’の(200)面のピーク強度Iとの強度比I/Iは、0.05であった。 As a result of measuring the X-ray diffraction pattern of the positive electrode active material after the heat treatment, the lattice constant of Compound B was 10.20 mm, 5.98 mm and 4.72 mm in the a, b and c axis directions, respectively. The intensity ratio I / I 0 between the peak intensity I of the (200) plane of compound B and the peak intensity I 0 of the (200) plane of compound A ′ was 0.05.

また、上記正極を用いたリチウムイオン二次電池について、実施例1と同様に特性評価を行ったところ、放電容量は147mAh/gであった。さらに、実施例1に記載のサイクル条件1で充放電を100サイクル繰り返した後の容量比を測定した結果、97.6%であった。なお、ボールミル後の正極に上記の処理2を施した場合も同様の強度比I/Iが得られた。以上の結果を表1及び表2に示す。 Moreover, when the characteristic evaluation was performed similarly to Example 1 about the lithium ion secondary battery using the said positive electrode, the discharge capacity was 147 mAh / g. Furthermore, as a result of measuring the capacity ratio after repeating 100 cycles of charging and discharging under the cycle condition 1 described in Example 1, it was 97.6%. The same strength ratio I / I 0 was obtained when the above treatment 2 was applied to the positive electrode after ball milling. The above results are shown in Tables 1 and 2.

(比較例1)
合成法と組成比を実施例1と同一にして化合物Aを合成した。化合物Aの一次粒子の平均粒径は50nmであった。そして、実施例1と同様にして正極を作製した。その後、電池組成等はすべて同様として、化合物Bの生成量を増加させるために、満充電後の正極を電解液中で160日間、80℃で加熱した。
(Comparative Example 1)
Compound A was synthesized with the same synthesis method and composition ratio as in Example 1. The average particle size of the primary particles of Compound A was 50 nm. A positive electrode was produced in the same manner as in Example 1. Thereafter, the battery composition and the like were all the same, and the positive electrode after full charge was heated at 80 ° C. for 160 days in an electrolytic solution in order to increase the amount of compound B produced.

加熱処理後の正極活物質のX線回折パターンを測定した結果、化合物Bの格子定数はa、b及びc軸方向でそれぞれ10.24Å、6.03Å及び4.78Åであった。また、化合物Bの(200)面のピーク強度Iと、化合物A’の(200)面のピーク強度Iとの強度比I/Iは、1であった。 As a result of measuring the X-ray diffraction pattern of the positive electrode active material after the heat treatment, the lattice constant of Compound B was 10.24 mm, 6.03 mm and 4.78 mm in the a, b and c axis directions, respectively. Further, the intensity ratio I / I 0 between the peak intensity I of the (200) plane of Compound B and the peak intensity I 0 of the (200) plane of Compound A ′ was 1.

また、上記正極を用いたリチウムイオン二次電池について、実施例1と同様に特性評価を行ったところ、放電容量は48mAh/gであった。さらに、実施例1に記載のサイクル条件1で充放電を100サイクル繰り返した後の容量比を測定した結果、96.4%であった。以上の結果を表1及び表2に示す。   The lithium ion secondary battery using the positive electrode was evaluated for characteristics in the same manner as in Example 1. As a result, the discharge capacity was 48 mAh / g. Furthermore, as a result of measuring the capacity ratio after repeating 100 cycles of charge and discharge under the cycle condition 1 described in Example 1, it was 96.4%. The above results are shown in Tables 1 and 2.

(比較例2)
合成法と組成比を実施例1と同一にして化合物Aを合成した。化合物Aの一次粒子の平均粒径は50nmであった。そして、実施例1と同様にして正極を作製した。その後、電池組成等はすべて同様として、化合物Bの生成量を少なくするために、満充電後の正極を電解液中で5日間、50℃で加熱した。
(Comparative Example 2)
Compound A was synthesized with the same synthesis method and composition ratio as in Example 1. The average particle size of the primary particles of Compound A was 50 nm. A positive electrode was produced in the same manner as in Example 1. Thereafter, the battery composition and the like were all the same, and in order to reduce the amount of compound B produced, the fully charged positive electrode was heated at 50 ° C. for 5 days in an electrolytic solution.

加熱処理後の正極活物質のX線回折パターンを測定した結果、化合物Bの格子定数はa、b及びc軸方向でそれぞれ10.25Å、6.03Å及び4.77Åであった。また、化合物Bの(200)面のピーク強度Iと、化合物A’の(200)面のピーク強度Iとの強度比I/Iは、0.0001であった。 As a result of measuring the X-ray diffraction pattern of the positive electrode active material after the heat treatment, the lattice constant of Compound B was 10.250.2, 6.03Å and 4.77Å in the a, b and c axis directions, respectively. The intensity ratio I / I 0 between the peak intensity I of the (200) plane of compound B and the peak intensity I 0 of the (200) plane of compound A ′ was 0.0001.

また、上記正極を用いたリチウムイオン二次電池について、実施例1と同様に特性評価を行ったところ、放電容量は148mAh/gであった。さらに、実施例1に記載のサイクル条件1で充放電を100サイクル繰り返した後の容量比を測定した結果、94.3%であった。以上の結果を表1及び表2に示す。   The lithium ion secondary battery using the positive electrode was evaluated for characteristics in the same manner as in Example 1. As a result, the discharge capacity was 148 mAh / g. Furthermore, as a result of measuring the capacity | capacitance ratio after repeating charging / discharging 100 cycles on the cycle conditions 1 as described in Example 1, it was 94.3%. The above results are shown in Tables 1 and 2.

(比較例3)
本比較例3では、化合物Bを生成させない場合の特性を評価した。他の構成・条件は実施例1と同様にした。その結果、放電容量は151mAh/gであった。さらに、実施例1に記載のサイクル条件1で充放電を100サイクル繰り返した後の容量比を測定した結果、93.1%であった。以上の結果を表1及び表2に示す。なお、表中の横棒は測定する意味がないために測定していないことを意味する。
(Comparative Example 3)
In this comparative example 3, the characteristics when the compound B was not generated were evaluated. Other configurations and conditions were the same as in Example 1. As a result, the discharge capacity was 151 mAh / g. Furthermore, as a result of measuring the capacity ratio after repeating 100 cycles of charge and discharge under the cycle condition 1 described in Example 1, it was 93.1%. The above results are shown in Tables 1 and 2. In addition, the horizontal bar in a table | surface means having not measured since there is no meaning in measuring.

(比較例4)
本比較例4では、化合物Aの一次粒子の平均粒径を大きくするために、化合物Aを合成する際に、組成比を実施例1と同一にした上で、PTFE製のオートクレーブ中での加熱加圧温度を230℃とした。その結果、一次粒子の平均粒径は500nmとなった。そして、実施例1と同様にして正極を作製し、その後、電池組成等はすべて同様として、化合物Bを生成させるために、満充電後の正極を電解液中で20時間、80℃で加熱した。
(Comparative Example 4)
In this Comparative Example 4, in order to increase the average particle size of the primary particles of Compound A, when compound A was synthesized, the composition ratio was made the same as in Example 1, and heating in a PTFE autoclave was performed. The pressing temperature was 230 ° C. As a result, the average particle size of the primary particles was 500 nm. Then, a positive electrode was produced in the same manner as in Example 1, and then the battery composition and the like were all the same, and the fully charged positive electrode was heated in an electrolytic solution for 20 hours at 80 ° C. in order to produce Compound B. .

加熱処理後の正極活物質のX線回折パターンを測定した結果、化合物Bの格子定数はa、b及びc軸方向でそれぞれ10.25Å、6.03Å及び4.76Åであった。また、化合物Bの(200)面のピーク強度Iと、化合物A’の(200)面のピーク強度Iとの強度比I/Iは、0.007であった。 As a result of measuring the X-ray diffraction pattern of the positive electrode active material after the heat treatment, the lattice constant of Compound B was 10.250.2, 6.03Å and 4.76Å in the a, b and c axis directions, respectively. The intensity ratio I / I 0 between the peak intensity I of the (200) plane of compound B and the peak intensity I 0 of the (200) plane of compound A ′ was 0.007.

また、上記正極を用いたリチウムイオン二次電池について、実施例1と同様に特性評価を行ったところ、放電容量は100mAh/gであった。さらに、実施例1に記載のサイクル条件1で充放電を100サイクル繰り返した後の容量比を測定した結果、94.2%であった。以上の結果を表1及び表2に示す。   Moreover, when the characteristic evaluation was performed similarly to Example 1 about the lithium ion secondary battery using the said positive electrode, the discharge capacity was 100 mAh / g. Furthermore, as a result of measuring the capacity ratio after repeating 100 cycles of charge and discharge under the cycle condition 1 described in Example 1, it was 94.2%. The above results are shown in Tables 1 and 2.

