JP2013165030A - Steel material for nonaqueous electrolyte secondary battery case - Google Patents
Steel material for nonaqueous electrolyte secondary battery case Download PDFInfo
- Publication number
- JP2013165030A JP2013165030A JP2012028403A JP2012028403A JP2013165030A JP 2013165030 A JP2013165030 A JP 2013165030A JP 2012028403 A JP2012028403 A JP 2012028403A JP 2012028403 A JP2012028403 A JP 2012028403A JP 2013165030 A JP2013165030 A JP 2013165030A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- steel material
- plating
- plating layer
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electroplating Methods And Accessories (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
Description
本発明は、リチウムイオンを吸蔵、放出することが可能な負極とリチウムイオンを吸蔵、放出することが可能な正極を、セパレータを介して対向させた電極群と、有機溶媒に溶質としてリチウム塩を溶解した非水電解質とを備えた非水電解質二次電池のケースに関わり、特に非水電解質中での耐食性に優れ、安価なケース用鋼材に関するものである。 The present invention relates to an electrode group in which a negative electrode capable of inserting and extracting lithium ions and a positive electrode capable of inserting and extracting lithium ions are opposed to each other via a separator, and a lithium salt as a solute in an organic solvent. The present invention relates to a case of a non-aqueous electrolyte secondary battery including a dissolved non-aqueous electrolyte, and particularly relates to an inexpensive steel material for a case that has excellent corrosion resistance in the non-aqueous electrolyte.
近年、民生用モバイル機器の小型化、高機能化に伴い、その電源として小型・軽量かつ高エネルギー密度で、長期間充放電が可能な二次電池が求められてきた。この結果、従来のニッケル−カドミウム電池やニッケル−水素電池に代わって、より高いエネルギー密度、出力密度を有するリチウムイオン電池などの非水電解質二次電池が広く普及するようになった。また、最近では、リチウムイオン電池は車載用二次電池としてもすでに実用段階に入り、ハイブリッド自動車や電気自動車のモーター用電源として、普及が始まっている。 In recent years, with the miniaturization and high functionality of consumer mobile devices, there has been a demand for a secondary battery that can be charged and discharged for a long time with a small size, light weight and high energy density as its power source. As a result, in place of conventional nickel-cadmium batteries and nickel-hydrogen batteries, non-aqueous electrolyte secondary batteries such as lithium ion batteries having higher energy density and output density have come into widespread use. Recently, lithium ion batteries have already entered the practical stage as secondary batteries for vehicles, and have begun to spread as power sources for motors of hybrid vehicles and electric vehicles.
非水電解質二次電池を安価に製造するためには、低コストで高信頼性の外装ケース素材が必要である。該用途に必要な、プレス成形性や溶接性、耐食性、強度などを満足し、かつ低コストである素地として鋼材の使用が有望であるが、その適用には以下の課題がある。 In order to manufacture a non-aqueous electrolyte secondary battery at a low cost, a low-cost and highly reliable exterior case material is required. Although steel materials are promising as a base material that satisfies the press formability, weldability, corrosion resistance, strength, and the like necessary for the application and is low in cost, the application has the following problems.
非水電解質二次電池の外装ケースに鋼材を使用する場合、防食を目的にその表面にNi等のめっきを施して使用される。
このNiめっきされた鋼材を用いた金属外装ケースが負極接続されて使用される場合、通常状況での耐食性に問題は無い。
しかし、電池の過放電等により電池ケースの電位が上昇すると、めっきされたNiが溶出する場合がある。またNiめっきされた鋼材を用いた金属外装ケースを電池素子とは絶縁した中立ケースとして使用する場合にも、通常状況での耐食性に問題はない。
しかし、電解質中の酸化剤の作用などによって電池ケースの電位が上昇すると、Niが溶出する場合がある。
When a steel material is used for the outer case of the nonaqueous electrolyte secondary battery, the surface is plated with Ni or the like for the purpose of corrosion protection.
When the metal outer case using this Ni-plated steel material is used with the negative electrode connected, there is no problem with the corrosion resistance in a normal situation.
However, when the potential of the battery case rises due to overdischarge of the battery, the plated Ni may be eluted. Also, when a metal outer case using Ni-plated steel is used as a neutral case insulated from the battery element, there is no problem with the corrosion resistance in a normal situation.
However, when the potential of the battery case increases due to the action of an oxidizing agent in the electrolyte, Ni may be eluted.
