JP2013159821A - Method for recovering palladium from palladium-containing selenium powder - Google Patents
Method for recovering palladium from palladium-containing selenium powder Download PDFInfo
- Publication number
- JP2013159821A JP2013159821A JP2012022535A JP2012022535A JP2013159821A JP 2013159821 A JP2013159821 A JP 2013159821A JP 2012022535 A JP2012022535 A JP 2012022535A JP 2012022535 A JP2012022535 A JP 2012022535A JP 2013159821 A JP2013159821 A JP 2013159821A
- Authority
- JP
- Japan
- Prior art keywords
- palladium
- selenium
- organic solvent
- selenium powder
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、有価物を湿式回収する方法に関し、より詳しくは、銅電解スライムの処理工程で中間物として発生するセレン粉末を処理して、該セレン粉末に含まれる有価物のパラジウムを回収する方法に関する。 More particularly, the present invention relates to a method of recovering valuable palladium contained in the selenium powder by treating selenium powder generated as an intermediate in the process of treating copper electrolytic slime. About.
銅精錬の電解精製工程において発生する銅電解スライム(アノードスライムとも称する)の処理においては、乾式法及び湿式法のいずれも実用化されているが、設備コストや環境面の負荷などを考慮すると湿式法の方が有用性が高いと考えられている。 In the treatment of copper electrolytic slime (also referred to as anode slime) generated in the copper refining electrolytic refining process, both the dry method and the wet method have been put to practical use. However, considering the equipment cost and environmental load, etc. The method is considered more useful.
例えば特許文献1には、湿式法による銅電解スライムの処理方法が示されている。この処理方法では、先ず銅電解スライムに水を添加してスラリー状にした後、塩素で処理することにより、金、白金族、セレン、テルル等の有価金属を浸出し、得られた浸出液をビス(2−ブトキシエチル)エーテルと接触させて浸出液中の金を有機相に抽出して分離する。 For example, Patent Document 1 discloses a method for treating copper electrolytic slime by a wet method. In this treatment method, water is first added to copper electrolytic slime to form a slurry, and then treated with chlorine to leach valuable metals such as gold, platinum group, selenium and tellurium, and the obtained leachate is bismuthed. Contact with (2-butoxyethyl) ether to extract and separate the gold in the leachate into the organic phase.
次に、金の抽出後の抽残液から、塩化トリオクチルアンモニウムと燐酸トリブチルの混合物を用いて白金族元素の抽出を行なう。更に、白金族元素の抽出後の抽残液に二酸化硫黄を添加した後、その酸化還元電位を400〜500mVに維持すると共に、液温を50〜80℃に維持することでセレンを選択的に還元する。これによりセレンをセレン粉末として回収する。最後に、セレン還元後の液の酸化還元電位を290〜380mVに維持することによりテルルを還元して回収する。 Next, the platinum group element is extracted from the extracted residue after gold extraction using a mixture of trioctylammonium chloride and tributyl phosphate. Furthermore, after adding sulfur dioxide to the extraction residual liquid after extraction of the platinum group element, the oxidation-reduction potential is maintained at 400 to 500 mV, and selenium is selectively maintained by maintaining the liquid temperature at 50 to 80 ° C. Reduce. Thereby, selenium is recovered as selenium powder. Finally, tellurium is reduced and recovered by maintaining the redox potential of the liquid after selenium reduction at 290 to 380 mV.
しかしながら、銅電解スライムには上記した金、白金族、セレン、及びテルルの他に、バリウム、鉛、ビスマス、鉄、銅、砒素、スズ、アンチモン、銀などの種々の元素が含まれている。そして、銅電解スライムのスラリーに塩素ガスを吹き込んで浸出すると、上記した可溶性の金や白金族元素、更にはセレンやテルル以外に、銅、砒素、アンチモン、ビスマス等も浸出されるため、これらが不純物として白金族元素等に含まれてしまう。 However, the copper electrolytic slime contains various elements such as barium, lead, bismuth, iron, copper, arsenic, tin, antimony, and silver in addition to the above-described gold, platinum group, selenium, and tellurium. And when chlorine gas is blown and leached into the slurry of copper electrolytic slime, copper, arsenic, antimony, bismuth, etc. are also leached in addition to the above-mentioned soluble gold and platinum group elements, as well as selenium and tellurium. It is contained in platinum group elements as impurities.
含まれる不純物の種類や品位は、銅製錬に使用する原料事情により様々に異なるが、近年では特に砒素の増加が顕著であり、それに伴って銅電解スライムに含まれる砒素量も増加している。そのため、塩素で浸出して得た浸出液中の砒素濃度も漸次上昇する傾向にある。そこで、特許文献2に示すように、高濃度に不純物元素が共存する塩化物溶液からポリアミン型陰イオン交換樹脂を用いて白金族を分離回収する方法が提案されている。 The types and grades of impurities contained vary depending on the raw materials used for copper smelting, but in recent years, the increase in arsenic is particularly significant, and the amount of arsenic contained in the copper electrolytic slime is increasing accordingly. Therefore, the arsenic concentration in the leachate obtained by leaching with chlorine also tends to increase gradually. Therefore, as shown in Patent Document 2, a method for separating and recovering a platinum group using a polyamine type anion exchange resin from a chloride solution in which an impurity element coexists at a high concentration has been proposed.
しかしながら、上記のポリアミン型陰イオン交換樹脂を用いた白金族分離においては、スラリーの砒素濃度が5.5g/Lとなる値を閾値として、それより高濃度では、ポリアミン型陰イオン交換樹脂へのパラジウム吸着率が低下する現象が生じることがあった。 However, in the platinum group separation using the above polyamine type anion exchange resin, the value at which the arsenic concentration of the slurry is 5.5 g / L is set as a threshold value. A phenomenon in which the palladium adsorption rate decreases may occur.
その結果、パラジウムの分離が不充分となり、ポリアミン型陰イオン交換樹脂を通過した液を還元することによって回収されるセレン粉の中にパラジウムが高濃度に含まれることがあった。パラジウム品位が増加するとセレン粉の商品価値が低下することになり好ましくない。そこで、ポリアミン型陰イオン交換樹脂で白金族を吸着した後の液に重亜硫酸ソーダ等を少量添加し、パラジウムを一部のセレンと共に共沈させて分離する処理が行われてきた。 As a result, the separation of palladium was insufficient, and palladium was sometimes contained in a high concentration in the selenium powder recovered by reducing the liquid that passed through the polyamine-type anion exchange resin. Increasing the palladium quality is not preferable because the commercial value of selenium powder decreases. Therefore, a treatment has been performed in which a small amount of sodium bisulfite or the like is added to the liquid after the platinum group is adsorbed by the polyamine type anion exchange resin, and palladium is coprecipitated together with a part of selenium to separate it.
これによりセレン粉の品質を確保することが可能となるが、一方でパラジウムと共沈して分離されたセレンは、工程の最初に繰り返される。そして、再び塩素ガスで浸出した後、ポリアミン型陰イオン交換樹脂を通過させるなどしてパラジウムとセレンとを分離し、それぞれを回収する処理が行なわれる。すなわち、共沈したパラジウムについては貴金属として回収するために余計な処理時間を要し、それだけコストが増加するという問題があった。 This makes it possible to ensure the quality of the selenium powder, while the selenium co-precipitated with palladium and separated is repeated at the beginning of the process. Then, after leaching with chlorine gas again, a process of separating the palladium and selenium by passing through a polyamine-type anion exchange resin and recovering each is performed. That is, the coprecipitated palladium requires extra processing time to recover as a noble metal, and there is a problem that the cost increases accordingly.
本発明はかかる従来の問題に鑑みてなされたものであり、パラジウムを含有するセレン粉末から選択的にパラジウムを分離して回収する方法を提供するものである。 The present invention has been made in view of such conventional problems, and provides a method for selectively separating and recovering palladium from selenium powder containing palladium.
上記の課題を解決するため、本発明のパラジウムとセレンとの分離方法は、以下の3つの工程からなることを特徴としている。
1)パラジウムを含有するセレン粉末に塩酸及び酸化剤を添加することによって該パラジウムを含有するセレン粉末を液温度55℃以下で溶解する溶解工程
2)前記溶解工程で得た溶解液にジヘキシルサルファイドを含む有機溶媒を接触させてパラジウムを有機溶媒中に抽出する抽出工程
3)パラジウムを抽出した前記有機溶媒にアンモニア水を接触させてパラジウムを水相に逆抽出して回収する逆抽出工程
In order to solve the above problems, the method for separating palladium and selenium of the present invention is characterized by comprising the following three steps.
