Nothing Special   »   [go: up one dir, main page]

JP2013157563A - Method for manufacturing semiconductor element - Google Patents

Method for manufacturing semiconductor element Download PDF

Info

Publication number
JP2013157563A
JP2013157563A JP2012019009A JP2012019009A JP2013157563A JP 2013157563 A JP2013157563 A JP 2013157563A JP 2012019009 A JP2012019009 A JP 2012019009A JP 2012019009 A JP2012019009 A JP 2012019009A JP 2013157563 A JP2013157563 A JP 2013157563A
Authority
JP
Japan
Prior art keywords
insulating film
pattern
resist
pattern resist
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012019009A
Other languages
Japanese (ja)
Other versions
JP5948069B2 (en
Inventor
Akihito Tanifuji
昭仁 谷藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2012019009A priority Critical patent/JP5948069B2/en
Publication of JP2013157563A publication Critical patent/JP2013157563A/en
Application granted granted Critical
Publication of JP5948069B2 publication Critical patent/JP5948069B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/30Structure, shape, material or disposition of the layer connectors prior to the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor element capable of more surely forming an insulating film pattern to detail.SOLUTION: A method for manufacturing a semiconductor element comprises the steps of: sticking a pattern resist 31 in which a pattern is formed to an insulating film 11 formed on one principal surface of a semiconductor substrate 2; and removing a part of the insulating film 11 exposed to the outside (insulating film molding step).

Description

本発明は、半導体素子の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor element.

半導体素子の小型化、高機能化にともない、フォトリソグラフィ技術を用いて半導体基板に微細なパターンを形成することが行われている。この微細なパターンは、絶縁膜や配線等のパターンに用いられる。   With the miniaturization and high functionality of semiconductor elements, fine patterns are formed on semiconductor substrates using photolithography technology. This fine pattern is used for a pattern such as an insulating film or wiring.

例えば、特許文献1に記載された半導体素子は、半導体ウエハの一方の主面に、集積回路と、集積回路に接続された接続パッドと、集積回路および接続パッドを覆う絶縁膜とを備えて構成されている。絶縁膜には、接続パッドの中央部を露出させるための開口部が形成されている。この絶縁膜の開口部は、フォトリソグラフィ技術により形成されている。   For example, the semiconductor element described in Patent Document 1 includes an integrated circuit, a connection pad connected to the integrated circuit, and an insulating film covering the integrated circuit and the connection pad on one main surface of the semiconductor wafer. Has been. In the insulating film, an opening for exposing the central portion of the connection pad is formed. The opening of the insulating film is formed by a photolithography technique.

フォトリソグラフィ技術は、一般的に以下のような手順で行われる。すなわち、シリコン等で形成された半導体基板の表面に設けられた絶縁膜に、レジスト液を塗布する。所定のパターンが形成されたフォトマスクを通した光を、レジスト液に照射する。レジスト液に光を照射するとレジスト液の現像液に対する溶解性が変化することを利用して、絶縁膜上にパターン化されたレジストを形成する。この後でエッチングすることで、パターン化されたレジストに保護されずに露出している絶縁膜が腐食され、絶縁膜が所定のパターンに形成される。   The photolithography technique is generally performed in the following procedure. That is, a resist solution is applied to an insulating film provided on the surface of a semiconductor substrate formed of silicon or the like. The resist solution is irradiated with light that passes through a photomask on which a predetermined pattern is formed. A patterned resist is formed on the insulating film by utilizing the fact that the solubility of the resist solution in the developer changes when the resist solution is irradiated with light. By etching after this, the insulating film exposed without being protected by the patterned resist is corroded, and the insulating film is formed in a predetermined pattern.

特開2011−142247号公報JP 2011-142247 A

しかしながら、フォトリソグラフィ技術は、処理条件や工程が複雑であり、レジスト液に光を照射するときにパターンが抜け過ぎたり、パターンの抜けが不足したりするという問題がある。その結果として、パターン化されたレジストを用いてエッチングしたときに、絶縁膜のパターンに不具合が発生することがある。   However, the photolithographic technique has complicated processing conditions and processes, and has a problem that the pattern is excessively lost when the resist solution is irradiated with light, or the pattern is insufficiently omitted. As a result, when etching is performed using a patterned resist, a defect may occur in the pattern of the insulating film.

本発明は、このような問題点に鑑みてなされたものであって、絶縁膜のパターンを細部までより確実に形成できる半導体素子の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a method of manufacturing a semiconductor element that can more reliably form an insulating film pattern in detail.

上記課題を解決するために、この発明は以下の手段を提案している。
本発明の半導体素子の製造方法は、半導体基板の一方の主面に形成した絶縁膜に、パターンが形成されたパターンレジストを貼り付けるレジスト貼り付け工程と、前記絶縁膜のうち外部に露出した部分を除去する絶縁膜成形工程と、を備えることを特徴としている。
予めパターンが形成されたパターンレジストは、レジスト液を用いたフォトリソグラフィ技術でレジストを形成する場合に比べて、細部のパターンまで正確に形成することができる。したがって、このパターンレジストをマスクとして、外部に露出する絶縁膜をエッチンング等で除去することで、絶縁膜のパターンを細部までより確実に形成することができる。
In order to solve the above problems, the present invention proposes the following means.
The method of manufacturing a semiconductor element of the present invention includes a resist attaching step of attaching a pattern resist having a pattern formed on an insulating film formed on one main surface of a semiconductor substrate, and a portion of the insulating film exposed to the outside. And an insulating film forming step for removing the film.
A pattern resist in which a pattern has been formed in advance can be accurately formed to a fine pattern as compared with a case where a resist is formed by a photolithography technique using a resist solution. Therefore, by using this pattern resist as a mask and removing the insulating film exposed to the outside by etching or the like, the pattern of the insulating film can be more reliably formed in detail.

また、上記の半導体素子の製造方法において、前記レジスト貼り付け工程では、ベースシート上に形成された前記パターンレジストを前記絶縁膜に貼り付け、前記絶縁膜に貼り付けられた前記パターンレジストから前記ベースシートを剥がすことがより好ましい。
この発明によれば、パターンレジストに直接触れることを抑え、ベースシート上でパターンレジストを一体にして扱うことができる。これにより、絶縁膜にパターンレジストを容易に貼り付けることができる
In the method for manufacturing a semiconductor element, in the resist attaching step, the pattern resist formed on a base sheet is attached to the insulating film, and the base is formed from the pattern resist attached to the insulating film. It is more preferable to peel off the sheet.
According to the present invention, direct contact with the pattern resist can be suppressed, and the pattern resist can be handled integrally on the base sheet. As a result, the pattern resist can be easily attached to the insulating film.