このようにめっきされたNiなどの金属が電解質中に溶出すると、電池を充放電した際に負極表面に溶出した金属が析出し成長するため、この析出金属がセパレータを貫通して正負極間に微小短絡を発生させる原因となる。微小短絡が発生すると電池電圧の低下を招くため、必要な電池性能を得ることができず、電池の歩留まり低下につながる。また金属外装ケース自体の腐食が進行し電解質の液漏れ原因ともなる。 When the plated metal such as Ni elutes in the electrolyte, when the battery is charged and discharged, the eluted metal is deposited and grows on the surface of the negative electrode. It causes a minute short circuit. When a micro short circuit occurs, the battery voltage is lowered, so that necessary battery performance cannot be obtained, leading to a decrease in battery yield. Further, the corrosion of the metal outer case itself progresses, causing electrolyte leakage.
これに対し、特許文献1ではフッ素樹脂分散Niめっきによって耐食性が向上することが示されているが、フッ素樹脂分散Niめっきはコストが高いうえに耐食性向上効果も少ない。また特許文献2ではNi上にふっ化皮膜を形成することで耐食性が向上することが示されているが、ふっ素ガスを使うための大掛かりな設備が必要になり、やはりコストが高いという問題がある。特許文献3ではNi−Cuの拡散層を有するケース用素材が示されているが、電位が上昇した際、Cuが溶出しやすい問題がある。特許文献4ではNiめっき鋼材からなるケースで耐食性を持たせたリチウムイオン電池が示されているが、電解液に特殊な化合物が含まれる事が前提であり汎用的でない。 On the other hand, Patent Document 1 shows that the fluorine resin-dispersed Ni plating improves the corrosion resistance, but the fluorine resin-dispersed Ni plating is expensive and has little effect on improving the corrosion resistance. Further, Patent Document 2 shows that the corrosion resistance is improved by forming a fluoride film on Ni. However, a large-scale facility for using fluorine gas is required, and there is a problem that the cost is also high. . Patent Document 3 discloses a case material having a Ni—Cu diffusion layer, but there is a problem that Cu is likely to be eluted when the potential is increased. Patent Document 4 discloses a lithium ion battery having corrosion resistance in a case made of a Ni-plated steel material, but is not universal because it is based on the premise that a special compound is contained in the electrolytic solution.
以上のような点から、耐食性が問題となるような金属外装ケースには、コスト上の課題を抱えつつアルミやステンレスを使用せざるを得ないのが現状である。 From the above point of view, the current situation is that aluminum or stainless steel must be used for the metal outer case where the corrosion resistance becomes a problem while having a cost problem.
本発明は、負極接続または中立の金属外装ケースにおいて、電池の過放電や電解質中の酸化剤の作用などによってより電池ケースの電位上昇があった場合も金属溶出に伴う電池性能の劣化や、ケースの腐食がない、安価な鋼材の提供を目的とする。 In the case of negative electrode connection or a neutral metal outer case, the battery performance is deteriorated due to metal elution even when the battery case has a potential increase due to overdischarge of the battery or the action of an oxidizing agent in the electrolyte. The purpose is to provide an inexpensive steel material that is free from corrosion.
本発明の要旨とするところは、
(1)鋼材表面にCrめっき層を有し、その表面に厚みが10〜500nmである酸化膜を有し、前記酸化膜がAl,Pいずれかまたは両方を含有することを特徴とする非水電解質二次電池ケース用鋼材
The gist of the present invention is that
(1) Non-water characterized by having a Cr plating layer on the surface of a steel material, an oxide film having a thickness of 10 to 500 nm on the surface, and the oxide film containing either Al or P or both. Steel material for electrolyte secondary battery case
(2)前記Crめっき層の下層にNiめっき層を有することを特徴とする(1)に記載の非水電解質二次電池ケース用鋼材 (2) The steel material for a nonaqueous electrolyte secondary battery case according to (1), which has a Ni plating layer under the Cr plating layer.
(3)前記Crめっき層のCr付着量が0.01〜0.5g/m2であることを特徴とする(1)または(2)に記載の非水電解質二次電池ケース用鋼材 (3) The steel material for a nonaqueous electrolyte secondary battery case according to (1) or (2), wherein the Cr coating amount of the Cr plating layer is 0.01 to 0.5 g / m 2.
(4)前記Niめっき層のNi付着量が0.1〜15g/m2であることを特徴とする(2)または(3)に記載の非水電解質二次電池ケース用鋼材 (4) The steel material for a nonaqueous electrolyte secondary battery case as described in (2) or (3), wherein the Ni adhesion amount of the Ni plating layer is 0.1 to 15 g / m 2.
(5)前記酸化膜がアノード電解処理により形成されたことを特徴とする(1)〜(4)いずれか一つに記載の非水電解質二次電池ケース用鋼材
である。
(5) The steel material for a non-aqueous electrolyte secondary battery case according to any one of (1) to (4), wherein the oxide film is formed by an anodic electrolytic treatment.
本発明によって、電池の過放電や電解質中の酸化剤の作用などによってよる電池ケースの電位上昇があった場合も、ケースからの金属溶出に伴う電池性能の劣化や、ケースの腐食がない鋼材が得られる。 According to the present invention, even when there is an increase in the potential of the battery case due to the overdischarge of the battery or the action of an oxidant in the electrolyte, the steel material is free from deterioration of battery performance due to metal elution from the case and corrosion of the case. can get.
本発明の鋼材は、発明の趣旨のひとつである、安価な鋼材の提供について不適となるため高価なステンレス鋼は除外されるものであり、普通鋼であれば特に限定なく、金属ケースの形状から要求される加工性に見合った鋼材を使用すればよい。 The steel material of the present invention is one of the gist of the invention, and is not suitable for the provision of an inexpensive steel material. Therefore, the expensive stainless steel is excluded. It is sufficient to use a steel material that meets the required workability.
本発明の鋼材は、Crめっき層と、その表面に10〜500nmの厚みの酸化膜を有し、前記酸化膜がAl,Pいずれかまたは両方を含有することを特徴とする。 The steel material of the present invention is characterized by having a Cr plating layer and an oxide film having a thickness of 10 to 500 nm on the surface thereof, and the oxide film contains either Al or P or both.
Crめっき層は非水電解質中で比較的安定であるが、高電位では多少溶解することもある。またCrめっき層はその厚みを増すとクラックが発生しやすく、また薄い場合にはめっきピンホールが不可避であるため、クラックまたピンホールを介して下地鋼材からFeが溶出しやすい。本発明の所定の酸化膜を有することで、前述のCr、あるいはFe溶出のいずれも防ぐことができ、電位が上昇した場合であってもリチウム基準で5V程度まではCr,Feの溶出を効果的に抑制可能である。 The Cr plating layer is relatively stable in the non-aqueous electrolyte, but may be slightly dissolved at a high potential. Further, when the thickness of the Cr plating layer is increased, cracks are likely to occur. When the thickness is thin, plating pinholes are unavoidable, so that Fe is likely to be eluted from the base steel through the cracks or pinholes. By having the predetermined oxide film of the present invention, it is possible to prevent any of the aforementioned Cr or Fe elution, and even if the potential is increased, the elution of Cr and Fe is effective up to about 5 V on the basis of lithium. Can be suppressed.
なお、Crめっき表面には大気中で自然に形成される自然酸化膜が数nm存在するが、この自然酸化膜は高電位では安定でないため本発明の効果を奏しない。 A natural oxide film naturally formed in the atmosphere on the Cr plating surface has several nanometers. However, the natural oxide film is not stable at a high potential, so that the effect of the present invention is not achieved.
酸化膜の厚みが10nm未満では金属溶出抑制効果が不足することから、10nm以上とする必要がある。
金属溶出抑制という観点からは酸化膜の厚みの上限はない。しかし、酸化膜の厚みが500nmを超えると、加工時の割れ剥がれが問題となることから、実用的な厚みは500nm以下であり、これが実質的な上限値となる。
If the thickness of the oxide film is less than 10 nm, the metal elution suppressing effect is insufficient, so it is necessary to set the thickness to 10 nm or more.
From the viewpoint of suppressing metal elution, there is no upper limit on the thickness of the oxide film. However, if the thickness of the oxide film exceeds 500 nm, cracking during processing becomes a problem, so the practical thickness is 500 nm or less, which is a practical upper limit.
酸化膜の厚みは、AES(オージェ電子分光)、GDS(グロー放電分光)などの解析手法によって表層から深さ方向の酸素のプロファイルを測定し、酸素強度がバックグランドレベルまで低下する深さによって測定可能である。 The thickness of the oxide film is measured by measuring the oxygen profile in the depth direction from the surface layer using analytical methods such as AES (Auger Electron Spectroscopy) and GDS (Glow Discharge Spectroscopy), and measuring the depth at which the oxygen intensity decreases to the background level. Is possible.
本発明の酸化膜は、Al,Pから選ばれる元素を含有する。これらを含有する酸化膜は、非水電解質中で高電位まで安定であり、金属溶出を効果的に抑制可能である。
本発明の酸化膜は、鋼材からのFe、あるいはCrめっきのCr、更には後述するNiめっきを施している場合には、Niめっき層からのNiを含有してもかまわない。
The oxide film of the present invention contains an element selected from Al and P. The oxide film containing these is stable to a high potential in the non-aqueous electrolyte and can effectively suppress metal elution.
The oxide film of the present invention may contain Fe from steel, Cr of Cr plating, or Ni from the Ni plating layer when Ni plating described later is applied.
本発明の酸化膜中のAl,Pの濃度は、0.1〜10質量%、より好ましくは1〜5質量%とするのが良い。なお、Al,Pの両方を含有する場合には、Al+Pの合計で、前記濃度とするのが良い。Al、Pの濃度が低すぎると、比較的低電位で金属溶解が発生し、一方高すぎると加工時の酸化膜損傷が大きくなりやすく結果として金属溶解が発生しやすいため好ましくない。 The concentration of Al and P in the oxide film of the present invention is 0.1 to 10% by mass, more preferably 1 to 5% by mass. In addition, when both Al and P are contained, it is good to set it as the said density | concentration with the sum total of Al + P. If the concentrations of Al and P are too low, metal dissolution occurs at a relatively low potential. On the other hand, if it is too high, damage to the oxide film during processing tends to increase, and as a result, metal dissolution tends to occur.
本発明のCrめっき付着量としては0.01〜0.5g/m2が望ましい。0.01g/m2未満では金属溶出抑制効果が乏しく、0.5g/m2を超えてもコストが増すばかりでなく、加工損傷も増加しやすい。 As the Cr plating adhesion amount of the present invention, 0.01 to 0.5 g / m 2 is desirable. If it is less than 0.01 g / m 2 , the metal elution suppressing effect is poor, and if it exceeds 0.5 g / m 2 , not only the cost increases, but also processing damage tends to increase.
より厳しい加工を受けた場合、あるいはより長時間の安定性が要求される場合は、Crめっき層の下層にNiめっき層を設けることが望ましい。 When subjected to more severe processing or when stability for a longer time is required, it is desirable to provide a Ni plating layer under the Cr plating layer.
Crめっきの下層にNiめっきを設ける場合のNi付着量は、0.1〜15g/m2が望ましい。0.1g/m2未満では金属溶出抑制効果が乏しく、15g/m2を超えてもコストが増すばかりでなく、加工損傷も増加しやすい。 When the Ni plating is provided in the lower layer of the Cr plating, the Ni adhesion amount is preferably 0.1 to 15 g / m 2 . If it is less than 0.1 g / m 2 , the metal elution suppressing effect is poor, and if it exceeds 15 g / m 2 , not only the cost increases, but also the processing damage tends to increase.
前記Niめっき層は、Niめっき後熱拡散処理し、Niめっき層中にFeを拡散させることによってNiめっき層の一部またはすべてをNi−Fe拡散層としたものが加工後の耐食性が優れるためより好ましい。 The Ni plating layer is heat-diffused after Ni plating, and the Ni-Fe diffusion layer is made part or all of the Ni plating layer by diffusing Fe into the Ni plating layer, so that the corrosion resistance after processing is excellent. More preferred.
本発明におけるめっき層は表面にAl,Pいずれかまたは両方を含有する酸化膜を有しており、酸化膜の無いめっき単独めっきの構成に比べ、CrあるいはNiめっきの付着量が、少なくても優れた性能を発揮する点が特徴であり、コスト的にも有利である。反面、めっき層の付着量が少ないことにより、めっきピンホールなどの欠陥が生じやすく、下地鋼材が露出している領域も存在しうるが、Crめっき表面に形成されているAl,Pいずれかを含有する酸化膜がめっき層の表面だけでなく、めっき欠陥部の鋼材部の表面をも被覆しており、効果的に金属溶出を抑制できる。 The plating layer in the present invention has an oxide film containing either Al or P or both on the surface, and even if the amount of Cr or Ni plating is small compared to the structure of plating single plating without an oxide film. It is characterized by excellent performance and is advantageous in terms of cost. On the other hand, due to the small amount of adhesion of the plating layer, defects such as plating pinholes are likely to occur, and there may be a region where the underlying steel material is exposed, but either Al or P formed on the Cr plating surface can be used. The contained oxide film covers not only the surface of the plating layer but also the surface of the steel material part of the plating defect part, and metal elution can be effectively suppressed.