1) Dissolution step of dissolving the palladium-containing selenium powder at a liquid temperature of 55 ° C. or less by adding hydrochloric acid and an oxidizing agent to the palladium-containing selenium powder. 2) Dihexyl sulfide is added to the solution obtained in the dissolution step. Extraction step for extracting palladium into an organic solvent by contacting with an organic solvent 3) Back extraction step for recovering palladium by extracting it into an aqueous phase by contacting ammonia water with the organic solvent from which palladium has been extracted
上記本発明のパラジウムとセレンとの分離方法においては、塩酸の濃度が6mol/L以上9mol/L以下の範囲内であり、溶解するときの液温度が20℃以上40℃未満の範囲内であることが好ましい。また、溶解工程と抽出工程の間に、溶解液に還元剤を添加して該溶解液の酸化還元電位を銀−塩化銀電極を参照電極とする値で630mV以下の範囲に調整する還元工程を更に有することが好ましい。更に、抽出工程で使用する有機溶媒は、そのジヘキシルサルファイドの濃度が20〜25体積%となるように非極性希釈剤が添加されていることが好ましい。 In the method for separating palladium and selenium according to the present invention, the concentration of hydrochloric acid is in the range of 6 mol / L or more and 9 mol / L or less, and the solution temperature when dissolved is in the range of 20 ° C. or more and less than 40 ° C. It is preferable. In addition, a reducing step of adding a reducing agent to the dissolving solution and adjusting the redox potential of the dissolving solution to a range of 630 mV or less with a silver-silver chloride electrode as a reference electrode between the dissolving step and the extracting step. Furthermore, it is preferable to have. Furthermore, it is preferable that a nonpolar diluent is added to the organic solvent used in the extraction step so that the concentration of the dihexyl sulfide is 20 to 25% by volume.
本発明によれば、パラジウムを含有するセレン粉を安全かつ低コストに処理してセレン粉とパラジウムとを別々に回収することが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to process the selenium powder containing palladium safely and low-cost, and to collect | recover selenium powder and palladium separately.
パラジウムを含むセレン粉を処理してセレン粉とパラジウムとを分離する方法に酸化焙焼法がある。この方法は、パラジウムを含むセレン粉を酸化焙焼してセレンを酸化セレンとして揮発させることにより、揮発しないパラジウムからセレンを分離するものである。揮発したセレンは水に捕捉して溶解液とし、その溶解液に亜硫酸ガスを吹き込んでセレン粉として精製する。一方、揮発しなかったパラジウムは焙焼炉カス(滓)として回収できるので、これを焙焼してパラジウムとして回収することができる。 There is an oxidation roasting method as a method of separating selenium powder and palladium by treating selenium powder containing palladium. In this method, selenium powder containing palladium is oxidized and roasted to volatilize selenium as selenium oxide, thereby separating selenium from non-volatile palladium. Volatilized selenium is captured in water to form a solution, and sulfur dioxide gas is blown into the solution to be purified as selenium powder. On the other hand, palladium that has not volatilized can be recovered as a roasting furnace residue, so that it can be roasted and recovered as palladium.
しかし、この方法では、焙焼炉や排ガス設備などのように、パラジウムを含むセレン粉の酸化焙焼処理のための設備点数が多くなり、コストや手間がかかるという問題がある。また、揮発する酸化セレンは毒性が強いため、環境上や安全上の配慮が必要となるなどの点においても好ましいものとは言い難い。 However, this method has a problem that the number of facilities for oxidation roasting treatment of selenium powder containing palladium is increased, such as a roasting furnace and an exhaust gas facility, and costs and labor are required. Further, since volatile selenium oxide is highly toxic, it is difficult to say that it is preferable in terms of environmental and safety considerations.
これに対して本発明のセレン粉とパラジウムとの分離方法は、パラジウムを含有するセレン粉末に塩酸及び酸化剤を添加し、55℃以下の液温度で該パラジウムを含有するセレン粉末を溶解し(溶解工程)、得られた溶解液に、ジヘキシルサルファイド(ジヘキシルスルフィド又はDHSとも称する)を好適には20〜25体積%含む有機溶媒に接触させてパラジウムのみを有機溶媒に抽出し(抽出工程)、パラジウムを抽出した該有機溶媒にアンモニア水を接触させパラジウムを水相に逆抽出して回収する(逆抽出工程)ものである。 On the other hand, in the method for separating selenium powder and palladium of the present invention, hydrochloric acid and an oxidizing agent are added to selenium powder containing palladium, and the selenium powder containing palladium is dissolved at a liquid temperature of 55 ° C. or less ( Dissolution step), the obtained solution is contacted with an organic solvent containing dihexyl sulfide (also referred to as dihexyl sulfide or DHS), preferably 20 to 25% by volume to extract only palladium into the organic solvent (extraction step), Ammonia water is brought into contact with the organic solvent from which palladium has been extracted, and palladium is back-extracted into the aqueous phase and recovered (back-extraction step).
本発明においては、上記パラジウムを含有するセレン粉末の溶解に使用する塩酸の濃度を6mol/L以上9mol/L以下の範囲内とすることが好ましい。塩酸濃度が6mol/L未満では、セレン粉の溶解に時間を要し、工業的には効率が低くなる。一方、塩酸濃度が9mol/Lを超えると温度が上昇した場合に塩化水素が過剰反応し、突沸等の危険が増すため好ましくない。 In this invention, it is preferable to make the density | concentration of hydrochloric acid used for melt | dissolution of the said selenium powder containing palladium into the range of 6 mol / L or more and 9 mol / L or less. When the hydrochloric acid concentration is less than 6 mol / L, it takes time to dissolve the selenium powder, and the efficiency is industrially low. On the other hand, if the hydrochloric acid concentration exceeds 9 mol / L, hydrogen chloride is excessively reacted when the temperature rises, which increases the risk of bumping and the like, which is not preferable.
塩酸及び酸化剤を添加してセレン粉末を溶解する際の反応は、下記式1のように、セレンが塩素ガスと反応して塩化セレンを生成すると考えられる。この反応終了時における酸化還元電位(ORP)が高いと、セレンは6価の形態を取り安定化する。
[式1]
2Cl2+Se⇒SeCl4(又は、SeCl6)
The reaction at the time of dissolving selenium powder by adding hydrochloric acid and an oxidizing agent is considered that selenium reacts with chlorine gas to generate selenium chloride as shown in the following formula 1. When the oxidation-reduction potential (ORP) at the end of the reaction is high, selenium takes a hexavalent form and stabilizes.
[Formula 1]
2Cl 2 + Se⇒SeCl 4 (or SeCl 6 )
従って、塩酸と共に添加する酸化剤には、塩酸と反応して塩素ガスを生成するものが適している。具体的には過酸化水素水、次亜塩素酸ソーダ、亜塩素酸ソーダ、塩素酸ソーダ、塩素ガスなどを挙げることができる。これらの中でも特に亜塩素酸ソーダあるいは塩素ガスは、反応性が良好で且つ取り扱いが容易なので好適である。 Accordingly, an oxidizing agent that is added together with hydrochloric acid is suitable for generating chlorine gas by reacting with hydrochloric acid. Specific examples include aqueous hydrogen peroxide, sodium hypochlorite, sodium chlorite, sodium chlorate, and chlorine gas. Among these, sodium chlorite or chlorine gas is particularly preferable because of its good reactivity and easy handling.
例えば、酸化剤に亜塩素酸ソーダを使用した場合の、該亜塩素酸ソーダと塩酸との反応は下記式2のようになる。
[式2]
4HCl+NaClO2⇒2Cl2↑+2H2O+NaCl
For example, when sodium chlorite is used as the oxidizing agent, the reaction between the sodium chlorite and hydrochloric acid is represented by the following formula 2.
[Formula 2]
4HCl + NaClO 2 ⇒2Cl 2 ↑ + 2H 2 O + NaCl
これら塩酸及び酸化剤を添加してパラジウムを含有するセレン粉末を溶解するときの液温度は、20℃以上55℃以下の範囲内が好ましく、40℃未満がより好ましい。これは、セレンは還元により生成したときの温度領域によって下記表1に示される形態を示し、表面積の大きな粉状が溶解に適しており好ましいからである。すなわち、クリスタル(単斜晶系)の場合は、溶解によって温度が上がると無定形(アモルファス)に変化し、粗大なゴム状となって溶解反応が低下するなど好ましくなくなるため、溶解温度を55℃以下とすることが適している。 The liquid temperature when the hydrochloric acid and the oxidizing agent are added to dissolve the selenium powder containing palladium is preferably within a range of 20 ° C. or higher and 55 ° C. or lower, and more preferably less than 40 ° C. This is because selenium shows the form shown in Table 1 below depending on the temperature range when it is produced by reduction, and a powdery form with a large surface area is suitable for dissolution and is preferable. That is, in the case of crystal (monoclinic system), when the temperature rises due to melting, it changes into an amorphous form and becomes unfavorable because it becomes a coarse rubbery and the dissolution reaction is lowered. The following is suitable.
上記溶解工程で得た溶解液に有機溶媒を接触させてパラジウムを有機溶媒中に抽出する。その際、有機溶媒にはジヘキシルサルファイド(DHS)を灯油、軽油等の非極性溶媒で希釈したものを使用する。DHSは、パラジウムに対し選択性が高く、一方、セレンを抽出しない特徴がある。さらにDHSは、灯油、軽油等の希釈剤に容易に溶解し、後述するようにアンモニア水で逆抽出できるため、後工程でパラジウムを精製するのに好都合である。なお、有機溶媒でパラジウムを抽出した後の抽残液に亜硫酸ナトリウム、重亜硫酸ナトリウム、亜硫酸ガス等による還元処理を施すことによってセレンが回収される。 An organic solvent is brought into contact with the solution obtained in the dissolution step to extract palladium into the organic solvent. At that time, dihexyl sulfide (DHS) diluted with a nonpolar solvent such as kerosene or light oil is used as the organic solvent. DHS is highly selective with respect to palladium, while it does not extract selenium. Furthermore, since DHS is easily dissolved in a diluent such as kerosene and light oil and can be back extracted with aqueous ammonia as described later, it is convenient for purifying palladium in a subsequent step. In addition, selenium is recovered by performing a reduction treatment with sodium sulfite, sodium bisulfite, sulfite gas, or the like on the extraction liquid after extraction of palladium with an organic solvent.
上記有機溶媒に含まれるDHSの濃度は、20〜25体積%の範囲内とするのが良い。20体積%未満では、溶解液からのパラジウムの抽出率が不充分となって、抽出に長時間が必要となるからである。一方、25体積%を超えると、DHSへのパラジウム抽出量が多くなりすぎるからである。すなわち、DHSの体積濃度が100%の場合は、パラジウムを150g/L担持する能力があるため、25体積%であれば充分にパラジウムを担持させることができる。 The concentration of DHS contained in the organic solvent is preferably in the range of 20 to 25% by volume. If it is less than 20% by volume, the extraction rate of palladium from the solution becomes insufficient, and a long time is required for extraction. On the other hand, if it exceeds 25% by volume, the amount of palladium extracted into DHS becomes too large. That is, when the volume concentration of DHS is 100%, there is an ability to support 150 g / L of palladium. Therefore, 25% by volume can sufficiently support palladium.
パラジウムを抽出した上記有機溶媒を、次にアンモニア水に接触させてパラジウムを水相に逆抽出する。そして、このパラジウムを含むアンモニア水に塩酸を添加しPHを≦2に中和処理を施すことによってパラジウム(2塩化ジアンミンパラジウム)が回収される。 The organic solvent from which palladium has been extracted is then brought into contact with aqueous ammonia to back-extract palladium into the aqueous phase. And palladium (diammine palladium chloride) is collect | recovered by adding hydrochloric acid to the ammonia water containing this palladium, and neutralizing PH to <= 2.
なお、上記溶解工程と抽出工程の間、すなわち、溶解液に有機溶媒を接触する前に溶解液の酸化還元電位(ORP)を銀−塩化銀電極を参照電極とする測定値で630mV以下に維持するのが好ましい。これは、DHSは容易にジヘキシルスルホキシド(DHSO)へと酸化されるからである。具体的には、DHSが混合により溶解液と接触するのに先立って、溶解液にヒドラジンなどの還元剤を添加するなどにより溶解液の酸化還元電位を予め調整しておくのが好ましい。 It should be noted that the oxidation-reduction potential (ORP) of the solution is maintained at 630 mV or less as measured using a silver-silver chloride electrode as a reference electrode between the dissolution step and the extraction step, that is, before contacting the organic solvent with the solution. It is preferable to do this. This is because DHS is easily oxidized to dihexyl sulfoxide (DHSO). Specifically, it is preferable that the redox potential of the solution is adjusted in advance by adding a reducing agent such as hydrazine to the solution before the DHS contacts the solution by mixing.
以下、実施例により本発明のパラジウムとセレンとの分離方法をさらに詳細に説明する。先ず、パラジウムを含んだ湿潤状のセレン粉10gを1リットルビーカーに入れ、これに純水200mL、及び35%塩酸を200mL添加して懸濁させた。得られた懸濁液をスターラーで攪拌しながら、該懸濁液に25%濃度の亜塩素酸ソーダ25mLを約10分程度をかけて少量ずつ添加した。 Hereinafter, the method for separating palladium and selenium of the present invention will be described in more detail by way of examples. First, 10 g of wet selenium powder containing palladium was placed in a 1 liter beaker, and 200 mL of pure water and 200 mL of 35% hydrochloric acid were added and suspended therein. While stirring the obtained suspension with a stirrer, 25 mL of 25% sodium chlorite was added to the suspension in small portions over about 10 minutes.
亜塩素酸ソーダの添加に伴ってセレン粉の量が減少していき、最終的に未溶解物がなくなって全てのセレン粉が溶解した。このようにして試料1の溶解液を作製した。なお、亜塩素酸ソーダ添加の際、塩素ガスの発生が見られた。溶解後の溶解液の温度は46℃であり、その酸化還元電位は銀−塩化銀電極を参照電極とする値で1030mVだった。その後、この試料1の溶解液のセレンとパラジウムの濃度をICP分析装置で分析した。 With the addition of sodium chlorite, the amount of selenium powder decreased, and finally the undissolved material disappeared and all the selenium powder was dissolved. In this way, a solution for Sample 1 was prepared. When sodium chlorite was added, generation of chlorine gas was observed. The temperature of the dissolved solution after dissolution was 46 ° C., and the oxidation-reduction potential was 1030 mV with a silver-silver chloride electrode as a reference electrode. Thereafter, the concentration of selenium and palladium in the solution of Sample 1 was analyzed with an ICP analyzer.
上記と同様の湿潤状のセレン粉を10gに代えて20g使用し、25%濃度の亜塩素酸ソーダを25mLに代えて45mL添加した以外は上記と同様にして試料2の溶解液を作製した。この試料2の溶解液では、亜塩素酸ソーダを45mL添加したところで未溶解物がなくなり、全てのセレン粉が溶解したことを確認できた。溶解後の溶解液の温度は50℃であり、その酸化還元電位は銀−塩化銀電極を参照電極とする値で1036mVだった。その後、この試料2の溶解液のセレンとパラジウムの濃度をICP分析装置で分析した。これら試料1及び試料2の溶解液の分析結果を下記の表2に示す。 A solution of Sample 2 was prepared in the same manner as above except that 20 g of wet selenium powder similar to the above was used instead of 10 g and 45 mL of 25% sodium chlorite was added instead of 25 mL. In the dissolution solution of Sample 2, when 45 mL of sodium chlorite was added, the undissolved material disappeared, and it was confirmed that all the selenium powder was dissolved. The temperature of the dissolved solution after dissolution was 50 ° C., and the oxidation-reduction potential was 1036 mV with a silver-silver chloride electrode as a reference electrode. Thereafter, the concentration of selenium and palladium in the solution of Sample 2 was analyzed with an ICP analyzer. The analysis results of the lysates of Sample 1 and Sample 2 are shown in Table 2 below.
次に、各溶解液に濃度6%の抱水ヒドラジンを数滴添加し、各溶解液の酸化還元電位を銀−塩化銀電極を参照電極とする値で550mVに調整した。続いて、ジヘキシルサルファイドの濃度が25体積%となるように軽油で調整された有機溶媒を用意し、これを各溶解液に40mL添加して攪拌した。この混合液を、攪拌開始時、及び攪拌を開始してから数時間おきにサンプリングし、パラジウムとセレンの濃度を分析した。その分析結果を、下記の表3に示す。 Next, several drops of hydrazine hydrate having a concentration of 6% were added to each solution, and the oxidation-reduction potential of each solution was adjusted to 550 mV using a silver-silver chloride electrode as a reference electrode. Then, the organic solvent adjusted with the light oil so that the density | concentration of dihexyl sulfide might be 25 volume% was prepared, 40 mL of this was added to each solution, and it stirred. This mixture was sampled at the start of stirring and every few hours after the start of stirring, and the concentrations of palladium and selenium were analyzed. The analysis results are shown in Table 3 below.
この表3の結果から分かるように、攪拌を開始してから3〜5時間程度で、抽出率95%又はそれ以上の高いレベルで溶解液中のパラジウムを有機溶媒中に抽出させることができた。一方、溶解液中のセレンは、有機溶媒中にほとんど抽出されないことがわかる。すなわち、パラジウムを選択的に回収することができた。 As can be seen from the results of Table 3, palladium in the solution could be extracted into the organic solvent at an extraction rate of 95% or higher in about 3 to 5 hours after the start of stirring. . On the other hand, it can be seen that selenium in the solution is hardly extracted into the organic solvent. That is, palladium could be selectively recovered.
比較のため、試料1と同様にして懸濁液を作製した。この懸濁液に対して、スターラーで攪拌しながら温度を60℃まで上昇させて維持した。次に、この懸濁液に25%濃度の亜塩素酸ソーダ25mLを約10分程度をかけて少量ずつ添加した。その結果、懸濁したセレン粉が時間の経過と共に徐々に少なくなっていったが、1リットルビーカーの底に塊状の未溶解物が生じた。その後、30分程度、液の酸化還元電位を銀−塩化銀電極を参照電極とする値で1000mV以上となるように亜塩素酸ソーダで調整した。攪拌開始から5時間が経過しても塊状の未溶解物はそのまま残量し、溶解できなかった。 For comparison, a suspension was prepared in the same manner as Sample 1. With respect to this suspension, the temperature was raised to 60 ° C. and maintained while stirring with a stirrer. Next, 25 mL of 25% sodium chlorite was added to the suspension in small portions over about 10 minutes. As a result, the suspended selenium powder gradually decreased with time, but a lump of undissolved material was formed at the bottom of the 1 liter beaker. Thereafter, for about 30 minutes, the redox potential of the liquid was adjusted with sodium chlorite so that the value using the silver-silver chloride electrode as a reference electrode was 1000 mV or more. Even after 5 hours from the start of stirring, the lump undissolved material remained as it was and could not be dissolved.
Claims (4)
1)パラジウムを含有するセレン粉末に塩酸及び酸化剤を添加することによって該パラジウムを含有するセレン粉末を液温度55℃以下で溶解する溶解工程
2)前記溶解工程で得た溶解液にジヘキシルサルファイドを含む有機溶媒を接触させてパラジウムを有機溶媒中に抽出する抽出工程
3)パラジウムを抽出した前記有機溶媒にアンモニア水を接触させてパラジウムを水相に逆抽出して回収する逆抽出工程 A method for separating palladium and selenium comprising the following three steps.
1) Dissolution step of dissolving the palladium-containing selenium powder at a liquid temperature of 55 ° C. or less by adding hydrochloric acid and an oxidizing agent to the palladium-containing selenium powder. 2) Dihexyl sulfide is added to the solution obtained in the dissolution step. Extraction step for extracting palladium into an organic solvent by contacting with an organic solvent 3) Back extraction step for recovering palladium by extracting it into an aqueous phase by contacting ammonia water with the organic solvent from which palladium has been extracted
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012022535A JP2013159821A (en) | 2012-02-03 | 2012-02-03 | Method for recovering palladium from palladium-containing selenium powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012022535A JP2013159821A (en) | 2012-02-03 | 2012-02-03 | Method for recovering palladium from palladium-containing selenium powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013159821A true JP2013159821A (en) | 2013-08-19 |
Family
ID=49172338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012022535A Pending JP2013159821A (en) | 2012-02-03 | 2012-02-03 | Method for recovering palladium from palladium-containing selenium powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013159821A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112573491A (en) * | 2020-12-18 | 2021-03-30 | 电子科技大学 | Coral-like Pd4Method for producing Se compound |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02213426A (en) * | 1989-02-15 | 1990-08-24 | Daihachi Chem Ind Co Ltd | Method for recovering palladium from water solution |
JP2000169117A (en) * | 1998-12-08 | 2000-06-20 | Sumitomo Metal Mining Co Ltd | Selectively reductive recovery process of selenium |
JP2001107156A (en) * | 1999-09-30 | 2001-04-17 | Nippon Mining & Metals Co Ltd | Method for extracting palladium |
JP2001207223A (en) * | 2000-01-25 | 2001-07-31 | Sumitomo Metal Mining Co Ltd | Method for recovering valuable metal from copper electrolytic slime |
JP2005097695A (en) * | 2003-09-26 | 2005-04-14 | Sumitomo Metal Mining Co Ltd | Mutual separation method for platinum group element |
JP2011208248A (en) * | 2010-03-30 | 2011-10-20 | Mitsubishi Materials Corp | Method for separating platinum group element |
-
2012
- 2012-02-03 JP JP2012022535A patent/JP2013159821A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02213426A (en) * | 1989-02-15 | 1990-08-24 | Daihachi Chem Ind Co Ltd | Method for recovering palladium from water solution |
JP2000169117A (en) * | 1998-12-08 | 2000-06-20 | Sumitomo Metal Mining Co Ltd | Selectively reductive recovery process of selenium |
JP2001107156A (en) * | 1999-09-30 | 2001-04-17 | Nippon Mining & Metals Co Ltd | Method for extracting palladium |
JP2001207223A (en) * | 2000-01-25 | 2001-07-31 | Sumitomo Metal Mining Co Ltd | Method for recovering valuable metal from copper electrolytic slime |
JP2005097695A (en) * | 2003-09-26 | 2005-04-14 | Sumitomo Metal Mining Co Ltd | Mutual separation method for platinum group element |
JP2011208248A (en) * | 2010-03-30 | 2011-10-20 | Mitsubishi Materials Corp | Method for separating platinum group element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112573491A (en) * | 2020-12-18 | 2021-03-30 | 电子科技大学 | Coral-like Pd4Method for producing Se compound |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4999108B2 (en) | Gold leaching method | |
JP4642796B2 (en) | Gold leaching method | |
US7479262B2 (en) | Method for separating platinum group element | |
AU2015265793A1 (en) | Hydrometallurgical treatment of anode sludge | |
JP2012126611A (en) | Method for recovering selenium from copper electrolysis slime | |
JP6960070B1 (en) | How to recover valuable metals | |
JP2012246198A (en) | Method for purifying selenium by wet process | |
JP6730672B2 (en) | How to dissolve gold | |
JP2020105587A (en) | Treatment method of acidic solution containing noble metal, selenium and tellurium | |
JP5447357B2 (en) | Chlorine leaching method for copper electrolytic slime | |
JP2008274382A (en) | Method for separating lead from aqueous cobalt chloride solution | |
US20210292927A1 (en) | Method for refining bismuth | |
EP1577408B2 (en) | Method for separating platinum group elements from selenum/tellurium bearing materials | |
JP2021023851A (en) | Method of treating solution containing seleno sulfate | |
JP2020105588A (en) | Treatment method of mixture containing noble metal, selenium and tellurium | |
JP2013159821A (en) | Method for recovering palladium from palladium-containing selenium powder | |
JP4269693B2 (en) | Process for treating selenium mixture | |
JP2007231397A (en) | Method for refining silver chloride | |
JP2010264331A (en) | Separation method of arsenic | |
JP5423592B2 (en) | Method for producing low chlorine nickel sulfate / cobalt solution | |
JP7006332B2 (en) | How to make gold powder | |
JP6967937B2 (en) | How to collect selenium | |
JP5573763B2 (en) | High purity silver production waste liquid treatment method | |
JP6750454B2 (en) | Method for removing impurities from bismuth electrolyte | |
JP2019147718A (en) | Method for recovering tellurium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140813 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150818 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160126 |