また、上記の半導体素子の製造方法において、前記パターンレジストにおける前記ベースシートとは反対側の面には接着層が設けられ、前記ベースシートと前記パターンレジストとの接合強度は、前記パターンレジストと前記接着層との接着強度、および、前記接着層と前記絶縁膜との接着強度のいずれよりも弱いことがより好ましい。
この発明によれば、絶縁膜に接着層を貼り付けて絶縁膜からベースシートを剥がすと、接着強度の違いにより、絶縁膜に接着層が貼り付き、かつ、接着層にパターンレジストが貼り付いた状態で、ベースシートとパターンレジストとが分離される。このため、絶縁膜に貼り付けたパターンレジストからベースシートを容易に剥がすことができる。
In the method for manufacturing a semiconductor element, an adhesive layer is provided on a surface of the pattern resist opposite to the base sheet, and a bonding strength between the base sheet and the pattern resist is determined by the pattern resist and the pattern resist. More preferably, it is weaker than both the adhesive strength between the adhesive layer and the adhesive strength between the adhesive layer and the insulating film.
According to this invention, when the adhesive layer is attached to the insulating film and the base sheet is peeled off from the insulating film, the adhesive layer is attached to the insulating film and the pattern resist is attached to the adhesive layer due to the difference in adhesive strength. In the state, the base sheet and the pattern resist are separated. For this reason, a base sheet can be easily peeled off from the pattern resist affixed on the insulating film.

また、上記の半導体素子の製造方法において、前記パターンレジストは、前記絶縁膜に貼り付けられたときに、前記絶縁膜における前記パターンレジストを貼り付ける貼り付け面に対して直交するように形成された外面を有し、前記絶縁膜成形工程では、エッチング液を用いて前記絶縁膜を除去することがより好ましい。
この発明によれば、エッチング液を用いて絶縁膜を除去するときに、露出した絶縁膜上に付着するエッチング液の厚さがほぼ均一になるため、露出した絶縁膜にエッチング液がほぼ均一に染み込む。したがって、除去されずに残った絶縁膜の厚さを、ほぼ均一にすることができる。
In the method for manufacturing a semiconductor element, the pattern resist is formed so as to be orthogonal to a surface of the insulating film to which the pattern resist is attached when the pattern resist is attached to the insulating film. More preferably, the insulating film is formed by using an etching solution in the insulating film forming step.
According to the present invention, when the insulating film is removed using the etching solution, the thickness of the etching solution adhering to the exposed insulating film becomes substantially uniform, so that the etching solution is almost uniformly formed on the exposed insulating film. Soak up. Therefore, the thickness of the insulating film remaining without being removed can be made substantially uniform.

また、上記の半導体素子の製造方法において、前記パターンレジストは、前記絶縁膜に貼り付けられたときに、前記絶縁膜における前記パターンレジストを貼り付ける貼り付け面に対向するように傾斜した外面を有し、前記絶縁膜成形工程では、エッチング液を用いて前記絶縁膜を除去することがより好ましい。
この発明によれば、エッチング液を用いて絶縁膜を除去するときに、露出した絶縁膜上に付着するエッチング液の厚さは、貼り付け面に沿ってパターンレジストに近づくほど薄くなるため、パターンレジストに近づくほど、露出した絶縁膜に染み込むエッチング液の量が少なくなり、絶縁膜が除去されにくくなる。これにより、除去されずに残った絶縁膜の縁部を、縁に向かうほど薄くなるように形成することができる。
In the method for manufacturing a semiconductor device, the pattern resist has an outer surface that is inclined so as to face a bonding surface to which the pattern resist is bonded in the insulating film when the pattern resist is bonded to the insulating film. In the insulating film forming step, it is more preferable to remove the insulating film using an etching solution.
According to the present invention, when the insulating film is removed using the etching solution, the thickness of the etching solution that adheres to the exposed insulating film becomes thinner as it approaches the pattern resist along the bonding surface. The closer to the resist, the smaller the amount of etchant that soaks into the exposed insulating film, and the more difficult the insulating film is removed. Thereby, the edge part of the insulating film remaining without being removed can be formed so as to become thinner toward the edge.

本発明の半導体素子の製造方法によれば、絶縁膜のパターンを細部までより確実に形成できる。   According to the semiconductor element manufacturing method of the present invention, the pattern of the insulating film can be more reliably formed in detail.

本発明の一実施形態に係る製造方法によって製造される半導体素子を示す概略断面図である。It is a schematic sectional drawing which shows the semiconductor element manufactured by the manufacturing method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体素子の製造方法において、拡散工程後の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state after a diffusion process in the manufacturing method of the semiconductor element which concerns on one Embodiment of this invention. 同半導体素子の製造方法において、絶縁膜配置工程後の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state after the insulating film arrangement | positioning process in the manufacturing method of the same semiconductor element. 同半導体素子の製造方法において、レジスト貼り付け工程で用いられるパターンレジストの断面図である。It is sectional drawing of the pattern resist used at a resist sticking process in the manufacturing method of the same semiconductor element. 同半導体素子の製造方法において、レジスト貼り付け工程でパターンレジストを貼り付けている状態を説明する断面図である。It is sectional drawing explaining the state which has affixed the pattern resist at the resist affixing process in the manufacturing method of the same semiconductor element. 同半導体素子の製造方法において、絶縁膜成形工程でエッチング液を塗布した状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which apply | coated the etching liquid in the insulating film formation process in the manufacturing method of the same semiconductor element. 同半導体素子の製造方法において、絶縁膜成形工程後の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state after an insulating film shaping | molding process in the manufacturing method of the same semiconductor element. 同半導体素子の製造方法において、メサ溝形成工程後の状態を示す概略断面図である。In the manufacturing method of the same semiconductor device, it is a schematic sectional view showing the state after a mesa groove formation process. 同半導体素子の製造方法において、表面処理工程後の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state after a surface treatment process in the manufacturing method of the same semiconductor element. 同半導体素子の製造方法において、半田層形成工程後の状態を示す概略断面図である。FIG. 6 is a schematic cross sectional view showing a state after a solder layer forming step in the method for manufacturing a semiconductor element. 同半導体素子の製造方法において、切断工程後の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state after a cutting process in the manufacturing method of the same semiconductor element. 本発明の一実施形態の変形例に係る半導体素子の製造方法において用いられるパターンレジストを示す概略断面図である。It is a schematic sectional drawing which shows the pattern resist used in the manufacturing method of the semiconductor element which concerns on the modification of one Embodiment of this invention. 同半導体素子の製造方法において、レジスト貼り付け工程後の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state after a resist sticking process in the manufacturing method of the same semiconductor element. 同半導体素子の製造方法において、絶縁膜成形工程後の状態を示す概略断面図である。It is a schematic sectional drawing which shows the state after an insulating film shaping | molding process in the manufacturing method of the same semiconductor element.

以下、図1〜14を参照して本発明の一実施形態について説明する。以下では、半導体素子がメサ型ダイオードである場合を例にとって説明する。
図1に示すように、この実施形態に係るメサ型ダイオード1は、半導体基板2と、半導体基板2の両主面2a,2bに重ねて形成された電極層3,4及び半田層5,6と、を備えて大略構成されている。
半導体基板2は、第一導電型(例えばn型)の半導体層21(以下、n型半導体層21と呼ぶ。)を、半導体基板2の一方の主面2aをなす第一導電型とは反対の第二導電型(例えばp型)の半導体層22(以下、p型半導体層22と呼ぶ。)と、他方の主面2bをなし、n型半導体層21よりも不純物濃度の高い第一導電型の半導体層23(以下、高濃度n型半導体層23と呼ぶ。)とによって挟み込むように構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. Hereinafter, a case where the semiconductor element is a mesa diode will be described as an example.
As shown in FIG. 1, a mesa diode 1 according to this embodiment includes a semiconductor substrate 2, electrode layers 3 and 4 and solder layers 5 and 6 formed on both main surfaces 2a and 2b of the semiconductor substrate 2. And is generally configured.
The semiconductor substrate 2 has a first conductivity type (for example, n-type) semiconductor layer 21 (hereinafter referred to as an n-type semiconductor layer 21) opposite to the first conductivity type that forms one main surface 2 a of the semiconductor substrate 2. A second conductive type (for example, p-type) semiconductor layer 22 (hereinafter referred to as p-type semiconductor layer 22) and the other main surface 2b, and having a higher impurity concentration than the n-type semiconductor layer 21. It is configured so as to be sandwiched by a type semiconductor layer 23 (hereinafter referred to as a high concentration n-type semiconductor layer 23).

n型半導体層21の不純物濃度は、例えば2×1014atoms/cmであり、p型半導体層22の不純物濃度は、例えば1×1019atoms/cmである。また、高濃度n型半導体層23は、n型半導体層21よりも高く、例えば1×1019atoms/cmである。
この半導体基板2は例えば平面視矩形状に形成されており、その一方の主面2aの外周縁にはメサ溝7が形成されている。メサ溝7の面(内面)は、半導体基板2の一方の主面2aから側面2cに向けて凹状に湾曲して傾斜している。そして、メサ溝7の面には、n型半導体層21とp型半導体層22との接合界面(PN接合界面)が露出している。言い換えれば、メサ溝7は、PN接合界面よりも深く形成されている。
The impurity concentration of the n-type semiconductor layer 21 is, for example, 2 × 10 14 atoms / cm 3 , and the impurity concentration of the p-type semiconductor layer 22 is, for example, 1 × 10 19 atoms / cm 3 . Further, the high-concentration n-type semiconductor layer 23 is higher than the n-type semiconductor layer 21 and is, for example, 1 × 10 19 atoms / cm 3 .
The semiconductor substrate 2 is formed, for example, in a rectangular shape in plan view, and a mesa groove 7 is formed on the outer peripheral edge of one main surface 2a thereof. The surface (inner surface) of the mesa groove 7 is curved and inclined in a concave shape from one main surface 2a of the semiconductor substrate 2 toward the side surface 2c. The junction interface (PN junction interface) between the n-type semiconductor layer 21 and the p-type semiconductor layer 22 is exposed on the surface of the mesa groove 7. In other words, the mesa groove 7 is formed deeper than the PN junction interface.

また、メサ溝7の面は、ガラスや樹脂等からなるパッシベーション膜8によって覆われている。パッシベーション膜8の厚さは、ほぼ均一となっている。また、本実施形態では、パッシベーション膜8が半導体基板2の一方の主面2a上まで延び、一方の主面2aの外周縁領域も覆っている。言い換えれば、半導体基板2の一方の主面2aに重ねて形成された第一電極層3及び半田層5は、パッシベーション膜8によって囲まれている。
さらに、半導体基板2の他方の主面2bの外周縁領域には、シリコン酸化膜9が形成されている。したがって、半導体基板2の他方の主面2bに重ねて形成された第二電極層4及び半田層6は、このシリコン酸化膜9によって囲まれている。
The surface of the mesa groove 7 is covered with a passivation film 8 made of glass or resin. The thickness of the passivation film 8 is substantially uniform. In the present embodiment, the passivation film 8 extends to the one main surface 2a of the semiconductor substrate 2 and covers the outer peripheral edge region of the one main surface 2a. In other words, the first electrode layer 3 and the solder layer 5 formed so as to overlap one main surface 2 a of the semiconductor substrate 2 are surrounded by the passivation film 8.
Further, a silicon oxide film 9 is formed in the outer peripheral edge region of the other main surface 2 b of the semiconductor substrate 2. Therefore, the second electrode layer 4 and the solder layer 6 formed to overlap the other main surface 2 b of the semiconductor substrate 2 are surrounded by the silicon oxide film 9.

そして、各電極層3,4は、例えば、半導体基板2の各主面2a,2b上にニッケル・シリサイド膜(Ni−Si膜)とニッケルめっき層とを順番に積層して構成されている。
なお、第一電極層3及び半田層5を積層させた全体の厚み、および、第二電極層4及び半田層6を積層させた全体の厚みは、それぞれがパッシベーション膜8やシリコン酸化膜9の厚みよりも大きく設定されていることが好ましい。
Each electrode layer 3, 4 is configured by, for example, sequentially laminating a nickel silicide film (Ni—Si film) and a nickel plating layer on each main surface 2 a, 2 b of the semiconductor substrate 2.
The total thickness of the first electrode layer 3 and the solder layer 5 and the total thickness of the second electrode layer 4 and the solder layer 6 are the same as those of the passivation film 8 and the silicon oxide film 9, respectively. It is preferable to set it larger than the thickness.

次に、上記構成のメサ型ダイオード1の製造方法(以下、製造方法と呼ぶ。)の一例について説明する。
メサ型ダイオード1を製造する際には、はじめに、図2に示すように、第一導電型(例えばn型)の半導体基板2の一方の主面2aに、第一導電型とは反対の第二導電型(例えばp型)の不純物を拡散して、第二導電型の半導体層22(p型半導体層22)を形成する(拡散工程)。また、本実施形態の拡散工程では、半導体基板2の他方の主面2bに、第一の導電型(n型)の不純物を拡散して、半導体基板2よりも不純物濃度の高い第一導電型の半導体層23(高濃度n型半導体層23)を形成する。
p型半導体層22は、半導体基板2の一方の主面2a上にホウ素やアルミニウム等を含有するシートを配置し焼成することで形成される。一方で、高濃度n型半導体層23は、半導体基板2の他方の主面2b上にリン等を含有するシートを配置し焼成することで形成される。
拡散工程後の半導体基板2は、工程前の半導体基板2と同一のn型半導体層21を、半導体基板2の一方の主面2aをなすp型半導体層22と、他方の主面2bをなす高濃度n型半導体層23とによって挟み込むように構成されている。
Next, an example of a method for manufacturing the mesa diode 1 having the above configuration (hereinafter referred to as a manufacturing method) will be described.
When manufacturing the mesa diode 1, first, as shown in FIG. 2, a first surface 2 a of a first conductivity type (for example, n type) semiconductor substrate 2 is opposite to the first conductivity type. A second conductivity type semiconductor layer 22 (p-type semiconductor layer 22) is formed by diffusing two conductivity type (for example, p-type) impurities (diffusion process). Further, in the diffusion process of the present embodiment, the first conductivity type having a higher impurity concentration than the semiconductor substrate 2 is obtained by diffusing an impurity of the first conductivity type (n-type) into the other main surface 2 b of the semiconductor substrate 2. Semiconductor layer 23 (high-concentration n-type semiconductor layer 23) is formed.
The p-type semiconductor layer 22 is formed by disposing a sheet containing boron, aluminum, or the like on one main surface 2a of the semiconductor substrate 2 and baking it. On the other hand, the high-concentration n-type semiconductor layer 23 is formed by disposing and baking a sheet containing phosphorus or the like on the other main surface 2b of the semiconductor substrate 2.
The semiconductor substrate 2 after the diffusion step forms the same n-type semiconductor layer 21 as the semiconductor substrate 2 before the step, the p-type semiconductor layer 22 that forms one main surface 2a of the semiconductor substrate 2, and the other main surface 2b. The high-concentration n-type semiconductor layer 23 is sandwiched between them.

