JP2013147930A - Vibration control building - Google Patents
Vibration control building Download PDFInfo
- Publication number
- JP2013147930A JP2013147930A JP2013087599A JP2013087599A JP2013147930A JP 2013147930 A JP2013147930 A JP 2013147930A JP 2013087599 A JP2013087599 A JP 2013087599A JP 2013087599 A JP2013087599 A JP 2013087599A JP 2013147930 A JP2013147930 A JP 2013147930A
- Authority
- JP
- Japan
- Prior art keywords
- building
- rigidity
- low
- damping
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
本発明は、剛性の異なる建物の間を制振ダンパーにより連結してなる制振建物に関する。 The present invention relates to a damping building in which buildings having different rigidity are connected by a damping damper.
従来より、剛性の高い内部建物を取り囲むように剛性の低い外部建物を構築し、これら建物の間を複数層において制振ダンパーにより連結してなる制振構造(以下、連棟制振という)が用いられている。連棟制振によれば、地震時に内部建物及び外部建物が異なる変形モードで振動するため、制振ダンパーにより、効率よく振動エネルギーを吸収することができる。 Conventionally, a low-stiffness external building has been constructed so as to surround a high-rigidity internal building, and a multi-layered vibration control structure (hereinafter referred to as multi-building vibration control) is established between these buildings. It is used. According to the continuous building vibration control, the internal building and the external building vibrate in different deformation modes at the time of an earthquake, so that vibration energy can be efficiently absorbed by the vibration damper.
また、例えば、特許文献1には、連棟制振を用いた建物において、内部建物及び外部建物の下部に免震層を設けることが記載されている。 Further, for example, Patent Document 1 describes that in a building using multi-building vibration control, a seismic isolation layer is provided in the lower part of the internal building and the external building.
ここで、連棟制振を用いた制振建物における制振ダンパーを設計する方法として、定点理論が広く用いられている。図4(A)は、免震層を備えていない場合の各建物における周波数伝達関数を示すグラフであり、(B)は、各建物に免震層を設けた場合の周波数伝達関数を示すグラフである。定点理論とは、制振ダンパーの減衰係数にかかわらず、各建物の周波数伝達関数はグラフ上の定点(図4(A)における点P、点Q)を必ず通過するという理論である。この定点は、これら建物を連結する制振ダンパーの減衰力を0とした(すなわち、互いに独立に振動可能とした)場合、及び無限大とした(すなわち、2つの構造物を一体とした)場合における各建物の周波数伝達関数の交点にあたる。定点理論を用いて制振ダンパーを設計する場合には、周波数伝達関数のピークとこの定点とが一致するように制振ダンパーの減衰定数を調整する。 Here, fixed point theory is widely used as a method of designing a vibration damper in a vibration-damped building using continuous building vibration control. FIG. 4A is a graph showing the frequency transfer function in each building when the base isolation layer is not provided, and FIG. 4B is a graph showing the frequency transfer function when the base isolation layer is provided in each building. It is. The fixed point theory is a theory that the frequency transfer function of each building always passes through fixed points on the graph (points P and Q in FIG. 4A) regardless of the damping coefficient of the damping damper. This fixed point is when the damping force of the damping damper connecting these buildings is 0 (that is, they can vibrate independently from each other) and infinite (that is, the two structures are integrated) This is the intersection of the frequency transfer functions of each building. When designing the damping damper using the fixed point theory, the damping constant of the damping damper is adjusted so that the peak of the frequency transfer function matches this fixed point.
ここで、特許文献1に記載された連棟制振と、免震構造とを組み合わせた建物の周波数伝達関数を考えると、各建物の下部に免震層を設けることにより、各建物の1次モードに対する有効質量が増加するため、図4(B)に示すように高剛性、低剛性の建物の周波数伝達関数のピークは、夫々、免震構造を設けていない場合に比べて低周波数側へと移動することとなる。しかしながら、同図に示すように、高剛性、低剛性の建物の周波数伝達関数が夫々低周波数側へ移動しても、定点P,Qの伝達率は略一定のままである。このため、結果として、図4(B)に示すように、周波数伝達関数のピーク値を抑えることができず、従来に比べて、顕著な制振効果が得られているとはいえない。
本発明は、上記の問題に鑑みなされたものであり、その目的は、連棟制振を用いた制振建物において、より高い制振効果が得られるようにすることである。
Here, when considering the frequency transfer function of a building that combines the building vibration control described in Patent Document 1 and the seismic isolation structure, by providing a seismic isolation layer at the bottom of each building, Since the effective mass for the mode increases, as shown in FIG. 4B, the peak of the frequency transfer function of the high-rigidity and low-rigidity building is on the low-frequency side compared to the case where no seismic isolation structure is provided. Will move. However, as shown in the figure, even if the frequency transfer functions of the high-rigidity and low-rigidity buildings are moved to the low-frequency side, the transfer rates of the fixed points P and Q remain substantially constant. Therefore, as a result, as shown in FIG. 4 (B), the peak value of the frequency transfer function cannot be suppressed, and it cannot be said that a significant vibration damping effect is obtained compared to the conventional case.
The present invention has been made in view of the above problems, and an object of the present invention is to obtain a higher vibration damping effect in a vibration-damped building using continuous building vibration damping.
本発明の制振建物は、高剛性構造物と、前記高剛性構造物に比べて剛性が低い低剛性構造物と、これら高剛性構造物及び低剛性構造物を結ぶように設けられた複数の油圧ダンパーである制振ダンパーと、を備えた制振建物であって、前記低剛性建物は、平面視において前記高剛性建物の全周を取り囲むように構築され、前記高剛性建物と前記低剛性建物との間に鉛直方向に延びる空間が前記高剛性建物の全周に亘って形成され、前記複数の制振ダンパーは、前記空間に前記高剛性建物の外周面より水平方向に延びるように設けられ、前記高剛性建物及び低剛性建物の間に生じた水平方向の何れの方向の相対変位に対しても、当該相対変位に応じて水平方向に変形することにより振動エネルギーを吸収し、前記低剛性建物の下のみに免震層を備え、前記高剛性建物の下に免震層を備えず、前記低剛性建物の周波数伝達関数のピークが、前記制振ダンパーの減衰力を0とした場合及び無限大とした場合における前記低剛性建物の周波数伝達関数の交点に位置するように、前記制振ダンパーの減衰定数を決定したことを特徴とする。 The vibration-damping building of the present invention includes a high-rigidity structure, a low-rigidity structure having a rigidity lower than that of the high-rigidity structure, and a plurality of the high-rigidity structure and the low-rigidity structure. A low-rigidity building that surrounds the entire circumference of the high-rigidity building in plan view, the high-rigidity building and the low-rigidity building A space extending in the vertical direction between the building and the building is formed over the entire circumference of the high-rigidity building, and the plurality of vibration dampers are provided in the space so as to extend in the horizontal direction from the outer peripheral surface of the high-rigidity building. For any relative displacement in the horizontal direction generated between the high-rigidity building and the low-rigidity building, the vibration energy is absorbed by being deformed in the horizontal direction according to the relative displacement, and the low A seismic isolation layer is provided only under rigid buildings The low-rigidity building in which no seismic isolation layer is provided under the high-rigidity building, and the peak of the frequency transfer function of the low-rigidity building is when the damping force of the damping damper is 0 and infinite The damping constant of the damping damper is determined so as to be located at the intersection of the frequency transfer functions.
上記の制振建物において、前記免震層は、積層ゴムを備えてもよい。 In the above-described vibration-damping building, the seismic isolation layer may include laminated rubber.
本発明によれば、低剛性建物の下部に免震層を設けることにより、低剛性建物の有効質量が増加するため、周波数伝達関数においてピークとなる周波数が低周波数側へ変化する。これにより、定点理論における定点が低周波数側へ移動するとともに、この定点における伝達率が低下することとなる。このため、定点において周波数伝達関数のピークが位置するように制振ダンパーの減衰定数を決定することで、外部建物の伝達率を低減することができ、より効率の良い制振効果が得られる。 According to the present invention, since the effective mass of the low-rigidity building is increased by providing the seismic isolation layer at the lower part of the low-rigidity building, the peak frequency in the frequency transfer function changes to the low-frequency side. As a result, the fixed point in the fixed point theory moves to the low frequency side, and the transmission rate at this fixed point decreases. For this reason, by determining the damping constant of the damping damper so that the peak of the frequency transfer function is located at a fixed point, the transmission rate of the external building can be reduced, and a more efficient damping effect can be obtained.
以下、本発明の制振構造物の一実施形態を図面を参照しながら説明する。
図1(A)は、本実施形態の制振建物10の構成を示す鉛直断面図であり、(B)は、(A)における制振ダンパー40が取り付けられた高さにおける水平断面図である。同図(A)に示すように、本実施形態の制振建物10は、内部に鉛直方向に延びるボイド空間22を有する外部建物20と、外部建物20のボイド空間22内に構築された内部建物30と、複数の高さ位置において外部建物20と、内部建物30とを連結する制振ダンパー40と、を備える。
Hereinafter, an embodiment of a vibration damping structure of the present invention will be described with reference to the drawings.
FIG. 1A is a vertical cross-sectional view showing the configuration of the vibration-damping building 10 of this embodiment, and FIG. 1B is a horizontal cross-sectional view at a height where the vibration damper 40 in FIG. . As shown in FIG. 1A, the vibration-damping building 10 of the present embodiment includes an external building 20 having a void space 22 extending in the vertical direction therein, and an internal building constructed in the void space 22 of the external building 20. 30 and a vibration damper 40 that connects the external building 20 and the internal building 30 at a plurality of height positions.
外部建物20は、水平断面矩形に構築された超高層建物であり、その内部に上下方向に延びるボイド空間22を有する。外部建物20としては、例えば、鉄骨造、鉄筋コンクリート造、鉄骨鉄筋コンクリート造などを採用することができる。外部建物20は、最下部に、例えば、積層ゴムやすべり支承からなる免震層21を備える。これにより、外部建物20の有効質量が免震層21を設けていない場合に比べて大きくなる。 The external building 20 is a super high-rise building constructed in a rectangular horizontal section, and has a void space 22 extending in the vertical direction therein. As the external building 20, for example, a steel structure, a reinforced concrete structure, a steel reinforced concrete structure, or the like can be adopted. The external building 20 includes a base isolation layer 21 made of, for example, a laminated rubber or a sliding bearing at the lowermost part. Thereby, the effective mass of the external building 20 becomes large compared with the case where the seismic isolation layer 21 is not provided.
内部建物30は、水平断面矩形に構築された超高層建物であり、外部建物20と同様に、例えば、鉄骨造、鉄筋コンクリート造、鉄骨鉄筋コンクリート造などを採用することができる。また、内部建物30は、外部建物20に比べて高い剛性を有するように構築されている。このように内部建物30は剛性が高いことにより固有周期が短くなり、外部建物20は剛性が低いことにより固有周期が長くなる。このため、制振建物10に地震などによる外力が作用した場合には、内部建物30と外部建物20とは異なる振動モードで振動することとなる。 The internal building 30 is a high-rise building constructed in a rectangular horizontal cross section, and, like the external building 20, for example, a steel structure, a reinforced concrete structure, a steel reinforced concrete structure, or the like can be adopted. The internal building 30 is constructed so as to have higher rigidity than the external building 20. Thus, the natural period of the internal building 30 is shortened due to high rigidity, and the natural period of the external building 20 is long due to low rigidity. For this reason, when an external force such as an earthquake acts on the vibration control building 10, the internal building 30 and the external building 20 vibrate in different vibration modes.
制振ダンパー40としては、油圧ダンパー、鋼材ダンパー、摩擦ダンパーなどを用いることができ、内部建物30及び外部建物20の相対変形に合わせて、変形することにより振動エネルギーを吸収する。なお、図1(B)に示す例では、制振ダンパー40は、内部建物30の各外周面より略垂直に四方に延び、外部建物20のボイド空間22の対向する位置に接続されているが、制振ダンパー40の接続の仕方は、これに限らず、外部建物20と内部建物30の何れの方向の相対変位に対しても、何れかの制振ダンパー40が変形するようになっていればよい。 As the damping damper 40, a hydraulic damper, a steel damper, a friction damper, or the like can be used, and the vibration energy is absorbed by being deformed in accordance with the relative deformation of the internal building 30 and the external building 20. In the example shown in FIG. 1B, the vibration damper 40 extends in four directions substantially perpendicularly from the outer peripheral surfaces of the internal building 30 and is connected to the opposing position of the void space 22 of the external building 20. The connection method of the damping damper 40 is not limited to this, and any damping damper 40 may be deformed with respect to the relative displacement in any direction of the external building 20 and the internal building 30. That's fine.
図2(A)は、外部建物20に免震層21が設けられていない場合の内部建物30及び外部建物20の周波数伝達関数の一例を示すグラフであり、(B)は、本実施形態の制振建物10における内部建物30及び外部建物20の周波数伝達関数の一例を示すグラフである。同図に示すように、外部建物20は免震層21が設けられることにより、周波数応答関数のピークは長周期(低周波数)側へと移動する。このため、同図に示すように、定点理論における所定の点、すなわち、2つの構造物を連結する制振ダンパーの減衰力を0とした(すなわち、互いに独立に振動可能とした)場合及び無限大とした(すなわち、2つの構造物を一体とした)場合における外部建物20の周波数伝達関数の交点Pが長周期(低周波数)側へと移動するとともに、その伝達率も低減する。定点理論を用いて制振ダンパー40の設計を行う場合には、グラフ上においてこの交点に外部建物20の周波数伝達関数のピークが位置するように、制振ダンパー40の減衰定数を決定する。上記のように定点Pの伝達率が低減しているため、結果として外部建物20の周波数伝達関数全体の伝達率を低減することができる。 FIG. 2A is a graph showing an example of the frequency transfer function of the internal building 30 and the external building 20 when the seismic isolation layer 21 is not provided in the external building 20, and FIG. 4 is a graph showing an example of a frequency transfer function of the internal building 30 and the external building 20 in the vibration control building 10. As shown in the figure, the external building 20 is provided with the seismic isolation layer 21, whereby the peak of the frequency response function moves to the long period (low frequency) side. For this reason, as shown in the figure, a predetermined point in the fixed point theory, that is, the case where the damping force of the damping damper connecting two structures is set to 0 (that is, the vibrations can be independently vibrated) and infinite The intersection P of the frequency transfer function of the external building 20 in the case of large (that is, two structures are integrated) moves to the long period (low frequency) side, and the transfer rate is also reduced. When the damping damper 40 is designed using the fixed point theory, the damping constant of the damping damper 40 is determined so that the peak of the frequency transfer function of the external building 20 is located at this intersection on the graph. As described above, since the transmission rate of the fixed point P is reduced, as a result, the transmission rate of the entire frequency transfer function of the external building 20 can be reduced.
以上説明したように、本実施形態によれば、外部建物20の下部に免震層21を設けることにより、外部建物20の有効質量が増加するため、周波数伝達関数のピークが低周波数側へ変化する。これにより、定点理論における定点Pが低周波数側へと移動するとともに、定点Pにおける伝達率も低下することとなる。このため、グラフ上において周波数伝達関数のピークがこの定点Pに位置するように制振ダンパー40の減衰定数を決定することにより、全周波数帯域において外部建物20の周波数伝達関数の伝達率を低減することができ、より高い制振効果が得られることとなる。 As described above, according to the present embodiment, the effective mass of the external building 20 is increased by providing the seismic isolation layer 21 at the lower part of the external building 20, so that the peak of the frequency transfer function changes to the low frequency side. To do. As a result, the fixed point P in the fixed point theory moves to the low frequency side, and the transmission rate at the fixed point P also decreases. For this reason, by determining the damping constant of the damping damper 40 so that the peak of the frequency transfer function is located at the fixed point P on the graph, the transfer rate of the frequency transfer function of the external building 20 is reduced in the entire frequency band. Therefore, a higher damping effect can be obtained.
また、一般的に免震層を備えた超高層建物では、地盤と免震層の直上の部位を結ぶようにのみ制振ダンパーが設置されており、低層階の振動はこの制振ダンパーにより吸収できるものの、高次モードの影響により上層階には大きな振動が生じてしまう。これに対して本実施形態によれば、下層から上層に亘って外部建物20と内部建物30を結ぶように制振ダンパー40が設置されているため、外部建物20の上層階の揺れを抑えることができる。 In general, in a high-rise building with a base isolation layer, a damping damper is installed only to connect the ground and the part directly above the base isolation layer, and vibrations on the lower floors are absorbed by this damping damper. Although it is possible, large vibrations will occur in the upper floors due to the effects of higher order modes. On the other hand, according to the present embodiment, since the vibration damper 40 is installed so as to connect the external building 20 and the internal building 30 from the lower layer to the upper layer, the shaking of the upper floor of the external building 20 is suppressed. Can do.
なお、本実施形態では、高剛性の内部建物30と、内部建物30の全周を取り囲むように低剛性の外部建物20が構築された制振建物に本発明を適用した場合について説明したが、これに限らず、図3(A)に示すように、高剛性の建物130と、高剛性の建物130の周囲を取り囲むように平面視においてコの字状の構築された低剛性の建物120と、これら建物120、130とを結ぶ制振ダンパー40とを備えた制振建物110においても、低剛性の建物120の下部に免震層を設けることで本実施形態と同様の効果が得られる。 In addition, although this embodiment demonstrated the case where this invention was applied to the damping building where the low-rigidity external building 20 was constructed so as to surround the entire circumference of the high-rigidity internal building 30 and the internal building 30, Not limited to this, as shown in FIG. 3A, a high-rigidity building 130, and a low-rigidity building 120 constructed in a U shape in plan view so as to surround the periphery of the high-rigidity building 130, Even in the damping building 110 including the damping damper 40 connecting the buildings 120 and 130, the same effect as that of the present embodiment can be obtained by providing a seismic isolation layer in the lower portion of the low-rigidity building 120.
さらに、同図(B)に示すように、高剛性の建物230と、高剛性の建物230の周囲を取り囲むように平面視において、くの字状の構築された低剛性の建物220と、これら建物220、230とを結ぶ制振ダンパー40と、からなる制振建物210にも本発明を適用できる。なお、これら制振建物110、210における制振ダンパー40は、これら建物の間に生じた水平方向何れの方向の相対変位に対しても、変形エネルギーを吸収できるように配置する必要がある。 Furthermore, as shown in FIG. 5B, the high-rigidity building 230, the low-rigidity building 220 constructed in a U shape in plan view so as to surround the periphery of the high-rigidity building 230, and these The present invention can also be applied to a vibration control building 210 including a vibration control damper 40 that connects the buildings 220 and 230. Note that the vibration dampers 40 in these vibration-damping buildings 110 and 210 need to be arranged so as to be able to absorb the deformation energy with respect to relative displacement in any horizontal direction generated between these buildings.
また、本実施形態では、外部建物20の最下部に免震層21を設けているが、これに限らず、外部建物20の下部であれば免震層21を設ける高さ位置は問わない。 Moreover, in this embodiment, although the seismic isolation layer 21 is provided in the lowest part of the external building 20, it is not restricted to this, The height position which provides the seismic isolation layer 21 will not be ask | required if it is the lower part of the external building 20.
10 制振建物
20 外部建物
21 免震層
22 ボイド空間
30 内部建物
40 制振ダンパー
10 Damping building 20 External building 21 Seismic isolation layer 22 Void space 30 Internal building 40 Damping damper
Claims (2)
前記低剛性建物は、平面視において前記高剛性建物の全周を取り囲むように構築され、
前記高剛性建物と前記低剛性建物との間に鉛直方向に延びる空間が前記高剛性建物の全周に亘って形成され、
前記複数の制振ダンパーは、前記空間に前記高剛性建物の外周面より水平方向に延びるように設けられ、前記高剛性建物及び低剛性建物の間に生じた水平方向の何れの方向の相対変位に対しても、当該相対変位に応じて水平方向に変形することにより振動エネルギーを吸収し、
前記低剛性建物の下のみに免震層を備え、前記高剛性建物の下に免震層を備えず、
前記低剛性建物の周波数伝達関数のピークが、前記制振ダンパーの減衰力を0とした場合及び無限大とした場合における前記低剛性建物の周波数伝達関数の交点に位置するように、前記制振ダンパーの減衰定数を決定したことを特徴とする制振建物。 A high-rigidity structure, a low-rigidity structure that is less rigid than the high-rigidity structure, and a vibration damper that is a plurality of hydraulic dampers provided to connect the high-rigidity structure and the low-rigidity structure; A vibration control building with
The low-rigidity building is constructed so as to surround the entire circumference of the high-rigidity building in plan view,
A space extending in the vertical direction between the high-rigidity building and the low-rigidity building is formed over the entire circumference of the high-rigidity building,
The plurality of vibration dampers are provided in the space so as to extend in the horizontal direction from the outer peripheral surface of the high-rigidity building, and the relative displacement in any horizontal direction generated between the high-rigidity building and the low-rigidity building. Again, it absorbs vibration energy by deforming in the horizontal direction according to the relative displacement,
A base isolation layer is provided only under the low-rigidity building, and a base isolation layer is not provided under the high-rigidity building.
The vibration damping is so controlled that the peak of the frequency transfer function of the low-rigidity building is located at the intersection of the frequency transfer function of the low-rigidity building when the damping force of the damping damper is zero and infinite. A damping building characterized by determining the damping constant of the damper.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013087599A JP5720718B2 (en) | 2013-04-18 | 2013-04-18 | Vibration control building |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013087599A JP5720718B2 (en) | 2013-04-18 | 2013-04-18 | Vibration control building |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008283371A Division JP5320031B2 (en) | 2008-11-04 | 2008-11-04 | Damping building |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013147930A true JP2013147930A (en) | 2013-08-01 |
JP5720718B2 JP5720718B2 (en) | 2015-05-20 |
Family
ID=49045688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013087599A Active JP5720718B2 (en) | 2013-04-18 | 2013-04-18 | Vibration control building |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5720718B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015200123A (en) * | 2014-04-09 | 2015-11-12 | 株式会社大林組 | Vibration control building and building vibration control method |
JP2015200125A (en) * | 2014-04-09 | 2015-11-12 | 株式会社大林組 | Vibration control building and building vibration control method |
JP2016023445A (en) * | 2014-07-17 | 2016-02-08 | 首都高速道路株式会社 | Connected vibration control structure for bridge, and setting method for the same |
JP7513858B1 (en) | 2024-04-01 | 2024-07-09 | 鹿島建設株式会社 | Seismic control structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173498A (en) * | 1992-12-04 | 1994-06-21 | Ohbayashi Corp | Damping device |
JPH11190144A (en) * | 1997-12-25 | 1999-07-13 | Taisei Corp | Equipment space of building |
JP2003155838A (en) * | 2001-11-19 | 2003-05-30 | Shimizu Corp | Vibration-isolated structure of building |
JP2006161341A (en) * | 2004-12-03 | 2006-06-22 | Kazuto Sedo | Vibration control structure for construction |
-
2013
- 2013-04-18 JP JP2013087599A patent/JP5720718B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173498A (en) * | 1992-12-04 | 1994-06-21 | Ohbayashi Corp | Damping device |
JPH11190144A (en) * | 1997-12-25 | 1999-07-13 | Taisei Corp | Equipment space of building |
JP2003155838A (en) * | 2001-11-19 | 2003-05-30 | Shimizu Corp | Vibration-isolated structure of building |
JP2006161341A (en) * | 2004-12-03 | 2006-06-22 | Kazuto Sedo | Vibration control structure for construction |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015200123A (en) * | 2014-04-09 | 2015-11-12 | 株式会社大林組 | Vibration control building and building vibration control method |
JP2015200125A (en) * | 2014-04-09 | 2015-11-12 | 株式会社大林組 | Vibration control building and building vibration control method |
JP2016023445A (en) * | 2014-07-17 | 2016-02-08 | 首都高速道路株式会社 | Connected vibration control structure for bridge, and setting method for the same |
JP7513858B1 (en) | 2024-04-01 | 2024-07-09 | 鹿島建設株式会社 | Seismic control structure |
Also Published As
Publication number | Publication date |
---|---|
JP5720718B2 (en) | 2015-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5238245B2 (en) | Floor structure | |
JP5720718B2 (en) | Vibration control building | |
KR101439421B1 (en) | Floor buffer structure for reducing noise between floors of building | |
KR101449672B1 (en) | the sound and shock absorption structure of slave in apartment | |
JP5320031B2 (en) | Damping building | |
KR101488443B1 (en) | Vibration absorbing device for reducing inter layer noise and floor structure using the same | |
JP5252227B2 (en) | Seismic isolation system | |
JP2011137303A (en) | Base isolation structure | |
JP5639766B2 (en) | Floor structure | |
JP5102577B2 (en) | Floor support and floor structure | |
JP7037320B2 (en) | Vibration control building | |
JP6216391B2 (en) | Seismic isolation swing slab support device and seismic isolation swing slab construction method using the same | |
JP7257747B2 (en) | Damping structure | |
JPS6221946B2 (en) | ||
TWI676747B (en) | Vibration control method for two-way asymmetric-plan buildings, design method of tuned mass damper, and tuned mass damper designed thereby | |
JP4806253B2 (en) | Floor structure | |
JP7107759B2 (en) | Damping structure | |
JP6143055B2 (en) | Damping structure | |
JP2020037804A (en) | Seismic control structure | |
JP7094870B2 (en) | Vibration control building | |
JP7424453B2 (en) | floor structure | |
JP7364335B2 (en) | building | |
JP2011132690A (en) | Vibration control structure | |
JP2010242450A (en) | Vibration control method, vibration control structure, and aseismatic reinforcing method | |
JP6334881B2 (en) | Floor damping system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140424 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141015 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150309 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5720718 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |