JP2013163733A - Phosphor and light-emitting device - Google Patents
Phosphor and light-emitting device Download PDFInfo
- Publication number
- JP2013163733A JP2013163733A JP2012026603A JP2012026603A JP2013163733A JP 2013163733 A JP2013163733 A JP 2013163733A JP 2012026603 A JP2012026603 A JP 2012026603A JP 2012026603 A JP2012026603 A JP 2012026603A JP 2013163733 A JP2013163733 A JP 2013163733A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- phosphors
- mass
- light emitting
- emitting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Luminescent Compositions (AREA)
- Led Device Packages (AREA)
Abstract
Description
本発明は、LED(Light Emitting Diode)に用いられる蛍光体及びLEDを用いた発光装置に関する。 The present invention relates to a phosphor used for an LED (Light Emitting Diode) and a light emitting device using the LED.
白色発光装置に用いられる蛍光体として、βサイアロンと赤色発光蛍光体の組み合わせがあり(特許文献1参照)、特定の色座標を有する赤色発光蛍光体と緑色発光蛍光体を組み合わせた蛍光体がある(特許文献2参照)。一方、黄色蛍光体であるイットリウムアルミニウムガーネット(以後YAGと記載)系蛍光体を用いて白色を得る方法(特許文献3参照)もある。前者と区別するために、このような白色を「疑似白色」と称する。「疑似白色」を用いた発光装置は、比較的容易に高輝度が得られ易いが、演色性に劣る。また、両者とも高温下での使用や長期間使用した際の輝度低下を少なくすることが求められている。 As a phosphor used in a white light emitting device, there is a combination of β sialon and a red light emitting phosphor (see Patent Document 1), and there is a phosphor in which a red light emitting phosphor having a specific color coordinate and a green light emitting phosphor are combined. (See Patent Document 2). On the other hand, there is also a method of obtaining white color using a yttrium aluminum garnet (hereinafter referred to as YAG) phosphor which is a yellow phosphor (see Patent Document 3). In order to distinguish from the former, such white is called “pseudo white”. A light emitting device using “pseudo white” can easily obtain high luminance, but has poor color rendering. Further, both of them are required to reduce the decrease in luminance when used under high temperature or for a long time.
本発明の目的は、YAG系蛍光体に比べてその高輝度な発光を損なうことなく、演色性、信頼性を改善した蛍光体を提供することにあり、この蛍光体を用いた白色発光装置を提供することにある。 An object of the present invention is to provide a phosphor having improved color rendering and reliability without impairing its high-luminance emission as compared with a YAG phosphor. A white light emitting device using this phosphor is provided. It is to provide.
本発明は、ピーク波長530nm以上535nm以下、蛍光強度200%以上230%以下の酸窒化物蛍光体(A)及びピーク波長585nm以上604nm以下、外部量子効率62%以上且つ半価幅130nm以上の酸窒化物蛍光体(B)を有し、蛍光体(A)、(B)の配合比が各々30質量%以上50質量%以下である蛍光体である。 The present invention provides an oxynitride phosphor (A) having a peak wavelength of 530 nm or more and 535 nm or less, a fluorescence intensity of 200% or more and 230% or less, and an acid having a peak wavelength of 585 nm or more and 604 nm or less, an external quantum efficiency of 62% or more, and a half-value width of 130 nm or more. A phosphor having a nitride phosphor (B) and a blending ratio of the phosphors (A) and (B) of 30% by mass to 50% by mass.
前記蛍光体は、蛍光体の配合比が、蛍光体(A)及び(B)の配合比をa及びbとした際に、a+b≧80質量%且つb/a≧1の関係を有することが好ましく、更に好ましくは、蛍光体(A)がβサイアロンであり、蛍光体(B)はβサイアロン以外の蛍光体であるのが好ましい。 The phosphor may have a relationship of a + b ≧ 80 mass% and b / a ≧ 1 when the blending ratio of the phosphors is set to a and b of the phosphors (A) and (B). More preferably, the phosphor (A) is β sialon, and the phosphor (B) is preferably a phosphor other than β sialon.