Figure 2013101883
Figure 2013101883
Figure 2013101883
Figure 2013101883

(考察)
本発明における実施例及び比較例では、二極式モデルセルから正極のみを取り出し、電解液中で処理1を施しているが、必ずしもセルから正極を取り出して処理1を行う必要はなく、正極を、HOを含む電解液が用いられている電池内に配置したままで処理1を行っても同様の効果が得られた。また、負極を金属リチウムとしなかった場合でも同様の効果が得られた。
(Discussion)
In the examples and comparative examples of the present invention, only the positive electrode is taken out from the bipolar model cell and the treatment 1 is performed in the electrolytic solution. However, it is not always necessary to take out the positive electrode from the cell and perform the treatment 1, The same effect was obtained even when the treatment 1 was performed while being placed in a battery in which an electrolytic solution containing H 2 O was used. The same effect was obtained even when the negative electrode was not made of metallic lithium.

実施例1〜実施例6と比較例1及び2の結果から、0.0001<I/I<1の範囲内である場合、放電特性・サイクル特性ともに優れることが分かった。一方、I/Iが1を上回る場合は、放電容量が低下してしまうことが分かった。これは、リチウムの挿入脱離が起こらない化合物Bの割合が多くなったため、容量利用率が低下したことが原因と考えられる。また、比較例2の結果から、0.0001を下回る場合には100サイクル後の容量維持率が各実施例に比べて低くなることが明らかとなった。これは、化合物Bの割合が少なくなった場合、本発明の効果が得られにくくなることを意味する。特に、化合物Bのピーク強度Iが観測されなかった比較例3は全ての試料の中で最も容量維持率が低かった。 From the results of Examples 1 to 6 and Comparative Examples 1 and 2, it was found that both the discharge characteristics and the cycle characteristics were excellent when 0.0001 <I / I 0 <1. On the other hand, when I / I 0 exceeds 1, it has been found that the discharge capacity decreases. This is presumably because the capacity utilization rate decreased because the proportion of compound B in which lithium insertion / extraction did not occur increased. Further, from the result of Comparative Example 2, it was revealed that the capacity retention rate after 100 cycles is lower than that of each Example when the value is less than 0.0001. This means that the effect of the present invention is hardly obtained when the proportion of compound B decreases. In particular, Comparative Example 3, in which the peak intensity I of Compound B was not observed, had the lowest capacity retention rate among all the samples.

また、実施例2及び3に、MとしてMg又はZnを用いた例を示した。Mとして、Al、Ti、Co、Ni又はCuを選択した場合にも化合物Bを導入することによってサイクル特性が改善した。   In Examples 2 and 3, examples using Mg or Zn as M were shown. Even when Al, Ti, Co, Ni or Cu was selected as M, the cycle characteristics were improved by introducing Compound B.

また、実施例1〜6の結果から、化合物Aに比べて化合物Bの格子体積は小さいことが分かった。化合物Aは充電に伴い格子体積が収縮するが、化合物Bの格子定数が化合物Aよりも小さい場合、化合物Aと化合物Bの格子の間のミスマッチが、放電と共に緩和され、膨張収縮による一次粒子へのダメージが小さくなるものと考えられる。   From the results of Examples 1 to 6, it was found that the lattice volume of Compound B was smaller than that of Compound A. Although the lattice volume of compound A shrinks with charging, when the lattice constant of compound B is smaller than that of compound A, the mismatch between the lattices of compound A and compound B is relaxed along with the discharge, leading to primary particles due to expansion and contraction. It is considered that the damage is reduced.