本発明のAl,Pいずれかまたは両方を含有する酸化膜はアノード酸化処理により形成されたものであることが望ましい。このようにして形成された酸化膜は非水電解質中で一層安定である。まためっき層を介して酸化膜を形成する場合、アノード酸化処理を用いると、該めっき層にピンホール欠陥が存在していても、Crのめっき層上よりもめっき欠陥部の露出した鋼材部において酸化反応が優先的に進行し、前記めっき表面部よりもめっき欠陥部の鋼材上に酸化膜が厚く形成されるため、耐食性の点でより有利である。 The oxide film containing either or both of Al and P according to the present invention is preferably formed by an anodic oxidation treatment. The oxide film thus formed is more stable in the nonaqueous electrolyte. In addition, when an oxide film is formed through a plating layer, if anodizing treatment is used, even if pinhole defects exist in the plating layer, the steel material portion where the plating defect portion is exposed than on the Cr plating layer is used. Since the oxidation reaction proceeds preferentially and an oxide film is formed thicker on the steel material in the plating defect portion than the plating surface portion, it is more advantageous in terms of corrosion resistance.
アノード酸化処理を行う際、中性〜アルカリ性の水溶液中で処理を行うことが望ましい。Al,Pの酸素酸アニオン、例えばアルミン酸イオン、りん酸イオン、などを含む水溶液中でアノード電解処理することで、Al,Pいずれかまたは両方を含有する酸化膜を形成することができる。前記処理液には、pH調整剤や導電助剤などを含有させることも好適に用いられる。 When performing the anodic oxidation treatment, it is desirable to carry out the treatment in a neutral to alkaline aqueous solution. An oxide film containing either or both of Al and P can be formed by performing anodic electrolytic treatment in an aqueous solution containing oxygen acid anions of Al and P, such as aluminate ions and phosphate ions. It is also preferable to add a pH adjuster or a conductive aid to the treatment liquid.
アノード電解処理の条件としては特に限定されないが、常温〜80℃程度の温度で、10〜100A/dm2程度の電流密度にて定電流電解することが望ましい。 The conditions for the anodic electrolysis are not particularly limited, but it is desirable to perform constant current electrolysis at a temperature of about room temperature to about 80 ° C. and a current density of about 10 to 100 A / dm 2 .
(実施例1〜20および比較例1)
表1に示す成分の冷延鋼板を原板として、表2に示す条件で種々の付着量のCrめっきを行い、表3に示す種々の水溶液中でアノード電解酸化処理を行った。アノード電解処理条件は処理温度70℃、電流密度50A/dm2とし、所定の酸化膜厚みになるように処理時間を調整した。
(Examples 1-20 and Comparative Example 1)
A cold-rolled steel sheet having the components shown in Table 1 was used as a base plate, and various amounts of Cr plating were performed under the conditions shown in Table 2, followed by anodic electrolytic oxidation treatment in various aqueous solutions shown in Table 3. The anode electrolytic treatment conditions were a treatment temperature of 70 ° C. and a current density of 50 A / dm 2, and the treatment time was adjusted so as to obtain a predetermined oxide film thickness.
(比較例2)
表1に示す成分の冷延鋼板を原板として、表2に示す条件で0.1g/m2のCrめっきを行い評価に供した。
(Comparative Example 2)
Using cold-rolled steel sheets having the components shown in Table 1 as original sheets, Cr plating of 0.1 g / m 2 was performed under the conditions shown in Table 2 for evaluation.
(比較例3)
表1に示す冷延鋼板に、Crめっきを介さずに直接アノード電解酸化処理を行った。アノード電解処理条件は処理温度70℃、電流密度50A/dm2とし、所定の酸化膜厚みになるように処理時間を調整した。
(Comparative Example 3)
The cold rolled steel sheet shown in Table 1 was directly subjected to anodic electrolytic oxidation treatment without using Cr plating. The anode electrolytic treatment conditions were a treatment temperature of 70 ° C. and a current density of 50 A / dm 2, and the treatment time was adjusted so as to obtain a predetermined oxide film thickness.
(評価方法)
・各鋼材の酸化膜のキャラクタリゼーションは、AES(オージェ電子分光)、GDS(グロー放電分光)を併用し、酸化膜が薄い時はAES、厚い時はGDSを用いた。また酸化膜に含まれるFe、Cr以外の金属成分についても同手法により存在を確認するとともにその濃度を定量して表3中に示した。
(Evaluation method)
-Characterization of the oxide film of each steel material used both AES (Auger electron spectroscopy) and GDS (glow discharge spectroscopy). AES was used when the oxide film was thin, and GDS was used when it was thick. Further, the presence of metal components other than Fe and Cr contained in the oxide film was confirmed by the same method and the concentrations thereof were quantified and shown in Table 3.
・各鋼材のエッジと裏面をテープシールして供試材とした。アルゴン雰囲気(露点−60℃)のグローブボックス内にて、前記供試材を作用極、金属リチウムを対極および参照極とする三極式のセルを組み立てた。電解液は、1MのLiPF6を体積で1:1のエチレンカーボネートとジエチルカーボネートの混合溶媒に溶解したものを用いた。前記のセルを、25℃にて、作用極電位が自然電位から5V(リチウム基準)まで5mV/secの速度でアノード分極を行い、5V(リチウム基準)で折り返して自然電位までカソード分極を行った。前記サイクルを5回行い、アノード方向に走査する際の電流密度が10μA/cm2になる電位(リチウム基準)を溶解電位として定義し、1回目と5回目の溶解電位を評価した。 -The edge and the back of each steel material were tape-sealed to make test materials. In a glove box with an argon atmosphere (dew point −60 ° C.), a three-electrode cell was assembled with the test material as a working electrode, metallic lithium as a counter electrode and a reference electrode. The electrolyte used was 1M LiPF6 dissolved in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate by volume. The cell was subjected to anodic polarization at a rate of 5 mV / sec from a natural potential to 5 V (lithium standard) at 25 ° C., and was cathodic polarized to a natural potential by folding back at 5 V (lithium standard). . The cycle was repeated five times, and the potential (lithium reference) at which the current density when scanning in the anode direction was 10 μA / cm 2 was defined as the dissolution potential, and the first and fifth dissolution potentials were evaluated.
表3に評価結果を示すが、本発明の実施例では、溶解電位を大きく向上させることができた。 Table 3 shows the evaluation results. In the examples of the present invention, the dissolution potential could be greatly improved.
(実施例21〜40)
表1に示す成分の冷延鋼板を原板として、表4に示すめっき条件で種々の付着量のNiめっき、次いで表2に示す条件で種々の付着量のCrめっきを行った。その後、表5に示す種々の水溶液中でアノード電解酸化処理を行った。アノード電解処理は、処理温度70℃、電流密度50A/dm2とし、所定の酸化膜厚みになるように処理時間を調整した。
(Examples 21 to 40)
Using cold-rolled steel sheets having the components shown in Table 1 as original sheets, various plating amounts of Ni plating were performed under the plating conditions shown in Table 4, and then various amounts of Cr plating were performed under the conditions shown in Table 2. Thereafter, anode electrolytic oxidation treatment was performed in various aqueous solutions shown in Table 5. In the anodic electrolytic treatment, the treatment temperature was 70 ° C., the current density was 50 A / dm 2, and the treatment time was adjusted so as to obtain a predetermined oxide film thickness.
(実施例41)
表1に示す成分の冷延鋼板を原板として、表2に示すめっき条件で5g/m2のNiめっきを行った。その後、5%水素-窒素の雰囲気中で700℃10secの熱拡散処理を行い、Niめっき層をNi−Fe拡散層に変化させた。その後表2に示す条件でCrめっきを行い、その後、表5に示す水溶液中でアノード電解酸化処理を行った。アノード電解処理は、処理温度70℃、電流密度50A/dm2とし、所定の酸化膜厚みになるように処理時間を調整した。
(Example 41)
Using a cold-rolled steel plate having the components shown in Table 1 as an original plate, Ni plating of 5 g / m 2 was performed under the plating conditions shown in Table 2. Thereafter, a thermal diffusion treatment at 700 ° C. for 10 seconds was performed in an atmosphere of 5% hydrogen-nitrogen to change the Ni plating layer into a Ni—Fe diffusion layer. Thereafter, Cr plating was performed under the conditions shown in Table 2, and then an anode electrolytic oxidation treatment was performed in an aqueous solution shown in Table 5. In the anodic electrolytic treatment, the treatment temperature was 70 ° C., the current density was 50 A / dm 2, and the treatment time was adjusted so as to obtain a predetermined oxide film thickness.
(比較例4)
表1に示す成分の冷延鋼板を原板として、表4に示すめっき条件でNiめっき、次いで表2に示す条件でCrめっきを行った。
(Comparative Example 4)
Using cold-rolled steel sheets having the components shown in Table 1 as original sheets, Ni plating was performed under the plating conditions shown in Table 4, and then Cr plating was performed under the conditions shown in Table 2.
(比較例5)
表1に示す成分の冷延鋼板を原板として、表4に示すめっき条件でNiめっきを行い、表5に示す種々の水溶液中でアノード電解酸化処理を行った。アノード電解処理は、処理温度70℃、電流密度50A/dm2とし、所定の酸化膜厚みになるように処理時間を調整した。
(Comparative Example 5)
Using the cold-rolled steel sheet having the components shown in Table 1 as an original plate, Ni plating was performed under the plating conditions shown in Table 4, and anodic electrolytic oxidation treatment was performed in various aqueous solutions shown in Table 5. In the anodic electrolytic treatment, the treatment temperature was 70 ° C., the current density was 50 A / dm 2, and the treatment time was adjusted so as to obtain a predetermined oxide film thickness.
(評価方法)
・酸化膜のキャラクタリゼーションおよび溶解電位の測定は先の例と同様に行った。酸化膜に含まれる元素については、Feおよびめっき金属(NiまたはCr)以外の元素を同定および定量して表5中に示した。
(Evaluation method)
The characterization of the oxide film and the measurement of the dissolution potential were performed in the same manner as in the previous example. The elements contained in the oxide film are shown in Table 5 after identifying and quantifying elements other than Fe and plating metal (Ni or Cr).
・溶解電位測定:円筒型リチウムイオン二次電池の規格18650相当の円筒絞り缶にプレスした後その内側面を切り出し、エッジと裏面をテープシールして供試材とした。先の例と同様に1回目と5回目の溶解電位を評価した。 Melting potential measurement: After pressing into a cylindrical drawn can corresponding to standard 18650 of a cylindrical lithium ion secondary battery, the inner surface was cut out, and the edge and back surface were tape-sealed to obtain a test material. Similar to the previous example, the first and fifth dissolution potentials were evaluated.
・定電位電解:円筒型リチウムイオン二次電池の規格18650相当の円筒絞り缶にプレスした後その内側面を切り出し、エッジと裏面をテープシールして供試材とした。アルゴン雰囲気(露点−60℃)のグローブボックス内にて、前記供試材を作用極、金属リチウムを対極および参照極とする三極式のセルを組み立てた。電解液は、1MのLiPF6を体積で1:1のエチレンカーボネートとジエチルカーボネートの混合溶媒に溶解したものを用いた。前記のセルを、25℃にて、作用極電位を4.2V(リチウム基準)に規定して24時間保持した。トータルの通電量の計測と電解液に溶出した金属濃度の定量を行った。電解液中に溶解金属が検出されない物を「○」と評価した。 Constant-potential electrolysis: After pressing into a cylindrical drawn can corresponding to standard 18650 of a cylindrical lithium ion secondary battery, the inner surface was cut out, and the edge and back surface were tape-sealed to obtain a test material. In a glove box with an argon atmosphere (dew point −60 ° C.), a three-electrode cell was assembled with the test material as a working electrode, metallic lithium as a counter electrode and a reference electrode. The electrolyte used was 1M LiPF6 dissolved in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate by volume. The cell was held at 25 ° C. for 24 hours with a working electrode potential of 4.2 V (based on lithium). The total energization amount was measured and the metal concentration eluted in the electrolyte was quantified. A substance in which no dissolved metal was detected in the electrolyte was evaluated as “◯”.
表5に評価結果を示すが、本発明の実施例では、溶解電位を大きく向上することができるとともに、高電位で長時間保持した場合にも金属溶出は検出されなかった。
Table 5 shows the evaluation results. In the examples of the present invention, the dissolution potential could be greatly improved, and metal elution was not detected even when held at a high potential for a long time.
非水電解質二次電池を安価に製造するためには、低コストで高信頼性の外装ケース素材が必要であり、プレス成形性や溶接性、耐食性、強度などの観点から、鋼材の使用が望まれる。本発明の鋼材は、非水電解質中で高電位に保持されても金属溶出がなく、耐食性に優れることから、非水電解質二次電池用のケース用素材として有用なものである。 In order to manufacture non-aqueous electrolyte secondary batteries at low cost, low-cost and highly reliable exterior case materials are required, and the use of steel is desirable from the viewpoint of press formability, weldability, corrosion resistance, strength, etc. It is. The steel material of the present invention is useful as a case material for a non-aqueous electrolyte secondary battery because it does not elute even when held at a high potential in the non-aqueous electrolyte and is excellent in corrosion resistance.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012028403A JP2013165030A (en) | 2012-02-13 | 2012-02-13 | Steel material for nonaqueous electrolyte secondary battery case |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012028403A JP2013165030A (en) | 2012-02-13 | 2012-02-13 | Steel material for nonaqueous electrolyte secondary battery case |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013165030A true JP2013165030A (en) | 2013-08-22 |
Family
ID=49176260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012028403A Pending JP2013165030A (en) | 2012-02-13 | 2012-02-13 | Steel material for nonaqueous electrolyte secondary battery case |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013165030A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107710446A (en) * | 2015-07-07 | 2018-02-16 | 新日铁住金株式会社 | Nonaqueous electrolytic solution secondary battery housing steel plate and nonaqueous electrolytic solution secondary battery housing |
-
2012
- 2012-02-13 JP JP2012028403A patent/JP2013165030A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107710446A (en) * | 2015-07-07 | 2018-02-16 | 新日铁住金株式会社 | Nonaqueous electrolytic solution secondary battery housing steel plate and nonaqueous electrolytic solution secondary battery housing |
CN107710446B (en) * | 2015-07-07 | 2021-02-12 | 日本制铁株式会社 | Steel sheet for nonaqueous electrolyte secondary battery case and nonaqueous electrolyte secondary battery case |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yoon et al. | Passivation failure of Al current collector in LiPF6‐based electrolytes for lithium‐ion batteries | |
JP6152455B2 (en) | Surface-treated steel sheet for battery container, battery container and battery | |
CN104342724B (en) | Electrolytic copper foil | |
Elrouby et al. | Development of the electrochemical performance of zinc via alloying with indium as anode for alkaline batteries application | |
US20120009464A1 (en) | Material for metal case of secondary battery using non-aqueous electrolyte, metal case, secondary battery, and producing method of material for metal case | |
JP5334485B2 (en) | Current collector and negative electrode material for lithium ion secondary battery | |
JP2013108146A (en) | Aluminum alloy foil for current collector and method of manufacturing the same | |
JP2010043333A (en) | Aluminum foil for positive electrode collector | |
JP5512585B2 (en) | Copper foil, anode current collector and anode material for lithium ion secondary battery using the same, and lithium ion secondary battery | |
JP2011134651A (en) | Copper foil for nonaqueous solvent secondary battery negative electrode collector, its manufacturing method, and method of manufacturing nonaqueous solvent secondary battery negative electrode | |
Storelli et al. | On the importance of Li metal morphology on the cycling of lithium metal polymer cells | |
JP5306549B2 (en) | Method for producing electrode for negative electrode of lithium ion secondary battery | |
JP6086176B1 (en) | Steel sheet for non-aqueous electrolyte secondary battery case and non-aqueous electrolyte secondary battery case | |
JP2010027304A (en) | Aluminum foil for positive current collector | |
JP4133701B2 (en) | Ni-plated steel sheet for non-aqueous electrolyte battery case and battery case using this steel sheet | |
TWI810538B (en) | Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery | |
WO2018062046A1 (en) | Aluminum member for electrodes and method for producing aluminum member for electrodes | |
JP2009009778A (en) | Cathode plate of lithium ion battery, its manufacturing method, and lithium ion battery using it | |
JP2013165030A (en) | Steel material for nonaqueous electrolyte secondary battery case | |
JP7475931B2 (en) | Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery | |
JP2013165018A (en) | Steel material for nonaqueous electrolyte secondary battery case | |
JP7474096B2 (en) | Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery | |
CN115038817A (en) | Ni-plated steel sheet and method for producing same | |
KR102534518B1 (en) | Aluminum foil, manufacturing method of aluminum foil, current collector, lithium ion capacitor, and lithium ion battery | |
Hirai et al. | Effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution |