Nothing Special   »   [go: up one dir, main page]

JP2013188787A - Welding method, and method for manufacturing storage device - Google Patents

Welding method, and method for manufacturing storage device Download PDF

Info

Publication number
JP2013188787A
JP2013188787A JP2012058739A JP2012058739A JP2013188787A JP 2013188787 A JP2013188787 A JP 2013188787A JP 2012058739 A JP2012058739 A JP 2012058739A JP 2012058739 A JP2012058739 A JP 2012058739A JP 2013188787 A JP2013188787 A JP 2013188787A
Authority
JP
Japan
Prior art keywords
welding
container
atmospheric pressure
casing
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012058739A
Other languages
Japanese (ja)
Inventor
Yosuke Nishimura
洋介 西村
Hidenori Shishido
秀徳 宍戸
Shinsuke Yoshitake
伸介 吉竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2012058739A priority Critical patent/JP2013188787A/en
Publication of JP2013188787A publication Critical patent/JP2013188787A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize the formation of blow holes in a weld part in welding work.SOLUTION: A welding method for welding the contact part of two members to be welded is carried out to weld in such a state that a part of the end of the contact part communicating with a welding action position is in contact with a low pressure space whose atmospheric pressure is lower than an atmospheric pressure in the welding action position. This welding method is used to weld a casing BC of a storage device placed in a decompressed state from the outside of the casing BC. The formation of bubbles during welding can be suppressed by a suction effect obtained by forming the low pressure space.

Description

本発明は、2つの溶接対象部材の接触部分に対して溶接作用する溶接方法、及び、その溶接方法を使用する蓄電装置の製造方法に関する。   The present invention relates to a welding method for performing welding on contact portions of two members to be welded, and a method for manufacturing a power storage device using the welding method.

かかる溶接方法は、各種装置の外装容器等の多様な溶接対象に対して使用され得るものであるが、その溶接作業に際しては、下記特許文献1にも記載のように、溶接による溶融部に気泡が発生し、その気泡が溶融部の固化後も空洞として残留して、いわゆるブローホール(気孔)が発生してしまう場合があることが知られている。
このような空洞の存在は、溶接箇所の強度を低下させる要因となる。
このような空洞の発生を回避するために、例えば下記特許文献1では、適切な寸法の隙間を設けて、溶接時に発生するガスをその隙間から逃がす手法をとっている。
Such a welding method can be used for various welding objects such as outer containers of various apparatuses. However, in the welding operation, as described in Patent Document 1 below, bubbles are formed in the melted portion by welding. It is known that the bubbles remain as cavities even after the melted portion is solidified, and so-called blow holes (pores) may be generated.
The presence of such cavities is a factor that reduces the strength of the welded portion.
In order to avoid the generation of such cavities, for example, in Patent Document 1 below, a method of providing a gap with an appropriate size and letting the gas generated during welding escape from the gap.

特開2000−326080号公報JP 2000-32080 A

しかしながら、溶接時に発生するガスを逃がすための隙間を十分に確保することが困難な場合も多く、又、ガスを逃がすための隙間を設けても、必ずしも十分には排出できない場合も少なくない。
本発明は、かかる実情に鑑みてなされたものであって、その目的は、ブローホールの発生を可及的に抑制する点にある。
However, in many cases, it is difficult to ensure a sufficient gap for escaping the gas generated during welding, and even if a gap for escaping the gas is provided, there are many cases where the gas cannot always be sufficiently discharged.
The present invention has been made in view of such circumstances, and an object thereof is to suppress the occurrence of blowholes as much as possible.

本出願の第1の発明は、2つの溶接対象部材の接触部分に対して溶接作用する溶接方法において、溶接作用位置と連通する前記接触部分の端部の一部が、前記溶接作用位置の気圧よりも低い気圧の低圧空間と接する状態で溶接する。   According to a first aspect of the present application, there is provided a welding method in which a welding operation is performed on contact portions of two members to be welded. Weld in a state where it is in contact with a low-pressure space at a lower atmospheric pressure.

すなわち、2つの溶接対象部材の接触部分に対して溶接作用する場合、接触部分のわずかな隙間に残留する空気を巻き込む等して、溶接による溶融部分における先端部に高圧の気泡が発生する。
このとき、上記接触部分のわずかな隙間を介して溶接作用位置と連通する接触部分の端部が、上記溶接作用位置の気圧よりも低い気圧の低圧空間と接する状態としておくと、その圧力差で、溶接による溶融部には、低圧空間側への力が作用する。
その力の作用によって、低圧空間側に向けて上記気泡が吸い取られるか、あるいは、上記気泡の発生過程において低圧空間側に押し出されることで上記気泡の生成が抑制される。
That is, when a welding action is performed on the contact portions of two members to be welded, high-pressure bubbles are generated at the tip portion of the melted portion by welding, for example, by entraining air remaining in a slight gap between the contact portions.
At this time, if the end of the contact portion communicating with the welding position via a slight gap in the contact portion is in contact with a low pressure space having an atmospheric pressure lower than the atmospheric pressure at the welding position, the pressure difference The force to the low pressure space side acts on the melted part by welding.
Due to the action of the force, the bubbles are sucked toward the low-pressure space side or are pushed out to the low-pressure space side in the generation process of the bubbles, thereby suppressing the generation of the bubbles.

又、本出願の第2の発明は、上記第1の発明の構成に加えて、前記接触部分に対してレーザ溶接又はTIG溶接にて溶接作用する。
従って、溶接作用位置にレーザスポットを集光するレーザ溶接、あるいは、TIG溶接において、溶接における溶融部分での上記気泡の発生を抑制できる。
Further, in the second invention of the present application, in addition to the configuration of the first invention, the contact portion is welded by laser welding or TIG welding.
Therefore, in laser welding for condensing a laser spot at the welding position or TIG welding, the generation of the bubbles at the melted portion in the welding can be suppressed.

又、本出願の第3の発明は、上記第1又は第2の発明の構成に加えて、前記溶接作用位置が大気圧下にあり、前記低圧空間が大気圧よりも低い気圧の減圧状態の空間とする。
従って、溶接による溶融部分の先端部に発生する気泡、あるいは、その気泡の発生過程のものが、減圧状態の空間から吸引される。
Further, in a third invention of the present application, in addition to the configuration of the first or second invention, the welding operation position is under atmospheric pressure, and the low-pressure space is in a reduced pressure state at atmospheric pressure lower than atmospheric pressure. Space.
Therefore, bubbles generated at the tip of the melted part by welding, or those in the process of generating the bubbles are sucked from the space in the reduced pressure state.

又、本出願の第4の発明は、上記第3の発明の構成に加えて、前記2つの溶接対象部材は、内部空間を閉鎖した中空の容器を構成する壁体であり、前記容器の外方側から溶接作用すると共に、前記容器の内方側を前記減圧状態とする。
すなわち、中空容器の壁体を溶接する場合は、その容器内を減圧状態とすることで、溶接のための減圧状態の空間を容易に作ることができる。
According to a fourth invention of the present application, in addition to the configuration of the third invention, the two members to be welded are wall bodies constituting a hollow container with an internal space closed, While welding from the side, the inner side of the container is brought into the reduced pressure state.
That is, when welding the wall body of a hollow container, the space of the pressure reduction state for welding can be easily made by making the inside of the container into a pressure reduction state.

又、本出願の第5の発明は、上記第4の発明の構成に加えて、前記容器に貫通孔が形成され、その貫通孔から前記容器内を吸引することによって、前記容器内を前記減圧状態とする。
すなわち、容器に貫通孔が形成されている場合は、その貫通孔を利用して、容器内を減圧状態とすることができる。
According to a fifth invention of the present application, in addition to the configuration of the fourth invention, a through hole is formed in the container, and the inside of the container is decompressed by sucking the inside of the container from the through hole. State.
That is, when a through hole is formed in the container, the inside of the container can be in a reduced pressure state using the through hole.

又、本出願の第6の発明は、前記容器が蓄電装置の筐体であり、前記貫通孔が電解液の注液口であり、前記筐体を上記第5の発明の溶接方法によって溶接する。
すなわち、蓄電装置には、蓄電装置の筐体内に電解液を注液するための注液口を形成するのが一般的である。
その注液口を利用して蓄電装置の筐体内を上記減圧状態とするので、溶接のために必要となる減圧状態の空間を容易に作り出すことができる。
According to a sixth invention of the present application, the container is a housing of a power storage device, the through hole is an injection port for an electrolyte, and the housing is welded by the welding method of the fifth invention. .
That is, the power storage device is generally formed with a liquid injection port for injecting an electrolyte into the housing of the power storage device.
Since the inside of the housing of the power storage device is brought into the reduced pressure state using the liquid injection port, a reduced pressure space necessary for welding can be easily created.

上記第1の発明によれば、圧力差による力の作用によって、低圧空間側に向けて上記気泡が吸い取られるか、あるいは、上記気泡の発生過程において低圧空間側に押し出されることで上記気泡の残留が抑制されるので、溶接箇所のブローホールの発生を可及的に抑制することができる。
又、上記第2の発明によれば、レーザ溶接又はTIG溶接によって溶接箇所に発生するブローホールを可及的に抑制することができる。
又、上記第3の発明によれば、溶接による溶融部分の先端部に発生する気泡、あるいは、その気泡の発生過程のものが、減圧状態の空間から吸引されるので、ブローホールの発生をより一層有効に抑制できる。
又、上記第4の発明によれば、溶接の際に必要となる減圧状態の空間を容易に作り出すことができるので、ブローホールの発生を抑制しながら、溶接作業を簡単化することができる。
又、上記第5の発明によれば、容器に形成されている貫通孔を利用して、容器内を減圧状態とすることができるので、溶接の際に必要となる減圧状態の空間をより一層容易に作り出すことができる。
又、上記第6の発明によれば、蓄電装置の筐体に形成される注液口を利用することで、溶接のために必要となる減圧状態の空間を容易に作り出すことができ、ブローホールの発生を抑制しながら、溶接作業を簡単化することができる。
According to the first aspect of the present invention, the bubbles are sucked out toward the low-pressure space by the action of the force due to the pressure difference, or the bubbles remain by being pushed out toward the low-pressure space in the process of generating the bubbles. Therefore, the occurrence of blowholes at the welded portion can be suppressed as much as possible.
Moreover, according to the said 2nd invention, the blowhole which generate | occur | produces in a welding location by laser welding or TIG welding can be suppressed as much as possible.
In addition, according to the third aspect of the invention, since the bubbles generated at the tip of the melted part by welding or the generation process of the bubbles are sucked from the decompressed space, the generation of blowholes is further reduced. It can be suppressed more effectively.
In addition, according to the fourth aspect of the present invention, a space in a reduced pressure necessary for welding can be easily created, so that the welding operation can be simplified while suppressing the occurrence of blow holes.
Further, according to the fifth aspect, since the inside of the container can be brought into a decompressed state by using the through hole formed in the container, the space in the decompressed state necessary for welding is further increased. Can be easily produced.
In addition, according to the sixth aspect of the invention, by using the liquid injection port formed in the housing of the power storage device, it is possible to easily create a reduced pressure space necessary for welding. It is possible to simplify the welding operation while suppressing the occurrence of.

本発明の実施の形態にかかる二次電池の外観斜視図1 is an external perspective view of a secondary battery according to an embodiment of the present invention. 本発明の実施の形態にかかる二次電池の内部構造を示す斜視図The perspective view which shows the internal structure of the secondary battery concerning embodiment of this invention. 本発明の実施の形態にかかる要部拡大断面図The principal part expanded sectional view concerning embodiment of this invention

以下、本発明の溶接方法を、蓄電装置の一例である電池の製造工程に適用した場合の実施の形態を図面に基づいて説明する。
本実施の形態では、電池として二次電池の1例である非水電解液二次電池(より具体的にはリチウムイオン電池)を例示して説明する。
Hereinafter, an embodiment in which a welding method of the present invention is applied to a manufacturing process of a battery which is an example of a power storage device will be described with reference to the drawings.
In the present embodiment, a non-aqueous electrolyte secondary battery (more specifically, a lithium ion battery) which is an example of a secondary battery will be described as an example.

〔二次電池RBの構成〕
図1の斜視図に示すように、本実施の形態の非水電解液二次電池RBは、有底筒状の缶体1の開放面に蓋部2を被せて溶接して構成した筐体BCを有している。蓋部2は、短冊状の長方形の板材にて形成され、それの筐体BC外方側となる面に正極の電極端子である端子ボルト5と負極の電極端子である端子ボルト7とが取り付けられている。
缶体1は、蓋部2の形状に合わせて扁平形状の直方体であり、従って、筐体BC全体としても扁平な略直方体形状を有している。
[Configuration of secondary battery RB]
As shown in the perspective view of FIG. 1, the nonaqueous electrolyte secondary battery RB of the present embodiment is configured by welding a cover portion 2 on the open surface of a bottomed cylindrical can 1. Has BC. The lid portion 2 is formed of a strip-shaped rectangular plate material, and a terminal bolt 5 that is a positive electrode terminal and a terminal bolt 7 that is a negative electrode terminal are attached to a surface on the outer side of the casing BC. It has been.
The can 1 is a flat rectangular parallelepiped in accordance with the shape of the lid 2, and thus has a flat, substantially rectangular parallelepiped shape as a whole of the casing BC.

筐体BCの内方側には、図2において2点鎖線で示す発電要素3と集電体4,6とが電解液に一部浸される状態で収納配置されている。図2は、缶体1を除いた状態で、下方側から見上げた斜視図として、筐体BCの内方側を示している。
集電体4,6は、発電要素3と端子ボルト5,7とを電気的に接続するための部材であり、何れも導電体にて形成されている。
集電体4と集電体6とは、略同一形状のものが対称に配置される関係となっているが、材質が異なっており、正極側の集電体4はアルミニウムを主成分とする材料にて形成され、負極側の集電体6は銅を主成分とする材料にて形成されている。
On the inner side of the casing BC, the power generation element 3 and current collectors 4 and 6 indicated by a two-dot chain line in FIG. 2 are housed and arranged in a state of being partially immersed in the electrolyte. FIG. 2 shows the inner side of the casing BC as a perspective view looking up from the lower side with the can 1 removed.
The current collectors 4 and 6 are members for electrically connecting the power generation element 3 and the terminal bolts 5 and 7, and both are formed of a conductor.
The current collector 4 and the current collector 6 have a relationship in which substantially the same shape is arranged symmetrically, but the materials are different, and the current collector 4 on the positive electrode side is mainly composed of aluminum. The current collector 6 on the negative electrode side is formed of a material mainly composed of copper.

集電体4,6の概略形状は、上記の金属材料の板状部材を、筐体BCの短辺側の側面に沿う姿勢で屈曲形成して略L字状としており、端子ボルト5,7の配置面である蓋部2の表面に沿って延びる部分と、蓋部2の長手方向端部付近で下方側へ90度屈曲して、蓋部2の法線方向に延びる縦姿勢部分とが連なる形状を有している。集電体4,6の上記縦姿勢部分において、更に発電要素3側に屈曲させて、発電要素3と接続するための接続部4a,6aが形成されている。   The schematic shape of the current collectors 4 and 6 is such that the above-described metal material plate-like member is bent and formed in a posture along the side surface on the short side of the casing BC to have a substantially L shape. A portion extending along the surface of the lid portion 2 that is an arrangement surface of the lid portion, and a vertical posture portion that is bent 90 degrees downward near the longitudinal end portion of the lid portion 2 and extends in the normal direction of the lid portion 2. It has a continuous shape. In the vertical posture portions of the current collectors 4, 6, connection portions 4 a, 6 a for being bent further toward the power generation element 3 side and connected to the power generation element 3 are formed.

発電要素3は、長尺帯状に形成された箔状正極板と長尺帯状に形成された箔状負極板とからなる一対の電極板の夫々に、活物質層を塗布により形成して、それらを同じく長尺帯状のセパレータを挟んで巻回する状態で積層した、いわゆる巻回型の発電要素として構成されている。箔状正極板等は、扁平の巻回軸周りに巻回され、巻回したものも、電池筐体BCの形状に合わせて扁平形状となっている。   The power generation element 3 is formed by coating an active material layer on each of a pair of electrode plates including a foil-like positive electrode plate formed in a long strip shape and a foil-like negative electrode plate formed in a long strip shape, Is formed as a so-called winding type power generation element, which is laminated in a state where the sheet is wound with a long strip separator interposed therebetween. The foil-like positive electrode plate or the like is wound around a flat winding axis, and the wound one has a flat shape in accordance with the shape of the battery casing BC.

箔状正極板及び箔状負極板における活物質層の塗布に際しては、夫々の幅方向端部において、幅狭帯状に活物質層を塗布しない領域を残し、未塗工部3a,3bとしている。
上記の箔状正極板等の巻回の際、箔状正極板の未塗工部3aと箔状負極板の未塗工部3bとが、箔状正極板等の幅方向で反対側に突出するように重ね合わされて巻回され、図2に概略的に示すように、巻回軸芯方向の両端部に未塗工部3a,3bが位置する。
このように配置された未塗工部3a,3bが、夫々、集電体4,6の接続部4a,6aと溶接されている。
When the active material layer is applied to the foil-like positive electrode plate and the foil-like negative electrode plate, a region where the active material layer is not applied in a narrow strip shape is left at the end portions in the width direction to form uncoated portions 3a and 3b.
When winding the foil-shaped positive electrode plate or the like, the uncoated portion 3a of the foil-shaped positive electrode plate and the uncoated portion 3b of the foil-shaped negative electrode plate protrude in opposite directions in the width direction of the foil-shaped positive electrode plate or the like. As shown schematically in FIG. 2, the uncoated portions 3a and 3b are located at both ends in the winding axis direction.
The uncoated portions 3a and 3b arranged in this way are welded to the connection portions 4a and 6a of the current collectors 4 and 6, respectively.

蓋部2は金属製(具体的には、アルミニウムを主成分とする金属製)であり、その蓋部2に取り付けられている正極側の端子ボルト5は正極側の集電体4に電気的に接続され、負極側の端子ボルト7は負極側の集電体6に電気的に接続されている。
端子ボルト5の頭部側には、リベット8が一体形成されており、端子ボルト5と蓋部2との間に電気的絶縁と気密保持のための上部ガスケット11を挟み、蓋部2と集電体4との間に電気的絶縁と気密保持のための下部ガスケット12を挟み、リベット8をかしめる(図2参照)ことで、これらを固定すると共に、端子ボルト5と集電体4とを電気的に接続している。
負極側も同様の構成であり、端子ボルト7の頭部側には、リベット15が一体形成されており、端子ボルト7と蓋部2との間に電気的絶縁と気密保持のための上部ガスケット17を挟み、蓋部2と集電体6との間に電気的絶縁と気密保持のための下部ガスケット18を挟み、リベット15をかしめることで、これらを固定すると共に、端子ボルト7と集電体6とを電気的に接続している。
The lid 2 is made of metal (specifically, a metal mainly composed of aluminum), and the positive terminal bolt 5 attached to the lid 2 is electrically connected to the positive current collector 4. The terminal bolt 7 on the negative electrode side is electrically connected to the current collector 6 on the negative electrode side.
A rivet 8 is integrally formed on the head side of the terminal bolt 5, and an upper gasket 11 is sandwiched between the terminal bolt 5 and the lid portion 2 for electrical insulation and airtightness. The lower gasket 12 for electrical insulation and airtightness is sandwiched between the electric body 4 and the rivet 8 is caulked (see FIG. 2) to fix them, and the terminal bolt 5 and the current collector 4 Are electrically connected.
The negative electrode side has the same configuration, and a rivet 15 is integrally formed on the head side of the terminal bolt 7, and an upper gasket for electrical insulation and airtight maintenance between the terminal bolt 7 and the lid 2. 17, sandwiching a lower gasket 18 between the lid 2 and the current collector 6 for electrical insulation and airtightness, and caulking the rivet 15, thereby fixing them and collecting them with the terminal bolt 7. The electric body 6 is electrically connected.

〔二次電池RBの製造工程〕
次に、二次電池RBの製造工程について、筐体BCの組立を主体に概略的に説明する。
筐体BCを構成する蓋部2は、アルミニウムを主体とする金属材料の板材に、端子ボルト5,7を貫通させる貫通孔や、安全弁19を配置する貫通孔、更には、筐体BC内に電解液を注液するための貫通孔である注液口20を形成すると共に、端縁部に階段状の段差を形成する。この段差は、缶体1との係合のためのものである。
缶体1も、蓋部2と同一の材料であり、金属製(具体的には、アルミニウムを主成分とする金属製)の板材をいわゆる深絞り加工によって、扁平な有底矩形筒状に形成する。
[Manufacturing process of secondary battery RB]
Next, the manufacturing process of the secondary battery RB will be schematically described mainly with the assembly of the housing BC.
The lid 2 constituting the casing BC is formed of a metal plate mainly made of aluminum, a through hole through which the terminal bolts 5 and 7 are penetrated, a through hole in which the safety valve 19 is disposed, and further in the casing BC. A liquid injection port 20 which is a through hole for injecting an electrolytic solution is formed, and a stepped step is formed at the edge. This step is for engagement with the can 1.
The can body 1 is also made of the same material as the lid portion 2 and is formed into a flat bottomed rectangular cylindrical shape by a so-called deep drawing process using a metal plate (specifically, a metal mainly made of aluminum). To do.

蓋部2に安全弁19を取り付けると共に、蓋部2の端子ボルト5,7用の貫通孔に対して、正極側及び負極側の夫々において、上述のように、上部ガスケット11,17を挟み込んだ状態で、端子ボルト5,7のリベット8,15を筐体BC外方側の面から差し込み、蓋部2の筐体BC内方側の面から突出したリベット8,15に、下部ガスケット12,18と集電体4,6の上端とを差し込んで、リベット8,15をかしめる。
このように蓋部に組み付けた集電体4,6に対して、上述のように扁平形状に巻回した発電要素3を溶接する。すなわち、集電体4,6の接続部4a,6aを、扁平な渦巻き状の未塗工部3a,3bの並びの中にもぐり込ませて、超音波溶接等によって溶接する。
A state in which the safety valve 19 is attached to the lid portion 2 and the upper gaskets 11 and 17 are sandwiched between the through holes for the terminal bolts 5 and 7 of the lid portion 2 on the positive electrode side and the negative electrode side, respectively, as described above. Then, the rivets 8 and 15 of the terminal bolts 5 and 7 are inserted from the outer surface of the casing BC, and the lower gaskets 12 and 18 are inserted into the rivets 8 and 15 protruding from the inner surface of the casing BC of the lid 2. And the upper ends of the current collectors 4 and 6 are inserted and the rivets 8 and 15 are caulked.
The power generation element 3 wound in a flat shape as described above is welded to the current collectors 4 and 6 assembled to the lid portion in this way. In other words, the connecting portions 4a and 6a of the current collectors 4 and 6 are inserted into the flat spiral uncoated portions 3a and 3b and welded by ultrasonic welding or the like.

このようにして組み立てた蓋部2側の組品を缶体1に挿入し、缶体1の開口面の端縁が蓋部2の段差の下段側に突き当たる状態に配置して、蓋部2と缶体1とを溶接する。
蓋部2と缶体1とは、発電要素3等を収納する内部空間を閉鎖する中空の容器を構成する壁体となっており、これらの接触部分に対して外方側から直接的に溶接作用して、その接触部分を封止する。
この溶接作業は、本実施の形態では、レーザ溶接にて行う。このレーザ溶接としては、レーザ光のスポット径を小さく絞れるファイバレーザ等を用いることが好ましい。
実際の溶接作業では、蓋部2を缶体1側に押圧した状態で、図1において2点鎖線Aで示す吸引配管を蓋部2に形成している注液口20に連結し、図示を省略する真空ポンプにて上記吸引配管を経て筐体BC内を吸引する。この真空ポンプによる筐体BC内の吸引によって、筐体BCは、大気圧よりも低い気圧の減圧状態となる。
筐体BC内を減圧状態として、図1において2点鎖線で概略的に示すレーザ光LBを、溶接対象部材である蓋部2と缶体1との接触部分に筐体BC外方側から照射し、それらの境界に沿って走査する。
The assembly on the lid part 2 side assembled in this way is inserted into the can body 1 and arranged so that the edge of the opening surface of the can body 1 abuts on the lower side of the step of the lid part 2. And the can 1 are welded.
The lid portion 2 and the can body 1 are wall bodies constituting a hollow container that closes the internal space for housing the power generation element 3 and the like, and are welded directly to the contact portions from the outside side. Acts to seal the contact portion.
This welding operation is performed by laser welding in the present embodiment. As this laser welding, it is preferable to use a fiber laser or the like that can reduce the spot diameter of the laser beam.
In the actual welding operation, with the lid 2 pressed against the can 1, the suction pipe indicated by a two-dot chain line A in FIG. 1 is connected to the liquid injection port 20 formed in the lid 2, The inside of the housing BC is sucked through the suction pipe by a vacuum pump that is omitted. By suction in the housing BC by the vacuum pump, the housing BC is in a reduced pressure state at an atmospheric pressure lower than the atmospheric pressure.
With the inside of the casing BC in a decompressed state, the laser beam LB schematically shown by a two-dot chain line in FIG. 1 is irradiated from the outside of the casing BC to the contact portion between the lid portion 2 and the can body 1 that are welding objects And scan along their boundaries.

蓋部2の端縁の段差形成箇所と缶体1の開放面端縁とが接触する部分は、レーザ溶接によって溶接作用する前は、当該箇所を拡大断面図として示す図3(a)に示すようになっている。
蓋部2と缶体1との接触部分にレーザ光LBが当たると、図3(a)と同一箇所を示す図3(b)に示すように、クロスハッチングで示す溶融部MTが生成される。
FIG. 3A shows an enlarged cross-sectional view of the portion where the step forming portion of the edge of the lid portion 2 is in contact with the opening surface edge of the can body 1 before welding by laser welding. It is like that.
When the laser beam LB hits the contact portion between the lid 2 and the can 1, as shown in FIG. 3 (b) showing the same location as FIG. 3 (a), a melted portion MT indicated by cross hatching is generated. .

この溶融部MTの先端には、蓋部2と缶体1との接触部分に残留している残留空気に起因する気泡BBが発生することがあるが、真空ポンプにて吸引して、筐体BC内を大気圧よりも低い減圧状態の空間とすることで、図3(b)において矢印Bで示すように、気泡BBが筐体BC内へ引き込まれる形で消失する。又、気泡BBの生成過程において筐体BC内へ引き込まれることで、気泡BBが発生しないこともある。
すなわち、蓋部2と缶体との接触部分は、完全な平面ではなく小さな凹凸を有する面同士が接触しているために、溶接作用している筐体BC外方側と筐体BC内方側とがわずかな隙間で連通している。この接触部分の端部の一部(すなわち、筐体BC内方側の端部)が上記減圧状態の空間と接しているために、その圧力差によって気泡BBが引き込まれるのである。
Bubbles BB caused by residual air remaining in the contact portion between the lid 2 and the can 1 may be generated at the tip of the melting portion MT. By making the inside of BC a space in a decompressed state lower than the atmospheric pressure, as shown by an arrow B in FIG. 3B, the bubbles BB disappear in a form of being drawn into the housing BC. Further, the bubble BB may not be generated by being drawn into the housing BC in the process of generating the bubble BB.
That is, the contact portion between the lid 2 and the can body is not a complete flat surface, but the surfaces having small irregularities are in contact with each other. The side communicates with a slight gap. Since a part of the end portion of the contact portion (that is, the end portion on the inner side of the casing BC) is in contact with the space in the reduced pressure state, the bubble BB is drawn by the pressure difference.

結果として、溶融部MT内に気泡BBが残存してしまうことを可及的に抑制できることになり、溶融部MTの固化後にブローホールが発生してしまうのを十分に抑制できる。
筐体BC内の減圧状態としては、減圧が十分でないと気泡BBあるいは気泡BBの発生要因に対する吸引効果が十分ではなく、圧力が低すぎると溶融部MTが筐体BC内へ引き込まれ過ぎることになる。実験では、真空ポンプ側での測定圧力で、0.08MPa程度に設定したときが最も良好であった。
As a result, it is possible to suppress the bubble BB from remaining in the melted part MT as much as possible, and it is possible to sufficiently suppress the occurrence of blow holes after the melted part MT is solidified.
As the decompression state in the housing BC, if the decompression is not sufficient, the suction effect for the bubble BB or the generation factor of the bubbles BB is not sufficient, and if the pressure is too low, the melting part MT is drawn too much into the housing BC. Become. In the experiment, the measured pressure on the vacuum pump side was the best when set to about 0.08 MPa.

溶融部MTにおける気泡BBの抑制には、筐体BCの設置環境が大気圧下であることも寄与している。
レーザ光LBにて溶接作用している箇所(空間)は、シールドガスによって局所的に圧力の高い領域があるにしても、基本的に大気圧下にある。
これに対して、筐体BC内は、大気圧よりも低い気圧の減圧状態となっており、これによって、図3(b)において矢印Cで示すように、溶融部MTに対して、筐体BC内へ押し込もうとする力が作用し、これに伴って、気泡BBの筐体BC内への引き込みも促進される。
The suppression of the bubbles BB in the melting part MT also contributes to the fact that the installation environment of the casing BC is under atmospheric pressure.
The place (space) where the laser beam LB is welded is basically at atmospheric pressure even if there is a region where the pressure is locally high due to the shielding gas.
On the other hand, the inside of the casing BC is in a reduced pressure state at an atmospheric pressure lower than the atmospheric pressure, and as a result, as shown by an arrow C in FIG. A force to push into the BC is applied, and accordingly, the drawing of the bubble BB into the casing BC is also promoted.

上述のようにして蓋部2と缶体1との溶接が、蓋部2端縁の全周に亘って完了すると、注液口20から電解液を筐体BC内に注液し、完了後に図示を省略する注液栓で注液口20を封止する。   When the welding of the lid portion 2 and the can body 1 is completed over the entire circumference of the end of the lid portion 2 as described above, the electrolytic solution is injected into the casing BC from the liquid injection port 20, and after completion. The liquid injection port 20 is sealed with a liquid injection stopper (not shown).

〔別実施形態〕
以下、本発明の別実施形態を列記する。
(1)上記実施の形態では、本発明の溶接方法を二次電池RBの筐体BCの溶接に適用する場合を例示しているが、各種の部材の溶接に本発明を適用できる。
(2)上記実施の形態では、溶接対象とする部材(蓋部2及び缶体1)の材質としてアルミニウムを主体とする金属材料を例示しているが、他の金属材料の溶接にも本発明を適用できる。
(3)上記実施の形態では、筐体BC外方側に位置する溶接作用位置を大気圧下とし、筐体BC内方側を減圧状態としているが、筐体BC内方側を常圧とし、筐体BC外方側を加圧することによって、筐体BCの内外で圧力差を形成するようにしても良い。
(4)上記実施の形態では、レーザ溶接にて筐体BCを溶接する場合を例示しているが、TIG溶接等の溶接箇所を溶融させる溶接手段を用いる場合にも本発明を適用することができ、その場合においても、ブローホールの発生を抑制することができる。
[Another embodiment]
Hereinafter, other embodiments of the present invention will be listed.
(1) Although the case where the welding method of the present invention is applied to the welding of the casing BC of the secondary battery RB is illustrated in the above embodiment, the present invention can be applied to welding of various members.
(2) In the above embodiment, the metal material mainly composed of aluminum is exemplified as the material of the member to be welded (the lid portion 2 and the can body 1), but the present invention is also applied to welding of other metal materials. Can be applied.
(3) In the above-described embodiment, the welding action position located on the outer side of the casing BC is under atmospheric pressure, and the inner side of the casing BC is in a reduced pressure state, but the inner side of the casing BC is set to normal pressure. A pressure difference may be formed inside and outside the casing BC by pressurizing the outer side of the casing BC.
(4) In the above embodiment, the case where the casing BC is welded by laser welding is illustrated, but the present invention can also be applied to the case where a welding means for melting a welding location such as TIG welding is used. Even in that case, the occurrence of blow holes can be suppressed.

BC 筐体
20 注液口(貫通孔)
BC Housing 20 Injection port (through hole)

Claims (6)

2つの溶接対象部材の接触部分に対して溶接作用する溶接方法であって、
溶接作用位置と連通する前記接触部分の端部の一部が、前記溶接作用位置の気圧よりも低い気圧の低圧空間と接する状態で溶接する溶接方法。
A welding method in which a welding action is performed on a contact portion of two welding target members,
A welding method in which welding is performed in a state in which a part of an end portion of the contact portion communicating with a welding operation position is in contact with a low pressure space having an atmospheric pressure lower than the atmospheric pressure at the welding operation position.
前記接触部分に対してレーザ溶接又はTIG溶接にて溶接作用する請求項1記載の溶接方法。   The welding method according to claim 1, wherein the contact portion is welded by laser welding or TIG welding. 前記溶接作用位置が大気圧下にあり、前記低圧空間が大気圧よりも低い気圧の減圧状態の空間とする請求項1又は2記載の溶接方法。   The welding method according to claim 1 or 2, wherein the welding operation position is under atmospheric pressure, and the low-pressure space is a space in a reduced pressure state at an atmospheric pressure lower than atmospheric pressure. 前記2つの溶接対象部材は、内部空間を閉鎖した中空の容器を構成する壁体であり、
前記容器の外方側から溶接作用すると共に、前記容器の内方側を前記減圧状態とする請求項3記載の溶接方法。
The two members to be welded are wall bodies constituting a hollow container with an internal space closed,
The welding method according to claim 3, wherein the welding operation is performed from the outer side of the container, and the inner side of the container is set to the reduced pressure state.
前記容器に貫通孔が形成され、その貫通孔から前記容器内を吸引することによって、前記容器内を前記減圧状態とする請求項4記載の溶接方法。   The welding method according to claim 4, wherein a through hole is formed in the container, and the inside of the container is brought into the reduced pressure state by sucking the inside of the container from the through hole. 前記容器が蓄電装置の筐体であり、前記貫通孔が電解液の注液口であり、
前記筐体を請求項5記載の溶接方法によって溶接する蓄電装置の製造方法。
The container is a housing of a power storage device, and the through-hole is an electrolyte injection port;
The manufacturing method of the electrical storage apparatus which welds the said housing | casing by the welding method of Claim 5.
JP2012058739A 2012-03-15 2012-03-15 Welding method, and method for manufacturing storage device Pending JP2013188787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058739A JP2013188787A (en) 2012-03-15 2012-03-15 Welding method, and method for manufacturing storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058739A JP2013188787A (en) 2012-03-15 2012-03-15 Welding method, and method for manufacturing storage device

Publications (1)

Publication Number Publication Date
JP2013188787A true JP2013188787A (en) 2013-09-26

Family

ID=49389608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058739A Pending JP2013188787A (en) 2012-03-15 2012-03-15 Welding method, and method for manufacturing storage device

Country Status (1)

Country Link
JP (1) JP2013188787A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133300A (en) * 2014-01-15 2015-07-23 株式会社豊田自動織機 power storage device
CN110385526A (en) * 2018-04-16 2019-10-29 丰田自动车株式会社 The manufacturing method and battery manufacturing systems of battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133300A (en) * 2014-01-15 2015-07-23 株式会社豊田自動織機 power storage device
CN110385526A (en) * 2018-04-16 2019-10-29 丰田自动车株式会社 The manufacturing method and battery manufacturing systems of battery

Similar Documents

Publication Publication Date Title
JP6093874B2 (en) Prismatic secondary battery
JP5135368B2 (en) Square battery and method for manufacturing the same
JP5449961B2 (en) Secondary battery
US8632907B2 (en) Method and design for externally applied laser welding of internal connections in a high power electrochemical cell
JP6238105B2 (en) Apparatus housing and method for manufacturing apparatus casing
JP5492653B2 (en) Secondary battery
KR101048963B1 (en) Secondary battery
JP6117927B2 (en) Secondary battery
JP2009259452A (en) Battery and its method for manufacturing
JP5672863B2 (en) battery
JP6217979B2 (en) Manufacturing method of sealed battery
JP6872145B2 (en) Terminal fixing structure
JP2013143332A (en) Battery
JP2013188787A (en) Welding method, and method for manufacturing storage device
JP2018101568A (en) Square secondary battery and manufacturing method thereof
JP2016076297A (en) Power storage element and method for manufacturing power storage element
JP7056560B2 (en) Power storage element and manufacturing method of power storage element
JP2012099746A (en) Power storage device
JP6086210B2 (en) Method for manufacturing power storage element
JP2019175618A (en) Inspection method of power storage element and power storage element
JP2022119292A (en) secondary battery
JP6364752B2 (en) Sealing member cap, power storage element, and method for manufacturing power storage element
JP6031958B2 (en) Sealed container and method for manufacturing sealed container
JP6094343B2 (en) Electricity storage element
JP2015056276A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131003