本願の他の観点からの発明は、前述の蛍光体と、当該蛍光体を発光面に搭載したLEDとを有する発光装置である。 An invention from another viewpoint of the present application is a light emitting device including the above-described phosphor and an LED having the phosphor mounted on a light emitting surface.
本発明によれば、YAG系蛍光体に比べて、演色性、信頼性を改善した蛍光体を提供することができ、この蛍光体を用いた白色発光装置を提供することができる。 According to the present invention, it is possible to provide a phosphor with improved color rendering and reliability as compared with a YAG phosphor, and it is possible to provide a white light emitting device using this phosphor.
本発明は、ピーク波長530nm以上535nm以下、蛍光強度200%以上230%以下の酸窒化物蛍光体(A)及びピーク波長585nm以上604nm以下、外部量子効率62%以上且つ半価幅130nm以上の酸窒化物蛍光体(B)を有し、蛍光体(A)、(B)の配合比が各々30質量%以上50質量%以下である蛍光体である。 The present invention provides an oxynitride phosphor (A) having a peak wavelength of 530 nm or more and 535 nm or less, a fluorescence intensity of 200% or more and 230% or less, and an acid having a peak wavelength of 585 nm or more and 604 nm or less, an external quantum efficiency of 62% or more, and a half-value width of 130 nm or more. A phosphor having a nitride phosphor (B) and a blending ratio of the phosphors (A) and (B) of 30% by mass to 50% by mass.
本発明は、YAGの発光に不足する緑色領域にシャープな発光ピークを有する蛍光体(A)とYAGより長波長側にブロードな発光ピークを有する、即ち黄色成分と同時にYAGに不足している赤色成分を有する蛍光体(B)の混合物を作成することであり、YAG系蛍光体に比べてその高輝度な発光をあまり損なうことなく、演色性、信頼性を改善した蛍光体を得ることができる。 In the present invention, the phosphor (A) having a sharp emission peak in the green region that is insufficient for YAG emission and the broad emission peak on the longer wavelength side than YAG, that is, the red color that is insufficient for YAG simultaneously with the yellow component. This is to create a mixture of phosphors (B) having components, and a phosphor with improved color rendering properties and reliability can be obtained without significantly impairing its high-luminance emission as compared with YAG phosphors. .
酸窒化物蛍光体(A)のピーク波長を530nm以上535nm以下としたのは、高い演色性を発現する緑色を発光させるためであり、その蛍光強度を200%以上230%以下としたのは、高輝度を得るためである。酸窒化物蛍光体(B)のピーク波長を585nm以上604nm以下で且つ半価幅130nm以上としたのは、黄色と赤色成分を同時に含んだ発光とするためであり、外部量子効率62%以上としたのは、高輝度を得るためである。この二種類の蛍光体は、各々高信頼性を有し、その混合物も高信頼性となると共に、比較的高輝度を発現する。通常、色合いの異なる蛍光体を配合した場合、各々の励起波長域と発光波長域が重なることなどから、加成性が成り立たなくなって、混合品の発光ピークは個別の蛍光体の発光ピークを合成した計算値よりも低くなるが、本発明の組み合わせでは、励起域と発光域の重なりは少なく、一方の蛍光体の発光が他方の蛍光体の励起に殆ど使われないため、輝度の低下は小さくなって計算値に近くなる。蛍光体(A)及び蛍光体(B)の配合比が各々30質量%以上50質量%以下であるのは、高演色性の白色光を得るためである。 The reason why the peak wavelength of the oxynitride phosphor (A) is 530 nm or more and 535 nm or less is to emit green light exhibiting high color rendering properties, and the fluorescence intensity is 200% or more and 230% or less. This is to obtain high brightness. The reason why the peak wavelength of the oxynitride phosphor (B) is 585 nm or more and 604 nm or less and the half-value width is 130 nm or more is to emit light containing both yellow and red components simultaneously, and the external quantum efficiency is 62% or more. The reason is to obtain high luminance. Each of these two types of phosphors has high reliability, and a mixture thereof also has high reliability and exhibits relatively high luminance. Normally, when phosphors with different colors are blended, the excitation wavelength range and emission wavelength range overlap each other, so additiveity does not hold, and the emission peak of the mixture is synthesized with the emission peak of individual phosphors. However, in the combination of the present invention, there is little overlap between the excitation region and the light emission region, and the light emission of one phosphor is hardly used for excitation of the other phosphor, so the decrease in luminance is small. It becomes close to the calculated value. The blending ratio of the phosphor (A) and the phosphor (B) is 30% by mass or more and 50% by mass or less, respectively, in order to obtain white light with high color rendering properties.
本発明の蛍光体においては、更に高い演色性を得るために、酸窒化物(A)より短波長側にピークを有する緑色蛍光体や、酸窒化物(B)より長波長側にピークを有する赤色蛍光体等を追加することができるが、酸窒化物では、蛍光体(A)より短波長側に発光ピークを有する蛍光体は、現状では入手困難である。BOSのようなシリケート系蛍光体は信頼性に劣り、多量に加えると混合物全体の信頼性を損なう。また、蛍光体(B)より長波長側に発光ピークを有する赤色蛍光体は視感度が低いため、多量に加えると混合物全体の明るさを損なう。蛍光体(A)、(B)の配合比を各々a,bとした場合、a+b≧80%が好ましい。更に、視感度では、蛍光体(A)は蛍光体(B)より低いため、適切な白色光を得るためには、b/a≦1であることが好ましい。Eu付活のβサイアロンはシャープなピーク波形を取るため蛍光体(A)には適切な材料である。 In the phosphor of the present invention, a green phosphor having a peak on the shorter wavelength side than the oxynitride (A) or a peak on the longer wavelength side than the oxynitride (B) in order to obtain higher color rendering properties. A red phosphor or the like can be added, but phosphors having an emission peak on the shorter wavelength side than the phosphor (A) are difficult to obtain at present. Silicate phosphors such as BOS are inferior in reliability, and if added in a large amount, the reliability of the entire mixture is impaired. Moreover, since the red phosphor having an emission peak on the longer wavelength side than the phosphor (B) has low visibility, the brightness of the entire mixture is impaired when added in a large amount. When the blending ratios of the phosphors (A) and (B) are a and b, a + b ≧ 80% is preferable. Further, since the phosphor (A) is lower than the phosphor (B) in terms of visibility, it is preferable that b / a ≦ 1 in order to obtain appropriate white light. Eu-activated β sialon has a sharp peak waveform and is therefore a suitable material for the phosphor (A).
蛍光体の蛍光強度は、標準試料(YAG、具体的には三菱化学株式会社製P46Y3)のピーク高さを100%とした相対値を%表示して示したものである。蛍光強度の測定機は、株式会社日立ハイテック社製F−7000形分光光度計を用い、測定方法は、次のものである。
<測定法>
1)試料セット:石英製セルに測定試料及び標準試料を充填し、十分にエイジングした測定機に交互にセットして測定する。充填は、相対充填密度35%程度になるようにしてセル高さの3/4程度まで充填した。
2)測定:455nmの光で励起し、300nmから800nmの最大ピークの高さを読み取った。測定を5回行ない、最大、最小値を除いて残りの3点の平均値とした。
The fluorescence intensity of the phosphor is indicated by a relative value, expressed in%, where the peak height of the standard sample (YAG, specifically, P46Y3 manufactured by Mitsubishi Chemical Corporation) is 100%. The fluorescence intensity measuring instrument is an F-7000 spectrophotometer manufactured by Hitachi High-Tech Co., Ltd., and the measuring method is as follows.
<Measurement method>
1) Sample set: A quartz cell is filled with a measurement sample and a standard sample, and is alternately set in a sufficiently aged measuring machine for measurement. The filling was performed up to about 3/4 of the cell height so that the relative filling density was about 35%.
2) Measurement: Excited with 455 nm light, the maximum peak height from 300 nm to 800 nm was read. The measurement was performed 5 times, and the average value of the remaining three points was obtained except for the maximum and minimum values.
蛍光体のピーク波長は、蛍光強度の測定時に最大強度の波長として求められる。蛍光体の半価幅は、大塚電子社製のMCPD−7000瞬間マルチ測定システムにより、HALMA Company製のlabsphere(登録商標)スペクトラロン標準反射板(99%、2.0“×2.0”)を標準試料として用いる。測定方法は、アルミナ製の石板の中央部φ16mmに3mm厚さに試料を充填し、石英板で軽く押しつけ、すり切ってセットする。455nmの光で励起し、300nmから800nmのピーク高さを読み取って積分強度を定め、最大値の半分の高さの幅を求める。測定は5回行って、最大、最小値を除いて残り3点の平均値とした。 The peak wavelength of the phosphor is determined as the maximum intensity wavelength when measuring the fluorescence intensity. The half-value width of the phosphor was measured using the MCPD-7000 instantaneous multi-measurement system manufactured by Otsuka Electronics Co., Ltd., the labsphere (registered trademark) Spectralon standard reflector manufactured by HALMA Company (99%, 2.0 “× 2.0”). Is used as a standard sample. The measuring method is that a sample is filled in a central portion φ16 mm of an alumina stone plate to a thickness of 3 mm, lightly pressed with a quartz plate, and then set by grinding. Excitation is performed with light at 455 nm, the peak height from 300 nm to 800 nm is read to determine the integrated intensity, and the width at half the maximum value is obtained. The measurement was performed five times, and the average value of the remaining three points was obtained except for the maximum and minimum values.
本発明における蛍光体(A)は、ピーク波長530nm以上535nm以下、蛍光強度200%以上230%以下の酸窒化物蛍光体である。具体的には、βサイアロンがあり、より具体的には、電気化学工業株式会社アロンブライト(登録商標)のうち、GR−SW530A、GR−SW530B、GR−SW530C、GR−SW531A、GR−SW531B、GR−SW531C、GR−SW532A、GR−SW532B、GR−SW532C、GR−SW533A、GR−SW533B、GR−SW533C、GR−SW533Dがある。これらβサイアロンは、発光ピークが短波長域にあるにもかかわらず、比較的高いピーク強度を有する、従来にない蛍光体材料である。βサイアロンは、ピーク波長がこの波長域にあると、半価幅が小さいシャープな波形となり、色再現性が良好となる。 The phosphor (A) in the present invention is an oxynitride phosphor having a peak wavelength of 530 nm to 535 nm and a fluorescence intensity of 200% to 230%. Specifically, there is β sialon, and more specifically, among Aron Bright (registered trademark) of Denki Kagaku Kogyo Co., Ltd., GR-SW530A, GR-SW530B, GR-SW530C, GR-SW531A, GR-SW531B, There are GR-SW531C, GR-SW532A, GR-SW532B, GR-SW532C, GR-SW533A, GR-SW533B, GR-SW533C, and GR-SW533D. These β sialons are unprecedented phosphor materials having a relatively high peak intensity even though the emission peak is in a short wavelength region. When the peak wavelength is in this wavelength range, β sialon has a sharp waveform with a small half width and good color reproducibility.
本発明における蛍光体(B)は、ピーク波長585nm以上604nm以下、外部量子効率62%以上且つ半価幅130nm以上の酸窒化物蛍光体である。具体的には、電気化学工業株式会社アロンブライト(登録商標)のうち、OR−Kがある。この蛍光体は橙色の蛍光体であるが、半価幅が130nmから140nm程度あり、YAG系蛍光体の半価幅90〜110nmに比べてかなり広いため、黄色に加えて赤色成分もある程度含んでいる点が従来の蛍光体にない特徴となっている。このように半価幅が非常に広い蛍光体の場合、輝度の目安として発光ピークの高さで議論するのは適切とはいえず、積分強度や外部量子効率が採用される。本発明では外部量子効率を採用し、62%以上とする。通常のOR−Kの外部量子効率は、63%から72%であり、好ましくは65%から72%である。また、黄色から橙色成分を多く含むため、赤色のみの蛍光体に比べて視感度が高く、高輝度が得られ易い。また、蛍光体(A)と組み合わせることで、高い色再現性を発現する。 The phosphor (B) in the present invention is an oxynitride phosphor having a peak wavelength of 585 nm or more and 604 nm or less, an external quantum efficiency of 62% or more, and a half-value width of 130 nm or more. Specifically, there is OR-K among Aronbright (registered trademark) of Electrochemical Co., Ltd. Although this phosphor is an orange phosphor, it has a half-value width of about 130 nm to 140 nm, and is considerably wider than the half-value width of 90 to 110 nm of a YAG-based phosphor. This is a feature not found in conventional phosphors. In the case of a phosphor having a very wide half-value width as described above, it is not appropriate to discuss the height of the emission peak as a measure of luminance, and integrated intensity and external quantum efficiency are employed. In the present invention, the external quantum efficiency is adopted to be 62% or more. The external quantum efficiency of normal OR-K is 63% to 72%, preferably 65% to 72%. In addition, since it contains a lot of yellow to orange components, it has higher visibility than a red-only phosphor, and high brightness is easily obtained. Moreover, high color reproducibility is expressed by combining with the phosphor (A).
蛍光体(A)、(B)、更には他の蛍光体との混合手段は、均一に混合又は希望する混合度合いに混合できれば、適宜選択できるものである。この混合手段にあっては、不純物が混入したり、蛍光体の形状や粒度が明らかに変わったりしないことが前提である。 The mixing means with the phosphors (A), (B), and other phosphors can be appropriately selected as long as it can be uniformly mixed or mixed to a desired mixing degree. In this mixing means, it is premised that impurities are not mixed and the shape and particle size of the phosphor are not clearly changed.
本願の他の観点からの発明は、上述の蛍光体と、当該蛍光体を発光面に搭載したLEDとを有する発光装置である。LEDの発光面に搭載される際の蛍光体は、封止部材によって封止されたものである。封止部材としては、樹脂とガラスがあり、樹脂としてはシリコーン樹脂がある。LEDとしては、最終的に発光される色に合わせて赤色発光LED、青色発光LED、他の色を発光するLEDを適宜選択することが好ましく、青色発光LEDの場合、窒化ガリウム系半導体で形成され、ピーク波長は440nm以上460nm以下にあるものが好ましく、さらに好ましくピーク波長は、445nm以上455nm以下である。LEDの発光部の大きさは0.5mm角以上のものが好ましく、LEDチップの大きさは、かかる発光部の面積を有するものであれば適宜選択でき、好ましくは、1.0mm×0.5mm、更に好ましくは1.2mm×0.6mmである。 The invention from another viewpoint of the present application is a light emitting device including the above-described phosphor and an LED having the phosphor mounted on a light emitting surface. The phosphor when mounted on the light emitting surface of the LED is sealed by a sealing member. The sealing member includes a resin and glass, and the resin includes a silicone resin. As the LED, it is preferable to appropriately select a red light emitting LED, a blue light emitting LED, or an LED emitting another color in accordance with the color finally emitted. In the case of a blue light emitting LED, the LED is formed of a gallium nitride semiconductor. The peak wavelength is preferably from 440 nm to 460 nm, and more preferably from 445 nm to 455 nm. The size of the light emitting part of the LED is preferably 0.5 mm square or more, and the size of the LED chip can be appropriately selected as long as it has the area of the light emitting part, preferably 1.0 mm × 0.5 mm. More preferably, it is 1.2 mm × 0.6 mm.
本発明に係る実施例を、表及び比較例を用いて詳細に説明する。 Examples according to the present invention will be described in detail with reference to tables and comparative examples.
表1に示した蛍光体は、本発明の蛍光体における蛍光体(A)及び(B)とその比較例の蛍光体である。表1の蛍光体(A)のうち、P2だけが請求項1記載の範囲内のピーク波長及び蛍光強度を有する蛍光体である。表1の蛍光体(B)のうち、P5のみが請求項1記載の範囲内のピーク波長及び蛍光強度を有する蛍光体である。 The phosphors shown in Table 1 are phosphors (A) and (B) in the phosphor of the present invention and phosphors of comparative examples thereof. Of the phosphors (A) in Table 1, only P2 is a phosphor having a peak wavelength and fluorescence intensity within the range of claim 1. Of the phosphors (B) in Table 1, only P5 is a phosphor having a peak wavelength and fluorescence intensity within the range of claim 1.
これら蛍光体を表2の割合で混合して、実施例、比較例に係る蛍光体を得た。 These phosphors were mixed at a ratio shown in Table 2 to obtain phosphors according to Examples and Comparative Examples.
実施例1の蛍光体は、蛍光体(A)としての表1のP2の蛍光体を30.0質量%、蛍光体(B)としての表1のP5の蛍光体を35.0質量%配合し、更にピーク調整用として表1のP1の蛍光体を7.0質量%、P3の蛍光体を7.0質量%、P4の蛍光体を6.0質量%、P6の蛍光体を15.0質量%配合したものである。表1での蛍光体の構成におけるP1乃至P6の値は質量%である。蛍光体同士の混合にあっては、合計2.5gを計量してビニール袋内で混合した上、シリコーン樹脂(東レダウコーニング株式会社OE6656)47.5gと一緒に自転公転式の混合機(株式会社シンキー社株式会社あわとり練太郎ARE−310(登録商標))で混合した。表1のa+b及びb/aは、蛍光体(A)の実施例であるP1の配合比をa、蛍光体(B)実施例であるP6の配合比をbとしたときの値である。但し、bは、P5の配合量を超えない場合には、P6及びP7を含む。 The phosphor of Example 1 contains 30.0% by mass of the phosphor of P2 in Table 1 as the phosphor (A) and 35.0% by mass of the phosphor of P5 in Table 1 as the phosphor (B). Further, for peak adjustment, the phosphor of P1 in Table 1 is 7.0 mass%, the phosphor of P3 is 7.0 mass%, the phosphor of P4 is 6.0 mass%, and the phosphor of P6 is 15. 0% by mass is blended. The values of P1 to P6 in the structure of the phosphor in Table 1 are mass%. When mixing phosphors, a total of 2.5 g was weighed and mixed in a plastic bag, and a rotating and rotating mixer (stock) The company was mixed with Shintaro Awatori ARE-310 (registered trademark). In Table 1, a + b and b / a are values when the blending ratio of P1 which is an example of the phosphor (A) is a and the blending ratio of P6 which is the phosphor (B) example is b. However, b contains P6 and P7, when not exceeding the compounding quantity of P5.
LEDへの搭載は、凹型のパッケージ本体の底部にLEDを置いて、基板上の電極とワイヤボンディングした後、混合した蛍光体をマイクロシリンジから注入して行なった。搭載後、120℃で硬化させた後、110℃×10時間のポストキュアを施して封止した。LEDは、発光ピーク波長448nmで、チップ1.0mm×0.5mmの大きさのものを用いた。 Mounting on the LED was performed by placing the LED on the bottom of the concave package body, wire bonding the electrode on the substrate, and then injecting the mixed phosphor from the microsyringe. After mounting, it was cured at 120 ° C., and post-cured at 110 ° C. for 10 hours for sealing. The LED used had an emission peak wavelength of 448 nm and a chip size of 1.0 mm × 0.5 mm.
表2で示した評価について説明する。
表2の初期評価として、演色性の評価を採用した。演色性の評価には色再現範囲を採用し、色座標におけるNTSC規格比の面積(%)で表した。数字が大きいほど演色性が高い。評価の合格条件は70%以上であり、72%以上は優れた色再現性、68%未満は色再現性に劣ると言える。これは一般的なLED−TV向けに採用されていると言われている条件である。
The evaluation shown in Table 2 will be described.
As an initial evaluation in Table 2, the evaluation of color rendering was adopted. For the evaluation of color rendering, a color reproduction range was adopted, and the area was expressed as an area (%) of the NTSC standard ratio in color coordinates. The larger the number, the higher the color rendering. The pass condition for evaluation is 70% or more, and it can be said that 72% or more is excellent in color reproducibility, and less than 68% is inferior in color reproducibility. This is a condition that is said to be adopted for general LED-TVs.
表2の輝度は25℃での光束で評価した。電流100mAを10分間印加した後の測定値を取った。評価の合格条件は、28.0lm以上である。この値は測定機や条件によって変わるため、実施例との相対的な比較するために、(実施例の下限値)×90%として設定した値である。 The luminance in Table 2 was evaluated by the luminous flux at 25 ° C. The measured value after applying a current of 100 mA for 10 minutes was taken. The pass condition of evaluation is 28.0 lm or more. Since this value varies depending on the measuring machine and conditions, it is a value set as (lower limit value of the example) × 90% for relative comparison with the example.
表2の高温特性は、25℃の光束に対する減衰性で評価した。50℃、100℃、150℃での光束を測定して、25℃を100%とした時の値である。評価の合格条件は、50℃で97%以上、100℃で95%以上、150℃で90%以上である。この値も世界共通の規格値ではないが、現状、高信頼性の発光素子の目安と考えられている。 The high temperature characteristics shown in Table 2 were evaluated based on attenuation with respect to a light beam at 25 ° C. It is a value when the light flux at 50 ° C., 100 ° C., and 150 ° C. is measured and 25 ° C. is taken as 100%. The pass conditions for evaluation are 97% or more at 50 ° C, 95% or more at 100 ° C, and 90% or more at 150 ° C. Although this value is not a standard value common to the world, it is considered as a standard for a highly reliable light-emitting element at present.
表2の長期信頼性は、85℃、85%RHに500及び2,000hrs放置後取り出して室温で乾燥した際の光束を測定し、初期値を100%としたときの光束の減衰値である。
評価の合格条件は、500hrsで96%以上、2,000hrsで93%以上である。これは高信頼性の蛍光体でなくては達成できない値である。
The long-term reliability in Table 2 is the attenuation value of the luminous flux when the initial value is set to 100% when the luminous flux is measured after being taken out after leaving at 500 ° C. and 85% RH for 500 and 2,000 hrs and dried at room temperature. .
The pass conditions for the evaluation are 96% or more at 500 hrs and 93% or more at 2,000 hrs. This is a value that cannot be achieved without a highly reliable phosphor.
表2が示すように、本発明の実施例は、比較的良好な色再現性、光束値を示し、且つ高温や高温高湿下で長期保存した際の光束の減衰も比較的小さい。
本発明の比較例1はYAGを用いたいわゆる疑似白色発光装置であり、輝度は良好であるが、演色性に劣り、実施例に比べて信頼性も低くなっている。比較例3、4、5、7、8、9も色再現性に劣り、比較例2、5、6、8では光束値が小さい。また、比較例2、3、4、6では、高温特性、長期信頼性に劣り、信頼性の低いLEDパッケージとなって、テレビやモニターなどの製品に適用することは到底望めない。
As shown in Table 2, the examples of the present invention show relatively good color reproducibility and luminous flux values, and the luminous flux attenuation is relatively small when stored for a long time under high temperature or high temperature and high humidity.
Comparative Example 1 of the present invention is a so-called pseudo white light emitting device using YAG, which has good luminance, but is inferior in color rendering, and is less reliable than the examples. Comparative Examples 3, 4, 5, 7, 8, and 9 are also inferior in color reproducibility, and Comparative Examples 2, 5, 6, and 8 have small light flux values. In Comparative Examples 2, 3, 4, and 6, the LED package is inferior in high temperature characteristics and long-term reliability and has low reliability, and cannot be expected to be applied to products such as televisions and monitors.
本発明の蛍光体は、白色発光装置に用いられる。本発明の白色発光装置としては、液晶パネルのバックライト、照明装置、信号装置、画像表示装置に用いられる。 The phosphor of the present invention is used in a white light emitting device. The white light emitting device of the present invention is used for a backlight of a liquid crystal panel, an illumination device, a signal device, and an image display device.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012026603A JP5919014B2 (en) | 2012-02-09 | 2012-02-09 | Phosphor and light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012026603A JP5919014B2 (en) | 2012-02-09 | 2012-02-09 | Phosphor and light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013163733A true JP2013163733A (en) | 2013-08-22 |
JP5919014B2 JP5919014B2 (en) | 2016-05-18 |
Family
ID=49175308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012026603A Active JP5919014B2 (en) | 2012-02-09 | 2012-02-09 | Phosphor and light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5919014B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261512A (en) * | 2005-03-18 | 2006-09-28 | Fujikura Ltd | Light emitting device and lighting apparatus |
JP2009094231A (en) * | 2007-10-05 | 2009-04-30 | Mitsubishi Chemicals Corp | Light-emitting device |
JP2009096882A (en) * | 2007-10-17 | 2009-05-07 | Denki Kagaku Kogyo Kk | Phosphor and method for producing the same |
JP2009203466A (en) * | 2008-01-30 | 2009-09-10 | Mitsubishi Chemicals Corp | Fluorescent substance, composition containing fluorescent substance, light emitter, image display device, and illuminating device |
WO2011002087A1 (en) * | 2009-07-02 | 2011-01-06 | シャープ株式会社 | Light-emitting device |
WO2011099800A2 (en) * | 2010-02-12 | 2011-08-18 | 삼성엘이디 주식회사 | Fluorescent substance, light emitting device, surface light source device, display device and illuminating device |
WO2011142228A1 (en) * | 2010-05-13 | 2011-11-17 | 電気化学工業株式会社 | METHOD FOR PRODUCING β-SIALON, β-SIALON, AND PRODUCT USING SAME |
-
2012
- 2012-02-09 JP JP2012026603A patent/JP5919014B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261512A (en) * | 2005-03-18 | 2006-09-28 | Fujikura Ltd | Light emitting device and lighting apparatus |
JP2009094231A (en) * | 2007-10-05 | 2009-04-30 | Mitsubishi Chemicals Corp | Light-emitting device |
JP2009096882A (en) * | 2007-10-17 | 2009-05-07 | Denki Kagaku Kogyo Kk | Phosphor and method for producing the same |
JP2009203466A (en) * | 2008-01-30 | 2009-09-10 | Mitsubishi Chemicals Corp | Fluorescent substance, composition containing fluorescent substance, light emitter, image display device, and illuminating device |
WO2011002087A1 (en) * | 2009-07-02 | 2011-01-06 | シャープ株式会社 | Light-emitting device |
WO2011099800A2 (en) * | 2010-02-12 | 2011-08-18 | 삼성엘이디 주식회사 | Fluorescent substance, light emitting device, surface light source device, display device and illuminating device |
WO2011142228A1 (en) * | 2010-05-13 | 2011-11-17 | 電気化学工業株式会社 | METHOD FOR PRODUCING β-SIALON, β-SIALON, AND PRODUCT USING SAME |
Also Published As
Publication number | Publication date |
---|---|
JP5919014B2 (en) | 2016-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6083048B2 (en) | Phosphor and light emitting device | |
JP6083049B2 (en) | Phosphor and light emitting device | |
JP5886069B2 (en) | Phosphor and light emitting device | |
JP5937837B2 (en) | Phosphor and light emitting device | |
JP5919014B2 (en) | Phosphor and light emitting device | |
JP5916409B2 (en) | Phosphor and light emitting device | |
JP5919015B2 (en) | Phosphor and light emitting device | |
JP5697765B2 (en) | Phosphor and light emitting device | |
JP5886070B2 (en) | Phosphor and light emitting device | |
JP5901987B2 (en) | Phosphor and light emitting device | |
JP5916411B2 (en) | Phosphor and light emitting device | |
JP5901986B2 (en) | Phosphor and light emitting device | |
JP5916410B2 (en) | Phosphor and light emitting device | |
JP5901985B2 (en) | Phosphor and light emitting device | |
JP5697766B2 (en) | Phosphor and light emitting device | |
JP5916408B2 (en) | Phosphor and light emitting device | |
JP5916412B2 (en) | Phosphor and light emitting device | |
JP2013163736A (en) | Phosphor and light-emitting device | |
JP2013163734A (en) | Phosphor and light-emitting device | |
JP2015083618A (en) | Phosphor and light-emitting device | |
JP6083050B2 (en) | Phosphor and light emitting device | |
JP5916413B2 (en) | Phosphor and light emitting device | |
JP2013163725A (en) | Phosphor and light-emitting device | |
JP2013163723A (en) | Phosphor and light-emitting device | |
JP2013163722A (en) | Phosphor and light-emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150129 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160411 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5919014 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |