Nothing Special   »   [go: up one dir, main page]

JP2013193146A - Misalignment detector for lens and lens centering and edging machine - Google Patents

Misalignment detector for lens and lens centering and edging machine Download PDF

Info

Publication number
JP2013193146A
JP2013193146A JP2012060535A JP2012060535A JP2013193146A JP 2013193146 A JP2013193146 A JP 2013193146A JP 2012060535 A JP2012060535 A JP 2012060535A JP 2012060535 A JP2012060535 A JP 2012060535A JP 2013193146 A JP2013193146 A JP 2013193146A
Authority
JP
Japan
Prior art keywords
lens
cradle
center
light
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012060535A
Other languages
Japanese (ja)
Inventor
Yoshihiko Yamanaka
喜彦 山中
Toshitaka Shimazu
利卓 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Tome Precision Industry Co Ltd
Original Assignee
Nakamura Tome Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Tome Precision Industry Co Ltd filed Critical Nakamura Tome Precision Industry Co Ltd
Priority to JP2012060535A priority Critical patent/JP2013193146A/en
Priority to KR1020130025632A priority patent/KR20130105417A/en
Priority to CN201320117676XU priority patent/CN203100700U/en
Priority to TW102204719U priority patent/TWM461048U/en
Publication of JP2013193146A publication Critical patent/JP2013193146A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/22Equipment for exact control of the position of the grinding tool or work at the start of the grinding operation
    • B24B47/225Equipment for exact control of the position of the grinding tool or work at the start of the grinding operation for bevelling optical work, e.g. lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a misalignment detector for lens that detects misalignment of the optical axis of a lens being in or after outer circumference processing from the axis and center of rotation of a holder holding the lens, and a lens centering and edging machine with the detector.SOLUTION: A misalignment detector for lens includes a rotary pedestal on which a lens is mounted, a freely rotatable press ring which is provided above the pedestal and holds the lens L on the pedestal with the pedestal 1 when moving down, and an optical measuring instrument which detects the lens tilting on the pedestal by receiving reflected light of a light beam projected on the lens on the pedestal through a center hole of the press ring. The optical measuring instrument images the reflected light of the light beam projected on the lens from above on a two-dimensional image receiving element, and then measures the direction and amount of eccentricity of the reflected light with the reflected light of the projection light at the imaging position.

Description

この発明は、レンズの光軸と当該レンズを載置した受台の軸心ないし回転中心とのずれを検出するレンズの芯ずれ検出器及び当該検出器を備えたレンズ芯取機に関するものである。   The present invention relates to a lens misalignment detector that detects a deviation between an optical axis of a lens and an axis or a rotation center of a cradle on which the lens is placed, and a lens centering machine including the detector. .

レンズは、その表裏面の球面加工を行ってから、加工された球面によって決定される光軸を基準にして外周加工を行う。この光軸を基準としてレンズの外周加工を行う装置を芯取機と称している。一般的な芯取機は、レンズを保持して回転するホルダと、このホルダに保持されたレンズの外周に向けて近接離隔する回転砥石と、この回転砥石の前記近接離隔方向の移動位置を制御するNC制御器とを備えている。NC制御器は、ホルダの軸心ないし回転中心を基準にして回転砥石の位置を設定するので、正確な外周加工を行うには、その前提として加工されるレンズがその光軸をホルダの回転中心に正確に一致させて(芯出しされて)保持されていることが必要である。   The lens performs spherical processing on the front and back surfaces, and then performs peripheral processing on the basis of the optical axis determined by the processed spherical surface. An apparatus for processing the outer periphery of the lens with reference to this optical axis is called a centering machine. A general centering machine controls a holder that rotates while holding a lens, a rotating grindstone that moves closer to and away from the outer periphery of the lens held by the holder, and a moving position of the rotating grindstone in the approaching and separating direction. NC controller. Since the NC controller sets the position of the rotating grindstone with reference to the axis or rotation center of the holder, in order to perform accurate outer periphery machining, the lens to be machined as the premise is that its optical axis is the center of rotation of the holder. It is necessary to be held in exact alignment (centered).

ホルダ上のレンズの芯出し方法としては、真円のエッジを有する上向きと下向きのベルカップでホルダを形成し、当該ホルダでレンズを軽く上下に挟持した状態で上下のベルカップを同期回転駆動する方法や、レンズを保持したホルダを所定角度ずつ回転させて各回転位置におけるレンズ球面の周辺部分の位置をダイヤルゲージで計測してレンズ光軸とホルダの軸心との偏芯方向及び偏芯量を演算し、偏芯方向を外周研削用の砥石に向け、当該砥石で偏芯量に相当する距離だけレンズを押し動かす方法などが用いられている。なお、本願の出願人は、特願2011−237377において、新たな芯出し手段を提案している。   As a method of centering the lens on the holder, the upper and lower bell cups are synchronously driven to rotate while the holder is formed by the upward and downward bell cups having a perfect circle edge and the lens is lightly held vertically by the holder. Method, rotating the holder holding the lens by a predetermined angle, measuring the position of the peripheral part of the lens spherical surface at each rotation position with a dial gauge, and the direction and amount of eccentricity between the lens optical axis and the axis of the holder Is calculated, the eccentric direction is directed to the grinding wheel for outer peripheral grinding, and the lens is pushed by a distance corresponding to the eccentric amount with the grinding wheel. The applicant of the present application has proposed a new centering means in Japanese Patent Application No. 2011-237377.

レンズ芯取機は、以上のようにしてレンズをホルダ上で芯出しした後、ホルダを回転しながら砥石でレンズの外周研削を行う。この外周研削中に加工反力などによりレンズがホルダ上で移動するのを防止するため、レンズを負圧でホルダ上に強固に吸着して加工を行うか、上記の下向きベルカップのような押さえ部材でレンズを挟持して加工を行っている。しかし、レンズを傷つけるなどの虞があるため、挟持力をあまり大きくすることができず、加工中にレンズがホルダ上で移動して芯ずれを起こすこともあった。   After centering the lens on the holder as described above, the lens centering machine performs peripheral grinding of the lens with a grindstone while rotating the holder. In order to prevent the lens from moving on the holder due to processing reaction force during this peripheral grinding, processing is performed by firmly adsorbing the lens on the holder with negative pressure, or pressing down like the downward bell cup described above Processing is performed by holding the lens between the members. However, since there is a risk of damaging the lens, the clamping force cannot be increased so much that the lens may move on the holder during processing and cause misalignment.

従来は、加工中ないし加工後のレンズがホルダ上で芯ずれを起こしているかどうかを芯取機上で検出することができず、後工程においてレンズの光軸がレンズ外周の中心に一致しているかどうかを計測して、芯ずれを起こしているレンズを不良品として廃棄していた。   Conventionally, it is not possible to detect on the centering machine whether or not the lens being processed or processed has been misaligned on the holder, and the optical axis of the lens coincides with the center of the lens outer periphery in the subsequent process. The lens that caused the misalignment was discarded as a defective product.

この発明は、上記のような問題を解消して、芯取機上で加工中ないし加工後のレンズの光軸とこれを支持しているホルダの軸心ないし回転中心とのずれを高い精度で検出することができる芯ずれ検出器及びそのような検出器を備えたレンズ芯取機を提供することを課題としている。   The present invention eliminates the above-described problems, and highly accurately shifts the optical axis of a lens being processed or processed on a centering machine and the axis or rotation center of a holder supporting the lens. It is an object of the present invention to provide a misalignment detector that can detect and a lens centering machine equipped with such a detector.

この発明のレンズの芯ずれ検出器は、レンズLを載置する受台1と、この受台の上方に昇降自在に設けられて下降時に受台1上のレンズLを受台1との間で挟持する押さえリング2と、この押さえリングの中心孔21を通して受台上のレンズLに投射された光ビーム31の反射光33を受光して受台上でのレンズの偏芯(傾き)を検出する光学計測器3とを備えている。受台1と押さえリング2は、レンズLの光軸を主軸軸線aと一致させてレンズを保持するためのホルダを形成している。   The lens misalignment detector according to the present invention is provided between a cradle 1 on which a lens L is placed and a cradle 1 that is provided above the cradle so that the lens L on the cradle 1 can be moved up and down. And receiving the reflected light 33 of the light beam 31 projected on the lens L on the cradle through the center hole 21 of the squeeze ring and receiving the eccentricity (tilt) of the lens on the cradle. And an optical measuring instrument 3 for detection. The cradle 1 and the holding ring 2 form a holder for holding the lens with the optical axis of the lens L aligned with the main axis a.

光学計測器3は、受台1に載置されたレンズLの上方から投射した光ビーム31をレンズ表面で光点にして反射させ、その反射光33を2次元受光素子35上に結像させ、その結像位置で投射光31に対する反射光33の偏芯方向及び偏芯量eを計測する。   The optical measuring instrument 3 reflects the light beam 31 projected from above the lens L placed on the cradle 1 as a light spot on the lens surface, and forms an image of the reflected light 33 on the two-dimensional light receiving element 35. Then, the eccentric direction and the eccentric amount e of the reflected light 33 with respect to the projection light 31 are measured at the imaging position.

受台1は、主軸軸線a回りに回転駆動されている。押さえリング2は、光ビーム31及びその反射光33を通過させる中空孔をそれぞれ備えた軸受22及び昇降台23を介して、その中心軸回りに自由回転可能にして、昇降駆動装置に連結されている。   The cradle 1 is rotationally driven around the spindle axis a. The holding ring 2 is connected to an elevating drive device through a bearing 22 and an elevating table 23 each having a hollow hole through which the light beam 31 and its reflected light 33 pass, so that it can freely rotate around its central axis. Yes.

レンズLは、受台1と押さえリング2とで挟持される。この状態で受台1を回転させることにより、レンズLと押さえリング2とが従動回転し、レンズL上に投射された光ビーム31の反射光33は、光学計測器の受光素子35上に円軌跡cを描く。芯ずれ検出器30は、この円軌跡の中心pと受台1を停止したときの受光点sの位置関係から、受台1上のレンズLの偏芯方向を計測し、その円軌跡の径から、レンズの偏芯量eを計測する。   The lens L is sandwiched between the cradle 1 and the pressing ring 2. When the cradle 1 is rotated in this state, the lens L and the pressing ring 2 are driven to rotate, and the reflected light 33 of the light beam 31 projected onto the lens L is circular on the light receiving element 35 of the optical measuring instrument. Draw a trajectory c. The misalignment detector 30 measures the eccentric direction of the lens L on the cradle 1 from the positional relationship between the center p of the circular locus and the light receiving point s when the cradle 1 is stopped, and the diameter of the circular locus. From the above, the eccentricity e of the lens is measured.

この発明の芯ずれ検出器30と、受台上に載置されたレンズLの光軸を受台1の中心ないし回転中心に一致させる芯出し手段4とを備えることにより、加工前、加工中及び加工後の任意のタイミングで、受台1上のレンズLの光軸と受台1の回転中心とのずれ(偏倚)を検出可能で、かつ、加工中に修正可能なずれが生じたときに当該ずれを修正して加工を継続可能なレンズ芯取機を得ることができる。   By providing the misalignment detector 30 of the present invention and the centering means 4 for aligning the optical axis of the lens L placed on the cradle with the center or the center of rotation of the cradle 1 before and during processing. When a deviation (bias) between the optical axis of the lens L on the cradle 1 and the center of rotation of the cradle 1 can be detected at any timing after machining and a misalignment that can be corrected occurs during machining. In addition, it is possible to obtain a lens centering machine capable of correcting the deviation and continuing the processing.

この発明により、受台1上のレンズの芯ずれを、加工前には勿論、加工中及び加工後のいずれのタイミングにおいても検出できる。また、受台1、レンズL及び当該レンズを押さえている押さえリング2が回転している状態でレンズの芯ずれを検出できるので、検出のために加工を中止したり受台1の回転を停止する必要がなく、加工能率を低下させることがない。   According to the present invention, the lens misalignment of the lens on the cradle 1 can be detected at any timing during and after processing, as well as before processing. Further, since the center deviation of the lens can be detected while the cradle 1, the lens L, and the holding ring 2 holding the lens are rotating, the processing is stopped for detection or the rotation of the cradle 1 is stopped. There is no need to reduce the machining efficiency.

加工中にレンズの芯ずれが検出されれば、加工を一時停止して芯ずれを修正して再加工することもできるし、修正不能であれば加工途中でレンズを廃棄できる。また、加工後のレンズに芯ずれが検出されれば、その時点で不良レンズを廃棄でき、後工程での芯ずれ測定工程が不要になる。   If a lens misalignment is detected during processing, the processing can be temporarily stopped to correct the misalignment and rework can be performed. If correction is impossible, the lens can be discarded during the processing. Further, if a misalignment is detected in the processed lens, the defective lens can be discarded at that time, and a misalignment measuring step in a later process becomes unnecessary.

更に、図示実施例のように、押さえリング2を受台1上のレンズからの摩擦力で回転する質量の小さい自由回転体とすることで、従来のベルカップ方式のような上カップの同期駆動系を必要とせず、かつレンズの押さえ力の制御もより正確にできる。   Further, as shown in the illustrated embodiment, the holding ring 2 is a free rotating body with a small mass that is rotated by the frictional force from the lens on the cradle 1 so that the upper cup is synchronously driven as in the conventional bell cup system. A system is not required, and the lens pressing force can be controlled more accurately.

この発明の芯出ずれ検出器を備えた芯取機の実施例を示すブロック図The block diagram which shows the Example of the centering machine provided with the centering deviation detector of this invention 図1の芯取機の芯ずれ検出器を示す正面図Front view showing the misalignment detector of the centering machine of FIG. レンズの偏芯と反射光の振れを誇張して示す説明図Explanatory drawing showing exaggerated lens decentering and reflected light shake オートコリメータの2次元受光素子上の受光点を示す図The figure which shows the light receiving point on the two-dimensional light receiving element of the autocollimator

図1は、この発明の芯ずれ検出器を備えたレンズ芯取機の例を示す模式的な正面図である。図のレンズ芯取機は、鉛直方向の軸線(主軸軸線)a回りに回転駆動される主軸11と、この主軸の上端に固定された上向きカップ状の受台1と、この受台の上方に配置された押さえリング2と、受台1と押さえリング2で挟持して保持したレンズLの外周を加工する回転砥石47とを備えている。押さえリング2は、昇降自在かつ主軸軸線a回りに自由回転可能である。主軸11及びその上端に固定された受台1は、主軸モータ12で回転駆動される。   FIG. 1 is a schematic front view showing an example of a lens centering machine provided with a misalignment detector of the present invention. The lens centering machine shown in the figure includes a main shaft 11 that is driven to rotate about a vertical axis (main shaft axis) a, an upward cup-shaped cradle 1 fixed to the upper end of the main shaft, and an upper portion of the cradle. The presser ring 2 is disposed, and a rotating grindstone 47 that processes the outer periphery of the lens L held and held between the cradle 1 and the presser ring 2 is provided. The presser ring 2 can freely move up and down and can freely rotate around the spindle axis a. The spindle 11 and the cradle 1 fixed to the upper end thereof are rotationally driven by a spindle motor 12.

主軸11は、中空軸で、その中空孔13は、受台1のカップ内に連通している。主軸の中空孔13の下端は、受台1上でレンズを浮かすための空気圧供給装置5に連結されている。空気圧供給装置5は、圧力設定器51を備えており、この圧力設定器を通過した空気が切換弁52、回転継手53及び主軸11の中空孔13を通って受台1内に供給されるようになっている。   The main shaft 11 is a hollow shaft, and the hollow hole 13 communicates with the cup of the cradle 1. A lower end of the hollow hole 13 of the main shaft is connected to an air pressure supply device 5 for floating the lens on the cradle 1. The air pressure supply device 5 includes a pressure setting device 51, and air passing through the pressure setting device is supplied into the cradle 1 through the switching valve 52, the rotary joint 53, and the hollow hole 13 of the main shaft 11. It has become.

芯ずれ検出器30は、上記構造の受台1及び押さえリング2と、押さえリング2の中心孔を通して受台1上のレンズLに主軸軸線方向の光ビーム31を投射し、かつ当該光ビームの反射光33を押さえリング2の中心孔を通して受光する光学計測器(オートコリメータ)3とで構成されている。   The misalignment detector 30 projects a light beam 31 in the axial direction of the main axis to the lens L on the cradle 1 through the center 1 of the cradle 1 and the retaining ring 2 and the retaining ring 2 having the above structure, and the light beam An optical measuring instrument (autocollimator) 3 that receives the reflected light 33 through the center hole of the holding ring 2 is configured.

押さえリング2は、レンズに当接する下面が合成樹脂製で、上方の円筒部を玉軸受22の内輪に嵌着して取り付けられている。玉軸受22の外輪は、昇降台23に設けた主軸軸線aを中心とする上下方向の貫通孔に嵌着されている。昇降台23は、昇降シリンダ24の本体25のヘッドエンド側に固定されている。シリンダ本体25は、主軸軸線a方向のシリンダガイド26(図2)で昇降自在に案内され、そのロッドの先端27が機械フレームの不動位置に連結されている。すなわち、昇降シリンダ24に流体圧を供給することにより、シリンダ本体25が昇降し、下降したときに昇降台23に自由回転可能に支持された押さえリング2が、受台1上に載置されたレンズLを受台1との間で挟持する。   The presser ring 2 has a lower surface made of synthetic resin and is attached by fitting an upper cylindrical portion to an inner ring of the ball bearing 22. The outer ring of the ball bearing 22 is fitted in a through hole in the vertical direction centering on the spindle axis a provided on the lifting platform 23. The lifting platform 23 is fixed to the head end side of the body 25 of the lifting cylinder 24. The cylinder body 25 is guided by a cylinder guide 26 (FIG. 2) in the direction of the spindle axis a so that the cylinder body 25 can freely move up and down, and the tip 27 of the rod is connected to the stationary position of the machine frame. That is, by supplying fluid pressure to the lift cylinder 24, the presser ring 2 supported so as to be freely rotatable by the lift base 23 when the cylinder body 25 is lifted and lowered is placed on the receiving base 1. The lens L is sandwiched between the cradle 1.

光学計測器であるオートコリメータ3は、その光軸を主軸軸線aと同一軸にして昇降台23の上方に配置されている。オートコリメータ3は、主軸軸線a方向のガイドレール28に昇降自在に設けたクランパ29で把持されて、図示しない昇降装置で光軸方向に移動位置決めすることにより焦点調整可能である。   The autocollimator 3 which is an optical measuring instrument is arranged above the lifting platform 23 with its optical axis as the same axis as the main axis a. The autocollimator 3 is gripped by a clamper 29 provided on a guide rail 28 in the direction of the main axis axis a so as to be able to move up and down, and can be adjusted in focus by moving and positioning in the optical axis direction by a lifting device (not shown).

図1には、オートコリメータ3の内部構造が模式的に示されている。オートコリメータ3は、受台1上のレンズLに向けて光ビーム31を投射する投光器32と、レンズLからの反射光33をハーフミラー34で直角に反射して受光する2次元受光素子35とを備えている。投光器32から投射された光ビームは、レンズLの表面に光点(焦点)となって照射され、その反射光33が受光素子35の受光面上で結像し、その位置情報が電気信号として出力される。押さえリング2の中空孔21は、光ビーム31及びその反射光33を通過させるための貫通孔となっている。   FIG. 1 schematically shows the internal structure of the autocollimator 3. The autocollimator 3 includes a projector 32 that projects a light beam 31 toward the lens L on the cradle 1, and a two-dimensional light receiving element 35 that receives reflected light 33 from the lens L by being reflected by a half mirror 34 at a right angle. It has. The light beam projected from the projector 32 irradiates the surface of the lens L as a light spot (focal point), the reflected light 33 forms an image on the light receiving surface of the light receiving element 35, and the position information is an electrical signal. Is output. The hollow hole 21 of the holding ring 2 is a through hole for allowing the light beam 31 and the reflected light 33 to pass therethrough.

レンズLの光軸と受台1の軸心とが偏芯していると、図3に示すように、レンズが傾く。この傾きは、受台1の円形のエッジ14に当接しているレンズ下面の曲率が大きいほど大きく、凸面か凹面かで傾きの方向が逆になる。レンズの光軸中心では、レンズ面は光軸と直角であり、ここに投射された光ビームは入射方向に反射する。レンズが偏芯して傾いていると、反射光は入射光からずれ、図4に示すように、受光素子35上の受光点sの位置がずれ、受台1の回転によって受光点sは、円軌跡cを描く。   If the optical axis of the lens L and the axis of the cradle 1 are decentered, the lens tilts as shown in FIG. This inclination increases as the curvature of the lower surface of the lens in contact with the circular edge 14 of the cradle 1 increases, and the direction of inclination is reversed depending on whether the surface is convex or concave. At the center of the optical axis of the lens, the lens surface is perpendicular to the optical axis, and the light beam projected thereon is reflected in the incident direction. When the lens is decentered and tilted, the reflected light deviates from the incident light, and the position of the light receiving point s on the light receiving element 35 is shifted as shown in FIG. Draw a circular locus c.

この円軌跡の中心pは、主軸軸線aに対応する受光面上の点である。この中心点pを原点として受光点sの偏芯方向及び偏芯量(円の半径)eを計測すれば、オートコリメータ3の受光面の原点oが受台1の回転中心からずれていても、正確な偏芯方向及び偏芯量を計測できる。外周加工中、すなわち受台1の回転中は、受光点sの偏芯方向は計測できないが、偏芯量eは計測できる。従って、外周加工中に偏芯量eを監視し、偏芯量eがNC制御器に設定したしきい値(許容値)を超えたときに芯ずれが生じたとして主軸回転を停止し、偏芯量eが修正可能でかつ再芯出しのために必要であれば偏芯方向を計測すれば良い。   The center p of this circular locus is a point on the light receiving surface corresponding to the principal axis a. If the eccentric direction and the eccentric amount (radius of the circle) e of the light receiving point s are measured with the center point p as the origin, even if the origin o of the light receiving surface of the autocollimator 3 is deviated from the rotation center of the cradle 1. It is possible to measure the exact eccentric direction and the eccentric amount. While the outer periphery is being processed, that is, while the cradle 1 is rotating, the eccentric direction of the light receiving point s cannot be measured, but the eccentric amount e can be measured. Accordingly, the eccentricity e is monitored during the outer periphery machining, and when the eccentricity e exceeds the threshold value (allowable value) set in the NC controller, the spindle rotation is stopped and the eccentricity is stopped. If the center amount e can be corrected and is necessary for re-centering, the eccentric direction may be measured.

図1の装置には、受台1上でレンズLを半径方向に押して芯ずれを修正する押動体4が設けられている。レンズ押動体4は、合成樹脂製で、圧電素子44を介して移動台41に搭載されている。移動台41は、図示されていないボールナットを介して送りねじ42に連結され、この送りねじがNC制御器6によってサーボ制御される送りモータ43で回転駆動されている。   The apparatus shown in FIG. 1 includes a pusher 4 that corrects misalignment by pushing the lens L in the radial direction on the cradle 1. The lens pusher 4 is made of synthetic resin and is mounted on the movable table 41 via the piezoelectric element 44. The moving table 41 is connected to a feed screw 42 via a ball nut (not shown), and this feed screw is rotationally driven by a feed motor 43 that is servo-controlled by the NC controller 6.

NC制御器6は、オートコリメータ3の検出信号と予め入力されたレンズ下面の凹凸(偏芯方向が180度反対になる)の別に基づいて、受台1の回転中心からのレンズLの光軸の偏芯方向を検出して、当該偏芯方向が押動体4を向くように主軸モータ12の回転角を制御する位相制御手段61と、オートコリメータ3の偏芯量eの計測値に基づいて送りモータ43の回転角を制御するストローク制御手段62を備えている。   The NC controller 6 determines the optical axis of the lens L from the center of rotation of the cradle 1 on the basis of the detection signal of the autocollimator 3 and the previously inputted unevenness of the lower surface of the lens (the eccentric direction is 180 degrees opposite). Based on the measured value of the eccentricity e of the autocollimator 3 and the phase control means 61 for controlling the rotation angle of the spindle motor 12 so that the eccentric direction faces the pusher 4. Stroke control means 62 for controlling the rotation angle of the feed motor 43 is provided.

圧電素子44には、これを移動台41の移動方向に振動させるための交流電源45が接続されている。NC制御器6は、圧電素子44を振動させる交流電源45のオンオフスイッチ46を制御している。   An AC power supply 45 is connected to the piezoelectric element 44 for vibrating it in the moving direction of the moving table 41. The NC controller 6 controls an on / off switch 46 of an AC power supply 45 that vibrates the piezoelectric element 44.

上記の芯取機において、押さえリング2が上動した状態で受台1上にレンズLが搬入されたら、オートコリメータ3は、当該レンズL上に光ビーム31を照射して、その反射光を2次元受光素子35で受光する。次に主軸11をゆっくり回転して、受光素子35上で受光点sに円軌跡cを描かせ、その円の半径から受台1の回転中心に対するレンズLの偏芯量を計測する。次に主軸11を停止し、前記の円の中心と受台1を停止したときの受光点sとの相対位置関係から、偏芯方向を検出する。   In the above-described centering machine, when the lens L is carried onto the cradle 1 with the holding ring 2 moved upward, the autocollimator 3 irradiates the light beam 31 on the lens L and reflects the reflected light. Light is received by the two-dimensional light receiving element 35. Next, the main shaft 11 is slowly rotated to draw a circular locus c at the light receiving point s on the light receiving element 35, and the eccentric amount of the lens L with respect to the rotation center of the cradle 1 is measured from the radius of the circle. Next, the spindle 11 is stopped, and the eccentric direction is detected from the relative positional relationship between the center of the circle and the light receiving point s when the cradle 1 is stopped.

NC制御器6は、検出された偏芯方向が押動体4を向くように主軸モータ12に回転指令を与える。次にNC制御器は、送りモータ43に前進指令を与える。この前進中にオートコリメータ3から受光点sの移動開始信号を受けたときに、押動体4がレンズLの外周に当接したと判断し、ストローク制御手段62に計測開始指令を与える。ストローク制御手段62は、計測開始指令が与えられたときの押動体4の位置から既に計測されている偏芯量eだけ押動体4を前進させた位置で、送りモータ43を停止させる。   The NC controller 6 gives a rotation command to the spindle motor 12 so that the detected eccentric direction faces the pusher 4. Next, the NC controller gives a forward command to the feed motor 43. When the movement start signal of the light receiving point s is received from the autocollimator 3 during this forward movement, it is determined that the pusher 4 has come into contact with the outer periphery of the lens L, and a measurement start command is given to the stroke control means 62. The stroke control means 62 stops the feed motor 43 at a position where the pusher 4 has been advanced by the eccentric amount e that has already been measured from the position of the pusher 4 when the measurement start command is given.

押動体4でレンズLを押すとき、必要に応じて交流電源45のスイッチ46をオンにすることによって、振動送りを選択することができる。レンズが重いときには、空気圧供給装置5から受台1に空気圧を供給して受台1に作用するレンズの荷重を低減することにより、レンズ押動時の摩擦負荷を低減してレンズLを押動することができる。振動送りは、いわゆるスティックスリップ現象によってレンズLがその停止位置を越えて移動するのを防止するのに有効である。   When pushing the lens L with the pusher 4, the vibration feed can be selected by turning on the switch 46 of the AC power supply 45 as necessary. When the lens is heavy, air pressure is supplied from the air pressure supply device 5 to the cradle 1 to reduce the load on the lens acting on the cradle 1, thereby reducing the friction load when the lens is pushed and pushing the lens L. can do. The vibration feed is effective in preventing the lens L from moving beyond its stop position due to a so-called stick-slip phenomenon.

押動体4でレンズLを押すとき、押動中にレンズLが押動体4の前進方向からずれた方向に動くことがあり、また慣性でレンズが余計に動いてしまうこともある。そこで押動動作の終了後、光学計測器3でレンズLの偏芯を確認し、所定の誤差範囲(しきい値)内に入っていれば外周加工を開始し、入っていないときは、再度偏芯方向と偏芯量とを計測して上記の芯出し動作を繰り返す。   When the pusher 4 pushes the lens L, the lens L may move in a direction deviated from the forward direction of the pusher 4 during the push, and the lens may move excessively due to inertia. Therefore, after the pushing operation is finished, the optical measuring instrument 3 confirms the eccentricity of the lens L, and if it is within a predetermined error range (threshold), the outer periphery machining is started. The centering operation is repeated by measuring the eccentric direction and the eccentric amount.

上記のようにしてレンズの芯出しが終了したら、押さえリング2を下動して受台1と押さえリング2でレンズLを挟持し、主軸モータ12で主軸11を回転させてレンズLを芯出しした光軸回りに回転させる。そして、回転砥石47を回転させ、レンズの外周形状が所定形状となるように図示しない砥石送りモータで砥石台48を前進させることにより、レンズLの光軸を基準としたレンズの外周加工を行う。   When the centering of the lens is completed as described above, the holding ring 2 is moved downward to hold the lens L between the cradle 1 and the holding ring 2, and the spindle 11 is rotated by the spindle motor 12 to center the lens L. Rotate around the optical axis. Then, the rotating grindstone 47 is rotated, and the grindstone head 48 is advanced by a grindstone feed motor (not shown) so that the outer circumferential shape of the lens becomes a predetermined shape, so that the outer circumference of the lens is processed based on the optical axis of the lens L. .

この外周加工中に、オートコリメータ3は、レンズL上に光ビーム31を照射し、その反射光を2次元受光素子35で受光し続ける。加工中にレンズLに芯ずれが起こると、受光素子35上で受光点sが円軌跡cを描きはじめるから、その円の半径がNC制御器6に登録されたしきい値を超えたら、主軸11を停止し、前記の円の中心と受台1を停止したときの受光点sとの相対位置関係から、偏芯方向を検出する。   During this outer periphery processing, the autocollimator 3 irradiates the light beam 31 onto the lens L and continues to receive the reflected light by the two-dimensional light receiving element 35. If the lens L is misaligned during processing, the light receiving point s starts to draw a circular locus c on the light receiving element 35. If the radius of the circle exceeds the threshold value registered in the NC controller 6, the spindle 11 is stopped, and the eccentric direction is detected from the relative positional relationship between the center of the circle and the light receiving point s when the cradle 1 is stopped.

計測した偏芯量eが修正可能な量であれば、NC制御器6は、押さえリング2を上動し、検出された偏芯方向が押動体4を向くように主軸モータ12を回転し、押動体4で検出した偏芯量eだけレンズLを押動して再芯出しをした後、押さえリング2を下降して外周研削加工を再開する。偏芯量が修正不能な量であれば、当該レンズを芯取機から排出する。   If the measured amount of eccentricity e is a correctable amount, the NC controller 6 moves up the holding ring 2 and rotates the spindle motor 12 so that the detected eccentric direction faces the pushing body 4. After the lens L is pushed by the eccentric amount e detected by the pusher 4 and re-centering is performed, the presser ring 2 is lowered and the outer peripheral grinding process is resumed. If the eccentricity is an uncorrectable amount, the lens is discharged from the centering machine.

1 受台
2 押さえリング
3 光学計測器
4 押動体
6 NC制御器
21 中心孔
22 軸受
23 昇降台
24 シリンダ
30 芯ずれ検出器
31 光ビーム
32 投光器
33 反射光
35 受光素子
61 位相制御手段
62 ストローク制御手段
a 主軸軸線
c 円軌跡
L レンズ
p 円軌跡の中心
s 受光点
DESCRIPTION OF SYMBOLS 1 Receiving stand 2 Holding ring 3 Optical measuring instrument 4 Pushing body 6 NC controller 21 Center hole 22 Bearing 23 Lifting stand 24 Cylinder 30 Misalignment detector 31 Light beam 32 Emitter 33 Reflected light 35 Light receiving element 61 Phase control means 62 Stroke control Means a Spindle axis c Circular locus L Lens p Center of circular locus s Light receiving point

Claims (6)

光軸を中心に一致させてレンズを載置するための受台と、
受台の上方に昇降自在に設けられて下降時に受台上のレンズを受台との間で挟持する押さえリングと、
押さえリングの中心孔を通して受台上のレンズに投射された中心軸方向の光ビームの反射光を受光して受台上でのレンズの傾きを検出する光学計測器とを備えた、レンズの芯ずれ検出器。
A cradle for placing the lens with the optical axis as the center;
A holding ring that can be moved up and down above the cradle and clamps the lens on the cradle with the cradle when lowered,
A lens core comprising an optical measuring device that receives the reflected light of the light beam in the central axis direction projected on the lens on the cradle through the center hole of the holding ring and detects the tilt of the lens on the cradle. Deviation detector.
光学計測器が、受台の上方から投射した光ビームをレンズ表面で光点にして反射させ、その反射光を2次元受光面上に結像させ、その結像位置で投射光に対する反射光の偏芯方向及び偏芯量を検出する、請求項1記載の芯ずれ検出器。   The optical measuring instrument reflects the light beam projected from above the cradle as a light spot on the lens surface, forms an image of the reflected light on the two-dimensional light receiving surface, and reflects the reflected light with respect to the projected light at the imaging position. The misalignment detector according to claim 1, wherein an eccentric direction and an eccentric amount are detected. 中心軸回りに回転駆動される前記受台と、前記光ビーム及びその反射光を通過させる貫通孔をそれぞれ備えた軸受け及び昇降台を介してその中心軸回りに自由回転可能にして昇降駆動装置に連結されている前記押さえリングとを備えている、請求項1又は2記載の芯ずれ検出器。   A lifting drive device that can freely rotate around the central axis via the receiving table that is rotationally driven around a central axis, and a bearing and a lifting platform that each include a through hole through which the light beam and reflected light pass. The misalignment detector according to claim 1, further comprising the presser ring that is connected. 受台と押さえリングとでレンズを挟持した状態で受台を回転させることにより光学計測器の受光面上に円軌跡を描かせ、その円軌跡の中心と受台を停止したときの受光点の位置からレンズの偏芯方向を計測し、その円軌跡の径からレンズの偏芯量を計測する、請求項3記載のレンズの芯ずれ検出器。   By rotating the cradle with the lens held between the cradle and the holding ring, a circular locus is drawn on the light receiving surface of the optical measuring instrument, and the center of the circular locus and the light receiving point when the cradle is stopped The lens misalignment detector according to claim 3, wherein the decentering direction of the lens is measured from the position, and the decentering amount of the lens is measured from the diameter of the circular locus. 請求項3又は4記載の芯ずれ検出器と、受台上に載置されたレンズの光軸を受台の中心ないし回転中心に一致させる芯出し手段とを備えている、レンズ芯取機。   5. A lens centering machine comprising: the center misalignment detector according to claim 3; and centering means for aligning an optical axis of a lens placed on the cradle with a center or a rotation center of the cradle. 芯出し手段が、レンズを受台の回転中心に向けて押し動かす押動体と、この押動体を受台の軸心に向けて移動する送り装置と、NC制御器とを備え、前記NC制御器は、前記光学計測器の計測値に基づいてレンズの偏芯方向を押動体に向ける方向に受台を回転させる位相制御手段と、光学計測器の計測値に基づいて押動体を受台中心に向けて進出させるストローク制御手段とを備えている、請求項5記載のレンズ芯取機。   The centering means includes a pusher that pushes the lens toward the center of rotation of the cradle, a feed device that moves the pusher toward the axis of the cradle, and an NC controller, the NC controller Phase control means for rotating the cradle in a direction in which the decentering direction of the lens is directed to the pusher based on the measurement value of the optical measuring instrument, and the pusher is centered on the cradle based on the measurement value of the optical instrument. The lens centering machine according to claim 5, further comprising stroke control means for moving forward.
JP2012060535A 2012-03-16 2012-03-16 Misalignment detector for lens and lens centering and edging machine Pending JP2013193146A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012060535A JP2013193146A (en) 2012-03-16 2012-03-16 Misalignment detector for lens and lens centering and edging machine
KR1020130025632A KR20130105417A (en) 2012-03-16 2013-03-11 Apparatus for detecting lens center and centering of lens
CN201320117676XU CN203100700U (en) 2012-03-16 2013-03-15 Lens eccentricity detector and lens aligning machine
TW102204719U TWM461048U (en) 2012-03-16 2013-03-15 Lens eccentricity detection device for lens and lens center adjusting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012060535A JP2013193146A (en) 2012-03-16 2012-03-16 Misalignment detector for lens and lens centering and edging machine

Publications (1)

Publication Number Publication Date
JP2013193146A true JP2013193146A (en) 2013-09-30

Family

ID=48852094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060535A Pending JP2013193146A (en) 2012-03-16 2012-03-16 Misalignment detector for lens and lens centering and edging machine

Country Status (4)

Country Link
JP (1) JP2013193146A (en)
KR (1) KR20130105417A (en)
CN (1) CN203100700U (en)
TW (1) TWM461048U (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542636C1 (en) * 2013-12-16 2015-02-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Method for centring lens in holder and holder therefor
RU2544288C1 (en) * 2013-12-27 2015-03-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Method for centring lens in holder and holder therefor
RU2602420C2 (en) * 2015-03-17 2016-11-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Method for alignment of lens in holder and holder for its implementation
RU2602419C2 (en) * 2015-03-17 2016-11-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Method of stock pile structure lenses centering and lenses holders for its implementation
RU2602418C2 (en) * 2015-03-17 2016-11-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Method for automated alignment of lens in holder an holder for its implementation
RU192274U1 (en) * 2019-06-19 2019-09-11 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") COLLIMATOR SWITCHING DEVICE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956100B (en) * 2018-08-13 2020-12-04 合肥英睿系统技术有限公司 Laser calibrating device
CN109282971B (en) * 2018-11-05 2021-05-28 茂莱(南京)仪器有限公司 Micro-lens center instrument
KR102687792B1 (en) * 2021-12-08 2024-07-24 주식회사 휴비츠 Method for calibration of blocker
CN118544191B (en) * 2024-07-24 2024-09-20 湖南工匠实创智能机器有限责任公司 Lens polishing, shaping and aligning method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114851A (en) * 1981-12-25 1983-07-08 Nakamuratome Seimitsu Kogyo Kk Center aligning machine of lens
JPS60259365A (en) * 1984-06-01 1985-12-21 Tenryu Seiki Kk Lens centering device
US5080482A (en) * 1990-05-29 1992-01-14 Benz Research And Development Corporation Lens alignment and positioning method and apparatus
JP2003039292A (en) * 2001-07-23 2003-02-12 Olympus Optical Co Ltd Lens centering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114851A (en) * 1981-12-25 1983-07-08 Nakamuratome Seimitsu Kogyo Kk Center aligning machine of lens
JPS60259365A (en) * 1984-06-01 1985-12-21 Tenryu Seiki Kk Lens centering device
US5080482A (en) * 1990-05-29 1992-01-14 Benz Research And Development Corporation Lens alignment and positioning method and apparatus
JP2003039292A (en) * 2001-07-23 2003-02-12 Olympus Optical Co Ltd Lens centering device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542636C1 (en) * 2013-12-16 2015-02-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Method for centring lens in holder and holder therefor
RU2544288C1 (en) * 2013-12-27 2015-03-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Method for centring lens in holder and holder therefor
RU2602420C2 (en) * 2015-03-17 2016-11-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Method for alignment of lens in holder and holder for its implementation
RU2602419C2 (en) * 2015-03-17 2016-11-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Method of stock pile structure lenses centering and lenses holders for its implementation
RU2602418C2 (en) * 2015-03-17 2016-11-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Method for automated alignment of lens in holder an holder for its implementation
RU192274U1 (en) * 2019-06-19 2019-09-11 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") COLLIMATOR SWITCHING DEVICE

Also Published As

Publication number Publication date
KR20130105417A (en) 2013-09-25
CN203100700U (en) 2013-07-31
TWM461048U (en) 2013-09-01

Similar Documents

Publication Publication Date Title
JP2013193146A (en) Misalignment detector for lens and lens centering and edging machine
KR101948939B1 (en) Method and apparatus for centering of spin finishing of lens
JP2013119123A (en) Grinding device
TWI232147B (en) Grinding apparatus for spherical lenses
JP2006330210A (en) Method and device for collimating lens
TWI623379B (en) Grinding device
JP6111114B2 (en) Lens processing equipment
JP7222636B2 (en) Edge trimming device
KR102338708B1 (en) Polishing apparatus
JP5860682B2 (en) Lens centering machine centering method and apparatus
JP7537921B2 (en) Cutting Equipment
JP2015208851A (en) Polishing machine for bearing ring and method for adjusting the polishing machine
CN113001394B (en) Substrate processing apparatus
JP2008209537A (en) Lens centering device and lens centering method
CN115087517A (en) Substrate processing apparatus and substrate processing method
JPS58114851A (en) Center aligning machine of lens
JP2009088401A (en) Wafer position detector and semiconductor manufacturing apparatus with wafer position detector
JP2006297512A (en) Spherical machining device for lens
KR20190115674A (en) Apparatus for grinding
JP4116720B2 (en) Method and apparatus for automatically correcting the thickness of a lens
JP2024114034A (en) Centering device and centering method
CN106767420B (en) Full-automatic detection device and method for precision images of vertical axis group of total station
JP2001319963A (en) Wafer alignment device
JP2022020283A (en) Grinding device and grinding method
JP2003340703A (en) Machining device for optical component and method of manufacturing optical component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308