Nothing Special   »   [go: up one dir, main page]

JP2013197505A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2013197505A
JP2013197505A JP2012065852A JP2012065852A JP2013197505A JP 2013197505 A JP2013197505 A JP 2013197505A JP 2012065852 A JP2012065852 A JP 2012065852A JP 2012065852 A JP2012065852 A JP 2012065852A JP 2013197505 A JP2013197505 A JP 2013197505A
Authority
JP
Japan
Prior art keywords
lead frame
light emitting
light
led chip
particle layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012065852A
Other languages
Japanese (ja)
Inventor
Yuuki Kawamura
有毅 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2012065852A priority Critical patent/JP2013197505A/en
Publication of JP2013197505A publication Critical patent/JP2013197505A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device comprising a particle layer in which light absorption by a lead frame is suppressed and light emission from an LED chip is not shaded.SOLUTION: A light-emitting device 1 comprises a lead frame 2, an LED chip 4 which is formed on the lead frame 2 and includes a light-emitting layer 13, and a particle layer 3 which is formed on the lead frame 2 and comprised of a group of inorganic filler particles of which the light absorption rate is lower than that of the lead frame 2, and in which a height of a top face of a portion right above the lead frame 2 is lower than a height of a bottom face of the light-emitting layer 13.

Description

本発明は、発光装置に関する。   The present invention relates to a light emitting device.

従来、リードフレーム上にLEDチップを搭載した発光装置が知られているが、LEDチップから発せられた光の一部がリードフレームにより吸収されると、発光装置の発光強度が低下するという問題がある。   Conventionally, a light-emitting device in which an LED chip is mounted on a lead frame is known. However, if a part of light emitted from the LED chip is absorbed by the lead frame, there is a problem in that the light emission intensity of the light-emitting device decreases. is there.

従来の発光装置として、凹部を有する基材と、基材の凹部内に配設された発光素子と、凹部内の露出部の上の少なくとも一部に形成され、凹部を形成する部材の反射率よりも高い反射率を有する粒子からなる粒子層、を具備する発光装置が知られている(例えば、特許文献1参照)。   As a conventional light emitting device, a substrate having a recess, a light emitting element disposed in the recess of the substrate, and a reflectance of a member formed on at least a part of the exposed portion in the recess to form the recess There is known a light emitting device including a particle layer made of particles having a higher reflectance (see, for example, Patent Document 1).

特許文献1によれば、高い反射率を有する粒子からなる粒子層を用いることにより、発光装置の光取り出し効率を向上させることができる。   According to Patent Document 1, the light extraction efficiency of the light emitting device can be improved by using a particle layer made of particles having a high reflectance.

特開2007−173408号公報JP 2007-173408 A

しかし、特許文献1に記載された発光装置においては、LEDチップの上面にまで反射率の高い粒子層が形成されているため、LEDチップから上方向に発せられる光を遮り、発光装置の発光強度を低下させるという欠点がある。   However, in the light emitting device described in Patent Document 1, since a highly reflective particle layer is formed on the upper surface of the LED chip, the light emitted upward from the LED chip is blocked, and the light emission intensity of the light emitting device. Has the disadvantage of lowering.

そこで、本発明の目的の一つは、リードフレームによる光の吸収を抑え、且つLEDチップからの発光を遮らない粒子層を有する発光装置を提供することにある。   Accordingly, one object of the present invention is to provide a light emitting device having a particle layer that suppresses light absorption by the lead frame and does not block light emission from the LED chip.

上記目的を達成するため、本発明の一態様は、リードフレームと、前記リードフレーム上に形成された、発光層を有するLEDチップと、前記リードフレーム上に形成され、前記リードフレームよりも光吸収率の低い無機フィラー粒子の群からなり、前記リードフレームの直上の部分の上面の高さが前記発光層の底面の高さよりも低い粒子層と、を有する発光装置を提供する。   To achieve the above object, according to one embodiment of the present invention, a lead frame, an LED chip having a light emitting layer formed on the lead frame, and a light absorption layer formed on the lead frame that absorbs light more than the lead frame. There is provided a light emitting device comprising a group of inorganic filler particles having a low rate, and a particle layer in which a height of an upper surface of a portion immediately above the lead frame is lower than a height of a bottom surface of the light emitting layer.

上記発光装置において、前記粒子層は、前記LEDチップの側部に接触しないことが好ましい。   In the light emitting device, the particle layer preferably does not contact a side portion of the LED chip.

上記発光装置において、前記LEDチップは、前記粒子層を介して前記リードフレーム上に形成されてもよい。   In the light emitting device, the LED chip may be formed on the lead frame via the particle layer.

上記発光装置において、前記粒子層は、前記無機フィラー粒子として、硫酸バリウム粒子、炭酸バリウム粒子、炭酸マグネシウム粒子、及び酸化シリコン粒子のうちの少なくとも1種の粒子を含んでもよい。   In the light emitting device, the particle layer may include at least one kind of particles of barium sulfate particles, barium carbonate particles, magnesium carbonate particles, and silicon oxide particles as the inorganic filler particles.

本発明によれば、リードフレームによる光の吸収を抑え、且つLEDチップからの発光を遮らない粒子層を有する発光装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light-emitting device which has a particle layer which suppresses the light absorption by a lead frame and does not block light emission from an LED chip can be provided.

図1は、実施の形態に係る発光装置の垂直断面図である。FIG. 1 is a vertical sectional view of a light emitting device according to an embodiment. 図2(a)は、LEDチップがフェイスアップ型である場合の垂直断面図である。図2(b)は、LEDチップがフリップチップ型である場合の垂直断面図である。FIG. 2A is a vertical cross-sectional view when the LED chip is a face-up type. FIG. 2B is a vertical cross-sectional view when the LED chip is a flip chip type. 図3(a)、(b)は、実施の形態に係る、粒子層とLEDチップの位置関係の例を表す垂直断面図である。3A and 3B are vertical cross-sectional views illustrating an example of the positional relationship between the particle layer and the LED chip according to the embodiment. 図4は、実施例に係る、硫酸バリウムから構成される粒子層の塗布率と、発光装置の光取出効率の増加率の関係を表すグラフである。FIG. 4 is a graph showing the relationship between the application rate of the particle layer composed of barium sulfate and the increase rate of the light extraction efficiency of the light emitting device according to the example.

〔実施の形態〕
図1は、実施の形態に係る発光装置の垂直断面図である。発光装置1は、凹部を有するリフレクター6と、リフレクター6の凹部の底に形成されたリードフレーム2と、リードフレーム2上に形成されたLEDチップ4と、リードフレーム2上に形成された粒子層3と、リフレクター6の凹部内に形成され、LEDチップ4を封止する封止樹脂7を有する。
Embodiment
FIG. 1 is a vertical sectional view of a light emitting device according to an embodiment. The light-emitting device 1 includes a reflector 6 having a recess, a lead frame 2 formed on the bottom of the recess of the reflector 6, an LED chip 4 formed on the lead frame 2, and a particle layer formed on the lead frame 2. 3 and a sealing resin 7 which is formed in the recess of the reflector 6 and seals the LED chip 4.

リードフレーム2は、例えば、Agからなる。   The lead frame 2 is made of Ag, for example.

粒子層3は、リードフレーム2よりも光吸収率の低い無機フィラー粒子の群からなる。例えば、リードフレーム2が波長450nmの光の吸収率が11.8%のAgからなる場合は、粒子層3は、波長450nmの光の吸収率が11.8%よりも低い無機フィラー粒子の群からなる。   The particle layer 3 is composed of a group of inorganic filler particles having a light absorption rate lower than that of the lead frame 2. For example, when the lead frame 2 is made of Ag with a light absorption rate of 11.8% at a wavelength of 450 nm, the particle layer 3 is a group of inorganic filler particles whose light absorption rate at a wavelength of 450 nm is lower than 11.8%. Consists of.

リードフレームがAgからなる場合は、粒子層3の無機フィラー粒子として、硫酸バリウム(BaSO)粒子、炭酸バリウム(BaCO)粒子、炭酸マグネシウム(MgCO)粒子、及び酸化シリコン(SiO)粒子のうちの少なくとも1種の粒子を用いることができる。 When the lead frame is made of Ag, the inorganic filler particles of the particle layer 3 are barium sulfate (BaSO 4 ) particles, barium carbonate (BaCO 3 ) particles, magnesium carbonate (MgCO 3 ) particles, and silicon oxide (SiO 2 ) particles. At least one kind of particles can be used.

ここで、Ag、BaSO、BaCO、MgCO、及びSiOの波長450nmの光(青色光)の吸収率は、それぞれ11.8%、0.0%、1.0%、3.8%、1.9%である。また、Ag、BaSO、BaCO、MgCO、及びSiOの波長550nmの光(緑色光)の吸収率は、それぞれ8.0%、0.0%、1.4%、0.4%、1.8%である。これらの吸収率は、入射光と反射光のフォトン数の差を入射光のフォトン数で除して求められる。 Here, the absorptance of light (blue light) with a wavelength of 450 nm of Ag, BaSO 4 , BaCO 3 , MgCO 3 , and SiO 2 is 11.8%, 0.0%, 1.0%, 3.8, respectively. % And 1.9%. Moreover, the absorptance of light (green light) with a wavelength of 550 nm of Ag, BaSO 4 , BaCO 3 , MgCO 3 , and SiO 2 is 8.0%, 0.0%, 1.4%, and 0.4%, respectively. 1.8%. These absorptances are obtained by dividing the difference between the number of photons of incident light and reflected light by the number of photons of incident light.

粒子層3がLEDチップ4の発光を妨げないために、粒子層3のリードフレーム2の直上の部分の上面の高さは、後述するLEDチップ4の発光層13の底面の高さよりも低い。このため、例えば、粒子層3が発光層13の側面やLEDチップ4の上面を覆うことにより、LEDチップ4の発光強度を低下させることはない。   In order for the particle layer 3 not to disturb the light emission of the LED chip 4, the height of the upper surface of the portion immediately above the lead frame 2 of the particle layer 3 is lower than the height of the bottom surface of the light emitting layer 13 of the LED chip 4 described later. For this reason, for example, the particle layer 3 does not reduce the light emission intensity of the LED chip 4 by covering the side surface of the light emitting layer 13 or the upper surface of the LED chip 4.

粒子層3を構成する無機フィラー粒子の粒径は、上記の条件を満たすため、リードフレーム2の上面からLEDチップ4の発光層13の底面までの高さよりも小さい。   The particle size of the inorganic filler particles constituting the particle layer 3 is smaller than the height from the top surface of the lead frame 2 to the bottom surface of the light emitting layer 13 of the LED chip 4 in order to satisfy the above conditions.

粒子層3は、例えば、無機フィラー粒子を含む混合液をリードフレーム2上に塗り、乾燥させることにより形成される。混合液は、例えば、ニードルを用いた塗布、インクジェット方式による混合液の吹き付け、スラリー状の溶液のポッティングにより、リードフレーム2上に塗布される。   The particle layer 3 is formed, for example, by applying a mixed liquid containing inorganic filler particles onto the lead frame 2 and drying it. The liquid mixture is applied onto the lead frame 2 by, for example, application using a needle, spraying of the liquid mixture by an ink jet method, and potting of a slurry solution.

LEDチップ4は、n型半導体層とp型半導体層に挟まれた発光層を有する。LEDチップ4は、フェイスアップ型であっても、フリップチップ型であってもよい。   The LED chip 4 has a light emitting layer sandwiched between an n-type semiconductor layer and a p-type semiconductor layer. The LED chip 4 may be a face-up type or a flip chip type.

図2(a)は、LEDチップ4がフェイスアップ型である場合の垂直断面図である。図2(b)は、LEDチップ4がフリップチップ型である場合の垂直断面図である。LEDチップ4は、サファイア等からなる基板11、n型半導体層12、発光層13、p型半導体層14、電極15、パッド電極16a、16bを有する。   FIG. 2A is a vertical sectional view when the LED chip 4 is a face-up type. FIG. 2B is a vertical cross-sectional view when the LED chip 4 is a flip chip type. The LED chip 4 includes a substrate 11 made of sapphire, an n-type semiconductor layer 12, a light emitting layer 13, a p-type semiconductor layer 14, an electrode 15, and pad electrodes 16a and 16b.

基板11は、例えば、サファイア基板である。   The substrate 11 is, for example, a sapphire substrate.

n型半導体層12は、例えば、n型コンタクト層、n型ESD層、およびn型クラッド層からなる積層構造を有し、それらの各層はSi等のn型ドーパントを含むn型GaNからなる。   The n-type semiconductor layer 12 has, for example, a stacked structure including an n-type contact layer, an n-type ESD layer, and an n-type cladding layer, and each of these layers is made of n-type GaN containing an n-type dopant such as Si.

発光層13は、例えば、量子井戸層と障壁層が交互に積層され、各量子井戸層が障壁層に挟まれた多重量子井戸構造を有する。量子井戸層はInGaNから、障壁層はGaN又はAlGaNから形成される。   The light emitting layer 13 has, for example, a multiple quantum well structure in which quantum well layers and barrier layers are alternately stacked and each quantum well layer is sandwiched between barrier layers. The quantum well layer is made of InGaN, and the barrier layer is made of GaN or AlGaN.

p型半導体層14は、例えば、p型クラッド層およびp型コンタクト層からなる積層構造を有し、それらの各層はMg等のp型ドーパントを含むp型GaNから形成される。   The p-type semiconductor layer 14 has, for example, a stacked structure including a p-type cladding layer and a p-type contact layer, and each of these layers is formed of p-type GaN containing a p-type dopant such as Mg.

電極15は、LEDチップ4がフェイスアップ型である場合は、例えば、ITO(Indium Tin Oxide)等の光透過性に優れた材料から形成される。また、LEDチップ4がフリップチップ型である場合は、例えば、Ag等から形成される。   In the case where the LED chip 4 is a face-up type, the electrode 15 is formed of a material having excellent light transmittance, such as ITO (Indium Tin Oxide). Further, when the LED chip 4 is a flip chip type, it is formed of Ag or the like, for example.

パッド電極16a、16bは、例えば、Ni膜にAu膜をめっきした構造を有する。LEDチップ4がフェイスアップ型である場合は、パッド電極16a、16bは、ワイヤー17を介してリードフレーム2に接続され、LEDチップ4がフリップチップ型である場合は、バンプ18を介してリードフレーム2に接続される。   The pad electrodes 16a and 16b have, for example, a structure in which an Au film is plated on a Ni film. When the LED chip 4 is a face-up type, the pad electrodes 16a and 16b are connected to the lead frame 2 via wires 17, and when the LED chip 4 is a flip-chip type, the lead frame is connected via bumps 18. 2 is connected.

図2(a)、(b)中の点線は、発光層13の底面の高さを表す。上述のように、粒子層3のリードフレーム2の直上の部分の上面の高さは、発光層13の底面の高さよりも低い。LEDチップ4がフェイスアップ型である場合の発光層13の底面の高さは、例えば、150μmであり、フリップチップ型である場合の発光層13の底面の高さは、例えば、50μmである。   A dotted line in FIGS. 2A and 2B represents the height of the bottom surface of the light emitting layer 13. As described above, the height of the upper surface of the portion immediately above the lead frame 2 of the particle layer 3 is lower than the height of the bottom surface of the light emitting layer 13. The height of the bottom surface of the light emitting layer 13 when the LED chip 4 is a face-up type is, for example, 150 μm, and the height of the bottom surface of the light emitting layer 13 when the LED chip 4 is a flip chip type is, for example, 50 μm.

図3(a)、(b)は、粒子層3とLEDチップ4の位置関係の例を表す垂直断面図である。図3(a)は、LEDチップ4が粒子層3を介してリードフレーム2上に形成される構成を表す。   FIGS. 3A and 3B are vertical sectional views showing an example of the positional relationship between the particle layer 3 and the LED chip 4. FIG. 3A shows a configuration in which the LED chip 4 is formed on the lead frame 2 via the particle layer 3.

図3(b)は、粒子層3がLEDチップ4の側部に接触している構成を表す。この場合、粒子層3のLEDチップ4の側部に接触している部分と発光層13との距離が短いために、この部分から反射された光が発光層13に入射して吸収されやすい。そのため、図2(a)、(b)や、図3(a)に示される構成のように、粒子層3は、LEDチップ4の側部に接触しないことが好ましい。   FIG. 3B shows a configuration in which the particle layer 3 is in contact with the side portion of the LED chip 4. In this case, since the distance between the portion of the particle layer 3 in contact with the side portion of the LED chip 4 and the light emitting layer 13 is short, the light reflected from this portion is easily incident on the light emitting layer 13 and absorbed. Therefore, it is preferable that the particle layer 3 does not contact the side part of the LED chip 4 as in the configuration shown in FIGS. 2 (a) and 2 (b) and FIG. 3 (a).

封止樹脂7は、シリコーン樹脂、エポキシ樹脂等の透明樹脂からなる。また、封止樹脂7は、図1に示されるように、分散した蛍光体8を含んでもよい。なお、蛍光体8は、封止樹脂7の底の粒子層3上に沈むように配置されてもよく、分散したものと沈んだものが共存してもよい。   The sealing resin 7 is made of a transparent resin such as a silicone resin or an epoxy resin. Further, the sealing resin 7 may include dispersed phosphors 8 as shown in FIG. In addition, the fluorescent substance 8 may be arrange | positioned so that it may sink on the particle layer 3 of the bottom of the sealing resin 7, and what was disperse | distributed and what was sunk may coexist.

硫酸バリウム粒子から構成される粒子層を用いて、粒子層の被覆率と発光装置の発光効率との関係を調べた。また、比較例として、酸化チタン粒子から構成される粒子層を用いて、発光装置の発光効率を調べた。   Using a particle layer composed of barium sulfate particles, the relationship between the coverage of the particle layer and the luminous efficiency of the light emitting device was investigated. As a comparative example, the luminous efficiency of the light emitting device was examined using a particle layer composed of titanium oxide particles.

(発光装置の製造)
まず、リフレクター、フェイスアップ型のLEDチップ、Agからなるリードフレームを有する発光装置を13個用意した。
(Manufacture of light emitting devices)
First, 13 light emitting devices having a reflector, a face-up type LED chip, and a lead frame made of Ag were prepared.

次に、0.2gの硫酸バリウム粒子、0.4gの水、及び0.4gのエタノールを混合し、硫酸バリウム粒子を含む混合液を得た。また、0.2gの酸化チタン粒子、0.4gの水、及び0.4gのエタノールを混合し、酸化チタン粒子を含む混合液を得た。   Next, 0.2 g of barium sulfate particles, 0.4 g of water, and 0.4 g of ethanol were mixed to obtain a mixed solution containing barium sulfate particles. Moreover, 0.2 g of titanium oxide particles, 0.4 g of water, and 0.4 g of ethanol were mixed to obtain a mixed solution containing titanium oxide particles.

本実施例で用いた硫酸バリウム粒子の粒径は、D10、D50、D90、及び最大粒径が、それぞれ1.6μm、2.8μm、5.5μm、15.2μmであった。また、酸化チタン粒子の粒径は、D10、D50、D90、及び最大粒径が、それぞれ0.4μm、1.1μm、3.1μm、34.3μmであった。ここで、D10、D50、D90は、アンダーサイズ累積(粒径の小さいものからの累計)が10%、50%、90%での粒径を表す。   The particle diameters of the barium sulfate particles used in this example were D10, D50, D90, and the maximum particle diameters were 1.6 μm, 2.8 μm, 5.5 μm, and 15.2 μm, respectively. The particle diameters of the titanium oxide particles were D10, D50, D90, and the maximum particle diameters were 0.4 μm, 1.1 μm, 3.1 μm, and 34.3 μm, respectively. Here, D10, D50, and D90 represent the particle sizes when the undersize accumulation (cumulative total from those having a small particle size) is 10%, 50%, and 90%.

次に、ニードルを用いて、得られた混合液をリードフレーム上に塗布した。このとき、10個の発光装置のリードフレームに対して、それぞれ異なる塗布率で硫酸バリウム粒子を含む混合液を塗布し、2個の発光装置のリードフレームに対して、それぞれ異なる塗布率で酸化チタン粒子を含む混合液を塗布した。残りの1個の発光装置のリードフレームには、いずれの混合液も塗布しなかった。   Next, the obtained liquid mixture was apply | coated on the lead frame using the needle. At this time, the mixed liquid containing barium sulfate particles is applied to the lead frames of the ten light emitting devices at different application rates, and the titanium oxide is applied to the lead frames of the two light emitting devices at different application rates. A mixed solution containing particles was applied. None of the mixed solutions was applied to the lead frame of the remaining one light emitting device.

次に、発光装置を常温で乾燥させた。次に、140℃、40分間のプリベークを発光装置に施した後、シリコーン樹脂からなる封止樹脂でLEDチップを封止した。封止樹脂は、150℃、2時間の熱処理により硬化させた。   Next, the light emitting device was dried at room temperature. Next, after prebaking at 140 ° C. for 40 minutes to the light emitting device, the LED chip was sealed with a sealing resin made of silicone resin. The sealing resin was cured by heat treatment at 150 ° C. for 2 hours.

その結果、粒子層を有さないリファレンスとしての1個の発光装置、硫酸バリウム粒子から構成される粒子層の塗布率がそれぞれ48%、50%、65%、66%、69%、74%、78%、82%、86%、100%の10個の発光装置、及び酸化チタン粒子から構成される粒子層の塗布率がそれぞれ60%、62%の2個の発光装置が得られた。   As a result, one light emitting device as a reference having no particle layer, and the coating rate of the particle layer composed of barium sulfate particles are 48%, 50%, 65%, 66%, 69%, 74%, Ten light emitting devices of 78%, 82%, 86%, and 100% and two light emitting devices having a coating rate of 60% and 62% of the particle layer composed of titanium oxide particles were obtained.

ここで、塗布率とは、リフレクターの凹部の底に露出したリードフレームの表面のうち、LEDチップが搭載される領域以外の領域を外側から中心に向けて粒子層が占める割合(%)である。粒子層を有する12個の発光装置のうち、粒子層の塗布率が100%のものは、LEDチップ上にも粒子層を形成した。残りの11個の発光装置のLEDチップ上には、粒子層を形成しなかった。   Here, the coating rate is the ratio (%) of the particle layer that occupies a region other than the region where the LED chip is mounted from the outside to the center of the surface of the lead frame exposed at the bottom of the concave portion of the reflector. . Of the twelve light emitting devices having a particle layer, those having a particle layer application rate of 100% also formed a particle layer on the LED chip. No particle layer was formed on the LED chips of the remaining 11 light emitting devices.

(発光装置の出力測定)
上記の13個の発光装置に対して、粒子層形成前と、樹脂封止後にそれぞれ出力測定を行った。測定結果を表1に示す。表1の「電圧(V)」、「発光波長(nm)」は、それぞれの測定時のLEDチップへの印加電圧及びLEDの発光波長である。
(Measurement of light emitting device output)
For the 13 light emitting devices described above, output measurement was performed before the particle layer formation and after the resin sealing. The measurement results are shown in Table 1. “Voltage (V)” and “emission wavelength (nm)” in Table 1 are the voltage applied to the LED chip and the emission wavelength of the LED during each measurement.

表1の「出力比」は、樹脂封止後の出力と粒子層形成前の出力との比である。「出力比」の値が大きいほど、粒子層形成による出力の増加量が大きい。また、「リファレンス比」は、リファレンスとしての粒子層を含まない発光装置の「出力比」に対する、各発光装置の「出力比」の比を表す。   The “output ratio” in Table 1 is the ratio between the output after resin sealing and the output before formation of the particle layer. The larger the “output ratio” value, the greater the increase in output due to particle layer formation. The “reference ratio” represents the ratio of the “output ratio” of each light emitting device to the “output ratio” of the light emitting device that does not include a particle layer as a reference.

Figure 2013197505
Figure 2013197505

表1からわかるように、硫酸バリウム粒子から構成される粒子層を用いた場合、粒子層を用いない場合よりも発光装置の出力が高く、さらに粒子層の塗布率が高くなるほど出力が向上する。ただし、LEDチップ上に粒子層を形成した場合は、塗布率が最も高いにもかかわらず、粒子層を用いない場合よりも出力が低い。この主な原因として、LEDチップ上の粒子層が、LEDチップの発光層から上方に発せられる光を遮っていることが考えられる。   As can be seen from Table 1, when a particle layer composed of barium sulfate particles is used, the output of the light emitting device is higher than when the particle layer is not used, and the output is improved as the coating rate of the particle layer increases. However, when the particle layer is formed on the LED chip, the output is lower than when the particle layer is not used even though the coating rate is the highest. As the main cause, it is considered that the particle layer on the LED chip blocks light emitted upward from the light emitting layer of the LED chip.

また、酸化チタン粒子から構成される粒子層を用いた場合も、粒子層を用いない場合よりも出力が低い。これは、酸化チタンの光吸収率が、本実施例のリードフレームを構成するAgの光吸収率よりも高いことに起因すると考えられる。   Also, when a particle layer composed of titanium oxide particles is used, the output is lower than when no particle layer is used. This is considered to be because the light absorption rate of titanium oxide is higher than the light absorption rate of Ag constituting the lead frame of this example.

図4は、硫酸バリウムから構成される粒子層の塗布率と、発光装置の光取出効率の増加率の関係を表すグラフである。ここで、「光取出効率の増加率」は、表1の「リファレンス比」のリファレンスからの増加分を百分率で表した値である。図4は、硫酸バリウムから構成される粒子層の塗布率を100%に近づけることにより、光取出効率の増加率が9.4%程度まで近づくことを示している。   FIG. 4 is a graph showing the relationship between the coating rate of the particle layer composed of barium sulfate and the rate of increase in the light extraction efficiency of the light emitting device. Here, the “increase rate of light extraction efficiency” is a value representing the increase from the “reference ratio” in Table 1 as a percentage. FIG. 4 shows that the rate of increase in light extraction efficiency approaches about 9.4% when the coating rate of the particle layer composed of barium sulfate is brought close to 100%.

なお、光取出効率の増加率が塗布率40%近傍から上昇を始めるのは、粒子層がリードフレーム上の外側の領域から中心に向けて塗布されるため、低い塗布率の発光装置においてはLEDチップの近くに粒子層が存在せず、LEDチップから発せられる光を効率的に反射できないためと考えられる。   Note that the increase rate of the light extraction efficiency starts to increase from the vicinity of the application rate of 40% because the particle layer is applied from the outer region on the lead frame toward the center. This is probably because there is no particle layer near the chip, and light emitted from the LED chip cannot be efficiently reflected.

本発明は、上記の実施の形態及び実施例に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。   The present invention is not limited to the embodiments and examples described above, and various modifications can be made without departing from the spirit of the invention.

また、上記の実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   Moreover, said embodiment and Example do not limit the invention which concerns on a claim. It should be noted that not all combinations of features described in the embodiments and examples are necessarily essential to the means for solving the problems of the invention.

1 発光装置
2 リードフレーム
3 粒子層
4 LEDチップ
13 発光層
DESCRIPTION OF SYMBOLS 1 Light emitting device 2 Lead frame 3 Particle layer 4 LED chip 13 Light emitting layer

Claims (4)

リードフレームと、
前記リードフレーム上に形成された、発光層を有するLEDチップと、
前記リードフレーム上に形成され、前記リードフレームよりも光吸収率の低い無機フィラー粒子の群からなり、前記リードフレームの直上の部分の上面の高さが前記発光層の底面の高さよりも低い粒子層と、
を有する発光装置。
A lead frame;
An LED chip having a light emitting layer formed on the lead frame;
Particles formed on the lead frame and made of a group of inorganic filler particles having a light absorption rate lower than that of the lead frame, and the height of the upper surface of the portion immediately above the lead frame is lower than the height of the bottom surface of the light emitting layer Layers,
A light emitting device.
前記粒子層は、前記LEDチップの側部に接触しない、
請求項1に記載の発光装置。
The particle layer does not contact the side of the LED chip;
The light emitting device according to claim 1.
前記LEDチップは、前記粒子層を介して前記リードフレーム上に形成される、
請求項2に記載の発光装置。
The LED chip is formed on the lead frame through the particle layer.
The light emitting device according to claim 2.
前記粒子層は、前記無機フィラー粒子として、硫酸バリウム粒子、炭酸バリウム粒子、炭酸マグネシウム粒子、及び酸化シリコン粒子のうちの少なくとも1種の粒子を含む、
請求項1〜3のいずれか1項に記載の発光装置。
The particle layer includes, as the inorganic filler particles, at least one kind of particles of barium sulfate particles, barium carbonate particles, magnesium carbonate particles, and silicon oxide particles.
The light-emitting device of any one of Claims 1-3.
JP2012065852A 2012-03-22 2012-03-22 Light-emitting device Pending JP2013197505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012065852A JP2013197505A (en) 2012-03-22 2012-03-22 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012065852A JP2013197505A (en) 2012-03-22 2012-03-22 Light-emitting device

Publications (1)

Publication Number Publication Date
JP2013197505A true JP2013197505A (en) 2013-09-30

Family

ID=49396043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012065852A Pending JP2013197505A (en) 2012-03-22 2012-03-22 Light-emitting device

Country Status (1)

Country Link
JP (1) JP2013197505A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150092427A (en) * 2014-02-04 2015-08-13 삼성디스플레이 주식회사 Light emitting diode package and back light unit comprising the same
KR20170071794A (en) * 2015-12-16 2017-06-26 삼성전자주식회사 Substrate and light emitting device package using the same
JP2020053639A (en) * 2018-09-28 2020-04-02 日亜化学工業株式会社 Light-emitting device and method of manufacturing the same
CN112038463A (en) * 2019-06-04 2020-12-04 佛山市国星光电股份有限公司 Ultraviolet LED device and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126811A (en) * 1997-07-02 1999-01-29 Toshiba Corp Semiconductor light emitting device
JP2004055632A (en) * 2002-07-17 2004-02-19 Toshiba Corp Semiconductor light-emitting device
JP2004095941A (en) * 2002-09-02 2004-03-25 Toyoda Gosei Co Ltd Light emitting device
JP2007173408A (en) * 2005-12-20 2007-07-05 Toshiba Lighting & Technology Corp Light-emitting device
JP2010090201A (en) * 2008-10-03 2010-04-22 Three M Innovative Properties Co Light-reflective resin composition, light emitter, and optical display unit
WO2010150880A1 (en) * 2009-06-26 2010-12-29 株式会社朝日ラバー White color reflecting material and process for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126811A (en) * 1997-07-02 1999-01-29 Toshiba Corp Semiconductor light emitting device
JP2004055632A (en) * 2002-07-17 2004-02-19 Toshiba Corp Semiconductor light-emitting device
JP2004095941A (en) * 2002-09-02 2004-03-25 Toyoda Gosei Co Ltd Light emitting device
JP2007173408A (en) * 2005-12-20 2007-07-05 Toshiba Lighting & Technology Corp Light-emitting device
JP2010090201A (en) * 2008-10-03 2010-04-22 Three M Innovative Properties Co Light-reflective resin composition, light emitter, and optical display unit
WO2010150880A1 (en) * 2009-06-26 2010-12-29 株式会社朝日ラバー White color reflecting material and process for production thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150092427A (en) * 2014-02-04 2015-08-13 삼성디스플레이 주식회사 Light emitting diode package and back light unit comprising the same
KR102235258B1 (en) * 2014-02-04 2021-04-05 삼성디스플레이 주식회사 Light emitting diode package and back light unit comprising the same
KR20170071794A (en) * 2015-12-16 2017-06-26 삼성전자주식회사 Substrate and light emitting device package using the same
KR102601579B1 (en) 2015-12-16 2023-11-13 삼성전자주식회사 Substrate and light emitting device package using the same
JP2020053639A (en) * 2018-09-28 2020-04-02 日亜化学工業株式会社 Light-emitting device and method of manufacturing the same
JP7372512B2 (en) 2018-09-28 2023-11-01 日亜化学工業株式会社 Light-emitting device and method for manufacturing the light-emitting device
CN112038463A (en) * 2019-06-04 2020-12-04 佛山市国星光电股份有限公司 Ultraviolet LED device and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6106120B2 (en) Semiconductor light emitting device
TWI513033B (en) Light emitting diode device and producing method thereof
JP6688007B2 (en) Semiconductor light emitting device and method of manufacturing the same
US9287469B2 (en) Encapsulation for phosphor-converted white light emitting diode
KR102415331B1 (en) light emitting diode(LED) package and apparatus including the same
US8552444B2 (en) Semiconductor light-emitting device and manufacturing method of the same
CN107507897B (en) Light emitting device package and method of manufacturing the same
JP6545981B2 (en) Semiconductor light emitting device
TW201705542A (en) Producing method of light emitting diode device and light emitting diode element
TWI599078B (en) Moisture-resistant chip scale packaging light emitting device
KR101887942B1 (en) Light emitting device
TW201218428A (en) Light emitting diode package structure
JP2009059896A (en) Light-emitting device
JP2005209852A (en) Light emitting device
JP2003101074A (en) Light-emitting device
JP2017139464A (en) Light emitting device and manufacturing method of the same
JP2013232479A (en) Semiconductor light-emitting device
TW201517310A (en) Semiconductor light emitting device
TW201630219A (en) Semiconductor light emitting device and method for forming phosphor layer
JP2014072213A (en) Light-emitting device and process of manufacturing the same
US20140070243A1 (en) Light-emitting device and method of manufacturing the same
JP2013182917A (en) Light-emitting device
TW201517321A (en) Semiconductor light emitting device
JP6343923B2 (en) Light emitting device
JP2013197505A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310