Nothing Special   »   [go: up one dir, main page]

JP2013189351A - Functional net-like structure - Google Patents

Functional net-like structure Download PDF

Info

Publication number
JP2013189351A
JP2013189351A JP2012057911A JP2012057911A JP2013189351A JP 2013189351 A JP2013189351 A JP 2013189351A JP 2012057911 A JP2012057911 A JP 2012057911A JP 2012057911 A JP2012057911 A JP 2012057911A JP 2013189351 A JP2013189351 A JP 2013189351A
Authority
JP
Japan
Prior art keywords
network structure
functional
layer
structure layer
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012057911A
Other languages
Japanese (ja)
Other versions
JP6211247B2 (en
Inventor
Takuya Fujima
卓也 藤間
Tomohiro Tomita
知宏 冨田
Kenichi Takagi
研一 高木
Eitaro Futakuchi
栄太郎 二口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gotoh Educational Corp
Original Assignee
Gotoh Educational Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gotoh Educational Corp filed Critical Gotoh Educational Corp
Priority to JP2012057911A priority Critical patent/JP6211247B2/en
Publication of JP2013189351A publication Critical patent/JP2013189351A/en
Application granted granted Critical
Publication of JP6211247B2 publication Critical patent/JP6211247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a functional net-like structure having long-life antifouling and antifogging, and being capable of developing a desired functionality by coating or filling of a functional material.SOLUTION: A functional net-like structure has a net-like structure layer A forming a steric net-like structure, wherein meshes of the net-like structure layer A are gradually smaller ones as going to the inner side from the surface. The net-like structure layer A is formed on the surface of a base material W, and the base material W is composed of a silicate salt glass, a metal solid solution, or a ceramic.

Description

本発明は、長寿命な防汚性・防曇性を有するとともに、機能性材料をコーティングまたは充填することによって所望の機能性を発現する機能性網状構造体に関する。   The present invention relates to a functional network structure that has a long-life antifouling property and antifogging property and that expresses desired functionality by coating or filling a functional material.

材料の表面には、元来、高い親水性や疎水性などの表面特性を有しているものがある。このように、活性の高い表面状態を維持することは難しく、大気中の塵やホコリの付着や、ガス状の油脂などさまざまな汚れが付着して汚染されることにより、その表面特性が低下している。   Some material surfaces originally have surface properties such as high hydrophilicity and hydrophobicity. In this way, it is difficult to maintain a highly active surface state, and the surface characteristics deteriorate due to contamination by various dirt such as dust and dust in the atmosphere and gaseous oils and fats. ing.

例えば、窓ガラスや鏡のような、ガラス材の表面は、元来、優れた親水性を有しており、極めて清浄なガラス表面においては、親水性よりもさらに濡れ性が高く、水滴接触角が10°以下の超親水性を有している。しかし、通常は、上記したような汚れが付着することによって親水性および疎水性が混在する表面状態とされており、実効的な親水性が低下して、表面に付着した水分が、当該表面において複数の微細な水滴を形成することで、当該表面に曇りが発生する。   For example, the surface of a glass material, such as a window glass or a mirror, originally has excellent hydrophilicity, and on a very clean glass surface, the wettability is higher than the hydrophilicity, and the water droplet contact angle. Has superhydrophilicity of 10 ° or less. However, it is usually a surface state in which hydrophilicity and hydrophobicity are mixed due to the adhesion of dirt as described above, and the effective hydrophilicity is reduced, so that moisture adhering to the surface is By forming a plurality of fine water droplets, fogging occurs on the surface.

昨今、上述のガラス材ように、汚れの付着により元来の表面特性が失われることにより、曇りなどが生じてガラス材の特徴である透過性をも損なわれ、ガラス材としての機能が低下する課題を解消するべく、当該材料に表面改質を施して、例えば、超親水性を付与して、防汚性・防曇性を有する材料とすることが知られている。   Nowadays, like the above-mentioned glass material, the original surface characteristics are lost due to the adhesion of dirt, so that the transparency as a characteristic of the glass material is lost due to fogging and the function as the glass material is lowered. In order to solve the problem, it is known that the material is subjected to surface modification, for example, by imparting super hydrophilicity to obtain a material having antifouling property and antifogging property.

このような表面改質を施すことによって、例えば、材料の表面を親水性として表面に塵やホコリなどの汚れが付着しても、水との接触によって、材料の表面と汚れとの間に水が入り込んで汚れを簡単に浮かせて除去するセルフクリーニング効果を発して、表面に汚れが定着することを防止することができる。さらに、親水性の高い表面に付着した水分は、表面に広く濡れ広がるため、水滴が形成されず、材料の曇りを防ぐことができる。   By performing such surface modification, for example, even if dirt such as dust or dust adheres to the surface by making the surface of the material hydrophilic, contact with water causes water between the surface of the material and the dirt. It is possible to prevent the dirt from being fixed on the surface by generating a self-cleaning effect of entering and removing the dirt easily. Furthermore, since water adhering to a highly hydrophilic surface spreads widely on the surface, water droplets are not formed, and clouding of the material can be prevented.

超親水性を付与する方法としては、特許文献1において、基材の表面に酸化チタンなどの光触媒作用を有する金属酸化物からなる多孔質体の親水層を形成することが開示されている。   As a method of imparting superhydrophilicity, Patent Document 1 discloses forming a porous hydrophilic layer made of a metal oxide having a photocatalytic action such as titanium oxide on the surface of a base material.

また、親水化に限らず、材料の表面に所望の機能性を付与するべく、特許文献2に記載されているように、多孔質体などを形成する複数の空孔や凹部の内面に表面修飾を施したり、空孔や凹部の内部に充填を行うことによって、さらに機能を追加することが広く行われている。   In addition to hydrophilization, surface modification is applied to the inner surfaces of a plurality of pores and recesses forming a porous body as described in Patent Document 2 in order to impart desired functionality to the surface of the material. It has been widely practiced to add further functions by applying the above or filling the inside of the holes and the recesses.

特開2011−136284号公報JP 2011-136284 A 特開2003−149402号公報JP 2003-149402 A

しかしながら、多孔質体を形成する空孔の孔径は、均一な孔径を有するもしくは、一様に平均的な孔径となるように形成されるのが一般的であり、孔径が大きすぎる場合には、多孔質体の深部に塵やホコリなどの汚れが侵入して固着し、材料本来の表面特性を低下させるという問題を有している。   However, the pore diameter of the pores forming the porous body is generally formed so as to have a uniform pore diameter or a uniform average pore diameter. When the pore diameter is too large, There is a problem that dirt such as dust and dust enters and adheres to the deep part of the porous body, thereby deteriorating the original surface characteristics of the material.

これに対して、孔径が小さすぎる場合には、空孔の内部を機能性材料でコーティングもしくは充填して、さらなる機能性を付与することが困難となり、応用範囲を狭めるという課題を有している。   On the other hand, when the hole diameter is too small, it becomes difficult to coat or fill the inside of the hole with a functional material to give further functionality, and there is a problem of narrowing the application range. .

そこで、本発明においては、長寿命の防汚性・防曇性を有するとともに、機能性材料のコーティングまたは充填によって、所望の機能性を発現することを可能とする機能性網状構造体を提供することを目的とする。   Therefore, in the present invention, there is provided a functional network structure having a long-life antifouling property and antifogging property and capable of expressing desired functionality by coating or filling with a functional material. For the purpose.

上記目的を達成するべく、本発明の第1の機能性網状構造体は、立体的な網状構造を形成する網状構造層を備え、前記網状構造層の網目が、表面から内側に入る方向に次第に小さい網目とされていることを特徴とする。   In order to achieve the above object, the first functional network structure of the present invention includes a network structure layer forming a three-dimensional network structure, and the network of the network structure layer gradually enters the inside from the surface. It is characterized by a small mesh.

本発明の第2の機能性網状構造体は、前記網状構造層の表面の網目の大きさが、1000nm以下であることを特徴とする。   The second functional network structure of the present invention is characterized in that the mesh size of the surface of the network structure layer is 1000 nm or less.

本発明の第3の機能性網状構造体は、前記網状構造層の厚さが、10nm以上であることを特徴とする。   The third functional network structure of the present invention is characterized in that the network structure layer has a thickness of 10 nm or more.

本発明の第4の機能性網状構造体は、前記網状構造層が、基材の表面に形成され、前記基材が、ケイ酸塩ガラス、金属固溶体またはセラミックスからなることを特徴とする。   The fourth functional network structure of the present invention is characterized in that the network layer is formed on a surface of a base material, and the base material is made of silicate glass, a metal solid solution, or ceramics.

本発明の第5の機能性網状構造体は、前記網状構造層が、親水性を有することを特徴とする。   The fifth functional network structure of the present invention is characterized in that the network structure layer has hydrophilicity.

本発明の第6の機能性網状構造体は、前記網状構造層に対して、機能性材料がコーティングまたは充填されていることを特徴とする。   The sixth functional network structure of the present invention is characterized in that a functional material is coated or filled in the network structure layer.

本発明の第7の機能性網状構造体は、前記網状構造層に対して、親水性有機材料または疎水性有機分子からなる前記機能性材料がコーティングされていることを特徴とする。   The seventh functional network structure of the present invention is characterized in that the network material layer is coated with the functional material made of a hydrophilic organic material or a hydrophobic organic molecule.

本発明の第8の機能性網状構造体は、前記網状構造層に対して、疎水材料、導電性材料または着色材料のうち少なくとも1つが充填されていることを特徴とする。   The eighth functional network structure of the present invention is characterized in that the network layer is filled with at least one of a hydrophobic material, a conductive material, and a coloring material.

本発明の機能性網状構造体によれば、網状構造層の網目が表面から内側に入る方向に次第に小さい網目とされていることにより、網状構造層の深部に塵やホコリなどの汚れが侵入することを防ぐとともに、網状構造層を構成する材料の元来の表面特性を効果的に発揮することができるので、例えば、網状構造層が親水性を有する材料で構成されている場合には、水と接触することによって、水が網状構造層と汚れとの間に割り込み、汚れを浮かせて落とすセルフクリーニング効果を発揮して長寿命な防汚性を得ることができる。さらに、セルフクリーニング効果によって、網状構造層の目詰まりを防ぐことができるので、本発明の機能性網状構造体の表面に水分が付着しても、立体的な網状構造内に水を吸い込んで、付着した水分を平面方向に広く濡れ広がらせるので優れた防曇性を発揮することを可能とする。   According to the functional network structure of the present invention, dirt such as dust and dust penetrates into the deep part of the network layer because the network of the network structure layer is gradually made smaller in the direction entering the inside from the surface. For example, when the network layer is made of a hydrophilic material, water can be effectively exerted on the original surface characteristics of the material forming the network layer. By contacting with water, water can interrupt between the network structure layer and the dirt, exhibit a self-cleaning effect that floats and removes the dirt, and can obtain a long-life antifouling property. Furthermore, since the clogging of the network structure layer can be prevented by the self-cleaning effect, even if moisture adheres to the surface of the functional network structure of the present invention, water is sucked into the three-dimensional network structure, Since the adhering moisture is widely spread and spread in the plane direction, it is possible to exhibit excellent anti-fogging properties.

また、本発明の機能性網状構造体によれば、立体的な網状構造を形成する網状構造層に対して、機能性材料をコーティングまたは充填するようにされているので、機能性材料を適宜選択することによって、所望の機能を有する表面特性を備えた機能性網状構造体を得ることを可能とする。   Also, according to the functional network structure of the present invention, the functional material is coated or filled into the network layer forming the three-dimensional network structure, so that the functional material is appropriately selected. By doing so, it is possible to obtain a functional network structure having surface characteristics having a desired function.

本発明の機能性網状構造体の実施例におけるサンプルの走査型電子顕微鏡(以降、SEMと称する。)を用いた観察画像であり、(a)は、サンプルの表面のSEM像を示し、(b)は、サンプルの断面のSEM像を示す。It is an observation image using the scanning electron microscope (henceforth SEM) of the sample in the Example of the functional network structure of this invention, (a) shows the SEM image of the surface of a sample, (b ) Shows an SEM image of the cross section of the sample. 本発明の機能性網状構造体の実施例におけるサンプルの分光透過スペクトルの測定結果を示すグラフであり、未処理のケイ酸塩ガラス板と本発明の機能性網状構造体との測定結果を示す。It is a graph which shows the measurement result of the spectral transmission spectrum of the sample in the Example of the functional network of this invention, and shows the measurement result of an untreated silicate glass plate and the functional network of this invention. 本発明の機能性網状構造体の実施例におけるサンプルの超親水性の寿命の検証結果を示すグラフ。The graph which shows the verification result of the super-hydrophilic lifetime of the sample in the Example of the functional network structure of this invention. 本発明の機能性網状構造体の実施例におけるサンプルと未処理のケイ酸塩ガラス板との防汚性を検証した写真を示し、(a)は、本発明の機能性網状構造体および未処理のケイ酸塩ガラス板にラー油を塗布した様子を示し、(b)は、(a)を水洗浄した後の様子を示す。The photograph in which the antifouling property of the sample in the Example of the functional network structure of this invention and an untreated silicate glass plate was verified is shown, (a) shows the functional network structure of this invention, and an untreated (B) shows a state after (a) is washed with water. 本発明の機能性網状構造体の実施例におけるサンプルと未処理のケイ酸塩ガラス板との防曇性を検証した写真を示し、(a)は、本発明の機能性網状構造体の実施例におけるサンプルを結露環境に暴露した状態の様子を示し、(b)は、未処理のケイ酸塩ガラス板を結露環境に暴露した状態の様子を示す。The photograph which verified the antifogging property of the sample in the Example of the functional network structure of this invention and an untreated silicate glass plate is shown, (a) is the Example of the functional network structure of this invention. (B) shows a state in which an untreated silicate glass plate is exposed to the condensation environment.

本発明の機能性網状構造体の実施形態を以下に説明する。   Embodiments of the functional network structure of the present invention will be described below.

本発明の機能性網状構造体は、立体的な網状構造を形成する網状構造層を備え、当該網状構造層の網目が、表面から内側に入る方向に次第に小さい網目とされている。   The functional network structure of the present invention is provided with a network structure layer that forms a three-dimensional network structure, and the network of the network structure layer is gradually made smaller in the direction entering the inside from the surface.

このような、本発明の機能性網状構造体とすることにより、塵やホコリなどの汚れが、表面に固着することを防いで、常に、清浄な表面を維持することができ、網状構造層を構成する材料の元来の表面特性を効果的に発揮することを可能とする。   By using such a functional network structure of the present invention, dirt such as dust and dust can be prevented from adhering to the surface, and a clean surface can always be maintained. The original surface characteristics of the constituent material can be effectively exhibited.

網状構造層の表面の網目の大きさは、一般的なホコリなどのサイズよりも小さい1000nm以下とされていることが好ましく、一般的に10μm以上と言われているハウスダストの網状構造層の深部への侵入を防止することができる。   The size of the mesh on the surface of the network layer is preferably 1000 nm or less, which is smaller than the size of general dust and the like, and the deep part of the network layer of house dust generally said to be 10 μm or more Can be prevented from entering.

また、網状構造層の表面の網目の大きさを、500nm以下とすることにより、一般的に1〜10μmと言われてる室内浮遊塵の網状構造層の深部への侵入を防止することができる。さらに、100nm以下とすることにより、一般的に100nm以上と言われている小型バクテリアの網状構造層の深部への侵入を防止することができる。   In addition, by setting the mesh size of the surface of the network structure layer to 500 nm or less, it is possible to prevent the in-house floating dust that is generally said to be 1 to 10 μm from penetrating into the deep part of the network structure layer. Furthermore, by setting the thickness to 100 nm or less, it is possible to prevent the invasion of the small bacteria, which is generally said to be 100 nm or more, into the deep part of the network structure layer.

また、網状構造層の厚さは、10nm以上とされており、例えば、機能性網状構造体がケイ酸塩ガラスのような透過性のある材料から形成される場合においては、10nm〜2000nmとすることが好ましく、この範囲内の厚さとすることによって透明性を保持することができる。   Further, the thickness of the network structure layer is set to 10 nm or more. For example, when the functional network structure is formed of a transmissive material such as silicate glass, the thickness is set to 10 nm to 2000 nm. Preferably, transparency can be maintained by setting the thickness within this range.

本発明の機能性網状構造体は、網状構造層が基材の表面に形成され、当該基材が、ケイ酸塩ガラス、金属固溶体またはセラミックスとされている。   In the functional network structure of the present invention, a network layer is formed on the surface of a substrate, and the substrate is made of silicate glass, a metal solid solution, or ceramics.

また、網状構造層の各網目の表面が、親水性を有することにより、本発明の機能性網状構造層の表面において、極めて優れた超親水性を発揮することができる。   In addition, since the surface of each network of the network structure layer has hydrophilicity, extremely excellent superhydrophilicity can be exhibited on the surface of the functional network structure layer of the present invention.

網状構造層に対して、機能性材料をコーティングまたは充填するようにされており、所望の機能を有する表面特性を付与することができる。   The network structure layer is coated or filled with a functional material, and can impart surface characteristics having a desired function.

具体的には、メトキシシランやクロロシラン基によって網状構造層の各網目の表面に結合可能なポリエチレングリコールなどの親水性有機材料が、網状構造層に対してコーティングされており、優れた超親水性を発揮することができる。   Specifically, a hydrophilic organic material such as polyethylene glycol that can be bonded to the surface of each network of the network layer by a methoxysilane or chlorosilane group is coated on the network layer to provide excellent superhydrophilicity. It can be demonstrated.

メトキシシランやクロロシラン基によって網状構造層の各網目の表面に結合可能なアルキル鎖やフッ化アルキル鎖などの疎水性有機分子が、網状構造層に対してコーティングされており、優れた超撥水性を発揮することができる。   Hydrophobic organic molecules such as alkyl chains and fluorinated alkyl chains that can be bonded to the surface of each network of the network layer by methoxysilane and chlorosilane groups are coated on the network layer, providing excellent super water repellency. It can be demonstrated.

また、油脂成分やパラフィンなどの疎水性が強い材料が、網状構造層に対して充填されており、優れた撥水性を発揮することができる。   In addition, a highly hydrophobic material such as an oil and fat component or paraffin is filled in the network structure layer and can exhibit excellent water repellency.

金属および金属微粒子や導電性高分子などの導電性材料が、網状構造層に対して充填されており、絶縁性または誘電性の材料からなる網状構造層に導電性を付与することができる。   A conductive material such as metal and metal fine particles or a conductive polymer is filled in the network structure layer, and conductivity can be imparted to the network structure layer made of an insulating or dielectric material.

顔料の微粒子や色素分子などの着色材料が、網状構造層に対して充填されており、網状構造層に所望の着色をすることができる。   Coloring materials such as pigment fine particles and dye molecules are filled in the network structure layer, and the network structure layer can be colored as desired.

<実施例>
以下に、図1乃至図5を用いて、本発明の機能性網状構造体の製造方法および具体的な実施例について説明する。
<Example>
Hereinafter, a method for producing a functional network structure and specific examples of the present invention will be described with reference to FIGS.

基材としては、厚さ1mmのケイ酸塩ガラスの板材を用いた。前処理ととして、基材の表面に対して、超音波洗浄を用いて、メチルアルコール(またはエチルアルコール)により当該表面の洗浄を行った。   As the substrate, a silicate glass plate having a thickness of 1 mm was used. As pretreatment, the surface of the substrate was cleaned with methyl alcohol (or ethyl alcohol) using ultrasonic cleaning.

0.5mol/lの炭酸水素カリウム水溶液中に前記基材を浸漬し、約70℃の温度で7日間加熱することによってエッチングを施してサンプルを製造した。   The substrate was immersed in a 0.5 mol / l aqueous potassium hydrogen carbonate solution and etched by heating at a temperature of about 70 ° C. for 7 days to produce a sample.

得られたサンプルを走査型電子顕微鏡(S−5500、株式会社日立ハイテクノロジーズ)を用いて表面および断面の観察を行った。分光光度計(U−4100、株式会社日立ハイテクノロジーズ)を用いて、サンプルの分光透過率の測定を行った。また、約1年に亘って大気中において暴露試験を行い、定期的にサンプルの水滴接触角を測定して本発明の機能性網状構造体の超親水性の寿命を検証した。   The surface and cross section of the obtained sample were observed using a scanning electron microscope (S-5500, Hitachi High-Technologies Corporation). The spectral transmittance of the sample was measured using a spectrophotometer (U-4100, Hitachi High-Technologies Corporation). In addition, an exposure test was conducted in the atmosphere for about one year, and the water droplet contact angle of the sample was periodically measured to verify the superhydrophilic life of the functional network structure of the present invention.

サンプルのSEM像を図1に示す。なお、同図(a)は、サンプルの表面を観察したSEM像を示し、同図(b)は、サンプルの断面を観察したSEM像を示す。   A SEM image of the sample is shown in FIG. In addition, the figure (a) shows the SEM image which observed the surface of the sample, and the figure (b) shows the SEM image which observed the cross section of the sample.

同図(a)については、サンプルの表面において、1つの網目の大きさが約数十nmの網目構造を有していることが確認できる。同図(b)については、サンプルの断面において、基材Wと網状構造層Aとがそれぞれはっきりと確認できる。   As shown in FIG. 6A, it can be confirmed that the surface of the sample has a network structure in which one mesh has a size of about several tens of nanometers. About the figure (b), the base material W and the network structure layer A can each be confirmed clearly in the cross section of a sample.

また、網状構造層Aにおいては、厚さが約300nmの立体的な網状構造を形成しているとともに、網目が、図示左側の表面から、図示右側の内側に入る方向に次第に小さい網目となっている様子が確認できる。   Further, in the network structure layer A, a three-dimensional network structure having a thickness of about 300 nm is formed, and the mesh gradually becomes smaller from the surface on the left side to the inside on the right side in the figure. You can see how it is.

未処理のサンプルと本発明の機能性網状構造体の実施例におけるサンプルの分光透過率スペクトルの測定結果を図2に示す。なお、人間の可視光の波長は、一般的に、符号aで示した約400〜約800nmの範囲内とされている。   FIG. 2 shows the measurement results of the spectral transmittance spectra of the untreated sample and the sample in the example of the functional network structure of the present invention. The wavelength of human visible light is generally in the range of about 400 to about 800 nm indicated by the symbol a.

図2に示すように、本発明の機能性網状構造体は、符号aで示した波長400nm〜800nmの範囲内において、約80%以上の透過率を維持しており、優れた透明性を保持していることがわかる。   As shown in FIG. 2, the functional network structure of the present invention maintains a transparency of about 80% or more in the wavelength range of 400 nm to 800 nm indicated by the symbol a, and maintains excellent transparency. You can see that

また、サンプルの超親水性の寿命の検証結果を図3に示す。全般に亘って、水滴接触角が10°以下の超親水性を保持していることが確認できる。これは、網状構造層Aの網目が、表面から内側に入る方向に次第に小さい網目とされていることにより、塵やホコリなどの汚れが、表面付近の網目に引っ掛かって深部に侵入することがなく、網状構造層Aの深部の網目は常に清浄な状態を保持しており、網状構造層Aが元来の表面特性である親水性を効率よく発揮していることによって、付着した水が、毛細管現象によって網状構造層Aの内部に瞬時に濡れ広がったために優れた超親水性を保持していると考えられる。   Moreover, the verification result of the superhydrophilic lifetime of a sample is shown in FIG. It can be confirmed that the superhydrophilicity having a water droplet contact angle of 10 ° or less is maintained throughout. This is because the mesh of the network structure layer A is gradually made smaller in the direction entering the inside from the surface, so that dirt such as dust and dust does not get caught in the mesh near the surface and penetrate into the deep part. The deep mesh of the network layer A always maintains a clean state, and the network layer A exhibits the hydrophilicity, which is the original surface characteristic, so that the attached water can be absorbed into the capillary tube. It is considered that the super-hydrophilic property is maintained because the phenomenon instantly wets and spreads inside the network layer A due to the phenomenon.

さらに、網状構造層の保水量を超える量の水と接触することによって、水が網状構造層Aと付着した汚れとの間に割り込み、汚れを浮かせて落とすセルフクリーニング効果を発揮して長寿命な防汚性を得ることができたと考えられる。   Furthermore, when it comes into contact with the amount of water that exceeds the amount of water retained in the network layer, the water interrupts between the network layer A and the attached dirt, and exhibits a self-cleaning effect that lifts and removes the dirt, resulting in a long service life. It is thought that antifouling property was able to be obtained.

上記の実施例の製造方法によって作製した本発明の機能性網状構造体と、未処理のケイ酸塩ガラス板とを用いて、防汚性・防曇性の比較を行った。   Using the functional network structure of the present invention produced by the production method of the above example and an untreated silicate glass plate, antifouling properties and antifogging properties were compared.

まず、防汚性の検証においては、本発明の機能性網状構造体および未処理のケイ酸塩ガラス板の表面に対してラー油を塗布し、その後流水にて洗浄を行って、本発明の機能性網状構造体と未処理のケイ酸塩ガラス板との表面の汚染の有無を調べた。   First, in the verification of the antifouling property, the oil is applied to the surfaces of the functional network structure and the untreated silicate glass plate of the present invention, and then washed with running water to obtain the function of the present invention. The presence or absence of contamination on the surface of the conductive network and the untreated silicate glass plate was examined.

ラー油を塗布した本発明の機能性網状構造体と未処理のケイ酸塩ガラス板の水による洗浄前後の写真を図4に示す。なお、同図(a)は、洗浄前の本発明の機能性網状構造体および未処理のケイ酸塩ガラス板の様子を撮影した写真を示し、同図(b)は、洗浄後の本発明の機能性網状構造体および未処理のケイ酸塩ガラス板の様子を撮影した写真を示す。また、同図(a)および(b)において、正面視左側が本発明の機能性網状構造体、右側が未処理のケイ酸塩ガラス板である。   FIG. 4 shows photographs taken before and after washing the functional network structure of the present invention coated with chili oil and the untreated silicate glass plate with water. In addition, the figure (a) shows the photograph which image | photographed the mode of the functional network structure of this invention before washing | cleaning, and the untreated silicate glass plate, The figure (b) shows this invention after washing | cleaning. The photograph which image | photographed the mode of the functional network structure of this and an untreated silicate glass plate is shown. Moreover, in the same figure (a) and (b), the functional network structure of this invention is a front view left side, and the right side is an untreated silicate glass plate.

同図(a)に示すように、本発明の機能性網状構造体の表面および未処理のケイ酸塩ガラス板の表面にラー油が塗布されているのがわかる。このような、本発明の機能性網状構造体および未処理のケイ酸塩ガラス板を流水で洗浄すると、同図(b)に示すように、本発明の機能性網状構造体の表面には、ほとんどラー油が付着していないことがわかる。これに対して、未処理のケイ酸塩ガラス板には、破線で囲う部分にラー油が洗浄されずに残っているのが確認できる。   As shown in FIG. 4A, it can be seen that the rar oil is applied to the surface of the functional network structure of the present invention and the surface of the untreated silicate glass plate. When such a functional network structure of the present invention and an untreated silicate glass plate are washed with running water, as shown in FIG. 5B, on the surface of the functional network structure of the present invention, It can be seen that almost no oil is attached. On the other hand, it can be confirmed that in the untreated silicate glass plate, the rar oil remains in the portion surrounded by the broken line without being washed.

この結果から、本発明の機能性網状構造体は、表面にラー油などの油性汚れが付着した場合においても、水と接触することによって容易に洗浄可能であることが確認された。これは、本発明の機能性網状構造体の表面に網状構造層Aが形成されていることで、水が網状構造層Aの内部から濡れ広がり、深部から表面へ上昇することによって、網状構造層Aの表面とラー油との間に水が割り込んで、汚れを浮かせて落としたためであると考えられる。   From this result, it was confirmed that the functional network structure of the present invention can be easily washed by contact with water even when oily dirt such as chili oil adheres to the surface. This is because the network structure layer A is formed on the surface of the functional network structure of the present invention, so that water wets and spreads from the inside of the network structure layer A and rises from the deep part to the surface. This is thought to be because water was caught between the surface of A and the oil, and the dirt was floated and dropped.

次に、防曇性の検証においては、アクリルボックス内において水を沸騰させてアクリルボックス内の湿度を100%とし、アクリルボックスの側面に開孔を設けて、当該開孔から本発明の機能性網状構造体および未処理のケイ酸塩ガラス板とをアクリルボックスの内側に向かせた状態で保持し、結露が発生する環境に暴露して曇りの発生の有無を調べた。   Next, in the verification of the antifogging property, water is boiled in the acrylic box so that the humidity in the acrylic box is 100%, and an opening is provided on the side of the acrylic box, and the functionality of the present invention is determined from the opening. The net-like structure and the untreated silicate glass plate were held facing the inside of the acrylic box and exposed to an environment where condensation occurred, and the presence or absence of cloudiness was examined.

結露環境に暴露した際の、本発明の機能性網状構造体および未処理のケイ酸塩ガラス板の様子を図5に示す。なお、同図(a)は、本発明の機能性網状構造体の結露環境への暴露後の様子を示し、同図(b)は、未処理のケイ酸塩ガラス板の結露環境への暴露後の様子を示す。   FIG. 5 shows the functional network structure and the untreated silicate glass plate of the present invention when exposed to the condensation environment. In addition, the figure (a) shows the mode after the exposure to the condensation environment of the functional network structure of this invention, The figure (b) shows the exposure to the condensation environment of the untreated silicate glass plate. Shown later.

同図(a)に示す本発明の機能性網状構造体は、検証用に下面に配置した文書の文字が明確に読み取れることから、曇りが生じていないことがわかる。これに対して、同図(b)に示す未処理のケイ酸塩ガラス板は、下面に配置した文書の文字を確認することができなかった。   In the functional network structure of the present invention shown in FIG. 6A, the characters of the document placed on the lower surface for verification can be clearly read, and it can be seen that no fogging occurs. On the other hand, the untreated silicate glass plate shown in FIG. 5B could not confirm the characters of the document placed on the lower surface.

この結果から、本発明の機能性網状構造体が、優れた防曇性を有することが確認された。   From this result, it was confirmed that the functional network structure of the present invention has excellent antifogging properties.

このような、本発明の機能性網状構造体によれば、網状構造層Aの網目が表面から内側に入る方向に次第に小さい網目とされていることにより、網状構造層Aの表面付近の網目に塵やホコリが引っ掛かるようにして、網状構造層Aの深部の網目の目詰まりを防いで、網状構造層Aの内面を清浄に保持し、網状構造層Aを構成する材料が有する元来の表面特性を効率よく発揮させることができるので、例えば、当該材料が親水性を有する場合には、水との接触によって、水が網状構造層Aと汚れとの間に割り込み、汚れを浮かせて落とすセルフクリーニング効果を発揮して長寿命な防汚性を得ることができる。   According to such a functional network structure of the present invention, since the mesh of the network layer A is gradually smaller in the direction entering the inside from the surface, the mesh near the surface of the network layer A is obtained. The original surface of the material that constitutes the network layer A by preventing the clogging of the mesh in the deep part of the network layer A by preventing dust and dust from being caught and keeping the inner surface of the network layer A clean. Since the characteristics can be efficiently exhibited, for example, when the material has hydrophilicity, the water is interrupted between the network structure layer A and the dirt by contact with water, and self that floats and removes the dirt. A long-life antifouling property can be obtained by exerting a cleaning effect.

さらに、本発明の機能性網状構造体の表面に水分が付着しても、立体的な網状構造内に瞬時に水を吸い込んで、付着した水分を平面方向に広く濡れ広がらせることにより、優れた防曇性を発揮することを可能とする。   In addition, even if moisture adheres to the surface of the functional network structure of the present invention, the water is instantly sucked into the three-dimensional network structure, and the adhered moisture is spread widely in the plane direction, which is excellent. It is possible to exhibit antifogging properties.

また、本発明の機能性網状構造体によれば、立体的な網状構造を形成する網状構造層Aに対して、機能性材料をコーティングまたは充填するようにされているので、例えば、親水性の機能性材料をコーティングすることによって、より優れた超親水性を発現し、疎水性の機能性材料をコーティングするとによって、より優れた超撥水性を発現することを可能とする。   Further, according to the functional network structure of the present invention, the network material layer A that forms a three-dimensional network structure is coated or filled with a functional material. By coating the functional material, it is possible to express superior superhydrophilicity, and by coating the hydrophobic functional material, it is possible to express superior superhydrophobicity.

具体的な用途例としては、基材としてケイ酸塩ガラスを用い、その表面に形成された網状構造層Aに対して、導電性高分子を充填することにより、基材表面に導電性を付与するなどの所望の機能性を発現することを可能とする。   As a specific application example, silicate glass is used as the base material, and the network structure layer A formed on the surface is filled with a conductive polymer to provide conductivity to the base material surface. It is possible to express desired functionality such as.

また、本発明の機能性網状構造体によれば、例えば、網状構造層を表面に形成する基材をケイ酸塩ガラスなどの光透過性を有する材料から製造した場合においても、優れた透明性を保持することができる。   In addition, according to the functional network structure of the present invention, for example, excellent transparency can be obtained even when the base material on which the network structure layer is formed is manufactured from a light-transmitting material such as silicate glass. Can be held.

なお、本発明の機能性網状構造体は、上記実施例に限定されるものではなく、本実施例においては、基材としてケイ酸塩ガラスを用い、元来、材料の表面特性が親水性を有する材料に関して、本発明の機能性網状構造体の作用効果を明らかとした実施例としているが、元来、疎水性の表面特性を有する材料からなる本発明の機能性網状構造体であってもよく、疎水性の表面特性を有する材料で本発明の機能性網状構造体を構成することによって、優れた超撥水性を発揮するなど、発明の特徴を損なわない範囲において、種々の変更が可能である。   In addition, the functional network structure of the present invention is not limited to the above-described embodiment. In this embodiment, silicate glass is used as a base material, and the surface characteristics of the material are originally hydrophilic. The functional network structure of the present invention has been clarified in terms of the material having the functional network structure of the present invention. However, even if the functional network structure of the present invention is made of a material having hydrophobic surface characteristics, Well, by constituting the functional network structure of the present invention with a material having hydrophobic surface characteristics, various modifications are possible within a range that does not impair the features of the invention, such as excellent super water repellency. is there.

W 基材
A 網状構造層
W Base material A Network structure layer

Claims (8)

立体的な網状構造を形成する網状構造層を備え、
前記網状構造層の網目が、表面から内側に入る方向に次第に小さい網目とされていることを特徴とする機能性網状構造体。
It has a network structure layer that forms a three-dimensional network structure,
The functional network structure according to claim 1, wherein the mesh of the network structure layer has a smaller mesh size in a direction from the surface to the inside.
前記網状構造層の表面の網目の大きさが、1000nm以下であることを特徴とする請求項1に記載の機能性網状構造体。   The functional network structure according to claim 1, wherein the mesh size of the surface of the network structure layer is 1000 nm or less. 前記網状構造層の厚さが、10nm以上であることを特徴とする請求項1または請求項2に記載の機能性網状構造体。   The functional network structure according to claim 1 or 2, wherein a thickness of the network structure layer is 10 nm or more. 前記網状構造層は、基材の表面に形成され、
前記基材が、ケイ酸塩ガラス、金属固溶体またはセラミックスからなることを特徴とする請求項1乃至請求項3のいずれか1項に記載の機能性網状構造体。
The network structure layer is formed on the surface of a substrate,
The functional network structure according to any one of claims 1 to 3, wherein the base material is made of silicate glass, a metal solid solution, or ceramics.
前記網状構造層が、親水性を有することを特徴とする請求項1乃至請求項4のいずれか1項に記載の機能性網状構造体。   The functional network structure according to any one of claims 1 to 4, wherein the network structure layer has hydrophilicity. 前記網状構造層には、機能性材料がコーティングまたは充填されていることを特徴とする請求項1乃至請求項5のいずれか1項に記載の機能性網状構造体。   The functional network structure according to any one of claims 1 to 5, wherein the network structure layer is coated or filled with a functional material. 前記網状構造層に対して、親水性有機材料または疎水性有機分子からなる前記機能性材料がコーティングされていることを特徴とする請求項6に記載の機能性網状構造体。   The functional network structure according to claim 6, wherein the functional material made of a hydrophilic organic material or a hydrophobic organic molecule is coated on the network structure layer. 前記網状構造層に対して、疎水材料、導電性材料または着色材料のうち少なくとも1つが充填されてることを特徴とする請求項6に記載の機能性網状構造体。   The functional network structure according to claim 6, wherein the network structure layer is filled with at least one of a hydrophobic material, a conductive material, and a coloring material.
JP2012057911A 2012-03-14 2012-03-14 Functional network structure Active JP6211247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012057911A JP6211247B2 (en) 2012-03-14 2012-03-14 Functional network structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057911A JP6211247B2 (en) 2012-03-14 2012-03-14 Functional network structure

Publications (2)

Publication Number Publication Date
JP2013189351A true JP2013189351A (en) 2013-09-26
JP6211247B2 JP6211247B2 (en) 2017-10-11

Family

ID=49390032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057911A Active JP6211247B2 (en) 2012-03-14 2012-03-14 Functional network structure

Country Status (1)

Country Link
JP (1) JP6211247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021558A1 (en) * 2014-08-04 2016-02-11 旭硝子株式会社 Low reflective glass member and method for producing low reflective glass member

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692138A (en) * 1979-12-03 1981-07-25 Owens Illinois Inc Manufacture of glass product having reflectionnproof coating
JPS5856829U (en) * 1981-10-13 1983-04-18 日本板硝子株式会社 mirror
JPS5865330U (en) * 1981-10-26 1983-05-02 日本板硝子株式会社 vehicle window
JPH01154039A (en) * 1987-12-10 1989-06-16 Minolta Camera Co Ltd Platen glass for scanner
JPH04124046A (en) * 1990-09-17 1992-04-24 Nissan Motor Co Ltd Method for water repellent treatment of glass
JPH0597478A (en) * 1991-10-04 1993-04-20 Nippon Sheet Glass Co Ltd Water repellent glass article and its production
JPH11169691A (en) * 1997-12-10 1999-06-29 Sumitomo Electric Ind Ltd Gas separation membrane and its production
JP2002056520A (en) * 2000-08-09 2002-02-22 Fujitsu Ltd Substrate for medium and its manufacturing method
JP2002160941A (en) * 2000-11-22 2002-06-04 Miyazaki Prefecture Double layer structure porous glass membrane and method for making the same
JP2003149402A (en) * 2001-11-09 2003-05-21 Crystal System:Kk Clouding resistant member
JP2006124221A (en) * 2004-10-28 2006-05-18 Onid Technology Corp Component making hydrophilic surface of glass material and method
JP2006193341A (en) * 2005-01-11 2006-07-27 Miyazaki Prefecture Porous glass from phase-separated glass as precursor and method for producing the same
JP2008105887A (en) * 2006-10-25 2008-05-08 National Institute Of Advanced Industrial & Technology Super water-repellent glass substrate and its manufacturing method
JP2008137867A (en) * 2006-12-04 2008-06-19 Asahi Glass Co Ltd Surface-treated glass and method for manufacturing the same
WO2008156177A1 (en) * 2007-06-20 2008-12-24 Asahi Glass Company, Limited Method for treatment of surface of oxide glass
JP2012131694A (en) * 2010-11-30 2012-07-12 Canon Inc Porous glass, method of manufacturing the same
JP2012131695A (en) * 2010-11-30 2012-07-12 Canon Inc Method of manufacturing porous glass and method of manufacturing imaging apparatus
JP2013033188A (en) * 2010-11-26 2013-02-14 Canon Inc Optical member and imaging apparatus

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692138A (en) * 1979-12-03 1981-07-25 Owens Illinois Inc Manufacture of glass product having reflectionnproof coating
JPS5856829U (en) * 1981-10-13 1983-04-18 日本板硝子株式会社 mirror
JPS5865330U (en) * 1981-10-26 1983-05-02 日本板硝子株式会社 vehicle window
JPH01154039A (en) * 1987-12-10 1989-06-16 Minolta Camera Co Ltd Platen glass for scanner
JPH04124046A (en) * 1990-09-17 1992-04-24 Nissan Motor Co Ltd Method for water repellent treatment of glass
JPH0597478A (en) * 1991-10-04 1993-04-20 Nippon Sheet Glass Co Ltd Water repellent glass article and its production
JPH11169691A (en) * 1997-12-10 1999-06-29 Sumitomo Electric Ind Ltd Gas separation membrane and its production
JP2002056520A (en) * 2000-08-09 2002-02-22 Fujitsu Ltd Substrate for medium and its manufacturing method
JP2002160941A (en) * 2000-11-22 2002-06-04 Miyazaki Prefecture Double layer structure porous glass membrane and method for making the same
JP2003149402A (en) * 2001-11-09 2003-05-21 Crystal System:Kk Clouding resistant member
JP2006124221A (en) * 2004-10-28 2006-05-18 Onid Technology Corp Component making hydrophilic surface of glass material and method
JP2006193341A (en) * 2005-01-11 2006-07-27 Miyazaki Prefecture Porous glass from phase-separated glass as precursor and method for producing the same
JP2008105887A (en) * 2006-10-25 2008-05-08 National Institute Of Advanced Industrial & Technology Super water-repellent glass substrate and its manufacturing method
JP2008137867A (en) * 2006-12-04 2008-06-19 Asahi Glass Co Ltd Surface-treated glass and method for manufacturing the same
WO2008156177A1 (en) * 2007-06-20 2008-12-24 Asahi Glass Company, Limited Method for treatment of surface of oxide glass
JP2013033188A (en) * 2010-11-26 2013-02-14 Canon Inc Optical member and imaging apparatus
JP2012131694A (en) * 2010-11-30 2012-07-12 Canon Inc Porous glass, method of manufacturing the same
JP2012131695A (en) * 2010-11-30 2012-07-12 Canon Inc Method of manufacturing porous glass and method of manufacturing imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021558A1 (en) * 2014-08-04 2016-02-11 旭硝子株式会社 Low reflective glass member and method for producing low reflective glass member

Also Published As

Publication number Publication date
JP6211247B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
Archer et al. Recent progress and future directions of multifunctional (super) wetting smooth/structured surfaces and coatings
US9221076B2 (en) Composition for forming an optically transparent, superhydrophobic coating
CN102317228B (en) There is base material of automatically cleaning antireflection coatings and preparation method thereof
Park et al. Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles
US20170056834A1 (en) Multilayer coatings and methods of making and using thereof
US20130202866A1 (en) Mechanically stable nanoparticle thin film coatings and methods of producing the same
JP2014509959A5 (en)
EA030070B1 (en) Glass substrate coated with a high-index layer under an electrode coating, and organic light-emitting device comprising such a substrate
KR20140101193A (en) superamphiphobic structure and method of manufacturing the same
CA2886177C (en) Method of making superhydrophobic/superoleophilic paints, epoxies, and composites
Xiong et al. A multifunctional nanoporous layer created on glass through a simple alkali corrosion process
JP6826985B2 (en) Glass plate with coating film and its manufacturing method
JP2002080830A (en) Hydrophilic member and its production method
JP2017177683A (en) Base material with water-repellent coating film and method for producing the same
JP2007144916A (en) Super-water repellent substrate
WO2016060165A1 (en) Transparent member, method for manufacturing transparent member and method for evaluating degree of soiling of surface of transparent member
JP6211247B2 (en) Functional network structure
JP6805127B2 (en) Glass plate with coating film and its manufacturing method
CN103728675B (en) A kind of preparation method of super-hydrophobic automatic cleaning resin lens
JP4572150B2 (en) Method for producing water-repellent glass material
KR102167919B1 (en) Antifouling structure and automobile parts using the antifouling structure
JP5434778B2 (en) Cage-type silsesquioxane-peroxotitanium composite photocatalyst aqueous coating liquid and coating film for hydrophilic film formation
Nafradi et al. Superior water sheeting effect on photocatalytic titania nanowire coated glass
JPWO2017199423A1 (en) Antifouling structure and automobile component provided with the antifouling structure
JP2010275541A (en) Coating liquid for forming hydrophilic film and coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170913

R150 Certificate of patent or registration of utility model

Ref document number: 6211247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250