JP2013152880A - Laminate cell and module using the same - Google Patents
Laminate cell and module using the same Download PDFInfo
- Publication number
- JP2013152880A JP2013152880A JP2012013660A JP2012013660A JP2013152880A JP 2013152880 A JP2013152880 A JP 2013152880A JP 2012013660 A JP2012013660 A JP 2012013660A JP 2012013660 A JP2012013660 A JP 2012013660A JP 2013152880 A JP2013152880 A JP 2013152880A
- Authority
- JP
- Japan
- Prior art keywords
- electrode terminal
- positive electrode
- negative electrode
- laminate cell
- laminate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Sealing Battery Cases Or Jackets (AREA)
- Gas Exhaust Devices For Batteries (AREA)
Abstract
Description
本発明は、より確実にガスを排出させ、安全性および信頼性に優れたラミネートセルと、それを用いたモジュールに関する。 The present invention relates to a laminate cell that discharges gas more reliably and is excellent in safety and reliability, and a module using the laminate cell.
近年、高エネルギー密度を有する二次電池として、特にリチウムイオン二次電池が着目され、その研究、開発及び商品化が急速に進められた結果、現在では、携帯電話やノートパソコン向けに小型民生用リチウムイオン二次電池が幅広く普及している。さらに、地球温暖化、枯渇燃料、脱原発などの問題から家庭用、産業用、車載用の蓄電池として、従来用よりも高容量で高出力な大型二次電池が求められており、市場での更なる普及には高い安全性が必要不可欠である。 In recent years, lithium-ion secondary batteries have attracted attention as secondary batteries with high energy density, and their research, development, and commercialization have made rapid progress. As a result, small-sized consumer electronics for mobile phones and laptop computers are now available. Lithium ion secondary batteries are widely used. In addition, due to problems such as global warming, depleted fuel, and nuclear power plants, large-capacity secondary batteries with higher capacity and higher output than conventional batteries are required as storage batteries for household, industrial and automotive use. High safety is indispensable for further diffusion.
例えば、電池の外部短絡、電池形状の変化等による内部短絡、外部電源による強制的な過大電流放電による急激な温度上昇、過大電圧による過充電がなされた場合、電解液が分解あるいは揮発してガスが発生し、このガスが電池内に充満することで電池内圧が上昇するため、電池外装が膨張変形し、電池が破裂するという安全上重大な問題が発生する。さらに、電解液由来の発生ガスを吸引した場合、人体への影響が懸念される。これら問題の対策として、円筒形電池や角形電池では、電池の破裂を未然に防止するため、金属外装缶の一部を薄肉化し、圧力開放弁を設けた構造が提案されており(特許文献1)、有害なガスを排出させるダクトに関しても提案されている(特許文献2)。 For example, when an external short circuit of a battery, an internal short circuit due to a change in battery shape, etc., rapid temperature rise due to forced overcurrent discharge by an external power supply, or overcharge due to excessive voltage, the electrolyte decomposes or volatilizes and When the gas is filled in the battery, the internal pressure of the battery rises, which causes a serious safety problem that the battery exterior expands and deforms and the battery bursts. Furthermore, when the generated gas derived from the electrolyte is sucked, there is a concern about the influence on the human body. As a countermeasure for these problems, a structure in which a cylindrical battery or a rectangular battery is provided with a pressure relief valve in which a part of a metal outer can is thinned to prevent the battery from bursting has been proposed (Patent Document 1). ), A duct for discharging harmful gas has also been proposed (Patent Document 2).
しかしながら、一般にラミネートセルに関しては、ラミネートフィルムで構成しているため、圧力開放弁を設けることは難しい。ただし、数少ない従来技術の中に、ラミネートセルの封止箇所の一部の封止性能を低くし、そこからガスを排出させるという技術が提案されている(特許文献3)。しかしながら、ラミネートセルにおいて、封止性能が低く部分はどこでも良いわけではなく、セルの発熱を考慮した設計でなければ確実に所定の場所においてガスを排出させることはできない。また、モジュールを想定した場合、ガス排出をさせる場所も非常に重要である。 However, since the laminate cell is generally composed of a laminate film, it is difficult to provide a pressure release valve. However, among the few conventional techniques, a technique has been proposed in which the sealing performance of a part of the sealing portion of the laminate cell is lowered and gas is discharged therefrom (Patent Document 3). However, in the laminated cell, the portion having a low sealing performance is not required anywhere, and the gas cannot be reliably discharged at a predetermined location unless the design takes into consideration the heat generation of the cell. In addition, when a module is assumed, a place where gas is discharged is also very important.
本発明の目的は、より安全にかつ確実にガスの排出が可能なラミネートセルと、それを用いたモジュールを提供することにある。 An object of the present invention is to provide a laminate cell that can discharge gas more safely and reliably, and a module using the laminate cell.
ラミネートセルは、正極、負極、セパレータを含む電極群をラミネートフィルムにより封止し、前記電極群と電気的に接続した正極端子および負極端子を同一側面から外部に露出させたラミネートセルにおいて、前記ラミネートセルは、正極端子と負極端子の間の封止部分の少なくとも一部が、他の封止部分に比べ、開裂圧が弱いことを特徴とする。 The laminate cell is a laminate cell in which an electrode group including a positive electrode, a negative electrode, and a separator is sealed with a laminate film, and a positive electrode terminal and a negative electrode terminal electrically connected to the electrode group are exposed to the outside from the same side surface. The cell is characterized in that at least a part of the sealing portion between the positive electrode terminal and the negative electrode terminal has a lower cleavage pressure than other sealing portions.
本発明によれば、セルの内圧上昇により意図的に所定の場所で確実に開裂させ、より確実にガス排出ダクトからガスを排出させ、安全性および信頼性を向上させることができる。 According to the present invention, it is possible to intentionally cleave at a predetermined place intentionally by increasing the internal pressure of the cell, and to more reliably discharge gas from the gas discharge duct, thereby improving safety and reliability.
以下、ラミネートセルとして、リチウムイオン二次電池を例にとって説明するが、キャパシタなどの他電池でも適応でき、以下に限定されるものではない。さらに、セル電極群の構造は積層型を例にとるが、捲回型であってもかまわない。 Hereinafter, a lithium ion secondary battery will be described as an example of a laminate cell, but other batteries such as a capacitor can be applied and are not limited to the following. Furthermore, the structure of the cell electrode group is a stacked type, but may be a wound type.
(実施例)
図1はラミネートセル内部の積層型電極群の分解図である。
(Example)
FIG. 1 is an exploded view of a laminated electrode group inside a laminated cell.
図1のような積層型電極群では、板状の正極5と、帯状の負極6とが、セパレータ7に挟まれて積層されている。積層する枚数は何枚であってもかまわない。また、セパレータは、2枚のセパレータの2辺または3辺を熱溶着させ袋状にし、あらかじめ正極を挟み込み、積層させた。電極群を構成する正極は、正極集電箔としてアルミニウム箔を有している。アルミニウム箔の両面には、正極活物質としてリチウム含有遷移金属複酸化物のLiNi1/3Co1/3Mn1/3O2を用いた。他、リチウムイオン二次電池の正極活物質には種々リチウム遷移金属複合酸化物を用いることができる。 In the stacked electrode group as shown in FIG. 1, a plate-like positive electrode 5 and a strip-like negative electrode 6 are sandwiched and stacked between separators 7. Any number of sheets may be stacked. In addition, two or three sides of the two separators were thermally welded to form a bag, and the positive electrode was sandwiched in advance and laminated. The positive electrode constituting the electrode group has an aluminum foil as a positive electrode current collector foil. LiNi 1/3 Co 1/3 Mn 1/3 O 2, which is a lithium-containing transition metal double oxide, was used as the positive electrode active material on both surfaces of the aluminum foil. In addition, various lithium transition metal composite oxides can be used for the positive electrode active material of the lithium ion secondary battery.
例えば、ニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウムなどの正極活物質のNi、Co、Mnなどの一部を1種あるいはそれ以上の遷移金属で置換して用いることができる。正極活物質合剤には、正極活物質以外に、炭素材料の導電材およびポリフッ化ビニリデン(以下、PVDFと略記する。)のバインダ(結着材)を用いた。アルミニウム箔への正極活物質合剤の塗工時には、N−メチルピロリドン(以下、NMPと略記する。)等の分散溶媒で粘度調整される。このとき、アルミニウム箔の一部に正極活物質合剤の塗工されない正極未塗工部3が形成される。すなわち、正極未塗工部3では、アルミニウム箔が露出している。正極5は、乾燥後ロールプレスで密度が調整されている。 For example, a part of a positive electrode active material such as lithium nickelate, lithium cobaltate, or lithium manganate, such as Ni, Co, or Mn, can be substituted with one or more transition metals. In addition to the positive electrode active material, a carbon material conductive material and a binder of polyvinylidene fluoride (hereinafter abbreviated as PVDF) were used as the positive electrode active material mixture. When the positive electrode active material mixture is applied to the aluminum foil, the viscosity is adjusted with a dispersion solvent such as N-methylpyrrolidone (hereinafter abbreviated as NMP). At this time, the positive electrode uncoated portion 3 where the positive electrode active material mixture is not applied is formed on a part of the aluminum foil. That is, the aluminum foil is exposed in the positive electrode uncoated portion 3. The density of the positive electrode 5 is adjusted by a roll press after drying.
一方、負極6は、負極集電箔として銅箔を有している。銅箔の両面には、負極活物質として非晶質炭素を用いた。他、負極活物質には天然黒鉛、人造黒鉛などの炭素材料や酸化物や合金などリチウムイオンを可逆に吸蔵、放出可能な材料を用いることができる。負極活物質合剤には、負極活物質以外に、アセチレンブラックや黒鉛を導電材として用い、さらにPVDFのバインダを用いた。銅箔への負極活物質合剤の塗工時には、NMP等の分散溶媒で粘度調整される。このとき、銅箔の一部に負極活物質合剤の塗工されない負極未塗工部4が形成される。すなわち、負極未塗工部4では、銅箔が露出している。負極6は、乾燥後ロールプレスで密度が調整されている。また、正極未塗工部3および負極未塗工部4は束ねて、電池内外を電気的に接続する正極端子1、負極端子2に超音波溶接されている。溶接方法は、抵抗溶接など他の溶接手法であってもかまわない。なお、正極端子1、負極端子2は電池内外をより封止させるために、あらかじめ熱溶着樹脂を端子の封止箇所に塗るまたは取り付けていてもかまわない。 On the other hand, the negative electrode 6 has a copper foil as a negative electrode current collector foil. Amorphous carbon was used as the negative electrode active material on both sides of the copper foil. In addition, as the negative electrode active material, carbon materials such as natural graphite and artificial graphite, and materials capable of reversibly occluding and releasing lithium ions such as oxides and alloys can be used. As the negative electrode active material mixture, acetylene black or graphite was used as a conductive material in addition to the negative electrode active material, and a PVDF binder was further used. When the negative electrode active material mixture is applied to the copper foil, the viscosity is adjusted with a dispersion solvent such as NMP. At this time, the negative electrode uncoated part 4 where the negative electrode active material mixture is not applied is formed on a part of the copper foil. That is, the copper foil is exposed in the negative electrode uncoated portion 4. The density of the negative electrode 6 is adjusted by a roll press after drying. The positive electrode uncoated portion 3 and the negative electrode uncoated portion 4 are bundled and ultrasonically welded to the positive electrode terminal 1 and the negative electrode terminal 2 that electrically connect the inside and outside of the battery. The welding method may be other welding methods such as resistance welding. The positive terminal 1 and the negative terminal 2 may be preliminarily coated with or attached to a sealing portion of the terminal in order to further seal the inside and outside of the battery.
図2にラミネートセルの分解斜視図を示す。 FIG. 2 shows an exploded perspective view of the laminate cell.
ラミネートセルは、電極群9をラミネートフィルム8、10の淵を175℃で10秒間熱溶着封止させ電気的に絶縁した状態で正極端子1と負極端子2を貫通させる。封止は、注液口を設けるために、1辺以外をはじめに熱溶着させ、電解液を注液した後に、残りの1辺を真空加圧しながら、熱溶着封止させた。なお、溶着回数は何回でもかまわないし、溶着温度、時間も問わない。電解液には1MLiPF6の電解質を用い、EC:EMC=1:3vol%の溶媒に溶かしたものを用いた。他、電解液には、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、メチルアセテート、エチルアセテート、メチルプロピオネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,2−ジメトキシエタン、1−エトキシ−2−メトキシエタン、3−メチルテトラヒドロフラン、1,2−ジオキサン、1,3−ジオキサン、1,4−ジオキサン、1,3−ジオキソラン、2−メチル−1,3−ジオキソラン、4−メチル−1,3−ジオキソラン等より少なくとも1種以上選ばれた非水溶媒に、例えば、LiPF6、LiBF4、LiClO4、LiN(C2F5SO2)2等より少なくとも1種以上選ばれたリチウム塩を溶解させた有機電解液あるいはリチウムイオンの伝導性を有する固体電解質あるいはゲル状電解質あるいは溶融塩など、電池で使用される既知の電解質を用いることができる。 In the laminate cell, the positive electrode terminal 1 and the negative electrode terminal 2 are penetrated in a state where the electrode group 9 is heat-sealed and sealed for 10 seconds at 175 ° C. with the ridges of the laminate films 8 and 10 being electrically insulated. In order to provide a liquid injection port, the sealing was performed by heat-welding and sealing while heat-welding first except one side and injecting the electrolytic solution and then vacuum-pressing the remaining one side. The number of weldings may be any number, and the welding temperature and time are not limited. As the electrolytic solution, an electrolyte of 1M LiPF 6 was used, which was dissolved in a solvent of EC: EMC = 1: 3 vol%. Other electrolytes include, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, γ-butyrolactone, γ-valerolactone, methyl acetate, ethyl acetate, methyl propionate, tetrahydrofuran, 2 -Methyltetrahydrofuran, 1,2-dimethoxyethane, 1-ethoxy-2-methoxyethane, 3-methyltetrahydrofuran, 1,2-dioxane, 1,3-dioxane, 1,4-dioxane, 1,3-dioxolane, 2 -Non-aqueous solvent selected from at least one selected from methyl-1,3-dioxolane, 4-methyl-1,3-dioxolane and the like include, for example, LiPF 6 , LiBF 4 , LiClO 4 , LiN (C 2 F 5 SO 2) less than the 2 or the like Such Kutomo least one selected solid electrolyte or gel electrolyte or a molten salt having a conductivity of organic electrolytes or lithium ions by dissolving a lithium salt can be used known electrolytes used in batteries.
図3に完成したラミネートセル外観平面図を示す。ラミネートフィルム(ケース側)8とラミネートフィルム(ふた側)10で密封されたラミネートセルの外観では正極端子1と負極端子2が同一辺にみとめられる。 FIG. 3 shows a plan view of the finished laminated cell. In the appearance of the laminate cell sealed with the laminate film (case side) 8 and the laminate film (lid side) 10, the positive electrode terminal 1 and the negative electrode terminal 2 are found on the same side.
図4に図3のA−A′の断面図を示す。ラミネートフィルムは、厚さ30μmのアルミニウムの電極群側表面に絶縁熱溶着のために厚さ50〜100μm程度のポリエチレンを被覆し、外側にも絶縁性と強度を保つために、厚さ50〜100μm程度のポリエステルを被覆した。これら絶縁熱溶着のための被覆材は、ポリエチレンの他に、ポリプロピレンなどのポリオレフィン樹脂、ホットメルト樹脂、エポキシ樹脂、ポリアミド、ポリイミド系樹脂を用いてもかまわない。また、外側の被覆に関しても上記同様のものを用いてもかまわない。 FIG. 4 is a cross-sectional view taken along the line AA ′ of FIG. Laminate film covers 30 μm thick aluminum electrode group side surface with polyethylene of about 50-100 μm thickness for insulating heat welding, and 50-100 μm thickness to maintain insulation and strength on the outside. A degree of polyester was coated. As the covering material for insulating heat welding, in addition to polyethylene, polyolefin resin such as polypropylene, hot melt resin, epoxy resin, polyamide, polyimide resin may be used. Also, the same outer coating may be used.
本発明は上記ラミネートセル構造の正極端子1と負極端子2の間の一部または正極端子1と負極端子2の間のすべてにおいて、開裂圧が弱いことを特徴とするラミネートセルである。 The present invention is a laminate cell characterized in that the cleavage pressure is weak in a part between the positive electrode terminal 1 and the negative electrode terminal 2 in the laminate cell structure or all between the positive electrode terminal 1 and the negative electrode terminal 2.
本発明は正極端子と負極端子が片側に露出した構造に関するものであり、セル使用時における発熱は正極端子と負極端子がジュール熱の影響で最も高くなる。そのため、熱はそれら正極端子と負極端子の間が最も高くなり、開裂しやすい箇所は正極端子と負極端子の間となる。ゆえに、熱暴走を抑制するための放熱には、開裂箇所は、端子近傍が望ましい。また、ガス排出ダクト配置などの観点から、開裂は確実に所定の場所で実施させることが最も重要である。 The present invention relates to a structure in which a positive electrode terminal and a negative electrode terminal are exposed on one side, and heat generation during use of the cell is highest in the positive electrode terminal and the negative electrode terminal due to the influence of Joule heat. Therefore, the heat is highest between the positive electrode terminal and the negative electrode terminal, and the portion that is easily cleaved is between the positive electrode terminal and the negative electrode terminal. Therefore, for heat dissipation to suppress thermal runaway, the cleavage site is preferably near the terminal. In view of the arrangement of the gas discharge duct and the like, it is most important to ensure that the cleavage is performed at a predetermined location.
開裂圧を弱くする方法の一つを図5に実施例断面図として示す。ラミネートフィルム電極側表面の熱溶着絶縁樹脂層の厚みを他の封止部分よりも薄くすることで他の辺に比べ、開裂圧を弱くすることができる。 One method for reducing the cleavage pressure is shown in FIG. By making the thickness of the heat-welded insulating resin layer on the surface of the laminate film electrode thinner than that of other sealing portions, the cleavage pressure can be reduced compared to other sides.
また、注液用開口部または初回充電時に発生するガスを抜くための開口部として、他の封止部分よりも後に熱溶着することでも開裂圧を弱くすることができる。これは、注液により、電解液が付着するためと考えられる。他には、熱溶着させる温度や時間を他の封止部分よりも小さくさせることでも可能である。さらに、剥離強度の低い樹脂、たとえば、テフロン(登録商標)やイミド系樹脂を用いても、同様の効果が得られると考えられる。開裂圧を弱くする別の方法として図6に実施例ラミネート図を示す。正極端子と負極端子の間の辺の溶着長さ(c)を他の辺(a,b,d,e)よりも短く溶着させることでも開裂圧を弱くさせることは可能である。 In addition, the cleavage pressure can be reduced by heat welding after the other sealing portion as the liquid injection opening or the opening for removing the gas generated during the initial charge. This is considered to be because the electrolytic solution adheres due to the injection. Alternatively, the temperature and time for heat welding can be made smaller than those of other sealing portions. Furthermore, it is considered that the same effect can be obtained even when a resin having low peel strength, for example, Teflon (registered trademark) or an imide resin is used. FIG. 6 shows an example laminate diagram as another method for reducing the cleavage pressure. It is also possible to weaken the cleavage pressure by welding the welding length (c) between the positive electrode terminal and the negative electrode terminal to be shorter than the other sides (a, b, d, e).
以上の特徴のラミネートセルを用いて、所定の場所(正極端子と負極端子の間)で開裂されるかどうかを調査するために外部短絡試験を実施した。 Using the laminate cell having the above characteristics, an external short-circuit test was conducted in order to investigate whether or not it was cleaved at a predetermined location (between the positive electrode terminal and the negative electrode terminal).
試験は満充電状態後JISC8712に沿って実施し、外部抵抗は4mΩのものを用いた。なお、実施例1は、正極端子1と負極端子2の間の一部のラミネートフィルム電極側表面の熱溶着絶縁樹脂層の厚みが他の封止部分よりも50%程度薄いセル、実施例2は正極端子1と負極端子2の間の辺の全てにおいて、ラミネートフィルム電極側表面の熱溶着絶縁樹脂層の厚みが他の封止部分よりも50%程度薄いセル、実施例3は正極端子1と負極端子2の間の辺の全てにおいて、注液して最後に熱溶着したセル、実施例4は正極端子1と負極端子2の間の辺の一部において、注液して最後に熱溶着したセル、実施例5は正極端子1と負極端子2の間の辺の全てにおいて、他の封止部分よりも40℃低く熱溶着したセル、実施例6は正極端子1と負極端子2の間の辺の一部において、他の封止部分よりも40℃低く熱溶着したセル、実施例7は正極端子1と負極端子2の間の辺の全てにおいて、他の封止部分よりも8秒間程度短く熱溶着したセル、実施例8は正極端子1と負極端子2の間の辺の一部において、他の封止部分よりも8秒間程度短く熱溶着したセル、実施例9は正極端子1と負極端子2の間の辺の全てにおいて、融点の低いポリエチレン樹脂を用い、他の封止部には融点の高いポリプロピレン樹脂を用いたセル、実施例10は正極端子1と負極端子2の間の辺の一部において、融点の低いポリエチレン樹脂を用い、他の封止部には融点の高いポリプロピレン樹脂を用いたセル、実施例11は正極端子1と負極端子2の間の辺の全てにおいて、正極端子と負極端子の間の辺の溶着長さを他の辺よりも短く溶着させたセル、実施例12は正極端子1と負極端子2の間の辺の一部において、正極端子と負極端子の間の辺の溶着長さを他の辺よりも短く溶着させたセルをそれぞれ用いた。比較例は正極端子と負極端子の辺に直交する辺の一部のラミネートフィルム溶着部の厚みを50%薄くさせたセルを用い、各3セルで実施した。 The test was conducted in accordance with JISC8712 after full charge, and an external resistance of 4 mΩ was used. Example 1 is a cell in which the thickness of the heat-welded insulating resin layer on the part of the laminate film electrode side surface between the positive electrode terminal 1 and the negative electrode terminal 2 is about 50% thinner than other sealing parts, Example 2 Is a cell in which the thickness of the heat-welded insulating resin layer on the laminate film electrode side surface is about 50% thinner than the other sealing portions in all sides between the positive electrode terminal 1 and the negative electrode terminal 2, and Example 3 is the positive electrode terminal 1 In the cell between the positive electrode terminal 1 and the negative electrode terminal 2, the cell was injected and finally heat-welded. In Example 4, the liquid was injected into the part of the side between the positive electrode terminal 1 and the negative electrode terminal 2 and finally heated. A welded cell, Example 5 is a cell that is thermally welded 40 ° C. lower than the other sealed portions in all sides between the positive electrode terminal 1 and the negative electrode terminal 2, and Example 6 is that of the positive electrode terminal 1 and the negative electrode terminal 2. In a part of the side between the cells, the heat-sealed cell is 40 ° C. lower than the other sealed parts, Example 7 is a heat-welded cell that is shorter than the other sealed portions by about 8 seconds in all sides between the positive electrode terminal 1 and the negative electrode terminal 2, and Example 8 is an example of the side between the positive electrode terminal 1 and the negative electrode terminal 2. In some of the cells, which were thermally welded for about 8 seconds shorter than the other sealed portions, Example 9 uses a polyethylene resin having a low melting point on all sides between the positive electrode terminal 1 and the negative electrode terminal 2, and other sealed cells. A cell using a polypropylene resin having a high melting point for the stopper, Example 10 uses a polyethylene resin having a low melting point in a part of the side between the positive electrode terminal 1 and the negative electrode terminal 2, and a melting point for the other sealing parts. A cell using a high-polypropylene resin, Example 11 is such that, in all of the sides between the positive electrode terminal 1 and the negative electrode terminal 2, the weld length of the side between the positive electrode terminal and the negative electrode terminal is made shorter than the other sides. Example 12 is between positive terminal 1 and negative terminal 2 In some of the sides, the positive electrode terminal and side cell welding length is shorter welding than the other side of between the negative electrode terminal were used, respectively. The comparative example was carried out with 3 cells each using a cell in which the thickness of the laminated film welded part of the side perpendicular to the sides of the positive electrode terminal and the negative electrode terminal was reduced by 50%.
その結果、実施例1〜10は、3セルすべてにおいて、所定の場所、つまり正極端子と負極端子の間から開裂し、ガスを排出させた。一方、比較例では、1セルが正極端子と負極端子の辺に直交する辺で開裂したものの、2セルは正極端子近傍で開裂(破裂)した。よって、本発明における正極端子と負極端子の間の開裂圧を弱くすることで、確実に所定の場所で開裂させることができると考えられる。 As a result, in Examples 1 to 10, all three cells were cleaved from a predetermined place, that is, between the positive electrode terminal and the negative electrode terminal, and the gas was discharged. On the other hand, in the comparative example, although one cell was cleaved at a side perpendicular to the sides of the positive electrode terminal and the negative electrode terminal, two cells were cleaved (ruptured) in the vicinity of the positive electrode terminal. Therefore, it is considered that the cleavage pressure between the positive electrode terminal and the negative electrode terminal in the present invention can be reduced, so that it can be reliably cleaved at a predetermined location.
次に、図7〜図9にガス排出ダクトを設置した本発明のラミネートセルのモジュール例(1)〜(3)を示す。モジュールは正極端子1と負極端子2をバスバ14で接続し、直列接続としている。図7は、ガス排出ダクトは正極端子と負極端子の間の一部に配しているが、正極端子と負極端子の間の全てであってもかまわない。 Next, FIG. 7 to FIG. 9 show module examples (1) to (3) of the laminate cell of the present invention in which a gas discharge duct is installed. In the module, the positive electrode terminal 1 and the negative electrode terminal 2 are connected by a bus bar 14 and are connected in series. In FIG. 7, the gas discharge duct is arranged in a part between the positive electrode terminal and the negative electrode terminal, but may be all between the positive electrode terminal and the negative electrode terminal.
また、図8に示したように、正極端子および負極端子の同一側面にガス排出ダクトを配置してもかまわないし、図9に示したように、正極端子および負極端子の同一側面全てを覆うように配置してもかまわない。このように本発明のラミネートセルを用いることにより、直線上にガス排出ダクトを設けることができ、さらに、正極端子と負極端子の隙間などの空間を有効活用でき、体積効率に優れたモジュールを提供できる。また、前記ガス排出ダクトはラミネートセルとシールされていてもかまわない。シールの方法は、溶接または熱や圧縮による樹脂封止など、方法は問わない。 Further, as shown in FIG. 8, a gas discharge duct may be arranged on the same side surface of the positive electrode terminal and the negative electrode terminal, and as shown in FIG. 9, it covers all the same side surfaces of the positive electrode terminal and the negative electrode terminal. You may arrange in. As described above, by using the laminate cell of the present invention, a gas discharge duct can be provided on a straight line, and a space such as a gap between the positive electrode terminal and the negative electrode terminal can be effectively used, thereby providing a module with excellent volume efficiency. it can. The gas discharge duct may be sealed with the laminate cell. The sealing method may be any method such as welding or resin sealing by heat or compression.
以上、本発明により、従来に比べ、より安全にかつ確実にガスを排出させ、体積効率に優れたモジュールを提供できる。 As described above, according to the present invention, it is possible to provide a module that discharges gas more safely and reliably and is superior in volume efficiency as compared with the conventional art.
1 正極端子
2 負極端子
3 正極未塗工部
4 負極未塗工部
5 正極
6 負極
7 セパレータ
8 ラミネートフィルム(ケース側)
9 電極群
10 ラミネートフィルム(ふた側)
11 熱溶着絶縁樹脂
12 フィルム基材
13 絶縁樹脂
14 バスバ
15 ガス排出ダクト
16 ガス流路
DESCRIPTION OF SYMBOLS 1 Positive electrode terminal 2 Negative electrode terminal 3 Positive electrode uncoated part 4 Negative electrode uncoated part 5 Positive electrode 6 Negative electrode 7 Separator 8 Laminate film (case side)
9 Electrode group 10 Laminate film (lid side)
DESCRIPTION OF SYMBOLS 11 Heat welding insulating resin 12 Film base material 13 Insulating resin 14 Bus bar 15 Gas exhaust duct 16 Gas flow path
Claims (9)
前記ラミネートセルは、正極端子と負極端子の間の封止部分の少なくとも一部が、他の封止部分に比べ、開裂圧が弱いことを特徴とするラミネートセル。 In a laminate cell in which an electrode group including a positive electrode, a negative electrode, and a separator is sealed with a laminate film, and a positive electrode terminal and a negative electrode terminal electrically connected to the electrode group are exposed to the outside from the same side surface,
The laminate cell is characterized in that at least a part of a sealing portion between a positive electrode terminal and a negative electrode terminal has a weaker cleavage pressure than other sealing portions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012013660A JP2013152880A (en) | 2012-01-26 | 2012-01-26 | Laminate cell and module using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012013660A JP2013152880A (en) | 2012-01-26 | 2012-01-26 | Laminate cell and module using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013152880A true JP2013152880A (en) | 2013-08-08 |
Family
ID=49049076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012013660A Pending JP2013152880A (en) | 2012-01-26 | 2012-01-26 | Laminate cell and module using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013152880A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020053177A (en) * | 2018-09-25 | 2020-04-02 | 大日本印刷株式会社 | Power storage device |
CN112470321A (en) * | 2018-08-24 | 2021-03-09 | 株式会社村田制作所 | Nonaqueous electrolyte secondary battery |
WO2022051915A1 (en) * | 2020-09-08 | 2022-03-17 | 东莞新能安科技有限公司 | Electrode assembly, electrochemical device, and electronic device |
JP2022126267A (en) * | 2021-02-18 | 2022-08-30 | プライムプラネットエナジー&ソリューションズ株式会社 | battery pack |
WO2023093432A1 (en) * | 2021-11-23 | 2023-06-01 | 湖北亿纬动力有限公司 | Battery pack |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62133665A (en) * | 1985-12-06 | 1987-06-16 | Matsushita Electric Ind Co Ltd | Sealed type storage battery |
JP2001084971A (en) * | 1999-09-16 | 2001-03-30 | Yuasa Corp | Sealed battery and manufacturing method thereof |
JP2001093489A (en) * | 1999-01-20 | 2001-04-06 | Matsushita Electric Ind Co Ltd | Flat battery |
JP2003297324A (en) * | 2002-03-29 | 2003-10-17 | Toyota Motor Corp | Safety valve structure of storage element and storage element |
JP2005141955A (en) * | 2003-11-05 | 2005-06-02 | Japan Storage Battery Co Ltd | Battery |
WO2005096412A1 (en) * | 2004-03-31 | 2005-10-13 | Nec Lamilion Energy, Ltd. | Electrical device with film covering, frame member, and housing system for electrical device with film covering |
WO2006126446A1 (en) * | 2005-05-23 | 2006-11-30 | Matsushita Electric Industrial Co., Ltd. | Safety mechanism for laminate battery |
JP2007053023A (en) * | 2005-08-18 | 2007-03-01 | Toyota Motor Corp | Laminated battery and laminated battery module |
JP2010049913A (en) * | 2008-08-21 | 2010-03-04 | Toyota Motor Corp | Manufacturing method of sealed battery |
-
2012
- 2012-01-26 JP JP2012013660A patent/JP2013152880A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62133665A (en) * | 1985-12-06 | 1987-06-16 | Matsushita Electric Ind Co Ltd | Sealed type storage battery |
JP2001093489A (en) * | 1999-01-20 | 2001-04-06 | Matsushita Electric Ind Co Ltd | Flat battery |
JP2001084971A (en) * | 1999-09-16 | 2001-03-30 | Yuasa Corp | Sealed battery and manufacturing method thereof |
JP2003297324A (en) * | 2002-03-29 | 2003-10-17 | Toyota Motor Corp | Safety valve structure of storage element and storage element |
JP2005141955A (en) * | 2003-11-05 | 2005-06-02 | Japan Storage Battery Co Ltd | Battery |
WO2005096412A1 (en) * | 2004-03-31 | 2005-10-13 | Nec Lamilion Energy, Ltd. | Electrical device with film covering, frame member, and housing system for electrical device with film covering |
WO2006126446A1 (en) * | 2005-05-23 | 2006-11-30 | Matsushita Electric Industrial Co., Ltd. | Safety mechanism for laminate battery |
JP2007053023A (en) * | 2005-08-18 | 2007-03-01 | Toyota Motor Corp | Laminated battery and laminated battery module |
JP2010049913A (en) * | 2008-08-21 | 2010-03-04 | Toyota Motor Corp | Manufacturing method of sealed battery |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112470321A (en) * | 2018-08-24 | 2021-03-09 | 株式会社村田制作所 | Nonaqueous electrolyte secondary battery |
CN112470321B (en) * | 2018-08-24 | 2024-01-05 | 株式会社村田制作所 | Nonaqueous electrolyte secondary battery |
JP2020053177A (en) * | 2018-09-25 | 2020-04-02 | 大日本印刷株式会社 | Power storage device |
JP7187927B2 (en) | 2018-09-25 | 2022-12-13 | 大日本印刷株式会社 | storage device |
WO2022051915A1 (en) * | 2020-09-08 | 2022-03-17 | 东莞新能安科技有限公司 | Electrode assembly, electrochemical device, and electronic device |
JP2022126267A (en) * | 2021-02-18 | 2022-08-30 | プライムプラネットエナジー&ソリューションズ株式会社 | battery pack |
JP7391060B2 (en) | 2021-02-18 | 2023-12-04 | プライムプラネットエナジー&ソリューションズ株式会社 | battery pack |
WO2023093432A1 (en) * | 2021-11-23 | 2023-06-01 | 湖北亿纬动力有限公司 | Battery pack |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4977375B2 (en) | Lithium ion battery and battery pack using the same | |
JP5156826B2 (en) | Non-aqueous secondary battery | |
JP4649502B2 (en) | Lithium ion secondary battery | |
JP2011216403A (en) | Square-shape lithium ion secondary battery | |
US20140045008A1 (en) | Large format lithium-ion battery cell with improved saftey against crush and puncture | |
JPWO2010125755A1 (en) | Assembly sealing body and battery using the same | |
JP5005935B2 (en) | Nonaqueous electrolyte secondary battery | |
JP5397125B2 (en) | Manufacturing method of secondary battery | |
JP2013152880A (en) | Laminate cell and module using the same | |
CN110447120B (en) | Lithium ion battery | |
JP2013109946A (en) | Laminate type battery | |
JP2012028089A (en) | Nonaqueous secondary battery and nonaqueous secondary battery pack | |
JP5232751B2 (en) | Lithium ion secondary battery | |
JP4348492B2 (en) | Non-aqueous secondary battery | |
JP5462304B2 (en) | Battery pack using lithium-ion battery | |
JP2001084984A (en) | Battery | |
CN101286550B (en) | Battery package and secondary battery comprising same | |
JP2007095421A (en) | Large lithium ion secondary battery and electric storage system | |
CN111066175A (en) | Non-aqueous electrolyte secondary battery | |
JP4092543B2 (en) | Non-aqueous secondary battery | |
JP2012195122A (en) | Nonaqueous electrolyte secondary battery | |
JP2014022244A (en) | Laminate type battery | |
JP4594478B2 (en) | Non-aqueous secondary battery | |
JP4688305B2 (en) | Non-aqueous secondary battery | |
WO2022000329A1 (en) | Electrochemical apparatus and electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150324 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160322 |