Nothing Special   »   [go: up one dir, main page]

JP2013166157A - Rocking die forging method, workpiece used therefor and method for determination of workpiece shape - Google Patents

Rocking die forging method, workpiece used therefor and method for determination of workpiece shape Download PDF

Info

Publication number
JP2013166157A
JP2013166157A JP2012029451A JP2012029451A JP2013166157A JP 2013166157 A JP2013166157 A JP 2013166157A JP 2012029451 A JP2012029451 A JP 2012029451A JP 2012029451 A JP2012029451 A JP 2012029451A JP 2013166157 A JP2013166157 A JP 2013166157A
Authority
JP
Japan
Prior art keywords
workpiece
mold
die
shape
center hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012029451A
Other languages
Japanese (ja)
Inventor
Takuya Sukeda
拓也 助田
Hiroshi Ishita
寛史 井下
Naoki Hirai
直樹 平位
Akinori Tomioka
晃徳 富岡
Toshiaki Masui
稔明 増井
Hironori AOYAMA
宏典 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012029451A priority Critical patent/JP2013166157A/en
Publication of JP2013166157A publication Critical patent/JP2013166157A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/025Special design or construction with rolling or wobbling dies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance inner diameter accuracy of an inner circumferential surface of a cylindrical part when forming a disk-like component having a cylindrical part on its center by a rocking die forging method.SOLUTION: A stress which causes a material of a workpiece W flow is generated by abutting a workpiece W set in a lower mold 14 on an upper mold 12 and by pressurizing the workpiece W. The stress generated in the workpiece W at this time becomes large for approaching an end part facing the upper mold. A shape within a predetermined range of a center hole Wb in an axial direction of the workpiece W before a rocking die forging process is formed with its diameter gradually larger as it approaches the end part side facing the upper mold 12 in a state that the workpiece W is set in the lower mold 14. The shape of the workpiece W is adjusted in such a manner that as it approaches the end part side facing the upper mold 12, the material amount in the periphery of the center hole Wb is further reduced so that the material flowing to an inner circumferential surface of a cylindrical part does not become excessive. The material amount in the periphery of the center hole Wb is previously reduced so that the flowing amount does not become excessive by previously anticipating the material flowing to the inner circumferential surface of the cylindrical part.

Description

本発明は、揺動鍛造方法とそれに用いられるワーク並びにワーク形状決定方法に関するものである。   The present invention relates to a swing forging method, a workpiece used therefor, and a workpiece shape determination method.

従来から、円盤状の部品を成形する手法として、揺動鍛造方法が採用されている。この揺動鍛造方法に用いられる揺動鍛造装置は、例えば円錐状に角度を持った上型と、上型に対向する下型とを有している。又、上型を所定の中心点を基準に揺動回転駆動(いわゆる「すりこぎ運動」)させるための揺動部と、上型及び下型を離間接近させるための昇降部とを備えるものである。 Conventionally, a swing forging method has been employed as a method for forming a disk-shaped part. The rocking forging device used in this rocking forging method has, for example, a conical upper angle mold and a lower mold facing the upper mold. In addition, it includes a swinging portion for swinging and rotating the so-called upper center with respect to a predetermined center point (so-called “grinding motion”), and an elevating portion for separating and approaching the upper die and the lower die. is there.

この揺動鍛造装置を用いた具体的な成形手順は、まず、型開状態にある下型に、円柱状のワークをセットし、上型と下型とを接近させて、揺動回転運動する上型に対しワークを当接させる。そして、上型の揺動回転運動に伴い、ワークの成形が円周方向に逐次進行していく。ワークの成形が進行するに従い、上型と下型との上下方向の距離が接近し、一定距離に保持される。そして、上型と下型とが一定距離に保持された状態で、上型の揺動回転運動を継続しつつワークを所定時間保持した後に、上型と下型とを離間させて成形を完了するものである。かかる揺動鍛造方法によれば、一般的な鍛造方法に比べ衝撃や振動の発生が少なく、又、ワークの内部応力も少なくすることが出来るので、最終的な製品形状へと、1サイクルで鍛造することも可能となる(例えば、特許文献1、2参照)。 The specific forming procedure using this swing forging device is as follows. First, a cylindrical workpiece is set in the lower mold in the mold open state, and the upper mold and the lower mold are brought close to each other to swing and rotate. The work is brought into contact with the upper mold. As the upper mold swings and rotates, the workpiece molding proceeds sequentially in the circumferential direction. As the molding of the workpiece progresses, the vertical distance between the upper mold and the lower mold approaches and is held at a constant distance. After the upper mold and the lower mold are held at a fixed distance, the upper mold and the lower mold are separated from each other after the workpiece is held for a predetermined time while the upper mold continues to rotate and rotate. To do. According to such a swing forging method, impact and vibration are less generated than in a general forging method, and the internal stress of the work can be reduced, so that the final product shape can be forged in one cycle. (For example, see Patent Documents 1 and 2).

特開2005−211902号公報JP 2005-211902 A 特開昭61−242738号公報JP 61-242738 A

しかしながら、従来の揺動鍛造方法により、CVTシーブ等、中心部に筒状部を有する円盤状の部品を成形する際には、円筒部内周面の拘束が不十分となり、円筒部内周面への素材流動が過大に生じて、内径精度を損うおそれがある。
本発明は、上記課題に鑑みてなされたものであり、その目的とするところは、揺動鍛造方法により、中心部に筒状部を有する円盤状の部品を成形する際の、円筒部内周面の内径精度を高めることにある。
However, when forming a disk-shaped part having a cylindrical portion at the center, such as a CVT sheave, by the conventional swing forging method, the inner peripheral surface of the cylindrical portion becomes insufficiently constrained. There is a possibility that the material flow will be excessive and the inner diameter accuracy will be impaired.
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an inner peripheral surface of a cylindrical portion when a disk-shaped part having a cylindrical portion at the center is formed by a swing forging method. This is to increase the accuracy of the inner diameter.

(発明の態様)
以下の発明の態様は、本発明の構成を例示するものであり、本発明の多様な構成の理解を容易にするために、項別けして説明するものである。各項は、本発明の技術的範囲を限定するものではなく、発明を実施するための最良の形態を参酌しつつ、各項の構成要素の一部を置換し、削除し、又は、更に他の構成要素を付加したものについても、本願発明の技術的範囲に含まれ得るものである。
(Aspect of the Invention)
The following aspects of the present invention exemplify the configuration of the present invention, and will be described separately for easy understanding of various configurations of the present invention. Each section does not limit the technical scope of the present invention, and some of the components of each section are replaced, deleted, or further while referring to the best mode for carrying out the invention. Those to which the above components are added can also be included in the technical scope of the present invention.

(1)円錐状に角度を持った第1型を所定の中心点を基準に揺動回転させ、該第1型と軸方向で対向する第2型に、中心穴を有する円盤状のワークをセットし、前記第1型と前記第2型とを離間接近させ前記ワークを前記第1型に当接させて、前記ワークの成形を行う揺動鍛造方法であって、揺動鍛造工程前のワークの、中心穴の軸方向の所定範囲の形状を、前記第2型に前記ワークをセットした状態で前記第1型と対向する端部側へと向かうに従い、拡径するように形成する揺動鍛造方法(請求項1)。 (1) A first die having an angle in a conical shape is swung and rotated with a predetermined center point as a reference, and a disk-shaped workpiece having a center hole is formed on a second die that is opposed to the first die in the axial direction. A swing forging method for forming the workpiece by setting the first die and the second die apart from each other and bringing the workpiece into contact with the first die, before the swing forging step. The shape of the work in a predetermined range in the axial direction of the center hole is formed so that the diameter increases as it goes toward the end facing the first mold with the work set in the second mold. Dynamic forging method (Claim 1).

本項に記載の揺動鍛造方法は、円錐状に角度を持った第1型を、所定の中心点を基準として揺動回転駆動した状態で、例えば、第1型が第2型に対し昇降することにより、第1型と第2型とを離間接近させるものである。又、揺動鍛造工程前のワークを第2型にセットした状態で第1型を下降させて、揺動回転運動する第1型に対しワークを当接させることで、第1型の揺動回転運動に伴い、第2型にセットされたワークの成形を円周方向に逐次進行させていくものである。 In the swing forging method described in this section, for example, the first die moves up and down with respect to the second die in a state where the first die having a conical angle is driven to swing and rotate with reference to a predetermined center point. By doing so, the first mold and the second mold are separated and approached. Further, the first mold is lowered while the work before the swing forging process is set in the second mold, and the work is brought into contact with the first mold that is swung and rotated. With the rotational movement, the molding of the workpiece set in the second mold is sequentially advanced in the circumferential direction.

又、ワークの素材流動を引き起こす応力は、第2型にセットされたワークが第1型に当接し、ワークが加圧されることによって発生し、この際、ワーク内に発生する応力は、第1型と対向する端部に近づくほど大きくなる。そこで、本項の発明においては、揺動鍛造工程前のワークの、中心穴の軸方向の所定範囲の形状を、第2型にワークをセットした状態で第1型と対向する端部側へと向かうに従い、拡径するように形成することで、円筒部内周面への素材流動が過大とならないように、ワークの形状を調整しておくものである。すなわち、本項の揺動鍛造方法では、円筒部内周面への素材流動を予め見込んでおき、その流動量が過大とならないように、中心穴周辺部の素材量を予め減少させるべく、揺動鍛造工程前のワークの、中心穴の軸方向の所定範囲の形状を、調整するものである。 The stress that causes the material flow of the work is generated when the work set in the second mold comes into contact with the first mold and the work is pressed. At this time, the stress generated in the work is The closer to the end facing the type 1, the larger. Therefore, in the invention of this section, the shape of the predetermined range in the axial direction of the center hole of the work before the swing forging process is set to the end side facing the first mold with the work set in the second mold. The shape of the workpiece is adjusted so that the material flow to the inner peripheral surface of the cylindrical portion does not become excessive by forming it so as to increase in diameter as it goes. That is, in the swing forging method of this section, the material flow to the inner peripheral surface of the cylindrical portion is anticipated in advance, and the swing is performed in order to reduce the amount of material in the periphery of the center hole in advance so that the flow amount is not excessive. The shape in a predetermined range in the axial direction of the center hole of the work before the forging process is adjusted.

(2)上記(1)項において、前記ワークの中心穴を拡径するように形成する軸方向の所定範囲を、前記第1型及び前記第2型から前記ワークへと付与される荷重により、前記ワーク内に塑性変形を引き起こすだけの応力が生じる範囲とする揺動鍛造方法(請求項2)。
本項に記載の揺動鍛造方法は、上記(1)項記載の作用を奏するべく、ワークの中心穴を拡径するように形成する範囲を、軸方向の所定範囲を第1型及び第2型によってワークへと荷重を付与して、ワーク内に塑性変形を引き起こすだけの応力が生じる範囲とするものである。ここで、ワーク内に塑性変形を引き起こすだけの応力が生じる範囲は、ワークの第1型と対向する端部側から深部へと広がるが、深部ほど応力が減少していく傾向にある。このため、素材の流動量もワークの深部ほど減少していく傾向にある。又、揺動鍛造工程の進行に伴い、ワークの塑性変形が進行するに従い、素材の流動量は減少する傾向にある。そこで、揺動鍛造工程前のワークの、塑性変形を引き起こすだけの応力が生じる範囲の形状を、第2型にワークをセットした状態で第1型と対向する端部側へと向かうに従い、拡径するように形成するものである。そして、第1型と対向する端部側へと向かうに従い、中心穴周辺部の素材量をより減少させて、揺動鍛造工程の進行の如何に関わらず、円筒部内周面への素材流動が過大とならないように、ワーク形状を予め調整しておくものである。
(2) In the above item (1), a predetermined range in the axial direction formed so as to expand the center hole of the workpiece is determined by the load applied to the workpiece from the first mold and the second mold. An oscillating forging method in which a stress sufficient to cause plastic deformation is generated in the workpiece (claim 2).
In the swing forging method described in this section, in order to achieve the operation described in the above item (1), the range in which the center hole of the workpiece is formed to be enlarged is defined as the predetermined range in the axial direction with the first die and the second mold. A load is applied to the workpiece by the mold, and the stress is generated in a range that causes plastic deformation in the workpiece. Here, the range in which a stress sufficient to cause plastic deformation in the workpiece is expanded from the end side facing the first mold of the workpiece to the deep portion, but the stress tends to decrease as the depth increases. For this reason, the amount of flow of the material also tends to decrease as the depth of the workpiece. Further, with the progress of the swing forging process, the amount of flow of the material tends to decrease as the plastic deformation of the workpiece progresses. Therefore, the shape of the work in the range where stress sufficient to cause plastic deformation occurs before the rocking forging process is expanded toward the end facing the first mold in a state where the work is set in the second mold. It is formed so as to have a diameter. And as it goes to the end side facing the first mold, the amount of material around the center hole is further reduced, and the material flow to the inner peripheral surface of the cylindrical portion is made regardless of the progress of the swing forging process. The workpiece shape is adjusted in advance so as not to become excessive.

(3)上記(1)(2)項において、前記第1型及び前記第2型の接近動作パターンに応じ、前記ワークの中心穴の、軸方向の所定範囲の形状を決定する揺動鍛造方法(請求項3)。
揺動鍛造成形においては、当該加工工程で、寸法精度や加工効率等、何を重視するか(狙い)に応じて、第1型及び第2型の接近動作パターンが異なってくる。そこで、本項に記載の揺動鍛造方法は、第1型及び第2型の接近動作パターンに応じ、ワークの中心穴の軸方向の所定範囲の形状を決定することで、第1型及び第2型の接近動作パターンの如何に関わらず、円筒部内周面への素材の流動量が過大とならないようにするものである。ところで、ワークに生じる応力は、第1型及び第2型の接近動作の速度(型送り速度)が速いほど大きく、かつ、その範囲は深部まで及ぶものである。このため、ワークの中心穴の軸方向の所定範囲における、各部の形状を、型送り速度と揺動鍛造成形工程の進行とを考慮して決定するものである。
(3) In the above (1) and (2), the swing forging method for determining the shape of a predetermined range in the axial direction of the center hole of the workpiece according to the approaching operation pattern of the first die and the second die (Claim 3).
In swing forging, the approach pattern of the first mold and the second mold differs depending on what is important (target) such as dimensional accuracy and machining efficiency in the machining process. Therefore, the swing forging method described in this section determines the shape of the predetermined range in the axial direction of the center hole of the workpiece according to the approaching operation patterns of the first die and the second die, and thereby the first die and the first die. Regardless of the type 2 approach movement pattern, the amount of flow of material to the inner peripheral surface of the cylindrical portion is prevented from becoming excessive. By the way, the stress generated in the workpiece increases as the speed of the first and second type approaching operations (die feeding speed) increases, and the range extends to the deep part. For this reason, the shape of each part in the predetermined range in the axial direction of the center hole of the workpiece is determined in consideration of the die feed speed and the progress of the swing forging process.

(4)上記(3)項において、前記第1型及び前記第2型の接近動作パターンを、前記第1型及び前記第2型によって前記ワークへと付与する荷重が一定となるように調整する揺動鍛造方法。(請求項4)。
本項に記載の揺動鍛造方法は、前記第1型及び前記第2型の接近動作パターンを、前記第1型及び前記第2型によって前記ワークへと付与する荷重が一定となるように調整することで、型送り速度は、揺動鍛造成形初期で速く成形終期は遅くなる。このため、塑性変形を引き起こす応力の状態が、揺動鍛造成形の進行に伴い変化し、ワークの円筒部内周面への素材流動の態様も複雑になる。本項に記載の揺動鍛造方法では、かかる複雑な素材流動の態様を予め見込んでおき、その流動量が過大とならないように、中心穴周辺部の素材量を予め減少させるべく、揺動鍛造工程前のワークの、中心穴の軸方向の所定範囲の形状を調整するものである。
(4) In the above item (3), the approach movement patterns of the first mold and the second mold are adjusted so that the load applied to the workpiece by the first mold and the second mold is constant. Swing forging method. (Claim 4).
In the swing forging method described in this section, the approach movement patterns of the first die and the second die are adjusted so that the load applied to the workpiece by the first die and the second die is constant. By doing so, the die feed speed is fast at the beginning of the swing forging forming and is slow at the end of forming. For this reason, the state of stress that causes plastic deformation changes with the progress of swing forging, and the aspect of material flow to the inner peripheral surface of the cylindrical portion of the workpiece becomes complicated. In the swing forging method described in this section, such a complicated material flow is anticipated in advance, and the swing forging is performed in order to reduce the amount of material around the center hole in advance so that the flow amount is not excessive. The shape of a predetermined range in the axial direction of the center hole of the workpiece before the process is adjusted.

(5)上記(1)から(4)項記載の揺動鍛造方法に用いられる揺動鍛造工程前のワークであって、
前記第2型にセットした状態でその中心穴の軸方向の所定範囲が、前記第1型側へと向かうに従い拡径する形状を有し、該中心穴の形状が、
前記揺動鍛造工程前のワークの形状を単純化させた供試ワークに対し、前記第1型及び前記第2型の異なる接近動作パターン下で、前記供試ワークに揺動鍛造を実施し、各接近動作パターン毎の、前記供試ワークの中心穴の揺動鍛造後の形状をデータベース化し、該データベースに基づき、前記揺動鍛造工程前のワークに生じる材料流動を予測し、該材料流動の予測に基づき決定されたものであるワーク(請求項5)。
(5) A workpiece before the rocking forging step used in the rocking forging method described in (1) to (4) above,
A predetermined range in the axial direction of the central hole in the state set in the second mold has a shape that increases in diameter toward the first mold side, and the shape of the central hole is
With respect to the test workpiece obtained by simplifying the shape of the workpiece before the swing forging process, swing forging is performed on the test workpiece under different approach movement patterns of the first die and the second die. The shape of the center hole of the test workpiece after rocking forging for each approach movement pattern is made into a database, and based on the database, the material flow generated in the workpiece before the rocking forging process is predicted, and the material flow A work that is determined based on the prediction (claim 5).

本項に記載の揺動鍛造工程前のワークは、第2型にセットした状態でその中心穴の軸方向の所定範囲が、第1型側へと向かうに従い拡径する形状を有しているものである。この中心穴の形状は、次の手順によって決定されたものである。すなわち、揺動鍛造工程前のワークの形状を単純化させた供試ワークに対して、第1型及び第2型の接近動作パターンに応じた素材流動を発生させて、接近動作パターン毎の、供試ワークの中心穴の揺動鍛造後の形状をデータベース化する。このデータベースを基として、実際の揺動鍛造に供される、揺動鍛造工程前のワークの、第1型及び第2型の接近動作パターンに応じた素材流動を予測して、揺動鍛造工程前のワークの中心穴の、軸方向の所定範囲の形状を決定するものである。
かかる揺動鍛造工程前のワークを用いて揺動鍛造を行うことで、上記(1)から(4)項の作用を奏するものとなる。
The workpiece before the rocking forging process described in this section has a shape in which the predetermined range in the axial direction of the center hole is expanded in diameter as it is set in the second die toward the first die. Is. The shape of the center hole is determined by the following procedure. That is, with respect to the test workpiece in which the shape of the workpiece before the swing forging process is simplified, the material flow according to the approach operation pattern of the first die and the second die is generated, Create a database of shapes after rocking forging of the center hole of the workpiece. Based on this database, the rock forging process predicts the material flow according to the approaching pattern of the first die and the second die of the work before the rock forging process used in the actual rock forging. The shape of a predetermined range in the axial direction of the center hole of the previous workpiece is determined.
By performing the swing forging using the workpiece before the swing forging step, the effects of the above items (1) to (4) are exhibited.

(6)上記(1)から(4)項記載の揺動鍛造方法に用いられる揺動鍛造工程前のワークの形状決定方法であって、
前記揺動鍛造工程前のワークの形状を単純化させた供試ワークを、前記第2型にセットし、前記第1型及び前記第2型の異なる接近動作パターン下で、前記供試ワークに揺動鍛造を実施し、各接近動作パターン毎の、前記供試ワークの中心穴の揺動鍛造後の形状をデータベース化し、該データベースに基づき、前記揺動鍛造工程前のワークに生じる材料流動を予測し、該材料流動の予測に基づき、前記揺動鍛造工程前のワークの、中心穴の軸方向の所定範囲の、前記第1型側へと向かうに従い拡径する形状を決定するワークの形状決定方法(請求項6)。
(6) A method for determining the shape of a workpiece before the rocking forging process used in the rocking forging method described in (1) to (4) above,
A test workpiece obtained by simplifying the shape of the workpiece before the rocking forging process is set in the second die, and the test workpiece is subjected to different approaching operation patterns of the first die and the second die. Perform swing forging, create a database of the shape of the center hole of the test workpiece after swing forging for each approach movement pattern, and based on the database, the material flow generated in the workpiece before the swing forging process The shape of the workpiece that predicts and determines the shape of the workpiece before the rocking forging step that expands in diameter toward the first die in a predetermined range in the axial direction of the center hole based on the prediction of the material flow Determination method (Claim 6).

本項に記載の揺動鍛造工程前のワークの形状決定方法は、揺動鍛造工程前のワークの形状を単純化させた供試ワークに対して、第1型及び第2型の接近動作パターンに応じた素材流動を発生させて、接近動作パターン毎の、供試ワークの中心穴の揺動鍛造後の形状をデータベース化する。この、供試ワークに係るデータベースを基として、実際の揺動鍛造に供される、揺動鍛造工程前のワークの、第1型及び第2型の接近動作パターンに応じた素材流動を予測して、揺動鍛造工程前のワークの中心穴の、軸方向の所定範囲の形状を決定するものである。
かかる揺動鍛造工程前のワークを用いて揺動鍛造を行うことで、上記(1)から(4)項の作用を奏するものとなる。
The method for determining the shape of the workpiece before the swing forging step described in this section is based on the approaching pattern of the first die and the second die with respect to the test workpiece obtained by simplifying the shape of the workpiece before the swing forging step. The material flow according to the condition is generated, and the shape after the rocking forging of the center hole of the test workpiece for each approach movement pattern is made into a database. Based on this database related to the test workpiece, the material flow according to the approaching pattern of the first die and the second die of the workpiece before the swing forging process used for actual swing forging is predicted. Thus, the shape of a predetermined range in the axial direction of the center hole of the workpiece before the swing forging process is determined.
By performing the swing forging using the workpiece before the swing forging step, the effects of the above items (1) to (4) are exhibited.

本発明はこのように構成したので、揺動鍛造方法により、中心部に筒状部を有する円盤状の部品を成形する際の、円筒部内周面の内径精度を高めることが可能となる。   Since this invention was comprised in this way, it becomes possible to raise the internal-diameter precision of a cylindrical part inner peripheral surface at the time of shape | molding the disk-shaped component which has a cylindrical part in a center part by the rocking forging method.

本発明の実施の形態に係る揺動鍛造方法に用いられる、揺動鍛造装置の要部断面図である。It is principal part sectional drawing of the rocking forge apparatus used for the rocking forge method which concerns on embodiment of this invention. 本発明の実施の形態に係る揺動鍛造方法に用いられる、揺動鍛造工程前のワークの断面図である。It is sectional drawing of the workpiece | work before the rocking forge process used for the rocking forge method which concerns on embodiment of this invention. 揺動鍛造時に、ワークに生じる応力を示す断面模式図である。It is a cross-sectional schematic diagram which shows the stress which arises in a workpiece | work at the time of rocking forge. 本発明の実施の形態に係る揺動鍛造方法に用いられる、揺動鍛造工程前のワークの形状決定方法を示すフローチャートである。It is a flowchart which shows the shape determination method of the workpiece | work before the rocking forge process used for the rocking forging method which concerns on embodiment of this invention. 図4の方法に基づき、揺動鍛造工程前のワークの形状を決定し、揺動鍛造を行う手順を模式的に示した図である。It is the figure which showed typically the procedure which determines the shape of the workpiece | work before a rocking forge process based on the method of FIG. 4, and performs rocking forging.

以下、本発明を実施するための最良の形態を添付図に基づいて説明する。なお、以下の説明において、従来技術と同一部分、若しくは相当する部分については、同一の符号を付して、詳しい説明を省略する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. In the following description, parts that are the same as or correspond to those in the prior art are assigned the same reference numerals, and detailed descriptions thereof are omitted.

図1には、本発明の実施の形態に係る揺動鍛造方法に用いられる揺動鍛造装置10の要部を、断面で示している。揺動鍛造装置10は、上型12を保持する揺動部16と、第2型としての下型14を保持する固定部18を含むものである。揺動部16は、本実施の形態では、第1型としての上型12を保持して、上型12を所定の中心点を基準に揺動回転させるものである。又、本実施の形態では、揺動部16は昇降部を兼ねるものであり、上型12を下型14に対し昇降させて、ワークWを上型12に当接させるものである。一方、下型14は、筒状部Wa(図8参照)を有するワークWをセットするものである。 In FIG. 1, the principal part of the rocking forging apparatus 10 used for the rocking forging method which concerns on embodiment of this invention is shown with the cross section. The swing forging device 10 includes a swing portion 16 that holds an upper die 12 and a fixed portion 18 that holds a lower die 14 as a second die. In this embodiment, the swinging part 16 holds the upper mold 12 as the first mold, and swings and rotates the upper mold 12 with reference to a predetermined center point. In the present embodiment, the swinging portion 16 also serves as an elevating portion, and moves the upper mold 12 up and down relative to the lower mold 14 so that the workpiece W comes into contact with the upper mold 12. On the other hand, the lower mold | type 14 sets the workpiece | work W which has the cylindrical part Wa (refer FIG. 8).

なお、図1には、揺動部16と固定部18の、2つの状態(成形開始前及び成形中)を示している。又、上述の如く揺動部16の方が、固定部18に対して昇降するように動作することで、下型14を上昇させて、揺動回転運動する上型12に対しワークWを当接させる構成を採用しても良く、これとは逆に、固定部18に昇降機能を持たせて、揺動部16に対して固定部18が昇降するように構成しても良い。又、上型12と下型14との接近動作パターン(型送り速度の設定及び増減)は、揺動鍛造工程で何を重視するか(狙い)に応じ、揺動鍛造装置10の主制御装置によって、適宜設定することが可能となっている。 FIG. 1 shows two states of the swinging portion 16 and the fixed portion 18 (before forming and during forming). Further, as described above, the swinging portion 16 moves so as to move up and down with respect to the fixed portion 18, so that the lower die 14 is raised and the workpiece W is abutted against the upper die 12 that swings and rotates. Alternatively, a configuration in which the fixed portion 18 moves up and down may be provided with respect to the swinging portion 16 by providing the fixed portion 18 with a lifting function. The approach control pattern of the upper die 12 and the lower die 14 (setting and increasing / decreasing the die feed speed) depends on what is important in the swing forging process (target), and the main control device of the swing forging device 10 Thus, it can be set as appropriate.

図2には本発明の実施の形態に係る揺動鍛造方法に用いられる、揺動鍛造工程前のワークWが示されている。このワークWは、中心部に筒状部Waを有する円盤状の素材であり、例えば単純な円柱状素材から、熱間鍛造、冷間鍛造等、適切な方法により成形されるものである。そして、ワークWの筒状部Waの中心穴Wbが、ワークWを下型14(図1)にセットした状態で、中心穴Wbの軸方向の所定範囲VAが、上型12側(図1の上方側)へと向かうに従い、拡径する形状を有しているものである。
図示の例では、中心穴Wbの直径は、筒状部Waの下方の開口径が最小直径D0となっており、中間部から図2の上方側へと向かうに従い、直径D1<D2<D3<D4と段階的に拡径し、コーン部Wcの端面の開口径が、最大直径D5となっている。なお、図示の例では、中心穴Wbは、直径D1から直径D5に至るまで緩やかに徐変して拡径する態様となっているが、あくまでも一例である。そして、拡径する範囲VA及び拡径の度合いは、後述する形状決定手法に従って適宜決定されるものである。又、必要に応じて、段差を介して拡径する態様を採用する場合もある。
FIG. 2 shows a workpiece W before the swing forging process, which is used in the swing forging method according to the embodiment of the present invention. The workpiece W is a disc-shaped material having a cylindrical portion Wa at the center, and is formed from a simple columnar material by an appropriate method such as hot forging or cold forging. Then, in a state where the center hole Wb of the cylindrical portion Wa of the workpiece W is set in the lower mold 14 (FIG. 1), the predetermined range VA in the axial direction of the center hole Wb is the upper mold 12 side (FIG. 1). It has a shape that increases in diameter as it goes to the upper side.
In the example shown in the drawing, the diameter of the center hole Wb is such that the opening diameter below the cylindrical portion Wa is the minimum diameter D0, and the diameter D1 <D2 <D3 <from the middle portion toward the upper side in FIG. The diameter is increased stepwise with D4, and the opening diameter of the end surface of the cone portion Wc is the maximum diameter D5. In the example shown in the figure, the center hole Wb has a mode in which the diameter gradually increases and gradually expands from the diameter D1 to the diameter D5, but is merely an example. The range VA for expanding the diameter and the degree of diameter expansion are appropriately determined according to the shape determining method described later. Moreover, the aspect which expands through a level | step difference may be employ | adopted as needed.

ところで、図3には、揺動鍛造装置10を用いたワークWの揺動鍛造時に、ワークW内に生じる応力が示されている。図中、符号MLで示される範囲の応力は、塑性変形を引き起こすだけの大きな応力となっている。一方、符号MSで示される範囲の応力は小さく、塑性変形を引き起こすものではない。すなわち、塑性変形を引き起こすだけの応力が生じる範囲は、ワークWの上型12と対向する端部である、コーン部Wcの端面の側から深部へと広がるが、深部ほど応力は減少していく傾向にある。又、ワークWに生じる応力は、上型12及下型14の接近動作の速度、すなわち、型送り速度が速いほど大きく、かつ、その範囲は深部まで及ぶことが、本発明者らによって確認されている。   FIG. 3 shows the stress generated in the workpiece W during the swing forging of the workpiece W using the swing forging device 10. In the figure, the stress in the range indicated by the symbol ML is a large stress that causes plastic deformation. On the other hand, the stress in the range indicated by the symbol MS is small and does not cause plastic deformation. That is, the range in which stress sufficient to cause plastic deformation occurs extends from the end surface side of the cone Wc, which is the end facing the upper mold 12 of the workpiece W, to the deep portion, but the stress decreases as the depth increases. There is a tendency. In addition, the present inventors have confirmed that the stress generated in the workpiece W increases as the speed of the approaching operation of the upper mold 12 and the lower mold 14, that is, the mold feed speed increases, and the range extends to the deep part. ing.

以上の点に鑑み、図2に示されるワークWの中心穴Wbの形状は、図3に示されるような、ワークWの素材流動を引き起こす応力の大きさを考慮して決定されるものであり、具体的には、図4、図5に示される手順によるものである。以下、ワークWの形状決定方法を、順を追って説明する。
S100:まず、実際の揺動鍛造に供される揺動鍛造工程前のワークWの形状を、単純化させた、供試ワークW(図5(a)参照)を用意する。供試ワークWは、本実施の携帯では、実際に用いられる揺動鍛造工程前のワークWとの比較において、中心穴Wbの直径を一定径にすることにより、形状を単純化したものである。又、必要に応じて、その他の部分の形状も単純化する。
S110:供試ワークWを下型14にセットし、上型12及び下型14の異なる接近動作パターン下、例えば、型送り速度を数パターン変化させて、供試ワークWに揺動鍛造を実施するものである。そして、成形後の中心穴Wb(図5(b)参照)の、内径形状を確認する。かかる内径形状の確認作業は、適宜、手作業又は自動計測器を用いて行われる。
In view of the above points, the shape of the center hole Wb of the workpiece W shown in FIG. 2 is determined in consideration of the magnitude of the stress that causes the material flow of the workpiece W as shown in FIG. Specifically, this is based on the procedure shown in FIGS. Hereinafter, a method for determining the shape of the workpiece W will be described in order.
S100: First, a test workpiece W 0 (see FIG. 5A) is prepared in which the shape of the workpiece W before the swing forging step used in actual swing forging is simplified. The test workpiece W 0 is simplified in shape by making the diameter of the center hole W 0 b constant in comparison with the workpiece W before the rocking forging process that is actually used in this mobile phone. Is. In addition, the shape of other parts is simplified as necessary.
S110: test workpiece W 0 is set to the lower mold 14, different approach movement pattern under the upper mold 12 and the lower mold 14, for example, by a mold feeding speed is several pattern change, swing forging test workpiece W 0 Is to implement. The center hole W 0 b after molding (see FIG. 5 (b)), to confirm the inner diameter shape. The confirmation operation of the inner diameter shape is appropriately performed manually or using an automatic measuring instrument.

S120:上記ステップS110にて接近動作パターン毎の揺動鍛造後の形状を確認した結果から、供試ワークWの中心穴Wbに、ある接近動作パターンのとき、成形後の中心穴Wbにどの程度素材流動F(図5(b)参照)が生じるかを、データベース化する。
S130:上記ステップS120で作成されたデータベースに基づき、実際の加工に供される、揺動鍛造工程前のワークWに生じる材料流動を予測する。そして、該材料流動の予測に基づき、実際に揺動鍛造に供される、揺動鍛造工程前のワークWの中心穴Wb(図5(c)参照)の内径形状を設定する。このようにして形状が決定されたワークWを、揺動鍛造装置10の下型14にセットして、揺動鍛造工程を実施する(図5(d)参照)。
S120: From the result of confirming the shape after rocking forging for each approach movement pattern in the above step S110, when the center hole W 0 b of the workpiece W 0 has a certain approach action pattern, the center hole W after forming To what extent the material flow F (see FIG. 5B) occurs in 0b is made into a database.
S130: Based on the database created in step S120, the material flow generated in the workpiece W before the swing forging process, which is used for actual machining, is predicted. Then, based on the prediction of the material flow, the inner diameter shape of the center hole Wb (see FIG. 5C) of the workpiece W that is actually subjected to the swing forging process and before the swing forging step is set. The workpiece W whose shape has been determined in this manner is set on the lower die 14 of the swing forging device 10 and the swing forging step is performed (see FIG. 5D).

さて、上記構成をなす、本発明の実施の形態によれば、次のような作用効果を得ることが可能となる。
まず、本発明の実施の形態によれば、ワークWを揺動鍛造装置10の下型14にセットした状態で、上型12を下降させて、揺動回転運動する上型12に対しワークWを当接させることで、上型12の揺動回転運動に伴い、下型14にセットされたワークWの成形が円周方向に逐次進行していくものである。
Now, according to the embodiment of the present invention configured as described above, the following operational effects can be obtained.
First, according to the embodiment of the present invention, in a state where the workpiece W is set on the lower die 14 of the swing forging device 10, the upper die 12 is lowered to move the workpiece W relative to the upper die 12 that swings and rotates. As the upper mold 12 swings and rotates, the molding of the workpiece W set on the lower mold 14 proceeds sequentially in the circumferential direction.

又、ワークWの素材流動を引き起こす応力は、下型14にセットされたワークWが上型12に当接し、ワークWが加圧されることによって発生し、この際、ワークW内に発生する応力は、上型と対向する端部に近づくほど大きくなる(図3の符号ML、MS参照)。そこで、図2に示されるように、揺動鍛造工程前のワークWの、中心穴Wbの軸方向の所定範囲VAの形状を、下型14にワークWをセットした状態で上型12と対向する端部Wc側へと向かうに従い、拡径するように形成するものである。そして、上型12と対向する端部Wc側へと向かうに従い、中心穴Wb周辺部の素材量をより減少させて、円筒部Waの内周面への素材流動が過大とならないように、ワークWの形状を調整しておくものである。すなわち、円筒部Waの内周面への素材流動を予め見込んでおき、その流動量が過大とならないように、中心穴Wb周辺部の素材量を予め減少させるべく、揺動鍛造工程前のワークWの、中心穴Wbの軸方向の所定範囲VAの形状を調整するものである。 The stress causing the material flow of the workpiece W is generated when the workpiece W set on the lower die 14 comes into contact with the upper die 12 and the workpiece W is pressurized. At this time, the stress is generated in the workpiece W. The stress increases as it approaches the end facing the upper mold (see symbols ML and MS in FIG. 3). Therefore, as shown in FIG. 2, the shape of the workpiece W before the swing forging process in the predetermined range VA in the axial direction of the center hole Wb is opposed to the upper die 12 with the workpiece W set on the lower die 14. It is formed so as to increase in diameter as it goes toward the end Wc. And as it goes to the end Wc side facing the upper mold 12, the amount of material around the central hole Wb is further reduced so that the material flow to the inner peripheral surface of the cylindrical portion Wa is not excessive. The shape of W is adjusted beforehand. That is, the work before the swing forging process is performed in advance so as to reduce the amount of material around the center hole Wb in advance so that the material flow to the inner peripheral surface of the cylindrical portion Wa is anticipated and the amount of flow is not excessive. The shape of a predetermined range VA of W in the axial direction of the center hole Wb is adjusted.

そして、上記作用効果を得るために、ワークWの中心穴Wbの直径をD0からD5へと拡径するように形成する範囲VAを、第1型及び第2型によってワークへと荷重を付与して、ワークW内に塑性変形を引き起こすだけの応力ML(図3)が生じる範囲とするものである。ここで、ワークW内に塑性変形を引き起こすだけの応力MLが生じる範囲は、ワークWの上型12と対向する端部Wc側から深部へと広がるが、深部ほど応力が減少していく傾向にある(図3の符号MS)。このため、素材の流動量もワークWの深部ほど減少していく傾向にある。又、揺動鍛造工程の進行に伴い、ワークWの塑性変形が進行するに従い、素材の流動量は減少する傾向にある。そこで、揺動鍛造工程前のワークWの、塑性変形を引き起こすだけの応力MLが生じる範囲(VA)の形状を、上型12と対向する端部側Wcへと向かうに従い、拡径するように形成するものである。そして、上型12と対向する端部Wc側へと向かうに従い、中心穴Wbの周辺部の素材量をより減少させて、揺動鍛造工程の進行の如何に関わらず、円筒部Wa内周面への素材流動が過大とならないように、ワークWの予め調整しておくものである。 In order to obtain the above-described effects, a load VA is applied to the workpiece by the first die and the second die in a range VA formed so that the diameter of the center hole Wb of the workpiece W is increased from D0 to D5. Thus, the stress ML (FIG. 3) that causes plastic deformation in the workpiece W is set in a range. Here, the range in which the stress ML sufficient to cause plastic deformation in the workpiece W is expanded from the end Wc side facing the upper mold 12 to the deep portion, but the stress tends to decrease as the depth increases. Yes (symbol MS in FIG. 3). For this reason, the flow amount of the material also tends to decrease as the depth of the workpiece W increases. Further, with the progress of the swing forging process, the amount of flow of the material tends to decrease as the plastic deformation of the workpiece W progresses. Therefore, the shape of the range (VA) in which the stress ML sufficient to cause plastic deformation of the work W before the rocking forging process is increased toward the end side Wc facing the upper die 12 so as to increase in diameter. To form. And as it goes to the end Wc facing the upper mold 12, the amount of material in the peripheral part of the center hole Wb is further reduced, and the inner peripheral surface of the cylindrical part Wa regardless of the progress of the swing forging process. The workpiece W is adjusted in advance so that the material flow to the substrate does not become excessive.

又、本発明の実施の形態に係る揺動鍛造成形においては、当該加工工程で寸法精度や加工効率等、何を重視するか(狙い)に応じて、上型12及び下型14の接近動作パターンが異なってくる。そこで、上型12及び下型14の接近動作パターンに応じ、ワークWの中心穴Wbの軸方向の所定範囲の形状を決定することで、上型12及び下型14の接近動作パターンの如何に関わらす、円筒部Wbの内周面への素材流動F(図5(b)参照)の量が過大とならないようにするものである。ところで、ワークWに生じる応力は、上型12及び下型14の接近動作の速度(型送り速度)が速いほど大きく、かつ、その範囲は深部まで及ぶものである。このため、ワークWの中心穴Wbの軸方向の所定範囲における、各部の形状を、型送り速度と揺動鍛造成形工程の進行とを考慮して、決定するものである。 Further, in the swing forging forming according to the embodiment of the present invention, the upper die 12 and the lower die 14 approach each other depending on what is important (target) such as dimensional accuracy and machining efficiency in the machining process. The pattern is different. Therefore, by determining the shape of the predetermined range in the axial direction of the center hole Wb of the workpiece W according to the approach movement pattern of the upper mold 12 and the lower mold 14, the approach movement pattern of the upper mold 12 and the lower mold 14 is determined. In this regard, the amount of the material flow F (see FIG. 5B) to the inner peripheral surface of the cylindrical portion Wb is prevented from becoming excessive. By the way, the stress generated in the work W increases as the approaching speed (die feeding speed) of the upper die 12 and the lower die 14 increases, and the range extends to the deep part. For this reason, the shape of each part in the predetermined range in the axial direction of the center hole Wb of the workpiece W is determined in consideration of the die feed speed and the progress of the swing forging process.

例えば、上型12及び下型14の接近動作パターンを、上型12及び下型14によってワークWへと付与する荷重が一定となるように調整することで、型送り速度は、揺動鍛造成形初期で速く成形終期は遅くなる。このため、塑性変形を引き起こす応力の状態が、揺動鍛造成形の進行に伴い変化し、ワークWの円筒部内周面への素材流動の態様も複雑になる。このような場合であっても、複雑な素材流動の態様を予め見込んでおき、その流動量が過大とならないように、中心穴Wb周辺部の素材量を予め減少させるべく、揺動鍛造工程前のワークWの、中心穴Wbの軸方向の所定範囲VAの形状を調整するものである(図4:S100〜S140)。 For example, by adjusting the approach movement pattern of the upper mold 12 and the lower mold 14 so that the load applied to the workpiece W by the upper mold 12 and the lower mold 14 is constant, the mold feeding speed can be adjusted by swing forging. The initial stage is fast and the final stage is slow. For this reason, the state of stress that causes plastic deformation changes with the progress of swing forging, and the aspect of the material flow to the inner peripheral surface of the cylindrical portion of the workpiece W becomes complicated. Even in such a case, in order to reduce the amount of material around the center hole Wb in advance so that a complicated material flow mode is anticipated in advance and the flow amount does not become excessive, the swing forging process is performed. The shape of a predetermined range VA in the axial direction of the center hole Wb of the workpiece W is adjusted (FIG. 4: S100 to S140).

なお、上型12及び下型14の接近動作パターンの別例としては、揺動鍛造開始当初の型送り速度を高速一定として、上型12の下死点近傍まで維持し、その後、型送り速度を極低速とすることで、成形面の精度向上を図ることを狙いとすることも可能である。このような場合であっても、同様に、複雑な素材流動の態様を予め見込んでおき、その流動量が過大とならないように、中心穴Wb周辺部の素材量を予め減少させるべく、揺動鍛造工程前のワークWの、中心穴Wbの軸方向の所定範囲VAの形状を調整することで、対応可能となる。 As another example of the approaching operation pattern of the upper die 12 and the lower die 14, the die feed speed at the beginning of the swing forging is kept constant at a high speed and is maintained near the bottom dead center of the upper die 12, and thereafter the die feed speed. It is also possible to aim to improve the accuracy of the molding surface by making the extremely low speed. Even in such a case, similarly, a complicated material flow mode is anticipated in advance, so that the amount of flow around the center hole Wb is reduced in advance so that the flow amount is not excessive. This can be handled by adjusting the shape of the predetermined range VA in the axial direction of the center hole Wb of the workpiece W before the forging process.

10:揺動鍛造装置、12:上型、14:下型、D0:直径(最小直径)、 D1、D2、D3、D4:直径、 D5:直径(最大直径)、F:素材流動、W:ワーク、Wa:筒状部、Wb:中心穴、Wc:コーン部(上型と対向する端部)、W:供試ワーク、VA:軸方向の所定範囲 10: Swing forging device, 12: Upper die, 14: Lower die, D0: Diameter (minimum diameter), D1, D2, D3, D4: Diameter, D5: Diameter (maximum diameter), F: Material flow, W: work, Wa: cylindrical portion, Wb: center hole, Wc: cone portion (the upper die and the opposing end), W 0: test work, VA: axial predetermined range

Claims (6)

円錐状に角度を持った第1型を所定の中心点を基準に揺動回転させ、該第1型と軸方向で対向する第2型に、中心穴を有する円盤状のワークをセットし、前記第1型と前記第2型とを離間接近させ前記ワークを前記第1型に当接させて、前記ワークの成形を行う揺動鍛造方法であって、
揺動鍛造工程前のワークの、中心穴の軸方向の所定範囲の形状を、前記第2型に前記ワークをセットした状態で前記第1型と対向する端部側へと向かうに従い、拡径するように形成することを特徴とする揺動鍛造方法。
The first die having an angle in a conical shape is swung and rotated with reference to a predetermined center point, and a disc-shaped workpiece having a center hole is set on the second die that is opposed to the first die in the axial direction, A swing forging method in which the first mold and the second mold are separated from each other and the work is brought into contact with the first mold to form the work.
The diameter of the workpiece before the rocking forging process in a predetermined range in the axial direction of the center hole increases toward the end facing the first die with the workpiece set in the second die. A rocking forging method characterized by forming so as to.
前記ワークの中心穴を拡径するように形成する軸方向の所定範囲を、前記第1型及び前記第2型から前記ワークへと付与される荷重により、前記ワーク内に塑性変形を引き起こすだけの応力が生じる範囲とすることを特徴とする請求項1記載の揺動鍛造方法。 A predetermined range in the axial direction that is formed so as to expand the center hole of the work is only caused to cause plastic deformation in the work by a load applied from the first mold and the second mold to the work. 2. The rocking forging method according to claim 1, wherein a stress is generated. 前記第1型及び前記第2型の接近動作パターンに応じ、前記ワークの中心穴の、軸方向の所定範囲の形状を決定することを特徴とする請求項1又は2記載の揺動鍛造方法。 3. The swing forging method according to claim 1, wherein the shape of the center hole of the workpiece in a predetermined range in the axial direction is determined according to the approach movement patterns of the first die and the second die. 前記第1型及び前記第2型の接近動作パターンを、前記第1型及び前記第2型によって前記ワークへと付与する荷重が一定となるように調整することを特徴とする請求項3記載の揺動鍛造方法。 The approach movement pattern of the first mold and the second mold is adjusted so that a load applied to the workpiece by the first mold and the second mold is constant. Swing forging method. 請求項1から4記載の揺動鍛造方法に用いられる揺動鍛造工程前のワークであって、
前記第2型にセットした状態でその中心穴の軸方向の所定範囲が、前記第1型側へと向かうに従い拡径する形状を有し、該中心穴の形状が、
前記揺動鍛造工程前のワークの形状を単純化させた供試ワークに対し、前記第1型及び前記第2型の異なる接近動作パターン下で、前記供試ワークに揺動鍛造を実施し、
各接近動作パターン毎の、前記供試ワークの中心穴の揺動鍛造後の形状をデータベース化し、
該データベースに基づき、前記揺動鍛造工程前のワークに生じる材料流動を予測し、
該材料流動の予測に基づき決定されたものであることを特徴とするワーク。
A workpiece before the swing forging step used in the swing forging method according to claim 1,
A predetermined range in the axial direction of the central hole in the state set in the second mold has a shape that increases in diameter toward the first mold side, and the shape of the central hole is
With respect to the test workpiece obtained by simplifying the shape of the workpiece before the swing forging process, swing forging is performed on the test workpiece under different approach movement patterns of the first die and the second die.
For each approach movement pattern, create a database of shapes after rocking forging of the center hole of the workpiece under test,
Based on the database, the material flow occurring in the workpiece before the rocking forging process is predicted,
A workpiece characterized by being determined based on the prediction of the material flow.
請求項1から4記載の揺動鍛造方法に用いられる揺動鍛造工程前のワークの形状決定方法であって、
前記揺動鍛造工程前のワークの形状を単純化させた供試ワークを、前記第2型にセットし、
前記第1型及び前記第2型の異なる接近動作パターン下で、前記供試ワークに揺動鍛造を実施し、各接近動作パターン毎の、前記供試ワークの中心穴の揺動鍛造後の形状をデータベース化し、
該データベースに基づき、前記揺動鍛造工程前のワークに生じる材料流動を予測し、
該材料流動の予測に基づき、前記揺動鍛造工程前のワークの、中心穴の軸方向の所定範囲の、前記第1型側へと向かうに従い拡径する形状を決定することを特徴とするワークの形状決定方法。
A method for determining the shape of a workpiece before the swing forging process used in the swing forging method according to claim 1,
A test work that has simplified the shape of the work before the rocking forging process is set in the second die,
The shape after rocking forging of the center hole of the test work for each approach movement pattern is performed for rocking forging under the different work movement patterns of the first mold and the second mold. Database
Based on the database, the material flow occurring in the workpiece before the rocking forging process is predicted,
Based on the prediction of the material flow, the workpiece before the rocking forging step is determined in a predetermined range in the axial direction of the center hole, the shape of which expands toward the first die side. Shape determination method.
JP2012029451A 2012-02-14 2012-02-14 Rocking die forging method, workpiece used therefor and method for determination of workpiece shape Pending JP2013166157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012029451A JP2013166157A (en) 2012-02-14 2012-02-14 Rocking die forging method, workpiece used therefor and method for determination of workpiece shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012029451A JP2013166157A (en) 2012-02-14 2012-02-14 Rocking die forging method, workpiece used therefor and method for determination of workpiece shape

Publications (1)

Publication Number Publication Date
JP2013166157A true JP2013166157A (en) 2013-08-29

Family

ID=49177031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012029451A Pending JP2013166157A (en) 2012-02-14 2012-02-14 Rocking die forging method, workpiece used therefor and method for determination of workpiece shape

Country Status (1)

Country Link
JP (1) JP2013166157A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151335A (en) * 1988-12-02 1990-06-11 Brother Ind Ltd Plastic working method
JPH11182641A (en) * 1997-12-22 1999-07-06 Fuji Univance Corp Slide pulley of belt type continuously variable transmission, and its manufacture
JP2001324017A (en) * 2000-05-15 2001-11-22 Trw Automotive Japan Kk Manufacturing method for piston pin
JP2005211902A (en) * 2004-01-27 2005-08-11 Toyota Motor Corp Method and device for manufacturing pulley for nonstep variable transmission
JP2006123890A (en) * 2004-10-01 2006-05-18 Jtekt Corp Rolling bearing device and its manufacturing method
JP2006218496A (en) * 2005-02-09 2006-08-24 Toyota Motor Corp Method for manufacturing pulley for continuously variable transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151335A (en) * 1988-12-02 1990-06-11 Brother Ind Ltd Plastic working method
JPH11182641A (en) * 1997-12-22 1999-07-06 Fuji Univance Corp Slide pulley of belt type continuously variable transmission, and its manufacture
JP2001324017A (en) * 2000-05-15 2001-11-22 Trw Automotive Japan Kk Manufacturing method for piston pin
JP2005211902A (en) * 2004-01-27 2005-08-11 Toyota Motor Corp Method and device for manufacturing pulley for nonstep variable transmission
JP2006123890A (en) * 2004-10-01 2006-05-18 Jtekt Corp Rolling bearing device and its manufacturing method
JP2006218496A (en) * 2005-02-09 2006-08-24 Toyota Motor Corp Method for manufacturing pulley for continuously variable transmission

Similar Documents

Publication Publication Date Title
JP4476913B2 (en) Method and apparatus for forming cup-shaped member
JP2015510842A (en) Apparatus, equipment, and method for forming metal blank and workpiece manufactured thereby
JP5855529B2 (en) Hot rolling method for ring material
JP5895111B1 (en) Method for producing ring molded body
KR101245228B1 (en) manufacturing method of big size ball using a ball-valve
Wang et al. Effect of forming parameters on sheet metal stability during a rotary forming process for rim thickening
JP5822074B2 (en) Swing forging device
JP2013091067A (en) Orbital forging device and orbital forging method
JP2013166157A (en) Rocking die forging method, workpiece used therefor and method for determination of workpiece shape
JP2012125777A (en) Method of manufacturing cylindrical member with bottom, thin-wall extended cylindrical member with bottom, cylindrical member with disk-like bottom, and thin-wall expanded cylindrical member with disk-like bottom, and cylindrical member with bottom, thin-wall cylindrical member with bottom, extended cylindrical member with disk-like bottom, and thin-wall extended cylindrical member with disk-like bottom
JP4016961B2 (en) Forging die equipment and forging equipment using it
CN106311868A (en) Method for reducing diamond indenter nanometer indentation unilateral hole forming roundness error
JPH01180728A (en) Forming method for bossed member
JP2016073995A (en) Thickening processing method of hole end part
JP2012045611A (en) Method for processing formation of metallic component
JP2007216334A (en) Hole processing method
JP2014133254A (en) Forging device and control method of the same
KR102057332B1 (en) Forging device for metal ring
JP5794424B2 (en) Swing forging device and swing forging method
JP2010188414A5 (en)
JP5029909B2 (en) Swing forging method and swing forging device
JP2010089103A (en) Plastic working method of spline
US6598443B2 (en) Blind bore hub and method of forming
JP2007000989A (en) Polishing method for curved surface
JP2016000417A (en) Molded article manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150507