さらに、実施例1と実施例4との比較から明らかなように、FeとMnの比を変化させても0.0001<I/I<1の範囲内であれば良い結果が得られた。また、実施例4の正極をさらに長時間、80℃で熱処理を続け、4カ月後に正極活物質のX線回折測定を行った。その結果、X線回折パターンに化合物Bが主ピークとして現れた。その物質をICP分析した結果、化学式中のPに対するMnとFeの合計の割合が化合物AやAからLiを脱離した化合物であるA’に比べ減少した。この減少度合いは、熱処理条件を変化させることで変化し、熱処理時間が長いほど、また熱処理温度が高いほど、減少度合いが大きいことが判明した。電極を一度大気に曝して乾燥させた後に同じ実験を行った場合にも減少度合いは大きくなった。先述したように、温度条件や、電極を大気中で乾燥させる条件によってはより短時間で所望のI/I比を得ることができたが、これらの変化によって本発明で得られる効果が制限されることは無かった。 Furthermore, as is clear from the comparison between Example 1 and Example 4, good results were obtained even if the ratio of Fe and Mn was changed within the range of 0.0001 <I / I 0 <1. . Further, the positive electrode of Example 4 was further heat-treated at 80 ° C. for a longer time, and X-ray diffraction measurement of the positive electrode active material was performed after 4 months. As a result, Compound B appeared as a main peak in the X-ray diffraction pattern. As a result of ICP analysis of the substance, the total ratio of Mn and Fe with respect to P in the chemical formula was decreased as compared with A 'which is a compound obtained by eliminating Li from Compound A or A. This degree of reduction changes by changing the heat treatment conditions, and it has been found that the longer the heat treatment time and the higher the heat treatment temperature, the greater the degree of reduction. When the same experiment was performed after the electrode was once exposed to the atmosphere and dried, the degree of decrease was increased. As described above, the desired I / I 0 ratio could be obtained in a shorter time depending on the temperature conditions and the conditions for drying the electrodes in the atmosphere. However, these effects limited the effects obtained in the present invention. It was never done.

上記による様々な条件で処理した試料の分析結果から、本発明における処理を施した際に生成する化合物Bの組成が規定できた。その結果、化学式では、LiδFeεPO(式中、0<δ≦1.2、0<ε<1)、LiκFeλρPO(式中、0<κ≦1.2、0<λ<1.2、0<ρ<1.2、λ+ρ<1.2)、及びLiσMnτFeωζPO(式中、0<σ≦1.2、0<τ<1.2、0<ω<1.2、0<ζ<1.2、0<τ+ω+ζ<1.2)、より具体的には、Li2−βFeβPO、Li2−β−γFeβγPO、及びLi2−α+iMnα−iFeβγPO(式中、0<i≦α)となることが分かった。 From the analysis results of the samples treated under various conditions as described above, the composition of Compound B produced when the treatment in the present invention was performed could be defined. As a result, in the chemical formula, Li δ Fe ε PO 4 (where 0 <δ ≦ 1.2, 0 <ε <1), Li κ Fe λ M ρ PO 4 (where 0 <κ ≦ 1.2). , 0 <λ <1.2, 0 <ρ <1.2, λ + ρ <1.2), and Li σ Mn τ Fe ω M ζ PO 4 (where 0 <σ ≦ 1.2, 0 <τ <1.2, 0 <ω <1.2, 0 <ζ <1.2, 0 <τ + ω + ζ <1.2), more specifically, Li 2−β Fe β PO 4 , Li 2−β− γ Fe β M γ PO 4, and Li (where, 0 <i ≦ α) 2 -α + i Mn α-i Fe β M γ PO 4 was found to be.

さらに、実施例1と比較例4の比較から、化合物A及び化合物Bを含む一次粒子の平均粒径が500nm未満である場合、特性が優れることが分かった。これは、一次粒子の粒径が小さい方が歪みの緩和と容量利用率が高いためと考えられる。   Furthermore, from comparison between Example 1 and Comparative Example 4, it was found that the characteristics were excellent when the average particle size of the primary particles containing Compound A and Compound B was less than 500 nm. This is presumably because the smaller the primary particles, the higher the strain relaxation and the capacity utilization.

本発明では、前記組成比を有する化合物BがLiを脱離しないことに大きな特徴がある。すなわち本発明における特殊な処理を施すことで、オリビン構造におけるLiサイトに一部Feが、あるいはFeサイトに一部Liが固溶した結晶構造を持つドメインや、MnやFeサイトの元素が一部欠損したドメインや、あるいはMnやFe等の元素が欠損した構造中にLiが一部固溶したドメイン等を形成させ、これによりLiの脱離が阻害されたドメインを一次粒子内、あるいは二次粒子内に導入する。言い換えれば本発明における特殊な処理により、化合物Aあるいは化合物A’のごく一部を化合物Bとする。それにより、サイクル数の増加で低下する、オリビン系化合物とその他の正極の構造部材との結着性を維持する効果を持たせることに大きな特徴がある。   The present invention is greatly characterized in that the compound B having the composition ratio does not desorb Li. That is, by performing a special treatment in the present invention, a part of the olivine structure has a crystal structure in which Fe is partly Li or partly Li is dissolved in the Fe site, and part of elements of Mn and Fe sites. A domain in which Li is partly dissolved in a structure in which a deficient domain or an element such as Mn or Fe is deficient is formed, and a domain in which the elimination of Li is inhibited by this is formed in a primary particle or a secondary Introduce into the particles. In other words, only a part of the compound A or the compound A ′ is converted to the compound B by the special treatment in the present invention. Thereby, it has a great feature in that it has the effect of maintaining the binding property between the olivine compound and other positive electrode structural members, which decreases with an increase in the number of cycles.

また、本発明におけるリチウムイオン二次電池用正極活物質の表面に、リン酸リチウム化合物をさらに有する場合を実施例5及び6に示す。この場合でも、正極活物質のX線回折パターンにおいて、ピーク強度Iとピーク強度Iとの強度比I/Iが0.0001<I/I<1の範囲内であると良い結果が得られた。特に、実施例5及び6では最も容量維持率が高く、好ましいことが分かった。 Further, Examples 5 and 6 show cases where a lithium phosphate compound is further provided on the surface of the positive electrode active material for a lithium ion secondary battery in the present invention. Even in this case, in the X-ray diffraction pattern of the positive electrode active material, good results are obtained when the intensity ratio I / I 0 between the peak intensity I and the peak intensity I 0 is within the range of 0.0001 <I / I 0 <1. Obtained. In particular, it was found that Examples 5 and 6 had the highest capacity retention rate and were preferable.

実施例5及び6では、リン酸リチウム化合物としてLiPOを用いたが、その他、Li、LiPOを用いた場合にも優れた電池特性が得られた。また実施例5及び6ではリン酸リチウム化合物を活物質に含有させるため、LiOHとリン酸水素二アンモニウムを用いたが、含有させる方法としては上記に限らない。 In Examples 5 and 6, Li 3 PO 4 was used as the lithium phosphate compound, but in addition, excellent battery characteristics were obtained when Li 4 P 2 O 7 and LiPO 3 were used. In Examples 5 and 6, LiOH and diammonium hydrogen phosphate were used to contain the lithium phosphate compound in the active material, but the method of inclusion is not limited to the above.

リン酸リチウム化合物の含有率は、実施例5〜6に限定されるものではなく、適宜設定することができるが、化合物Aの重量に対して2重量%未満である場合、放電容量が高く、好ましい。この原因は定かではないが、リン酸リチウム化合物によって正極活物質からのLiの拡散や電子伝導が阻害されたためと考えられる。   The content of the lithium phosphate compound is not limited to Examples 5 to 6 and can be set as appropriate. When the content is less than 2% by weight with respect to the weight of the compound A, the discharge capacity is high, preferable. Although this cause is not certain, it is thought that Li diffusion from the positive electrode active material and electronic conduction were inhibited by the lithium phosphate compound.

本発明により得られる正極活物質の用途としては、特に限定されるものではないが、例えば、リチウムイオン二次電池等に用いることができる。   Although it does not specifically limit as a use of the positive electrode active material obtained by this invention, For example, it can use for a lithium ion secondary battery etc.

なお本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Claims (11)

Pnma空間群に属し、化学式LiMnαFeβγPO(式中、0<x≦1.2、0<α<1.2、0<β<1.2、0≦γ<1.2、MはMg、Al、Ti、Co、Ni、Cu及びZnの群から選択される一種類以上の元素である)で表される化合物Aと、
Pnma空間群に属し、前記化合物Aとは異なる化合物Bと、
を含むリチウムイオン二次電池用正極活物質であって、
前記正極活物質を有する正極を用いたリチウムイオン二次電池を満充電し、前記正極活物質のX線回折パターンを測定した場合に、
前記化合物AからLiが脱離した、Pnma空間群に属する化学式LiMnαFeβγPO(式中、0≦y<0.06、ただしx>yである)で表される化合物A’の結晶構造に起因する回折ピーク群と、
化合物Bの結晶構造に起因する回折ピーク群とが観測され、
その際、化合物Bの(200)面のピーク強度Iと、化合物A’の(200)面のピーク強度Iとの強度比I/Iが、0.0001<I/I<1であり、
前記正極活物質を構成する一次粒子の平均粒径が500nm未満である前記リチウムイオン二次電池用正極活物質。
It belongs to the Pnma space group and has the chemical formula Li x Mn α Fe β M γ PO 4 (where 0 <x ≦ 1.2, 0 <α <1.2, 0 <β <1.2, 0 ≦ γ <1 .2, M is one or more elements selected from the group consisting of Mg, Al, Ti, Co, Ni, Cu and Zn),
A compound B belonging to the Pnma space group and different from the compound A;
A positive electrode active material for a lithium ion secondary battery comprising:
When a lithium ion secondary battery using a positive electrode having the positive electrode active material is fully charged and an X-ray diffraction pattern of the positive electrode active material is measured,
A compound represented by the chemical formula Li y Mn α Fe β M γ PO 4 (where 0 ≦ y <0.06, where x> y) belonging to the Pnma space group, from which Li is eliminated from the compound A A group of diffraction peaks due to the crystal structure of A ′;
A diffraction peak group due to the crystal structure of Compound B is observed;
At that time, the intensity ratio I / I 0 between the peak intensity I of the (200) plane of the compound B and the peak intensity I 0 of the (200) plane of the compound A ′ is 0.0001 <I / I 0 <1. Yes,
The positive electrode active material for a lithium ion secondary battery, wherein an average particle size of primary particles constituting the positive electrode active material is less than 500 nm.
化合物BのPnma空間群における格子定数は、a軸方向が10.20Å〜10.33Å、b軸方向が5.98〜6.08Å、c軸方向が4.70〜4.82Åである請求項1に記載のリチウムイオン二次電池用正極活物質。   The lattice constant of Compound B in the Pnma space group is 10.20 to 10.33 inches in the a-axis direction, 5.98 to 6.08 inches in the b-axis direction, and 4.70 to 4.82 inches in the c-axis direction. The positive electrode active material for lithium ion secondary batteries according to 1. 化合物Bは、(200)面の回折角度が、化合物A及び化合物A’の(200)面の回折角度のいずれとも異なり、かつ満充電状態においてLiが脱離しない請求項1又は2に記載のリチウムイオン二次電池用正極活物質。   The compound B has a diffraction angle of the (200) plane different from both of the diffraction angles of the (200) plane of the compound A and the compound A ′, and Li does not desorb in a fully charged state. Positive electrode active material for lithium ion secondary batteries. 化合物Bは、LiδFeεPO(式中、0<δ≦1.2、0<ε<1)、LiκFeλρPO(式中、0<κ≦1.2、0<λ<1.2、0<ρ<1.2、λ+ρ<1.2)、及びLiσMnτFeωζPO(式中、0<σ≦1.2、0<τ<1.2、0<ω<1.2、0<ζ<1.2、0<τ+ω+ζ<1.2)の群から選択される一以上の化学式で表される化合物である請求項1〜3のいずれかに記載のリチウムイオン二次電池用正極活物質。 Compound B includes Li δ Fe ε PO 4 (where 0 <δ ≦ 1.2, 0 <ε <1), Li κ Fe λ M ρ PO 4 (where 0 <κ ≦ 1.2, 0 <Λ <1.2, 0 <ρ <1.2, λ + ρ <1.2), and Li σ Mn τ Fe ω M ζ PO 4 (where 0 <σ ≦ 1.2, 0 <τ <1 The compound represented by one or more chemical formulas selected from the group of .2, 0 <ω <1.2, 0 <ζ <1.2, 0 <τ + ω + ζ <1.2) The positive electrode active material for lithium ion secondary batteries in any one. 化合物Bは、Li2−βFeβPO、Li2−β−γFeβγPO、及びLi2−α+iMnα−iFeβγPO(式中、0<i≦α)の群から選択される一以上の化学式で表される化合物である請求項1〜4のいずれかに記載のリチウムイオン二次電池用正極活物質。 Compound B contains Li 2-β Fe β PO 4 , Li 2-β-γ Fe βM γ PO 4 , and Li 2-α + i Mn α-i Fe βM γ PO 4 (where 0 <i ≦ α The positive electrode active material for lithium ion secondary batteries according to any one of claims 1 to 4, which is a compound represented by one or more chemical formulas selected from the group of 化合物Bは、化合物A及び化合物A’と異なる結晶構造を有し、化合物Bの格子体積は化合物Aより小さく、かつPnma空間群における格子定数は、a軸方向が10.20Å〜10.33Å、b軸方向が5.98〜6.08Å、c軸方向が4.70〜4.82Åであり、化学式中のPに対するMn、Fe及びMの元素の合計の割合が、化合物A及び化合物A’に比べて小さい化合物である請求項4又は5に記載のリチウムイオン二次電池用正極活物質。   Compound B has a different crystal structure from Compound A and Compound A ′, the lattice volume of Compound B is smaller than that of Compound A, and the lattice constant in the Pnma space group is 10.20Å to 10.33Å in the a-axis direction, The b-axis direction is 5.98 to 6.08 mm, the c-axis direction is 4.70 to 4.82 mm, and the total ratio of Mn, Fe and M elements to P in the chemical formula is determined by the compound A and the compound A ′. The positive electrode active material for a lithium ion secondary battery according to claim 4, wherein the positive electrode active material is a small compound as compared with the above. 請求項1〜6のいずれかに記載のリチウムイオン二次電池用正極活物質の表面に、リン酸リチウム化合物をさらに含む前記リチウムイオン二次電池用正極活物質。   The said positive electrode active material for lithium ion secondary batteries which further contains a lithium phosphate compound on the surface of the positive electrode active material for lithium ion secondary batteries in any one of Claims 1-6. リン酸リチウム化合物が、LiPO、Li、及びLiPOの群から選択される一以上である請求項7に記載のリチウムイオン二次電池用正極活物質。 The positive electrode active material for a lithium ion secondary battery according to claim 7 , wherein the lithium phosphate compound is one or more selected from the group consisting of Li 3 PO 4 , Li 4 P 2 O 7 , and LiPO 3 . 満充電条件として、正極活物質を有する正極を用い、負極に金属リチウムを用いたリチウムイオン二次電池を、前記正極の容量を1時間で充電できる電流値の10分の1の値で、金属リチウムからの電位差に換算して4.3Vまで、25時間を上限に充電を行う請求項1〜8のいずれかに記載のリチウムイオン二次電池用正極活物質。   As a fully charged condition, a lithium ion secondary battery using a positive electrode having a positive electrode active material and metallic lithium as a negative electrode is obtained by using a metal at a value that is 1/10 of the current value that can charge the capacity of the positive electrode in one hour. The positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 8, which is charged up to 4.3V in terms of a potential difference from lithium, with an upper limit of 25 hours. 請求項1〜9のいずれかに記載のリチウムイオン二次電池用正極活物質を有するリチウムイオン二次電池用正極。   The positive electrode for lithium ion secondary batteries which has the positive electrode active material for lithium ion secondary batteries in any one of Claims 1-9. 正極として、請求項10に記載のリチウムイオン二次電池用正極を用いたリチウムイオン二次電池。   The lithium ion secondary battery using the positive electrode for lithium ion secondary batteries of Claim 10 as a positive electrode.
JP2011245867A 2011-11-09 2011-11-09 Positive electrode active material for lithium ion secondary battery Ceased JP2013101883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011245867A JP2013101883A (en) 2011-11-09 2011-11-09 Positive electrode active material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011245867A JP2013101883A (en) 2011-11-09 2011-11-09 Positive electrode active material for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2013101883A true JP2013101883A (en) 2013-05-23

Family

ID=48622314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011245867A Ceased JP2013101883A (en) 2011-11-09 2011-11-09 Positive electrode active material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2013101883A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5820522B1 (en) * 2014-09-29 2015-11-24 太平洋セメント株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
JP2016515285A (en) * 2013-03-08 2016-05-26 ユミコア Olivine composition with improved cell performance
JP5930105B1 (en) * 2015-07-10 2016-06-08 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
JP2016524307A (en) * 2013-07-09 2016-08-12 ダウ グローバル テクノロジーズ エルエルシー Mixed positively active material comprising lithium metal oxide and lithium metal phosphate
US9692054B2 (en) 2014-12-26 2017-06-27 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
US9692046B1 (en) 2016-03-29 2017-06-27 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium-ion secondary battery
US9780372B2 (en) 2015-09-30 2017-10-03 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium-ion rechargeable battery
EP3226332A1 (en) 2016-03-29 2017-10-04 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium-ion secondary battery and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270172A (en) * 2001-03-08 2002-09-20 Nissan Motor Co Ltd Positive electrode active material for non-aqueous electrolyte lithium secondary battery and producing method thereof
JP2008047398A (en) * 2006-08-14 2008-02-28 Sony Corp Nonaqueous electrolyte secondary battery
JP2010521797A (en) * 2007-03-19 2010-06-24 ユミコア ソシエテ アノニム Room temperature single phase Li insertion / extraction material for use in Li-based batteries
JP2011210693A (en) * 2010-03-12 2011-10-20 Equos Research Co Ltd Positive electrode for secondary battery
JP2011213587A (en) * 2010-03-19 2011-10-27 Toda Kogyo Corp Method of producing lithium ferromanganese phosphate particulate powder, lithium ferromanganese phosphate particulate powder and non-aqueous electrolyte secondary battery using the same
JP2012009418A (en) * 2010-05-28 2012-01-12 Semiconductor Energy Lab Co Ltd Power storage device
JP2012018914A (en) * 2010-06-02 2012-01-26 Semiconductor Energy Lab Co Ltd Power storage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270172A (en) * 2001-03-08 2002-09-20 Nissan Motor Co Ltd Positive electrode active material for non-aqueous electrolyte lithium secondary battery and producing method thereof
JP2008047398A (en) * 2006-08-14 2008-02-28 Sony Corp Nonaqueous electrolyte secondary battery
JP2010521797A (en) * 2007-03-19 2010-06-24 ユミコア ソシエテ アノニム Room temperature single phase Li insertion / extraction material for use in Li-based batteries
JP2011210693A (en) * 2010-03-12 2011-10-20 Equos Research Co Ltd Positive electrode for secondary battery
JP2011213587A (en) * 2010-03-19 2011-10-27 Toda Kogyo Corp Method of producing lithium ferromanganese phosphate particulate powder, lithium ferromanganese phosphate particulate powder and non-aqueous electrolyte secondary battery using the same
JP2012009418A (en) * 2010-05-28 2012-01-12 Semiconductor Energy Lab Co Ltd Power storage device
JP2012018914A (en) * 2010-06-02 2012-01-26 Semiconductor Energy Lab Co Ltd Power storage device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515285A (en) * 2013-03-08 2016-05-26 ユミコア Olivine composition with improved cell performance
JP2016524307A (en) * 2013-07-09 2016-08-12 ダウ グローバル テクノロジーズ エルエルシー Mixed positively active material comprising lithium metal oxide and lithium metal phosphate
JP5820522B1 (en) * 2014-09-29 2015-11-24 太平洋セメント株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
US9692054B2 (en) 2014-12-26 2017-06-27 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5930105B1 (en) * 2015-07-10 2016-06-08 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
US9780372B2 (en) 2015-09-30 2017-10-03 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium-ion rechargeable battery
US9692046B1 (en) 2016-03-29 2017-06-27 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium-ion secondary battery
EP3226332A1 (en) 2016-03-29 2017-10-04 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium-ion secondary battery and method for manufacturing same
US9865869B2 (en) 2016-03-29 2018-01-09 Sumitomo Osaka Cement Co., Ltd. Electrode material for lithium-ion secondary battery and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR101403828B1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
US7718319B2 (en) Cation-substituted spinel oxide and oxyfluoride cathodes for lithium ion batteries
KR101765406B1 (en) Doped sodium manganese oxide cathode material for sodium ion batteries
KR101492304B1 (en) Lithium manganate for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
KR101532807B1 (en) Lithium manganate particle powder for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
Yang et al. Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries
CN104428942B (en) Nonaqueous electrolyte secondary battery
KR101456313B1 (en) Lithium manganese for non-aqueous electrolyte secondary battery, method for production thereof, and non-aqueous electrolyte secondary battery
JP2013101883A (en) Positive electrode active material for lithium ion secondary battery
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR101458676B1 (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same
KR20190042102A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
Xu et al. Enhanced electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 cathodes by cerium doping and graphene coating
Belharouak et al. New active titanium oxyphosphate material for lithium batteries
JP2008198363A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
Liu et al. A new, high energy rechargeable lithium ion battery with a surface-treated Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode and a nano-structured Li4Ti5O12 anode
JP5765644B2 (en) Method for the preparation of a high voltage nanocomposite cathode (4.9V) for lithium ion batteries
JP7056659B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery
KR101539408B1 (en) Cathode active material for lithium-ion secondary battery comprising lithium manganese borate compounds and manganese oxide, and method for manufacturing the same
EP3978429A1 (en) Aqueous sodium ion secondary battery
KR102273771B1 (en) Cathode active materials for lithium secondary batteries and lithium secondary batteries comprising the same
Hwang et al. Rapid microwave-enhanced ion exchange process for the synthesis of LiNi 0.5 Mn 0.5 O 2 and its characterization as the cathode material for lithium batteries
JP7163624B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode active material
CN114530595B (en) Lithium iron manganese phosphate positive electrode material, positive electrode plate comprising same and battery
JP5045135B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20150825