上記拡散工程後には、図3に示すように、半導体基板2の一方の主面2aに絶縁膜11を、他方の主面2bに絶縁膜12を、それぞれ形成する(絶縁膜配置工程)。絶縁膜11,12は、例えば、半導体基板2を加熱して酸化させることで形成される。   After the diffusion step, as shown in FIG. 3, an insulating film 11 is formed on one main surface 2a of the semiconductor substrate 2 and an insulating film 12 is formed on the other main surface 2b (insulating film arranging step). The insulating films 11 and 12 are formed, for example, by heating and oxidizing the semiconductor substrate 2.

絶縁膜配置工程後に、絶縁膜11,12にパターンレジストを貼り付けるレジスト貼り付け工程を行うが、図4を用いて、このレジスト貼り付け工程で用いられるパターンレジスト31,36について説明する。
絶縁膜11に貼り付けられるパターンレジスト31は、ベースシート32上で所定のパターンに形成されていて、パターンレジスト31におけるベースシート32とは反対側には接着層33が設けられている。
パターンレジスト31は、公知の樹脂等を用いて形成することができる。パターンレジスト31には、感光性は必要としない。
ベースシート32には、弾性係数が一定以上のシート状の樹脂を用いることが好ましい。パターンレジスト31の形状が歪むのを防止するためである。
ベースシート32とパターンレジスト31との間には、不図示の接着剤が設けられている。
After the insulating film arranging step, a resist attaching step for attaching a pattern resist to the insulating films 11 and 12 is performed. The pattern resists 31 and 36 used in the resist attaching step will be described with reference to FIG.
The pattern resist 31 attached to the insulating film 11 is formed in a predetermined pattern on the base sheet 32, and an adhesive layer 33 is provided on the opposite side of the pattern resist 31 from the base sheet 32.
The pattern resist 31 can be formed using a known resin or the like. The pattern resist 31 does not need photosensitivity.
For the base sheet 32, it is preferable to use a sheet-like resin having a certain elastic modulus. This is for preventing the shape of the pattern resist 31 from being distorted.
An adhesive (not shown) is provided between the base sheet 32 and the pattern resist 31.

図4中の拡大図に示すように、パターンレジスト31は、絶縁膜11の外面となる貼り付け面11aに貼り付けられる。パターンレジスト31の外面31aは、パターンレジスト31が接着層33を介して貼り付け面11aに貼り付けられたときに、貼り付け面11aに対して直交するように形成されている。すなわち、貼り付け面11aと外面31aとのなす角度θ1は、90°となっている。
パターンレジスト31に接着層33が設けられているこの場合には、具体的には、接着層33の接着面33aと外面31aとのなす角度を90°にすることで、上述の角度θ1を90°にすることができる。
単位接着面積当たりの、接着剤によるベースシート32とパターンレジスト31との接合強度は、パターンレジスト31と接着層33との接着強度、および、接着層33と絶縁膜11との接着強度のいずれよりも弱く設定されている。
パターンレジスト31,36に形成されるパターンは、絶縁膜11,12に形成すべきパターンとそれぞれ同一である。
As shown in the enlarged view in FIG. 4, the pattern resist 31 is affixed to the affixing surface 11 a that is the outer surface of the insulating film 11. The outer surface 31a of the pattern resist 31 is formed to be orthogonal to the attachment surface 11a when the pattern resist 31 is attached to the attachment surface 11a via the adhesive layer 33. That is, the angle θ1 formed by the pasting surface 11a and the outer surface 31a is 90 °.
In this case, the adhesive layer 33 is provided on the pattern resist 31. Specifically, the angle θ1 is set to 90 ° by setting the angle formed by the adhesive surface 33a of the adhesive layer 33 and the outer surface 31a to 90 °. ° can be.
The bonding strength between the base sheet 32 and the pattern resist 31 by the adhesive per unit bonding area is any of the bonding strength between the pattern resist 31 and the bonding layer 33 and the bonding strength between the bonding layer 33 and the insulating film 11. Is set too weak.
The patterns formed on the pattern resists 31 and 36 are the same as the patterns to be formed on the insulating films 11 and 12, respectively.

絶縁膜12に貼り付けられるパターンレジスト36についても、ベースシート37上で所定のパターンに形成されていて、パターンレジスト36におけるベースシート37とは反対側に接着層38が設けられた状態で用いられる。
パターンレジスト36、ベースシート37、接着層38は、パターンレジスト31、ベースシート32、接着層33と同様にそれぞれ形成されている。
The pattern resist 36 attached to the insulating film 12 is also formed in a predetermined pattern on the base sheet 37 and is used in a state where the adhesive layer 38 is provided on the opposite side of the pattern resist 36 from the base sheet 37. .
The pattern resist 36, the base sheet 37, and the adhesive layer 38 are formed in the same manner as the pattern resist 31, the base sheet 32, and the adhesive layer 33, respectively.

このように構成されたパターンレジスト31,36を用いて行われるレジスト貼り付け工程では、図5に示すように、ベースシート32を扱うことで絶縁膜11の貼り付け面11aに接着層33を貼り付け、接着層33を介して絶縁膜11に貼り付けられたパターンレジスト31からベースシート32を剥がす。
パターンレジスト36についても同様に、絶縁膜12に接着層38を貼り付け、接着層38を介して絶縁膜12に貼り付けられたパターンレジスト36からベースシート37を剥がす。
これにより、図6に示すように、半導体基板2の一方の主面2aにパターンレジスト31が、他方の主面2bにパターンレジスト36がそれぞれ貼り付けられる。
In the resist attaching process performed using the pattern resists 31 and 36 configured as described above, the adhesive layer 33 is attached to the attaching surface 11a of the insulating film 11 by handling the base sheet 32 as shown in FIG. Then, the base sheet 32 is peeled off from the pattern resist 31 attached to the insulating film 11 via the adhesive layer 33.
Similarly, for the pattern resist 36, the adhesive layer 38 is attached to the insulating film 12, and the base sheet 37 is peeled off from the pattern resist 36 attached to the insulating film 12 via the adhesive layer 38.
As a result, as shown in FIG. 6, the pattern resist 31 is attached to one main surface 2a of the semiconductor substrate 2 and the pattern resist 36 is attached to the other main surface 2b.

レジスト貼り付け工程に続いて、絶縁膜11,12のうち外部に露出した部分を除去する(絶縁膜成形工程)。具体的には、エッチング液Lを用いた公知のウェットエッチング法により、絶縁膜11,12を除去する。
この場合、貼り付け面11aと外面31aとのなす角度θ1は90°となっているため、エッチング液Lの厚さT1は、絶縁膜11側においてはほぼ均一になる。
露出した絶縁膜11,12にエッチング液Lがほぼ均一に染み込み、絶縁膜11,12は、図7に示すように、所定のパターンが形成された絶縁膜パターン11A,12Aとなる。絶縁膜パターン11Aは、ほぼ均一な厚さとなる。
Subsequent to the resist attaching step, the exposed portions of the insulating films 11 and 12 are removed (insulating film forming step). Specifically, the insulating films 11 and 12 are removed by a known wet etching method using the etching solution L.
In this case, since the angle θ1 formed between the pasting surface 11a and the outer surface 31a is 90 °, the thickness T1 of the etching solution L is substantially uniform on the insulating film 11 side.
Etching solution L soaks into the exposed insulating films 11 and 12 almost uniformly, and the insulating films 11 and 12 become insulating film patterns 11A and 12A in which a predetermined pattern is formed as shown in FIG. The insulating film pattern 11A has a substantially uniform thickness.

上記のように形成される絶縁膜パターン11A,12Aについて詳細に説明する。半導体基板2の一方の主面2aに形成される絶縁膜パターン11Aは、半導体基板2の一方の主面2aにメサ溝7(図8参照。)を形成するためのパターン(メサ溝形成用のパターン)である。
一方、半導体基板2の他方の主面2bに形成される絶縁膜パターン12Aは、後述する切断工程において半導体基板2を切断して素子単位(図1参照。)に分割する際に、切断用のガイドラインとして機能させるためのパターン(切断ガイド用のパターン)である。
絶縁膜パターン12Aは、メサ溝7の形成予定領域と半導体基板2の厚さ方向に重なる位置に形成されて、半導体基板2の他方の主面2bを複数の領域に区画している。なお、上記絶縁膜パターン12Aは、図1に示すメサ型ダイオード1においてシリコン酸化膜9となるものである。
The insulating film patterns 11A and 12A formed as described above will be described in detail. The insulating film pattern 11A formed on one main surface 2a of the semiconductor substrate 2 is a pattern (for mesa groove formation) for forming a mesa groove 7 (see FIG. 8) on one main surface 2a of the semiconductor substrate 2. Pattern).
On the other hand, the insulating film pattern 12A formed on the other main surface 2b of the semiconductor substrate 2 is used for cutting when the semiconductor substrate 2 is cut and divided into element units (see FIG. 1) in a cutting process described later. It is a pattern (pattern for cutting guides) for functioning as a guideline.
The insulating film pattern 12 </ b> A is formed at a position that overlaps the region where the mesa groove 7 is to be formed and the thickness direction of the semiconductor substrate 2, and divides the other main surface 2 b of the semiconductor substrate 2 into a plurality of regions. The insulating film pattern 12A becomes the silicon oxide film 9 in the mesa diode 1 shown in FIG.

絶縁膜成形工程後には、図8に示すように、半導体基板2の一方の主面2aに互いに間隔をあけて複数のメサ溝7を形成し、これら複数のメサ溝7によって一方の主面2aを複数の領域に区画する(メサ溝形成工程)。
この工程では、半導体基板2の一方の主面2aに積層された絶縁膜パターン11A及びパターンレジスト31をマスクとして、ドライエッチングやウェットエッチング等の任意のエッチング法を実施することで、半導体基板2の一方の主面2aに複数のメサ溝7が形成される。
After the insulating film forming step, as shown in FIG. 8, a plurality of mesa grooves 7 are formed on one main surface 2 a of the semiconductor substrate 2 at intervals, and one main surface 2 a is formed by the plurality of mesa grooves 7. Is divided into a plurality of regions (mesa groove forming step).
In this step, an arbitrary etching method such as dry etching or wet etching is performed using the insulating film pattern 11A and the pattern resist 31 laminated on one main surface 2a of the semiconductor substrate 2 as a mask, thereby A plurality of mesa grooves 7 are formed on one main surface 2a.

そして、この工程においては、メサ溝7が、半導体基板2の一方の主面2aから窪んで形成され、n型半導体層21とp型半導体層22との接合界面(PN接合界面)よりも深くなるように形成される。すなわち、上記工程後の状態では、メサ溝7の内面にはPN接合界面が露出することになる。
以上のように形成されるメサ溝7は、素子単位に分割された半導体基板2(図1参照。)の一方の主面2aの外周縁をなすものである。すなわち、メサ溝7は、半導体基板2の他方の主面2b上の絶縁膜パターン12Aと半導体基板2の厚さ方向に重なるように形成されている。
なお、本実施形態では、上記メサ溝形成工程後にパターンレジスト31,36を除去するが、例えば、メサ溝形成工程前や後述する表面処理工程後にパターンレジスト31,36を除去してもよい。
In this step, the mesa groove 7 is formed to be recessed from one main surface 2a of the semiconductor substrate 2, and is deeper than the junction interface (PN junction interface) between the n-type semiconductor layer 21 and the p-type semiconductor layer 22. Formed to be. That is, in the state after the above process, the PN junction interface is exposed on the inner surface of the mesa groove 7.
The mesa groove 7 formed as described above forms an outer peripheral edge of one main surface 2a of the semiconductor substrate 2 (see FIG. 1) divided into element units. That is, the mesa groove 7 is formed so as to overlap the insulating film pattern 12 </ b> A on the other main surface 2 b of the semiconductor substrate 2 in the thickness direction of the semiconductor substrate 2.
In the present embodiment, the pattern resists 31 and 36 are removed after the mesa groove forming step. However, for example, the pattern resists 31 and 36 may be removed before the mesa groove forming step or after a surface treatment step described later.

その後、図9に示すように、メサ溝7の内面にガラスや樹脂等からなるパッシベーション膜8を被着する(表面処理工程)。この工程において、パッシベーション膜8は、その厚さがほぼ均一となるようにメサ溝7の内面に形成される。したがって、メサ溝7の窪み形状自体は表面処理工程後であっても維持されている。なお、図示例では、パッシベーション膜8がメサ溝7の内面全体に加え、半導体基板2の一方の主面2aのうちメサ溝7の開口部周縁にまで形成されているが、パッシベーション膜8は少なくともメサ溝7の内面に露出するPN接合界面を覆うように形成されればよい。
そして、この表面処理工程後に、絶縁膜パターン11A、パターンレジスト31,36、および接着層33,38を除去する。
Thereafter, as shown in FIG. 9, a passivation film 8 made of glass, resin, or the like is deposited on the inner surface of the mesa groove 7 (surface treatment step). In this step, the passivation film 8 is formed on the inner surface of the mesa groove 7 so that the thickness thereof is substantially uniform. Therefore, the hollow shape of the mesa groove 7 is maintained even after the surface treatment process. In the illustrated example, the passivation film 8 is formed not only on the entire inner surface of the mesa groove 7 but also on the peripheral edge of the opening of the mesa groove 7 in one main surface 2a of the semiconductor substrate 2, but the passivation film 8 is at least What is necessary is just to form so that the PN junction interface exposed to the inner surface of the mesa groove | channel 7 may be covered.
Then, after this surface treatment step, the insulating film pattern 11A, the pattern resists 31, 36, and the adhesive layers 33, 38 are removed.

その後、図10に示すように、メサ溝7によって区画された半導体基板2の一方の主面2aの複数の領域にそれぞれ第一電極層3を形成し、絶縁膜パターン12Aによって区画された他方の主面2bの複数の領域にそれぞれ第二電極層4を形成する(電極層形成工程)。これら電極層3,4は、各種めっき法や焼鈍処理、焼結処理等を実施することで形成することが可能である。   Thereafter, as shown in FIG. 10, the first electrode layer 3 is formed in each of a plurality of regions of the one main surface 2a of the semiconductor substrate 2 defined by the mesa groove 7, and the other electrode partitioned by the insulating film pattern 12A is formed. Second electrode layer 4 is formed in each of a plurality of regions of main surface 2b (electrode layer forming step). These electrode layers 3 and 4 can be formed by performing various plating methods, annealing treatments, sintering treatments, and the like.

例えば、各電極層3,4が前述したようにニッケル・シリサイド膜とニッケルめっき層とからなる場合、上記電極層形成工程では、はじめに、無電界めっき法等によって半導体基板2の両主面2a,2bに一次ニッケルめっき層を形成する。次いで、焼鈍処理を実施することにより、半導体基板2と一次ニッケルめっき層とが反応して、半導体基板2と一次ニッケルめっき層との界面領域にニッケル・シリサイド膜が形成される。なお、焼鈍の終了後には、硝酸ボイル処理等を実施して不要の一次ニッケルめっき層を除去する。
その後、めっき法によって各ニッケル・シリサイド膜上に二次ニッケルめっき層を形成することで、電極層3,4の形成が完了する。なお、上述した二次ニッケルめっき層は、各電極層3,4におけるニッケルめっき層に相当する。
For example, when each of the electrode layers 3 and 4 is composed of a nickel silicide film and a nickel plating layer as described above, in the electrode layer forming step, first, both main surfaces 2a and 2a of the semiconductor substrate 2 are formed by electroless plating. A primary nickel plating layer is formed on 2b. Next, by performing an annealing process, the semiconductor substrate 2 and the primary nickel plating layer react to form a nickel silicide film in an interface region between the semiconductor substrate 2 and the primary nickel plating layer. In addition, after completion | finish of annealing, a nitric acid boil process etc. are implemented and an unnecessary primary nickel plating layer is removed.
Then, the formation of the electrode layers 3 and 4 is completed by forming a secondary nickel plating layer on each nickel silicide film by plating. The secondary nickel plating layer described above corresponds to the nickel plating layer in each of the electrode layers 3 and 4.

この電極層形成工程後には、複数の第一電極層3及び第二電極層4にそれぞれ半田層5,6を形成する(半田層形成工程)。
半田層5,6は、スクリーン印刷等の方法により形成することができる。
After this electrode layer forming step, solder layers 5 and 6 are respectively formed on the plurality of first electrode layers 3 and second electrode layers 4 (solder layer forming step).
The solder layers 5 and 6 can be formed by a method such as screen printing.

半田層形成工程に続いて、図11に示すように、メサ溝7の底部及び絶縁膜パターン12Aを通るように半導体基板2を切断し、半導体基板2を素子単位に分割する切断工程を実施することで、メサ型ダイオード1が得られる。
この切断工程においては、例えば、半導体基板2の他方の主面2bに形成された絶縁膜パターン12Aをガイドラインとして、半導体基板2の他方の主面2b側からメサ溝7の底部に向けて、レーザカット(レーザスクライブ)やダイシング等を実施すればよい。
なお、切断工程では、レーザカットあるいはダイシングのみ実施してもよいが、例えば、レーザカットやダイシングによって他方の主面2b側にメサ溝7の底部まで到達しない切断溝を形成した後に、ブレーキングを実施してもよい。
これまで説明した工程により、メサ型ダイオード1が製造される。
Subsequent to the solder layer forming step, as shown in FIG. 11, the semiconductor substrate 2 is cut so as to pass through the bottom of the mesa groove 7 and the insulating film pattern 12A, and the semiconductor substrate 2 is divided into element units. Thus, the mesa diode 1 is obtained.
In this cutting step, for example, using the insulating film pattern 12A formed on the other main surface 2b of the semiconductor substrate 2 as a guideline, the laser is directed from the other main surface 2b side of the semiconductor substrate 2 toward the bottom of the mesa groove 7. Cut (laser scribe), dicing, or the like may be performed.
In the cutting process, only laser cutting or dicing may be performed, but for example, after cutting a groove that does not reach the bottom of the mesa groove 7 on the other main surface 2b side by laser cutting or dicing, braking is performed. You may implement.
The mesa diode 1 is manufactured by the steps described so far.

以上説明したように、本実施形態の製造方法によれば、予めパターンが形成されたパターンレジスト31は、フォトリソグラフィ技術でレジストを形成する従来の方法に比べて、細部のパターンまで正確に形成することができる。したがって、絶縁膜成形工程において、このパターンレジスト31をマスクとして、外部に露出する絶縁膜11をエッチング法等で除去して絶縁膜パターン11Aを形成したときに、絶縁膜パターン11Aの形状を細部までより確実に形成することができる。   As described above, according to the manufacturing method of the present embodiment, the pattern resist 31 on which the pattern has been formed in advance is accurately formed to a fine pattern as compared with the conventional method of forming a resist by photolithography technology. be able to. Therefore, when the insulating film pattern 11A is formed by removing the insulating film 11 exposed to the outside by an etching method or the like using the pattern resist 31 as a mask in the insulating film forming step, the shape of the insulating film pattern 11A is detailed. It can form more reliably.

レジスト貼り付け工程では、ベースシート32を用いてパターンレジスト31を絶縁膜11に貼り付けているため、パターンレジスト31に直接触れることを抑え、ベースシート32上でパターンレジスト31を一体にして扱うことができる。これにより、絶縁膜11にパターンレジスト31を容易に貼り付けることができる。
ベースシート32とパターンレジスト31との接合強度は、パターンレジスト31と接着層33との接着強度、および、接着層33と絶縁膜11との接着強度のいずれよりも弱い。絶縁膜11に接着層33を貼り付けて絶縁膜11からベースシート32を剥がすと、接着強度の違いにより、絶縁膜11に接着層33が貼り付き、かつ、接着層33にパターンレジスト31が貼り付いた状態で、ベースシート32とパターンレジスト31とが分離される。このため、絶縁膜11に貼り付けたパターンレジスト31からベースシート32を容易に剥がすことができる。
In the resist attaching process, since the pattern resist 31 is attached to the insulating film 11 using the base sheet 32, direct contact with the pattern resist 31 is suppressed, and the pattern resist 31 is handled integrally on the base sheet 32. Can do. Thereby, the pattern resist 31 can be easily attached to the insulating film 11.
The bonding strength between the base sheet 32 and the pattern resist 31 is weaker than both the bonding strength between the pattern resist 31 and the adhesive layer 33 and the adhesive strength between the adhesive layer 33 and the insulating film 11. When the adhesive layer 33 is attached to the insulating film 11 and the base sheet 32 is peeled off from the insulating film 11, the adhesive layer 33 is attached to the insulating film 11 and the pattern resist 31 is attached to the adhesive layer 33 due to the difference in adhesive strength. In the attached state, the base sheet 32 and the pattern resist 31 are separated. For this reason, the base sheet 32 can be easily peeled off from the pattern resist 31 attached to the insulating film 11.

パターンレジスト31は、絶縁膜11の貼り付け面11aに貼り付けたときに貼り付け面11aに直交する外面31aを有している。これにより、エッチング液Lを用いて絶縁膜11を除去するときに、露出した絶縁膜11上に付着するエッチング液Lの厚さT1が場所によらずほぼ均一になり、露出した絶縁膜11にエッチング液Lがほぼ均一に染み込む。したがって、形成された絶縁膜パターン11Aの厚さを、ほぼ均一にすることができる。   The pattern resist 31 has an outer surface 31a orthogonal to the attachment surface 11a when attached to the attachment surface 11a of the insulating film 11. Thus, when the insulating film 11 is removed using the etching liquid L, the thickness T1 of the etching liquid L deposited on the exposed insulating film 11 becomes almost uniform regardless of the location, and the exposed insulating film 11 The etchant L penetrates almost uniformly. Therefore, the thickness of the formed insulating film pattern 11A can be made substantially uniform.

以上、本発明の一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更等も含まれる。
たとえば、前記実施形態のレジスト貼り付け工程では、図12に示すようなパターンレジスト46を用いてもよい。
このパターンレジスト46は、絶縁膜11の貼り付け面11aに貼り付けたときに貼り付け面11aに対向するように傾斜した外面46aを有している。すなわち、貼り付け面11aと外面46aとのなす角度θ2は、鋭角となっている。
パターンレジスト46に接着層33が設けられているこの場合には、具体的には、接着層33の接着面33aと外面46aとのなす角度を鋭角にすることで、上述の角度θ2を鋭角にすることができる。
As mentioned above, although one Embodiment of this invention was explained in full detail with reference to drawings, the concrete structure is not restricted to this Embodiment, The change of the structure of the range which does not deviate from the summary of this invention, etc. are included. .
For example, a pattern resist 46 as shown in FIG. 12 may be used in the resist attaching step of the above embodiment.
The pattern resist 46 has an outer surface 46 a that is inclined so as to face the attachment surface 11 a when attached to the attachment surface 11 a of the insulating film 11. That is, the angle θ2 formed by the pasting surface 11a and the outer surface 46a is an acute angle.
In this case where the adhesive layer 33 is provided on the pattern resist 46, specifically, the angle θ2 is made acute by making the angle formed by the adhesive surface 33a of the adhesive layer 33 and the outer surface 46a acute. can do.

このように構成されたパターンレジスト46を用いた製造方法は、前述の本実施形態の製造方法と工程は変わらないが、用いるパターンレジスト46の形状が変わるので、レジスト貼り付け工程および絶縁膜成形工程が以下のようになる。
レジスト貼り付け工程では、ベースシート32を扱うことで、図13に示すように絶縁膜11の貼り付け面11aに接着層33を貼り付け、接着層33を介して絶縁膜11に貼り付けられたパターンレジスト46からベースシート32を剥がす。
The manufacturing method using the pattern resist 46 configured in this way is the same as the manufacturing method of the present embodiment described above, but the shape of the pattern resist 46 to be used is changed, so that the resist attaching step and the insulating film forming step are performed. Is as follows.
In the resist affixing step, the base sheet 32 is handled, so that the adhesive layer 33 is affixed to the affixing surface 11a of the insulating film 11 and is affixed to the insulating film 11 via the adhesive layer 33 as shown in FIG. The base sheet 32 is peeled off from the pattern resist 46.

レジスト貼り付け工程に続いて行われる絶縁膜成形工程では、エッチング液Lを用いた公知のウェットエッチング法により、絶縁膜11のうち外部に露出した部分を除去する。
この場合、貼り付け面11aと外面46aとのなす角度θ2は鋭角となっているため、絶縁膜成形工程におけるエッチング液Lの厚さT2は、貼り付け面11aに沿ってパターンレジスト46に近づくほど薄くなる。パターンレジス46に近づくほど、露出した絶縁膜11に染み込むエッチング液Lの量が少なくなり絶縁膜11が除去されにくくなるため、図14に示すように、形成された絶縁膜パターン11Bの縁部は、縁11cに向かうほど薄くなるように形成される。
In the insulating film forming process performed subsequent to the resist attaching process, a portion of the insulating film 11 exposed to the outside is removed by a known wet etching method using an etching solution L.
In this case, since the angle θ2 formed between the pasting surface 11a and the outer surface 46a is an acute angle, the thickness T2 of the etching solution L in the insulating film forming step becomes closer to the pattern resist 46 along the pasting surface 11a. getting thin. The closer to the pattern resist 46, the smaller the amount of the etching solution L that permeates into the exposed insulating film 11 and the more difficult the insulating film 11 is removed, so that the edge of the formed insulating film pattern 11B becomes as shown in FIG. , It is formed so as to become thinner toward the edge 11c.

前記実施形態では、パターンレジスト31の強度が比較的高い場合等には、レジスト貼り付け工程でベースシート32を用いることなく、絶縁膜11にパターンレジスト31を直接貼り付けてもよい。
また、半導体素子はメサ型ダイオードであるとしたが、これに限ることなく、サイリスタや、プレーナ型の半導体素子にも適用可能である。
In the embodiment, when the strength of the pattern resist 31 is relatively high, the pattern resist 31 may be directly attached to the insulating film 11 without using the base sheet 32 in the resist attaching step.
Although the semiconductor element is a mesa diode, the present invention is not limited to this, and the present invention can be applied to a thyristor or a planar semiconductor element.

また、図1に類似したメサ型ダイオードの製造方法において、絶縁膜11を必要としない場合には、図2に示す拡散後の半導体基板2の一方の主面2aに、絶縁膜11を介すことなくパターンレジスト31を貼り付け、前述のメサ溝形成工程を行うことも可能である。   In the mesa diode manufacturing method similar to FIG. 1, when the insulating film 11 is not required, the insulating film 11 is interposed on one main surface 2a of the semiconductor substrate 2 after diffusion shown in FIG. It is also possible to attach the pattern resist 31 without performing the above-described mesa groove forming step.

1 メサ型ダイオード(半導体素子)
2 半導体基板
2a 一方の主面
11 絶縁膜
11a 貼り付け面
31、46 パターンレジスト
31a、46a 外面
32 ベースシート
33 接着層
L エッチング液
1 Mesa diode (semiconductor element)
2 Semiconductor substrate 2a One main surface 11 Insulating film 11a Attached surface 31, 46 Pattern resist 31a, 46a Outer surface 32 Base sheet 33 Adhesive layer L Etching solution

Claims (5)

半導体基板の一方の主面に形成した絶縁膜に、パターンが形成されたパターンレジストを貼り付けるレジスト貼り付け工程と、
前記絶縁膜のうち外部に露出した部分を除去する絶縁膜成形工程と、
を備えることを特徴とする半導体素子の製造方法。
A resist attaching step of attaching a pattern resist in which a pattern is formed to an insulating film formed on one main surface of the semiconductor substrate;
An insulating film forming step of removing a portion of the insulating film exposed to the outside;
The manufacturing method of the semiconductor element characterized by the above-mentioned.
前記レジスト貼り付け工程では、
ベースシート上に形成された前記パターンレジストを前記絶縁膜に貼り付け、前記絶縁膜に貼り付けられた前記パターンレジストから前記ベースシートを剥がすことを特徴とする請求項1に記載の半導体素子の製造方法。
In the resist pasting step,
The semiconductor device according to claim 1, wherein the pattern resist formed on a base sheet is attached to the insulating film, and the base sheet is peeled off from the pattern resist attached to the insulating film. Method.
前記パターンレジストにおける前記ベースシートとは反対側の面には接着層が設けられ、
前記ベースシートと前記パターンレジストとの接合強度は、前記パターンレジストと前記接着層との接着強度、および、前記接着層と前記絶縁膜との接着強度のいずれよりも弱いことを特徴とする請求項2に記載の半導体素子の製造方法。
An adhesive layer is provided on the surface of the pattern resist opposite to the base sheet,
The bonding strength between the base sheet and the pattern resist is weaker than any of an adhesive strength between the pattern resist and the adhesive layer and an adhesive strength between the adhesive layer and the insulating film. 2. A method for producing a semiconductor device according to 2.
前記パターンレジストは、前記絶縁膜に貼り付けられたときに、前記絶縁膜における前記パターンレジストを貼り付ける貼り付け面に対して直交するように形成された外面を有し、
前記絶縁膜成形工程では、エッチング液を用いて前記絶縁膜を除去することを特徴とする請求項1から3のいずれか一項に記載の半導体素子の製造方法。
The pattern resist has an outer surface formed so as to be orthogonal to an attachment surface to which the pattern resist is attached in the insulating film when the pattern resist is attached to the insulating film.
4. The method of manufacturing a semiconductor element according to claim 1, wherein in the insulating film forming step, the insulating film is removed using an etching solution. 5.
前記パターンレジストは、前記絶縁膜に貼り付けられたときに、前記絶縁膜における前記パターンレジストを貼り付ける貼り付け面に対向するように傾斜した外面を有し、
前記絶縁膜成形工程では、エッチング液を用いて前記絶縁膜を除去することを特徴とする請求項1から3のいずれか一項に記載の半導体素子の製造方法。
The pattern resist has an outer surface that is inclined so as to face a pasting surface to which the pattern resist is pasted in the insulating film when pasted to the insulating film,
4. The method of manufacturing a semiconductor element according to claim 1, wherein in the insulating film forming step, the insulating film is removed using an etching solution. 5.
JP2012019009A 2012-01-31 2012-01-31 Manufacturing method of semiconductor device Expired - Fee Related JP5948069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012019009A JP5948069B2 (en) 2012-01-31 2012-01-31 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012019009A JP5948069B2 (en) 2012-01-31 2012-01-31 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2013157563A true JP2013157563A (en) 2013-08-15
JP5948069B2 JP5948069B2 (en) 2016-07-06

Family

ID=49052440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012019009A Expired - Fee Related JP5948069B2 (en) 2012-01-31 2012-01-31 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5948069B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260389A (en) * 1991-02-15 1992-09-16 Dainippon Printing Co Ltd Method for forming fine pattern
JPH05269587A (en) * 1992-03-24 1993-10-19 Toppan Printing Co Ltd Laser engraving method
JP2002343713A (en) * 2001-03-05 2002-11-29 Hitachi Industries Co Ltd Laminator
JP2006235371A (en) * 2005-02-25 2006-09-07 Nitto Denko Corp Photosensitive resin composition and wiring circuit board having solder resist obtained using the same
JP2009244581A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Mask for vacuum-ultraviolet light, and method and apparatus for manufacturing pattern-formed body using vacuum-ultraviolet light

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260389A (en) * 1991-02-15 1992-09-16 Dainippon Printing Co Ltd Method for forming fine pattern
JPH05269587A (en) * 1992-03-24 1993-10-19 Toppan Printing Co Ltd Laser engraving method
JP2002343713A (en) * 2001-03-05 2002-11-29 Hitachi Industries Co Ltd Laminator
JP2006235371A (en) * 2005-02-25 2006-09-07 Nitto Denko Corp Photosensitive resin composition and wiring circuit board having solder resist obtained using the same
JP2009244581A (en) * 2008-03-31 2009-10-22 Dainippon Printing Co Ltd Mask for vacuum-ultraviolet light, and method and apparatus for manufacturing pattern-formed body using vacuum-ultraviolet light

Also Published As

Publication number Publication date
JP5948069B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
US8501579B2 (en) Process of fabricating chip
JP6096442B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2007214243A (en) Manufacturing method for semiconductor device
KR20090029660A (en) Manufacturing method of semiconductor apparatus
KR20040040404A (en) Packaged integrated circuits and methods of producing thereof
CN111199951B (en) Semiconductor device, manufacturing method thereof and manufacturing method of alignment mark
TW201110203A (en) Fabricating method and structure of a wafer level module
TWI399817B (en) Method of manufacturing semiconductor device in which bottom surface and side surface of semiconductor substrate are covered with resin protective film
US8772136B2 (en) Method for fabricating semiconductor device
JP5065240B2 (en) Process for forming a planar diode using one mask
JP5948069B2 (en) Manufacturing method of semiconductor device
US9711469B2 (en) Semiconductor structure having recess and manufacturing method thereof
US11049816B2 (en) Alignment mark and semiconductor device, and fabrication methods thereof
JP3638250B2 (en) Alignment mark and method for manufacturing semiconductor device
US7855436B2 (en) Semiconductor wafer
JP6500230B2 (en) Method of forming mask pattern, method of processing substrate, and method of manufacturing element chip
US20120009394A1 (en) Bonding method and bonding substrate
JP5933280B2 (en) Method for manufacturing mesa type semiconductor device
JP5903287B2 (en) Manufacturing method of semiconductor device
JP2006049700A (en) Manufacturing method of solid-state image pickup device
JP6254765B2 (en) Mesa type semiconductor device and manufacturing method thereof
TWI570873B (en) Semiconductor structure and manufacturing method for the same
TWI493633B (en) Stacking method and stacking carrier
CN113314404B (en) Bonding method
WO2022134162A1 (en) Preparation method for transferable flexible interconnection structure, and structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R150 Certificate of patent or registration of utility model

Ref document number: 5948069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees