JP2013038072A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2013038072A JP2013038072A JP2012155492A JP2012155492A JP2013038072A JP 2013038072 A JP2013038072 A JP 2013038072A JP 2012155492 A JP2012155492 A JP 2012155492A JP 2012155492 A JP2012155492 A JP 2012155492A JP 2013038072 A JP2013038072 A JP 2013038072A
- Authority
- JP
- Japan
- Prior art keywords
- carbonate
- negative electrode
- aqueous electrolyte
- less
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水系電解液二次電池に関し、詳しくは、電解質としてイソシアネート基を有する特定の化合物を含有する非水系電解液と負極にX線光電子分光法から求められる表面含酸素率(O/C)が特定の割合を有する炭素質物からなる負極活物質を含む非水系電解液二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery, and more specifically, to a non-aqueous electrolyte containing a specific compound having an isocyanate group as an electrolyte and a negative electrode with a surface oxygen content (O / O) determined by X-ray photoelectron spectroscopy. C) relates to a non-aqueous electrolyte secondary battery including a negative electrode active material made of a carbonaceous material having a specific ratio.
携帯電話、ノートパソコン等のいわゆる携帯電子機器用電源から自動車用等の駆動用車載電源や定置用大型電源等に至るまでの広範な電源としてリチウム二次電池等の非水系電解液二次電池が実用化されつつある。しかしながら、近年の電子機器の高性能化や駆動用車載電源や定置用大型電源への適用等に伴い、適用される二次電池への要求はますます高まり、二次電池の電池特性の高性能化、例えば高容量化、高温保存特性、サイクル特性、高速充放電特性等の向上を高い水準で達成することが求められている。 Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are widely used as power sources for so-called portable electronic devices such as mobile phones and notebook computers, to in-vehicle power sources for automobiles and large power sources for stationary applications. It is being put into practical use. However, with the recent high performance of electronic devices and the application to in-vehicle power supplies for driving and large power supplies for stationary applications, the demand for applied secondary batteries is increasing, and the high performance of the battery characteristics of secondary batteries is increasing. For example, it is required to achieve a high level of improvement in capacity, for example, high capacity, high-temperature storage characteristics, cycle characteristics, and high-speed charge / discharge characteristics.
非水系電解液リチウム二次電池に用いる電解液は、通常、主として電解質と非水溶媒とから構成されている。非水溶媒の主成分としては、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート;γ−ブチロラクトン、γ−バレロラクトン等の環状カルボン酸エステルなどが用いられている。 The electrolyte used for the non-aqueous electrolyte lithium secondary battery is usually composed mainly of an electrolyte and a non-aqueous solvent. The main components of the nonaqueous solvent include cyclic carbonates such as ethylene carbonate and propylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate; cyclic carboxylic acid esters such as γ-butyrolactone and γ-valerolactone. It is used.
リチウム二次電池の長期耐久性を向上させるための取り組みの一つとして、上記電解液に特定の化合物を加えることにより、電池の使用初期に不動態皮膜を負極上に形成し、主要な劣化要因といえる溶媒の還元分解反応などの副反応を抑制させる取り組みがなされている。
このような化合物の例として、分子内にイソシアネート基を含有する化合物が挙げられる。特許文献1、特許文献2及び特許文献3には、それぞれ電解液にイソシアネート基を有する低分子化合物、鎖状のイソシアネート化合物やジイソシアネート化合物を加えることにより、サイクル安定性が改良されることが開示されている。
As one of the efforts to improve the long-term durability of lithium secondary batteries, by adding a specific compound to the above electrolyte, a passive film is formed on the negative electrode in the initial stage of use of the battery. Efforts are being made to suppress side reactions such as reductive decomposition of solvents.
Examples of such compounds include compounds containing an isocyanate group in the molecule. Patent Document 1, Patent Document 2 and Patent Document 3 disclose that cycle stability is improved by adding a low-molecular compound having an isocyanate group, a chain isocyanate compound or a diisocyanate compound to the electrolyte solution, respectively. ing.
また、電解液以外にも負極活物質表面を改質して電池を高性能化する試みがある。例えば、黒鉛質粒子をメカノケミカル処理して、該黒鉛質粒子表面を親水化することで、水系結着材を用いたリチウムイオン二次電池でも高速充電することができることが特許文献4に開示されている。ただし、このように化学的に活性な表面は、例えば適切な電解液成分と組み合わせるなどの応用によって、更なる高性能化が期待できるが、そうした技術開発は未だ十分とは言えない状況である。 In addition to the electrolytic solution, there is an attempt to improve the performance of the battery by modifying the surface of the negative electrode active material. For example, Patent Document 4 discloses that a lithium ion secondary battery using an aqueous binder can be charged at high speed by mechanochemically treating graphite particles and hydrophilizing the surface of the graphite particles. ing. However, such a chemically active surface can be expected to have higher performance by application, for example, in combination with an appropriate electrolyte component, but such technical development is still not sufficient.
上記のように、分子内にイソシアネート基を含有する化合物(以下適宜、「イソシアネート化合物」という)を電解液に含めると、耐久性能の向上が期待できるが、組み合わせ
る負極の種類によってはその作用が十分に現れない場合がある。これは、イソシアネート化合物の作用機構に基づいた適切な電池設計がなされていないからで、更なる電池の長期安定性の改善の為には負極活物質の表面物性が適切に選択される必要がある。
As described above, when a compound containing an isocyanate group in the molecule (hereinafter referred to as “isocyanate compound” as appropriate) is included in the electrolyte, an improvement in durability can be expected. May not appear in This is because an appropriate battery design based on the action mechanism of the isocyanate compound has not been made, and the surface physical properties of the negative electrode active material must be appropriately selected in order to further improve the long-term stability of the battery. .
発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、非水系電解液二次電池に使用する負極が、X線光電子分光法から求められる表面含酸素率(O/C)が0.8atom%以上である炭素質材料からなる負極活物質を含み、且つ、前記非水系電解液がイソシアネート基を有する化合物を少なくとも一種以上を含むことにより、著しく高温時サイクル特性が改善され、サイクル時の低温放電特性の劣化が小さい非水系電解液二次電池が実現できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the inventors have found that the negative electrode used in the non-aqueous electrolyte secondary battery has a surface oxygen content (O / C) required by X-ray photoelectron spectroscopy. By including at least one compound having an isocyanate group in the non-aqueous electrolyte containing a negative electrode active material composed of a carbonaceous material of 0.8 atom% or more, the cycle characteristics at high temperature are remarkably improved, and the cycle The present inventors have found that a non-aqueous electrolyte secondary battery with small deterioration in low-temperature discharge characteristics can be realized, and have completed the present invention.
即ち、本発明の要旨は以下の通りである。
リチウム塩とこれを溶解する非水系溶媒を含有してなる非水系電解液と、リチウムイオンを吸蔵放出可能な負極、並びに正極を備えた非水系電解液二次電池であって、X線光電子分光法から求められる表面含酸素率(O/C)が0.8atom%以上である炭素質材料からなる負極活物質を含み、且つ、前記非水系電解液がイソシアネート基を有する化合物を含有していることを特徴とする非水系電解液二次電池である。
That is, the gist of the present invention is as follows.
A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte solution containing a lithium salt and a non-aqueous solvent for dissolving the lithium salt, a negative electrode capable of occluding and releasing lithium ions, and a positive electrode, comprising: X-ray photoelectron spectroscopy A negative electrode active material made of a carbonaceous material having a surface oxygen content (O / C) of 0.8 atom% or more determined by the method, and the non-aqueous electrolyte contains a compound having an isocyanate group This is a non-aqueous electrolyte secondary battery.
また、本発明の別の要旨は、前記イソシアネート基を有する化合物の少なくとも一部は、一般式(1)で表される化合物であること、である。 Another gist of the present invention is that at least a part of the compound having an isocyanate group is a compound represented by the general formula (1).
(式中、Aは、水素原子、ハロゲン原子、ビニル基、イソシアネート基、又はC 1 〜
C 2 0 の脂肪族炭化水素基(ヘテロ原子を有していてもよい)又はC 6 〜C 2 0 の芳香族炭化水素基( ヘテロ原子を有していてもよい)を表す。B は、酸素原子 、S O 2 、OSO2、SO3、OCO、COO、又は、C 1〜 C 2 0 の脂肪族炭化水
素基( ヘテロ原子を有していてもよい)、又はC 6 〜C 2 0の芳香族炭化水素基( ヘテロ原子を有していてもよい) を表す。)
また、本発明の別の要旨は、前記一般式(1)で表される化合物の少なくとも一部は、(2)式で表される化合物であること、である。
(Wherein, A represents a hydrogen atom, a halogen atom, a vinyl group, an isocyanate group, or a C 1 ~
C represents a 2 0 aliphatic hydrocarbon group (which may have a hetero atom) or a C 6 -C 2 0 aromatic hydrocarbon group (which may have a hetero atom). B is an oxygen atom, S 2 O 2 , OSO 2 , SO 3, OCO, COO, or a C 1 to C 20 aliphatic hydrocarbon group (which may have a hetero atom), or C 6 to C 2. 0 represents an aromatic hydrocarbon group (which may have a hetero atom). )
Another gist of the present invention is that at least a part of the compound represented by the general formula (1) is a compound represented by the formula (2).
(式中、x は4〜12である)
また、本発明の別の要旨は、前記イソシアネート基を有する化合物の少なくとも一部は、一般式(1)で表される化合物及び/又は平均官能基数が2以上、かつ数平均分子量が300〜5000のポリイソシアネートであること、である。
また、本発明の別の要旨は、前記イソシアネート化合物を非水溶媒全体に対して0.01質量%以上5質量%以下含有すること、である。
(Wherein x is 4 to 12)
Another gist of the present invention is that at least a part of the isocyanate group-containing compound has a compound represented by the general formula (1) and / or an average functional group number of 2 or more and a number average molecular weight of 300 to 5000. The polyisocyanate.
Another gist of the present invention is that the isocyanate compound is contained in an amount of 0.01% by mass or more and 5% by mass or less based on the entire non-aqueous solvent.
また、本発明の別の要旨は、前記X線光電子分光法から求められる表面含酸素率(O/C)が1.0atom%以上であること、である。
また、本発明の別の要旨は、前記負極は、アルゴンイオンレーザーラマンスペクトル法における1580cm−1のピーク強度に対する1360cm−1のピーク強度の比とし
て定義されるラマンR値が0.10以上である炭素質材料を少なくとも1種類以上含有する負極活物質を含むこと、である。
Another gist of the present invention is that the surface oxygen content (O / C) obtained from the X-ray photoelectron spectroscopy is 1.0 atom% or more.
Still another subject matter of the present invention, the negative electrode, the Raman R value, defined as the ratio of the peak intensity of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectroscopy is 0.10 or more And including a negative electrode active material containing at least one carbonaceous material.
また、本発明の別の要旨は、前記炭素質材料の表面酸素を酸素存在下でメカノケミカル処理する方法によって付与すること、である。 Another gist of the present invention is to provide surface oxygen of the carbonaceous material by a mechanochemical treatment in the presence of oxygen.
本発明により、特に高容量化されたリチウム二次電池設計において電池のサイクル耐久特性が著しく改善された非水系電解液電池が提供される。この理由は、下記のように推測される。
本発明によると、電解液にイソシアネート化合物を含むことによって、溶媒の還元分解を効果的に抑制する良質な皮膜が負極活物質表面に形成される。さらに、その皮膜の一部が負極活物質表面の酸素官能基との間の強い相互作用によって強固に結着するとみられる。その結果として、充放電の繰り返しにおける皮膜の物理的、化学的安定性が高まり、還元分解抑制効果を長期的に持続させることが可能となった。
The present invention provides a non-aqueous electrolyte battery in which the cycle endurance characteristics of the battery are significantly improved, particularly in the design of high capacity lithium secondary batteries. The reason for this is estimated as follows.
According to the present invention, by including an isocyanate compound in the electrolytic solution, a high-quality film that effectively suppresses reductive decomposition of the solvent is formed on the surface of the negative electrode active material. Furthermore, a part of the film seems to be firmly bound by a strong interaction with the oxygen functional group on the surface of the negative electrode active material. As a result, the physical and chemical stability of the coating during repeated charging and discharging is increased, and the reductive decomposition inhibiting effect can be maintained for a long time.
また、イソシアネート化合物のサイクル特性に及ぼす効果は、負極活物質表面の酸素官能基量、すなわちX線光電子分光法から求められるおよそ0.8atom%の表面含酸素率(O/C)を境にして飛躍的に高まり、さらに表面含酸素率(O/C)を増すに従って効果が高まる傾向があることを見出した。この理由は現在のところ明らかとなっていないが、上述の相互作用の強さが酸素官能基量に依存するためとみられる。 Further, the effect of the isocyanate compound on the cycle characteristics is bordered by the oxygen functional group amount on the surface of the negative electrode active material, that is, the surface oxygen content (O / C) of about 0.8 atom% obtained from X-ray photoelectron spectroscopy. It has been found that the effect tends to increase dramatically as the surface oxygen content (O / C) increases. The reason for this is not clear at present, but it seems that the strength of the above-mentioned interaction depends on the amount of oxygen functional groups.
以下、本発明の実施の形態について詳細に説明するが、本発明はこれらに限定されるものではなく、任意に変形して実施することができる。
1.負極
本発明の非水系電解液二次電池に用いる負極は、リチウムイオンを吸蔵放出可能な負極であり、特定の負極活物質を含むものである。以下に負極に使用される負極活物質について述べる。
Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to these embodiments, and can be arbitrarily modified and implemented.
1. Negative electrode The negative electrode used for the non-aqueous electrolyte secondary battery of the present invention is a negative electrode capable of occluding and releasing lithium ions, and includes a specific negative electrode active material. The negative electrode active material used for the negative electrode is described below.
<負極活物質>
負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400〜3200℃の範囲で1回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種以上の異なる結晶性を有する炭素質からなり、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種以上の異なる配向性を有する炭素質からなり、かつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよく好ましい。また、(1)〜(4)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
<Negative electrode active material>
As a carbonaceous material used as a negative electrode active material,
(1) natural graphite,
(2) a carbonaceous material obtained by heat-treating an artificial carbonaceous material and an artificial graphite material at least once in the range of 400 to 3200 ° C;
(3) a carbonaceous material in which the negative electrode active material layer is made of carbonaceous materials having at least two or more different crystallinities and / or has an interface in contact with the different crystalline carbonaceous materials,
(4) A carbonaceous material in which the negative electrode active material layer is made of carbonaceous materials having at least two or more different orientations and / or has an interface in contact with the carbonaceous materials having different orientations,
Is preferably a good balance between initial irreversible capacity and high current density charge / discharge characteristics. Moreover, the carbonaceous materials (1) to (4) may be used alone or in combination of two or more in any combination and ratio.
上記(2)の人造炭素質物質並びに人造黒鉛質物質としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物等が挙げられる。 Examples of the artificial carbonaceous material and artificial graphite material of (2) above include natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, those obtained by oxidizing these pitches, needle coke, pitch coke and Carbon materials that are partially graphitized, furnace black, acetylene black, organic pyrolysis products such as pitch-based carbon fibers, carbonizable organic materials and their carbides, or carbonizable organic materials are benzene, toluene, xylene, quinoline And a solution dissolved in a low-molecular organic solvent such as n-hexane, and carbides thereof.
<X線パラメータ>
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、0.335nm以上であることが好ましく、また、通常0.360nm以下であり、0.350nm以下が好ましく、0.345nm以下がさらに好ましい。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1.0nm以上であることが好ましく、中でも1.5nm以上であることがさらに好ましい。
<X-ray parameters>
The d value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction by the Gakushin method of carbonaceous materials is preferably 0.335 nm or more, and is usually 0.360 nm or less. 350 nm or less is preferable, and 0.345 nm or less is more preferable. Further, the crystallite size (Lc) of the carbonaceous material obtained by X-ray diffraction by the Gakushin method is preferably 1.0 nm or more, and more preferably 1.5 nm or more.
<体積基準平均粒径>
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)であり、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
<Volume standard average particle size>
The volume-based average particle diameter of the carbonaceous material is a volume-based average particle diameter (median diameter) obtained by a laser diffraction / scattering method, and is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and 7 μm. The above is particularly preferable, and is usually 100 μm or less, preferably 50 μm or less, more preferably 40 μm or less, further preferably 30 μm or less, and particularly preferably 25 μm or less.
体積基準平均粒径が上記範囲であれば、不可逆容量の増大による、初期の電池容量の損失を抑制できるとともに、塗布による電極作製の工程を含む場合に、均一な電極塗布が可能となる。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なうことができる。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
When the volume-based average particle size is in the above range, the loss of the initial battery capacity due to the increase in irreversible capacity can be suppressed, and uniform electrode application is possible when the electrode preparation step by application is included.
The volume-based average particle size is measured by dispersing carbon powder in a 0.2% by weight aqueous solution (about 10 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and laser diffraction / scattering particle size distribution. This can be performed using a meter (LA-700 manufactured by Horiba, Ltd.). The median diameter determined by the measurement is defined as the volume-based average particle diameter of the carbonaceous material of the present invention.
<ラマンR値、ラマン半値幅>
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
また、炭素質材料の1580cm−1付近のラマン半値幅は特に制限されないが、通常10cm−1以上であり、15cm−1以上が好ましく、また、通常100cm−1以下であり、80cm−1以下が好ましく、60cm−1以下がさらに好ましく、40cm−1以下が特に好ましい。
<Raman R value, Raman half width>
The Raman R value of the carbonaceous material is a value measured using an argon ion laser Raman spectrum method, and is usually 0.01 or more, preferably 0.03 or more, more preferably 0.1 or more, and usually 1.5 or less, preferably 1.2 or less, more preferably 1 or less, and particularly preferably 0.5 or less.
Further, the Raman half-width in the vicinity of 1580 cm −1 of the carbonaceous material is not particularly limited, but is usually 10 cm −1 or more, preferably 15 cm −1 or more, and usually 100 cm −1 or less, and 80 cm −1 or less. Preferably, 60 cm −1 or less is more preferable, and 40 cm −1 or less is particularly preferable.
ラマンR値及びラマン半値幅は、炭素質材料表面の結晶性を示す指標であるが、炭素質材料は、化学的安定性の観点から適度な結晶性が有する一方、充放電によってLiが入り込む層間のサイトを消失しない程度の結晶性であることが好ましい。なお、集電体に塗布した後のプレスによって負極を高密度化する場合には、電極板と平行方向に結晶が配向しやすくなるため、それを考慮することが好ましい。
ラマンR値又はラマン半値幅が上記範囲であると、炭素質材料と非水系電解液との反応を抑制することができるとともに、サイトの消失による負荷特性の低下を抑制することができる。
The Raman R value and the Raman half-value width are indices indicating the crystallinity of the surface of the carbonaceous material, but the carbonaceous material has an appropriate crystallinity from the viewpoint of chemical stability, while the interlayer in which Li enters by charge / discharge. It is preferable that the crystallinity is such that it does not disappear. In the case where the density of the negative electrode is increased by press after applying to the current collector, it is preferable to take account of this because crystals tend to be oriented in a direction parallel to the electrode plate.
When the Raman R value or the Raman half-value width is in the above range, the reaction between the carbonaceous material and the nonaqueous electrolytic solution can be suppressed, and the deterioration of the load characteristics due to the disappearance of the site can be suppressed.
ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPAの強度IAと、1360cm−1付近のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出する。該測定で算出されるラマンR値を、本発明の炭素質材料のラマンR値と定義する。また、得られるラマンスペクトルの1580cm−1付近のピークPAの半値幅を測定し、これを本発明の炭素質材料のラマン半値幅と定義する。 The measurement of the Raman spectrum, using a Raman spectrometer (manufactured by JASCO Corporation Raman spectrometer), the sample is naturally dropped into the measurement cell and filled, and while irradiating the sample surface in the cell with argon ion laser light, This is done by rotating the cell in a plane perpendicular to the laser beam. The resulting Raman spectrum, the intensity IA of a peak PA around 1580 cm -1, and measuring the intensity IB of the peak PB around 1360 cm -1, and calculates the intensity ratio R (R = IB / IA) . The Raman R value calculated by the measurement is defined as the Raman R value of the carbonaceous material of the present invention. Further, the half width of the peak PA near 1580 cm −1 of the obtained Raman spectrum is measured, and this is defined as the Raman half width of the carbonaceous material of the present invention.
また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
Moreover, said Raman measurement conditions are as follows.
Argon ion laser wavelength: 514.5nm
・ Laser power on the sample: 15-25mW
・ Resolution: 10-20cm -1
Measurement range: 1100 cm −1 to 1730 cm −1
・ Raman R value, Raman half width analysis: Background processing
-Smoothing processing: Simple average, 5 points of convolution
<BET比表面積>
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値であり、通常0.1m2・g−1以上であり、0.7m2・g−1以上が好ましく、1.0m2・g−1以上がさらに好ましく、1.5m2・g−1以上が特に好ましく、また、通常100m2・g−1以下であり、25m2・g−1以下が好ましく、15m2・g−1以下がさらに好ましく、10m2・g−1以下が特に好ましい。
<BET specific surface area>
BET specific surface area of the carbonaceous material is a value of the measured specific surface area using the BET method is usually 0.1 m 2 · g -1 or more, 0.7 m 2 · g -1 or more, 1. more preferably 0m2 · g -1 or more, particularly preferably 1.5 m 2 · g -1 or more, generally not more than 100 m 2 · g -1, preferably 25 m 2 · g -1 or less, 15 m 2 · g −1 or less is more preferable, and 10 m 2 · g −1 or less is particularly preferable.
BET比表面積の値が上記範囲であると、電極表面へのリチウムの析出を抑制することができる一方、非水系電解液との反応によるガス発生を抑制することができる。
BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行う。該測定で求められる比表面積を、本発明の炭素質材料のBET比表面積と定義する。
When the value of the BET specific surface area is in the above range, precipitation of lithium on the electrode surface can be suppressed, while gas generation due to reaction with the non-aqueous electrolyte can be suppressed.
The specific surface area was measured by the BET method using a surface area meter (a fully automated surface area measuring device manufactured by Okura Riken), preliminarily drying the sample at 350 ° C. for 15 minutes under nitrogen flow, Using a nitrogen helium mixed gas accurately adjusted so that the value of the relative pressure becomes 0.3, the nitrogen adsorption BET one-point method by the gas flow method is used. The specific surface area determined by the measurement is defined as the BET specific surface area of the carbonaceous material of the present invention.
<円形度>
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上がさらに好ましく、0.9以上が特に好ましい。
炭素質材料の円形度が大きいほど、充填性が向上し、粒子間の抵抗を抑えることができるため、高電流密度充放電特性は向上する。従って、円形度が上記範囲のように高いほど好ましい。
<Circularity>
When the circularity is measured as the degree of the sphere of the carbonaceous material, it is preferably within the following range. The circularity is defined as “circularity = (peripheral length of an equivalent circle having the same area as the particle projection shape) / (actual perimeter of the particle projection shape)”, and is theoretical when the circularity is 1. Become a true sphere. The circularity of the particles having a particle size of 3 to 40 μm in the range of the carbonaceous material is desirably closer to 1, and is preferably 0.1 or more, more preferably 0.5 or more, and more preferably 0.8 or more, 0.85 or more is more preferable, and 0.9 or more is particularly preferable.
The greater the degree of circularity of the carbonaceous material, the better the filling property and the resistance between particles, so that the high current density charge / discharge characteristics are improved. Therefore, it is preferable that the circularity is as high as the above range.
円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明の炭素質材料の円形度と定義する。 The circularity is measured using a flow type particle image analyzer (FPIA manufactured by Sysmex Corporation). About 0.2 g of a sample was dispersed in a 0.2% by mass aqueous solution (about 50 mL) of polyoxyethylene (20) sorbitan monolaurate as a surfactant, and irradiated with 28 kHz ultrasonic waves at an output of 60 W for 1 minute. The detection range is specified as 0.6 to 400 μm, and the particle size is measured in the range of 3 to 40 μm. The circularity determined by the measurement is defined as the circularity of the carbonaceous material of the present invention.
円形度を向上させる方法は、特に制限されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダーもしくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。 The method for improving the circularity is not particularly limited, but a sphere-shaped sphere is preferable because the shape of the interparticle void when the electrode body is formed is preferable. Examples of spheroidizing treatment include a method of mechanically approaching a sphere by applying a shearing force and a compressive force, a mechanical / physical processing method of granulating a plurality of fine particles by the binder or the adhesive force of the particles themselves, etc. Is mentioned.
<タップ密度>
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3
以上が好ましく、0.7g・cm−3以上がさらに好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下がさらに好ましく、1.6g・cm−3以下が特に好ましい。タップ密度が上記範囲であると、電池容量を確保することができるとともに、粒子間の抵抗の増大を抑制することができる。
<Tap density>
The tap density of the carbonaceous material is usually 0.1 g · cm −3 or more, and 0.5 g · cm −3.
The above is preferable, 0.7 g · cm −3 or more is more preferable, 1 g · cm −3 or more is particularly preferable, 2 g · cm −3 or less is preferable, 1.8 g · cm −3 or less is more preferable, 1 It is particularly preferably not more than .6 g · cm −3 . When the tap density is in the above range, battery capacity can be ensured and increase in resistance between particles can be suppressed.
タップ密度の測定は、目開き300μmの篩を通過させて、20cm3のタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明の炭素質材料のタップ密度として定義する。 The tap density is measured by passing a sieve having a mesh opening of 300 μm, dropping the sample onto a 20 cm 3 tapping cell and filling the sample to the upper end surface of the cell, and then measuring a powder density measuring instrument (for example, a tap manufactured by Seishin Enterprise Co., Ltd.). Using a denser, tapping with a stroke length of 10 mm is performed 1000 times, and the tap density is calculated from the volume at that time and the mass of the sample. The tap density calculated by the measurement is defined as the tap density of the carbonaceous material of the present invention.
<配向比>
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がさらに好ましく、また、通常0.67以下である。配向比が、上記範囲であると、優れた高密度充放電特性を確保することができる。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
<Orientation ratio>
The orientation ratio of the carbonaceous material is usually 0.005 or more, preferably 0.01 or more, more preferably 0.015 or more, and usually 0.67 or less. When the orientation ratio is in the above range, excellent high-density charge / discharge characteristics can be ensured. The upper limit of the above range is the theoretical upper limit value of the orientation ratio of the carbonaceous material.
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明の炭素質材料の配向比と定義する。 The orientation ratio is measured by X-ray diffraction after pressure-molding the sample. Set the molding obtained by filling 0.47 g of the sample into a molding machine with a diameter of 17 mm and compressing it with 58.8 MN · m -2 so that it is flush with the surface of the sample holder for measurement. X-ray diffraction is measured. From the (110) diffraction and (004) diffraction peak intensities of the obtained carbon, a ratio represented by (110) diffraction peak intensity / (004) diffraction peak intensity is calculated. The orientation ratio calculated by the measurement is defined as the orientation ratio of the carbonaceous material of the present invention.
X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
The X-ray diffraction measurement conditions are as follows. “2θ” indicates a diffraction angle.
・ Target: Cu (Kα ray) graphite monochromator ・ Slit:
Divergence slit = 0.5 degree Light receiving slit = 0.15 mm
Scattering slit = 0.5 degree / measurement range and step angle / measurement time:
(110) plane: 75 degrees ≦ 2θ ≦ 80 degrees 1 degree / 60 seconds (004) plane: 52 degrees ≦ 2θ ≦ 57 degrees 1 degree / 60 seconds
<アスペクト比(粉)>
負極活物質の炭素質材料のアスペクト比(長径/短径)は、通常0.05以上、好ましくは0.07以上、更に好ましくは0.1以上、特に好ましくは0.14以上、また、通常20以下、好ましくは15以下、更に好ましくは10以下、特に好ましくは7以下の範囲である。
<Aspect ratio (powder)>
The aspect ratio (major axis / minor axis) of the carbonaceous material of the negative electrode active material is usually 0.05 or more, preferably 0.07 or more, more preferably 0.1 or more, particularly preferably 0.14 or more, and usually It is 20 or less, preferably 15 or less, more preferably 10 or less, and particularly preferably 7 or less.
アスペクト比が小さすぎる又は大きすぎると、粒子形状が平板状若しくは針状となるため電極中で集電体に対して平行に配向し易く、Li挿入に伴う膨張が一方向になるため導電パス切れが起きサイクル特性が悪化する傾向がある。
これに対し、アスペクト比が上記範囲であれば、高容量化のために電極密度を高くした場合、炭素質材料が球形や立方体に近い形状になり、炭素質材料が潰れ難く、集電体からの剥離などが起き難くサイクル特性が向上するので好ましい。
If the aspect ratio is too small or too large, the particle shape becomes flat or needle-like, so it tends to be oriented parallel to the current collector in the electrode, and expansion due to Li insertion is in one direction. Tends to occur and the cycle characteristics tend to deteriorate.
On the other hand, if the aspect ratio is in the above range, when the electrode density is increased to increase the capacity, the carbonaceous material becomes a shape close to a sphere or a cube, and the carbonaceous material is not easily crushed. It is preferable because peeling of the resin hardly occurs and cycle characteristics are improved.
更に炭素質材料間空隙が大きくなり易く、粒子間のLi拡散が早くなりレート特性の向上が期待できるので好ましい。更にまた、炭素質材料が潰れ難いため負極中で炭素質材料が配向し難く、充放電に伴う電極の膨張を抑制でき、活物質間の導電パスが保持されるこ
とから、サイクル特性が向上するため好ましい。
また、電極膨張を抑制できるので電池内部の空間を確保し易く、酸化分解による少量のガス発生が生じても、電池内部に空間があるので内圧の上昇が少なく、電池の膨張等が起き難いので好ましい。
Furthermore, the voids between carbonaceous materials are likely to be large, Li diffusion between particles is accelerated, and an improvement in rate characteristics can be expected. Furthermore, since the carbonaceous material is not easily crushed, it is difficult for the carbonaceous material to be oriented in the negative electrode, the expansion of the electrode accompanying charging / discharging can be suppressed, and the conductive path between the active materials is maintained, thereby improving cycle characteristics. Therefore, it is preferable.
In addition, since the expansion of the electrode can be suppressed, it is easy to secure the space inside the battery, and even if a small amount of gas is generated due to oxidative decomposition, there is a space inside the battery, so there is little increase in internal pressure, and it is difficult for the battery to expand. preferable.
アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50μm以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明の炭素質材料のアスペクト比と定義する。 The aspect ratio is measured by magnifying and observing the carbonaceous material particles with a scanning electron microscope. Carbonaceous material particles when three-dimensional observation is performed by selecting arbitrary 50 graphite particles fixed to the end face of a metal having a thickness of 50 μm or less and rotating and tilting the stage on which the sample is fixed. The longest diameter A and the shortest diameter B orthogonal thereto are measured, and the average value of A / B is obtained. The aspect ratio (A / B) obtained by the measurement is defined as the aspect ratio of the carbonaceous material of the present invention.
上記範囲のアスペクト比を有する球形化黒鉛粒子を得る方法は、特に限定されないが、例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し黒鉛粒子に与える装置を用いることが好ましい。具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材料に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置を用いることが好ましい。また、炭素材料を循環させることによって機械的作用を繰り返して与える機構を有するもの、若しくは、循環機構を有しないが装置を複数台連結させ処理する機構を有するものであるのが好ましい。好ましい装置の一例として、(株)奈良機械製作所製のハイブリダイゼーションシステムなどを挙げることができる。 The method for obtaining the spheroidized graphite particles having an aspect ratio in the above range is not particularly limited. For example, the graphite particles are repeatedly subjected to mechanical action such as compression, friction, shearing force including the interaction of particles mainly with impact force. It is preferable to use an apparatus given in the above. Specifically, it has a rotor with a large number of blades installed inside the casing, and when the rotor rotates at high speed, mechanical action such as impact compression, friction, shearing force, etc. is applied to the carbon material introduced inside. It is preferable to use an apparatus that performs surface treatment. Moreover, it is preferable to have a mechanism that repeatedly gives a mechanical action by circulating a carbon material, or a mechanism that does not have a circulation mechanism but connects a plurality of apparatuses. As an example of a preferable apparatus, there can be mentioned a hybridization system manufactured by Nara Machinery Co., Ltd.
<副材混合>
副材混合とは、負極電極中及び/又は負極活物質中に性質の異なる炭素質材料が2種以上含有していることである。ここでいう性質とは、X線回折パラメータ、メジアン径、アスペクト比、BET比表面積、配向比、ラマンR値、タップ密度、真密度、細孔分布、円形度、灰分量の群から選ばれる1つ以上の特性を示す。
<Mixed secondary material>
The sub-material mixing means that two or more types of carbonaceous materials having different properties are contained in the negative electrode and / or the negative electrode active material. The properties referred to here are selected from the group consisting of X-ray diffraction parameters, median diameter, aspect ratio, BET specific surface area, orientation ratio, Raman R value, tap density, true density, pore distribution, circularity, and ash content. Shows more than one characteristic.
これらの副材混合の、特に好ましい例としては、体積基準粒度分布がメジアン径を中心としたときに左右対称とならないこと、ラマンR値が異なる炭素質材料を2種以上含有していること、及びX線パラメータが異なること等が挙げられる。
副材混合の効果の1例として、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素質材料を導電材として含有されることにより、電気抵抗を低減させることが挙げられる。
As a particularly preferred example of mixing these secondary materials, the volume-based particle size distribution is not symmetrical when centered on the median diameter, containing two or more carbonaceous materials having different Raman R values, And X-ray parameters are different.
As an example of the effect of the admixture of secondary materials, carbonaceous material such as graphite (natural graphite, artificial graphite), carbon black such as acetylene black, and amorphous carbon such as needle coke is contained as a conductive material. Reducing electrical resistance.
副材混合として導電材を混合する場合には、1種を単独で混合してもよく、2種以上を任意の組み合わせ及び比率で混合してもよい。また、導電材の炭素質材料に対する混合比率は、通常0.1質量%以上、0.5質量%以上がこのましく、0.6質量%以上が更に好ましく、また、通常45質量%以下であり、40質量%以下が好ましい。混合比が上記範囲であると、電気抵抗低減効果を確保することができるとともに、初期不可逆容量の増大を抑制することができる。 When mixing a conductive material as a secondary material mixture, one type may be mixed alone, or two or more types may be mixed in any combination and ratio. The mixing ratio of the conductive material to the carbonaceous material is usually 0.1% by mass or more and 0.5% by mass or more, more preferably 0.6% by mass or more, and usually 45% by mass or less. Yes, 40 mass% or less is preferable. When the mixing ratio is in the above range, the effect of reducing electric resistance can be secured and an increase in initial irreversible capacity can be suppressed.
<表面含酸素率(O/C値と省略する)>
本発明における表面含酸素率はX線光電子分光法(XPS)を用いて測定することができる。
表面含酸素率O/C値は、X線光電子分光法測定としてX線光電子分光器を用い、測定対象を表面が平坦になるように試料台に載せ、アルミニウムのKα線をX線源とし、マルチプレックス測定により、C1s(280〜300eV)とO1s(525〜545eV)のスペクトルを測定する。得られたC1sのピークトップを284.3eVとして帯電
補正し、C1sとO1sのスペクトルのピーク面積を求め、更に装置感度係数を掛けて、CとOの表面原子濃度をそれぞれ算出する。得られたそのOとCの原子濃度比O/C(O原子濃度/C原子濃度)×100を炭素材の含酸素官能基量O/C値と定義する。
<Surface oxygen content (abbreviated as O / C value)>
The surface oxygen content in the present invention can be measured using X-ray photoelectron spectroscopy (XPS).
The surface oxygen content O / C value is measured using an X-ray photoelectron spectrometer as an X-ray photoelectron spectroscopy measurement, the measurement object is placed on a sample stage so that the surface is flat, and Kα ray of aluminum is used as an X-ray source. The spectra of C1s (280 to 300 eV) and O1s (525 to 545 eV) are measured by multiplex measurement. The obtained C1s peak top is corrected to be 284.3 eV, the peak areas of the C1s and O1s spectra are obtained, and the device sensitivity coefficient is multiplied to calculate the surface atomic concentrations of C and O, respectively. The obtained O / C atomic concentration ratio O / C (O atom concentration / C atom concentration) × 100 is defined as the oxygen-containing functional group amount O / C value of the carbon material.
O/C値は、0.8atom%以上、好ましくは、1.0atom%以上、より好ましくは1.5atom%以上、更に好ましくは、3.0atom%以上である。上限は通常15atom%以下、好ましくは10%以下、より好ましくは7.5atom%以下である。O/C値が上記範囲にあることにより、本発明の効果を十分に奏すことができ、また、電解液との反応性が増し、充放電効率の低下やガス発生の増加を防ぐ。 The O / C value is 0.8 atom% or more, preferably 1.0 atom% or more, more preferably 1.5 atom% or more, and further preferably 3.0 atom% or more. The upper limit is usually 15 atom% or less, preferably 10% or less, more preferably 7.5 atom% or less. When the O / C value is in the above range, the effects of the present invention can be sufficiently achieved, and the reactivity with the electrolytic solution is increased, thereby preventing charge / discharge efficiency from decreasing and gas generation from increasing.
<含酸素官能基の制御>
通常、炭素質材料表面には、その種類や製造履歴によって任意量の酸素官能基が存在するが、本発明に用いる炭素質材料は積極的に酸素官能基を導入してもよい。
炭素質材料表面に含酸素官能基を導入する方法は、公知の方法や新たに発明されたいずれの方法も使用できる。例えば、硝酸、過マンガン酸塩、重クロム酸塩、次亜塩素酸塩、過硫酸アンモニウム、過酸化水素、オゾン等の酸化剤による酸化処理、シラン化合物等のカップリング剤による処理、ポリマーグラフト化処理、プラズマ処理等の公知の方法の他、新たに開発した方法も使用でき、またこれらの方法を組み合わせてもよい。
<Control of oxygen-containing functional groups>
Usually, an arbitrary amount of oxygen functional groups are present on the surface of the carbonaceous material depending on the type and production history, but the carbonaceous material used in the present invention may positively introduce oxygen functional groups.
As a method for introducing an oxygen-containing functional group onto the surface of the carbonaceous material, a known method or any newly invented method can be used. For example, oxidation with nitric acid, permanganate, dichromate, hypochlorite, ammonium persulfate, hydrogen peroxide, ozone and other oxidizing agents, treatment with coupling agents such as silane compounds, polymer grafting In addition to known methods such as plasma treatment, newly developed methods can also be used, and these methods may be combined.
また、その他の含酸素官能基導入法としては、酸素原子を含む液体乃至気体雰囲気下におけるメカノケミカル処理が挙げられる。本法を用いれば、雰囲気や処理条件などによって、容易に酸素官能基の導入量を制御することができるので好ましい。
使用する装置としては、被処理物に圧縮力と剪断力とを同時にかけることができる装置であればよく、装置構造は特に限定されない。このような装置として、たとえば加圧ニーダー、二本ロールなどの混練機、回転ボールミル、ハイブリダイゼーションシステム((株)奈良機械製作所製)、メカノマイクロス((株)奈良機械製作所製)などを使用することができる。
Other oxygen-containing functional group introduction methods include mechanochemical treatment in a liquid or gas atmosphere containing oxygen atoms. Use of this method is preferable because the amount of oxygen functional group introduced can be easily controlled depending on the atmosphere and processing conditions.
The apparatus to be used is not particularly limited as long as it is an apparatus that can simultaneously apply a compressive force and a shearing force to an object to be processed. As such an apparatus, for example, a kneader such as a pressure kneader or two rolls, a rotating ball mill, a hybridization system (manufactured by Nara Machinery Co., Ltd.), Mechano Micros (manufactured by Nara Machinery Co., Ltd.), etc. are used. can do.
被処理物の周辺雰囲気としては、処理時に表面に官能基が付与できれば、特に指定はないが、酸素原子を含む液体乃至気体が望ましい。処理自体は大気中組成である酸素20mol%程度あれば、十分に官能基の付与が行われるが、窒素雰囲気中では、これらの効果は期待できない。
酸素の含有濃度としては、通常0.1mol%以上、好ましくは1mol%以上、より好ましくは、5mol%以上、更に好ましくは20mol%以上、また、通常80mol%以下、好ましくは50mol%以下、より好ましくは40mol%以下である。与える酸素分圧が小さすぎると官能基付与が不十分でサイクル特性向上の効果が得にくくなる傾向があり、大きすぎると、爆発などの危険があり、安全運転上の問題が発生する傾向がある。
The ambient atmosphere of the object to be processed is not particularly specified as long as a functional group can be imparted to the surface at the time of processing, but a liquid or gas containing oxygen atoms is desirable. If the treatment itself is about 20 mol% oxygen, which is an atmospheric composition, functional groups are sufficiently imparted, but these effects cannot be expected in a nitrogen atmosphere.
The oxygen concentration is usually 0.1 mol% or more, preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 20 mol% or more, and usually 80 mol% or less, preferably 50 mol% or less, more preferably Is 40 mol% or less. If the partial pressure of oxygen applied is too low, functional grouping will be insufficient and the effect of improving cycle characteristics will tend to be difficult to obtain. .
また、大気組成以外にも、水やメタノール、エタノール、イソプロピルアルコールに代表される単座のアルコールやエチレングリコールやプロピレングリコールに代表される多座のアルコール、同様にエーテル、エステル化合物なども好ましく用いることができる。また気体では、オゾン、一酸化炭素、SOxやNOxなども好ましく用いることができる。
酸素官能基量は、逆に官能基を脱離させる方法によって制御しても良い。例えば、不活性ガスや還元性ガスを含む雰囲気下で焼成すると、酸素官能基は気体化して容易に脱離させることができる。
In addition to the atmospheric composition, monodentate alcohols typified by water, methanol, ethanol, isopropyl alcohol, multidentate alcohols typified by ethylene glycol and propylene glycol, as well as ethers and ester compounds are preferably used. it can. As the gas, ozone, carbon monoxide, SO x , NO x and the like can be preferably used.
Conversely, the oxygen functional group amount may be controlled by a method of desorbing the functional group. For example, when calcination is performed in an atmosphere containing an inert gas or a reducing gas, the oxygen functional group can be gasified and easily desorbed.
<負極の構成と作製法>
電極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いるこ
とができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを後述する集電体に塗布、乾燥した後にプレスすることによって形成することができる。
<Configuration and production method of negative electrode>
Any known method can be used for producing the electrode as long as the effects of the present invention are not significantly impaired. For example, it is formed by adding a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. to a negative electrode active material to form a slurry, which is applied to a current collector described later, dried, and then pressed. can do.
(集電体)
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔である。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。負極集電体の厚さが厚過ぎると、電池全体の容量が低下し過ぎることがあり、逆に薄過ぎると取り扱いが困難になることがあるためである。
(Current collector)
As the current collector for holding the negative electrode active material, a known material can be arbitrarily used. Examples of the negative electrode current collector include metal materials such as aluminum, copper, nickel, stainless steel, and nickel-plated steel. Copper is particularly preferable from the viewpoint of ease of processing and cost.
In addition, the shape of the current collector may be, for example, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, or the like when the current collector is a metal material. Among these, a metal thin film is preferable, a copper foil is more preferable, and a rolled copper foil by a rolling method and an electrolytic copper foil by an electrolytic method are more preferable.
The thickness of the current collector is usually 1 μm or more, preferably 5 μm or more, and is usually 100 μm or less, preferably 50 μm or less. This is because if the thickness of the negative electrode current collector is too thick, the capacity of the entire battery may be too low, and conversely if it is too thin, handling may be difficult.
(集電体と負極活物質層との厚さの比)
集電体と負極活物質層の厚さの比は特に制限されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下がさらに好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上がさらに好ましく、1以上が特に好ましい。集電体と負極活物質層の厚さの比が大きすぎると、高電流密度充放電時に集電体がジュール熱による発熱を生じる傾向がある。また、集電体と負極活物質層の厚さの比が小さすぎると、負極活物質に対する集電体の体積比が増加し、電池の容量が減少する傾向がある。
(Thickness ratio between current collector and negative electrode active material layer)
The ratio of the thickness of the current collector to the negative electrode active material layer is not particularly limited, but the value of “(the thickness of the negative electrode active material layer on one side immediately before the nonaqueous electrolyte injection) / (thickness of the current collector)” However, 150 or less is preferable, 20 or less is more preferable, 10 or less is particularly preferable, 0.1 or more is preferable, 0.4 or more is further preferable, and 1 or more is particularly preferable. If the ratio of the thickness of the current collector to the negative electrode active material layer is too large, the current collector tends to generate heat due to Joule heat during high current density charge / discharge. In addition, if the ratio of the thickness of the current collector to the negative electrode active material layer is too small, the volume ratio of the current collector to the negative electrode active material tends to increase, and the battery capacity tends to decrease.
(結着材)
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、ポリイミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Binder)
The binder for binding the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte solution and the solvent used in manufacturing the electrode.
Specific examples include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, polyimide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, fluorine rubber, Rubber polymers such as NBR (acrylonitrile / butadiene rubber) and ethylene / propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof; EPDM (ethylene / propylene / diene terpolymer), styrene / Thermoplastic elastomeric polymers such as ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate , Soft resinous polymers such as ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer; polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer, etc. And a polymer composition having ion conductivity of alkali metal ions (particularly lithium ions). These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.
また、イソシアネート基と結合する官能基がバインダーの分子内にあると、イソシアネート化合物から誘導される皮膜成分の物理的強度が増して、サイクル特性がより改善される場合がある。好ましい官能基としては、アミノ基、ヒドロキシル基、カルボキシル基が挙げられる。こうしたバインダーはスラリー物性や塗工性に影響しない範囲で配合される。 Moreover, when the functional group which couple | bonds with an isocyanate group exists in the molecule | numerator of a binder, the physical strength of the film | membrane component induced | guided | derived from an isocyanate compound will increase, and a cycling characteristic may be improved more. Preferred functional groups include amino groups, hydroxyl groups, and carboxyl groups. Such a binder is blended in a range that does not affect the physical properties and coating properties of the slurry.
負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%
以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が大きすぎると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く傾向がある。また、バインダーの割合が小さすぎると、負極電極の強度低下を招く傾向がある。
The ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more, 0.5% by mass
The above is more preferable, 0.6% by mass or more is particularly preferable, 20% by mass or less is preferable, 15% by mass or less is more preferable, 10% by mass or less is further preferable, and 8% by mass or less is particularly preferable. When the ratio of the binder to the negative electrode active material is too large, the binder ratio in which the binder amount does not contribute to the battery capacity increases, and the battery capacity tends to decrease. Moreover, when the ratio of a binder is too small, there exists a tendency which causes the strength reduction of a negative electrode.
特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。 In particular, when a rubbery polymer typified by SBR is contained as a main component, the ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, and 0 .6% by mass or more is more preferable, and is usually 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less. When the main component contains a fluorine-based polymer typified by polyvinylidene fluoride, the ratio to the negative electrode active material is usually 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more. It is preferably 15% by mass or less, preferably 10% by mass or less, and more preferably 8% by mass or less.
(スラリー形成溶媒)
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Slurry forming solvent)
The solvent for forming the slurry is not particularly limited as long as it is a solvent capable of dissolving or dispersing the negative electrode active material, the binder, and the thickener and conductive material used as necessary. Alternatively, either an aqueous solvent or an organic solvent may be used.
Examples of the aqueous solvent include water and alcohol. Examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N- Examples include dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, and the like.
In particular, when an aqueous solvent is used, it is preferable to add a dispersant or the like in addition to the thickener and slurry it using a latex such as SBR. In addition, these solvents may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
(増粘剤)
増粘剤は、通常、負極活物質層を作製する際のスラリーの粘度を調整するために使用される。増粘剤としては、特に制限されないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Thickener)
A thickener is normally used in order to adjust the viscosity of the slurry at the time of producing a negative electrode active material layer. The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.
さらに増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が少なすぎると、著しく塗布性が低下する傾向がある。また、増粘剤の割合が多すぎると、負極活物質層に占める負極活物質の割合が低下し、電池の容量が低下する問題や負極活物質間の抵抗が増大する傾向がある。 Further, when using a thickener, the ratio of the thickener to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, Moreover, it is 5 mass% or less normally, 3 mass% or less is preferable, and 2 mass% or less is more preferable. When the ratio of the thickener to the negative electrode active material is too small, applicability tends to be remarkably lowered. Moreover, when there are too many ratios of a thickener, the ratio of the negative electrode active material which occupies for a negative electrode active material layer will fall, and there exists a tendency for the capacity | capacitance of a battery to fall and the resistance between negative electrode active materials to increase.
(電極密度)
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がさらに好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密
度が大きすぎると、負極活物質粒子が破壊され、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を招く傾向がある。また、密度が小さすぎると、負極活物質間の導電性が低下し、電池抵抗が増大し、単位容積当たりの容量が低下する傾向がある。
(Electrode density)
The electrode structure when the negative electrode active material is made into an electrode is not particularly limited, but the density of the negative electrode active material present on the current collector is preferably 1 g · cm −3 or more, and 1.2 g · cm −3 or more. but more preferably, particularly preferably 1.3 g · cm -3 or more, preferably 2.2 g · cm -3 or less, more preferably 2.1 g · cm -3 or less, 2.0 g · cm -3 or less Further preferred is 1.9 g · cm −3 or less. If the density of the negative electrode active material present on the current collector is too large, the negative electrode active material particles will be destroyed, increasing the initial irreversible capacity, and the non-aqueous electrolyte solution near the current collector / negative electrode active material interface. There is a tendency for high current density charge / discharge characteristics to deteriorate due to a decrease in permeability. On the other hand, if the density is too small, the conductivity between the negative electrode active materials decreases, the battery resistance increases, and the capacity per unit volume tends to decrease.
(負極板の厚さ)
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、負極板から金属箔(集電体)厚さを差し引いた負極活物質層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
(Thickness of negative electrode plate)
The thickness of the negative electrode plate is designed according to the positive electrode plate to be used, and is not particularly limited. Above, preferably 20 μm or more, more preferably 30 μm or more, and usually 300 μm or less, preferably 280 μm or less, more preferably 250 μm or less.
(負極板の表面被覆)
また、上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
(Surface coating of negative electrode plate)
Moreover, you may use what adhered the substance of the composition different from this to the surface of the said negative electrode plate. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate and carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate.
2.非水系電解液
2−1.電解質
<リチウム塩>
電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、この用途に用いることが知られているものであれば特に制限がなく、任意のものを用いることができ、具体的には以下のものが挙げられる。
2. Non-aqueous electrolyte 2-1. Electrolyte <Lithium salt>
As the electrolyte, a lithium salt is usually used. The lithium salt is not particularly limited as long as it is known to be used for this purpose, and any lithium salt can be used. Specific examples include the following.
例えば、LiPF6、LiBF4、LiClO4、LiAlF4、LiSbF6、LiTaF6、LiWF7等の無機リチウム塩;
LiWOF5等のタングステン酸リチウム類;
HCO2Li、CH3CO2Li、CH2FCO2Li、CHF2CO2Li、CF3CO2Li、CF3CH2CO2Li、CF3CF2CO2Li、CF3CF2CF2CO2Li、CF3CF2CF2CF2CO2Li等のカルボン酸リチウム塩類;
CH3SO3Li、CH2FSO3Li、CHF2SO3Li、CF3SO3Li、CF3CF2SO3Li、CF3CF2CF2SO3Li、CF3CF2CF2CF2SO3Li等のスルホン酸リチウム塩類;
LiN(FCO)2、LiN(FCO)(FSO2)、LiN(FSO2)2、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiN(CF3SO2)(C4F9SO2)等のリチウムイミド塩類;
LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3等のリチウムメチド塩類;
その他、LiPF4(CF3)2、LiPF4(C2F5)2、LiPF4(CF3SO2)2、LiPF4(C2F5SO2)2、LiBF3CF3、LiBF3C2F5、LiBF3C3F7、LiBF2(CF3)2、LiBF2(C2F5)2、LiBF2(CF3SO2)2、LiBF2(C2F5SO2)2等の含フッ素有機リチウム塩類;
リチウムビス(オキサラト)ボレート、リチウムジフルオロ(オキサラト)ボレート、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロ(オキサラト)ホスフェート等の含ジカルボン酸錯体リチウム塩;等が挙げられる。
For example, LiPF 6, LiBF 4, LiClO 4, LiAlF 4, LiSbF 6, inorganic lithium salts LiTaF 6, LiWF 7 and the like;
Lithium tungstates such as LiWOF 5 ;
HCO 2 Li, CH 3 CO 2 Li, CH 2 FCO 2 Li, CHF 2 CO 2 Li, CF 3 CO 2 Li, CF 3 CH 2 CO 2 Li, CF 3 CF 2 CO 2 Li, CF 3 CF 2 CF 2 Carboxylic acid lithium salts such as CO 2 Li, CF 3 CF 2 CF 2 CF 2 CO 2 Li;
CH 3 SO 3 Li, CH 2 FSO 3 Li, CHF 2 SO 3 Li, CF 3 SO 3 Li, CF 3 CF 2 SO 3 Li, CF 3 CF 2 CF 2 SO 3 Li, CF 3 CF 2 CF 2 CF 2 Sulfonic acid lithium salts such as SO 3 Li;
LiN (FCO) 2 , LiN (FCO) (FSO 2 ), LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Lithium imide salts such as lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropane disulfonylimide, LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) ;
Lithium metide salts such as LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 ;
In addition, LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 3 CF 3 , LiBF 3 C 2 F 5, LiBF 3 C 3 F 7, LiBF 2 (CF 3) 2, LiBF 2 (C 2 F 5) 2, LiBF 2 (CF 3 SO 2) 2, LiBF 2 (C 2 F 5 SO 2) 2 Fluorine-containing organic lithium salts such as
And dicarboxylic acid complex lithium salts such as lithium bis (oxalato) borate, lithium difluoro (oxalato) borate, lithium tris (oxalato) phosphate, lithium difluorobis (oxalato) phosphate, lithium tetrafluoro (oxalato) phosphate, and the like.
中でも、LiPF6、LiBF4、LiSbF6、LiTaF6、LiN(FSO2)2、LiN(FSO2)(CF3SO2)、LiN(CF3SO2)2、LiN(C2F5SO2)2、リチウム環状1,2−パーフルオロエタンジスルホニルイミド、リチウム環状1,3−パーフルオロプロパンジスルホニルイミド、LiC(FSO2)3、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiBF3CF3、LiBF3C2F5、LiPF3(CF3)3、LiPF3(C2F5)3等が出力特性やハイレート充放電特性、高温保存特性、サイクル特性等を向上させる効果がある点から特に好ましい。 Among them, LiPF 6 , LiBF 4 , LiSbF 6 , LiTaF 6 , LiN (FSO 2 ) 2 , LiN (FSO 2 ) (CF 3 SO 2 ), LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropane disulfonylimide, LiC (FSO 2 ) 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiBF 3 CF 3 , LiBF 3 C 2 F 5 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3, etc. are output characteristics, high rate charge / discharge characteristics, high temperature storage characteristics, cycle This is particularly preferable from the viewpoint of improving the characteristics and the like.
非水系電解液中のリチウム塩の濃度は、本発明の効果を損なわない限り、その含有量は特に制限されないが、電解液の電気伝導率を良好な範囲とし、良好な電池性能を確保する点から、非水系電解液中のリチウム塩の総モル濃度は、通常0.3mol/L以上、好ましくは0.4mol/L以上、より好ましくは0.5mol/L以上であり、また、通常3mol/L以下、好ましくは2.5mol/L以下、より好ましくは2.0mol/L以下である。リチウム塩の総モル濃度が上記範囲にあることにより、低温特性、サイクル特性、高温特性等の効果が向上する。また、電解液の電気伝導率が十分となり、また、粘度上昇による電気伝導度の低下や、電池性能の低下を防ぐ。 The concentration of the lithium salt in the nonaqueous electrolytic solution is not particularly limited as long as the effects of the present invention are not impaired, but the electric conductivity of the electrolytic solution is in a good range, and good battery performance is ensured. Therefore, the total molar concentration of the lithium salt in the non-aqueous electrolyte is usually 0.3 mol / L or more, preferably 0.4 mol / L or more, more preferably 0.5 mol / L or more, and usually 3 mol / L. L or less, preferably 2.5 mol / L or less, more preferably 2.0 mol / L or less. When the total molar concentration of the lithium salt is within the above range, effects such as low temperature characteristics, cycle characteristics, and high temperature characteristics are improved. In addition, the electric conductivity of the electrolytic solution is sufficient, and the decrease in electric conductivity due to the increase in viscosity and the decrease in battery performance are prevented.
また、上記リチウム塩は任意に組合せて使用してもよい。
2−2.溶媒
非水溶媒としては、飽和環状及び鎖状カーボネート、フッ素原子を少なくとも1つを有するカーボネート、環状及び鎖状カルボン酸エステル、エーテル化合物、スルホン系化合物等を使用することが可能である。また、これら非水溶媒は、任意に組み合わせて使用してもよい。
Moreover, you may use the said lithium salt in arbitrary combinations.
2-2. Solvent As the non-aqueous solvent, saturated cyclic and chain carbonates, carbonates having at least one fluorine atom, cyclic and chain carboxylic acid esters, ether compounds, sulfone compounds, and the like can be used. These nonaqueous solvents may be used in any combination.
<飽和環状カーボネート>
飽和環状カーボネートとしては、炭素数2〜4のアルキレン基を有するものが挙げられる。具体的には、炭素数2〜4の飽和環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。中でも、エチレンカーボネートとプロピレンカーボネートがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
<Saturated cyclic carbonate>
Examples of the saturated cyclic carbonate include those having an alkylene group having 2 to 4 carbon atoms. Specifically, examples of the saturated cyclic carbonate having 2 to 4 carbon atoms include ethylene carbonate, propylene carbonate, and butylene carbonate. Among these, ethylene carbonate and propylene carbonate are particularly preferable from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation.
飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意であるが、1種を単独で用いる場合の配合量の下限は、非水溶媒100体積%中、通常5体積%以上、好ましくは10体積%以上、また、通常95体積%以下、好ましくは90体積%以下、より好ましくは85体積%以下である。飽和環状カーボネートの配合量が上記範囲にあることにより、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性、負極に対する安定性、サイクル特性を良好な範囲としやすくなる。また、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の負荷特性を良好な範囲としやすくなる。
A saturated cyclic carbonate may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios.
The blending amount of the saturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. However, the lower limit of the blending amount when one kind is used alone is usually in 100% by volume of the non-aqueous solvent. 5 volume% or more, preferably 10 volume% or more, and usually 95 volume% or less, preferably 90 volume% or less, more preferably 85 volume% or less. The blending amount of the saturated cyclic carbonate is within the above range, avoiding a decrease in electrical conductivity due to a decrease in the dielectric constant of the non-aqueous electrolyte, and a large current discharge characteristic of the non-aqueous electrolyte battery, stability to the negative electrode It becomes easy to make the cycle characteristics within a good range. In addition, the viscosity of the non-aqueous electrolyte solution is set in an appropriate range, and the decrease in ionic conductivity is suppressed, and as a result, the load characteristics of the non-aqueous electrolyte battery are easily set in a favorable range.
<鎖状カーボネート>
鎖状カーボネートとしては、炭素数3〜7のものが好ましい。
具体的には、炭素数3〜7の鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネート、n−ブチルメチルカーボネート、イソブチルメチルカーボネート、t−ブチルメチルカーボネート、エチル−n−プロピルカーボネート、n−ブチルエチルカーボ
ネート、イソブチルエチルカーボネート、t−ブチルエチルカーボネート等が挙げられる。
<Chain carbonate>
As a chain carbonate, a C3-C7 thing is preferable.
Specifically, as the chain carbonate having 3 to 7 carbon atoms, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, Examples include n-butyl methyl carbonate, isobutyl methyl carbonate, t-butyl methyl carbonate, ethyl-n-propyl carbonate, n-butyl ethyl carbonate, isobutyl ethyl carbonate, t-butyl ethyl carbonate.
中でも、ジメチルカーボネート、ジエチルカーボネート、ジ−n−プロピルカーボネート、ジイソプロピルカーボネート、n−プロピルイソプロピルカーボネート、エチルメチルカーボネート、メチル−n−プロピルカーボネートが好ましく、特に好ましくはジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートである。
鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
Among them, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, n-propyl isopropyl carbonate, ethyl methyl carbonate, and methyl n-propyl carbonate are preferable, and dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate are particularly preferable. is there.
A chain carbonate may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
鎖状カーボネートの配合量は、非水溶媒100体積%中、通常5体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上、また、通常90体積%以下、好ましくは85体積%以下である。鎖状カーボネートの配合量が上記範囲にあることにより、非水系電解液の粘度を適切な範囲とし、イオン伝導度の低下を抑制し、ひいては非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。また、非水系電解液の誘電率の低下に由来する電気伝導率の低下を回避し、非水系電解液電池の大電流放電特性を良好な範囲としやすくなる。 The amount of the chain carbonate is usually 5% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more, and usually 90% by volume or less, preferably 85% by volume in 100% by volume of the non-aqueous solvent. It is as follows. When the blended amount of the chain carbonate is in the above range, the viscosity of the non-aqueous electrolyte solution is set to an appropriate range, the decrease in ionic conductivity is suppressed, and the large current discharge characteristics of the non-aqueous electrolyte battery are thus in a good range. And it will be easier. Further, it is easy to avoid a decrease in electrical conductivity due to a decrease in dielectric constant of the nonaqueous electrolyte solution, and to make the large current discharge characteristics of the nonaqueous electrolyte battery within a favorable range.
<フッ素原子を有するカーボネート>
フッ素原子を有するカーボネートとして、フッ素原子を有する飽和鎖状カーボネート(以下、フッ素化飽和鎖状カーボネートともいう)、及びフッ素原子を有する飽和環状カーボネート(以下、フッ素化飽和環状カーボネートともいう)のどちらも用いることができる。
<Carbonates having fluorine atoms>
As carbonates having fluorine atoms, both saturated chain carbonates having fluorine atoms (hereinafter also referred to as fluorinated saturated chain carbonates) and saturated cyclic carbonates having fluorine atoms (hereinafter also referred to as fluorinated saturated cyclic carbonates) are used. Can be used.
フッ素化飽和鎖状カーボネートのフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下である。フッ素化飽和鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化飽和鎖状カーボネートとしては、フッ素化ジメチルカーボネート誘導体、フッ素化エチルメチルカーボネート誘導体、フッ素化ジエチルカーボネート誘導体等が挙げられる。 The number of fluorine atoms in the fluorinated saturated chain carbonate is not particularly limited as long as it is 1 or more, but is usually 6 or less, preferably 4 or less. When the fluorinated saturated chain carbonate has a plurality of fluorine atoms, they may be bonded to the same carbon or may be bonded to different carbons. Examples of the fluorinated saturated chain carbonate include fluorinated dimethyl carbonate derivatives, fluorinated ethyl methyl carbonate derivatives, and fluorinated diethyl carbonate derivatives.
フッ素化ジメチルカーボネート誘導体としては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
フッ素化エチルメチルカーボネート誘導体としては、2−フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2−ジフルオロエチルメチルカーボネート、2−フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2−トリフルオロエチルメチルカーボネート、2,2−ジフルオロエチルフルオロメチルカーボネート、2−フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
Examples of the fluorinated dimethyl carbonate derivative include fluoromethyl methyl carbonate, difluoromethyl methyl carbonate, trifluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, bis (difluoro) methyl carbonate, bis (trifluoromethyl) carbonate, and the like.
Fluorinated ethyl methyl carbonate derivatives include 2-fluoroethyl methyl carbonate, ethyl fluoromethyl carbonate, 2,2-difluoroethyl methyl carbonate, 2-fluoroethyl fluoromethyl carbonate, ethyl difluoromethyl carbonate, 2,2,2-trimethyl Examples include fluoroethyl methyl carbonate, 2,2-difluoroethyl fluoromethyl carbonate, 2-fluoroethyl difluoromethyl carbonate, and ethyl trifluoromethyl carbonate.
フッ素化ジエチルカーボネート誘導体としては、エチル−(2−フルオロエチル)カーボネート、エチル−(2,2−ジフルオロエチル)カーボネート、ビス(2−フルオロエチル)カーボネート、エチル−(2,2,2−トリフルオロエチル)カーボネート、2,2−ジフルオロエチル−2’−フルオロエチルカーボネート、ビス(2,2−ジフルオロエチル)カーボネート、2,2,2−トリフルオロエチル−2’−フルオロエチルカーボネート、2,2,2−トリフルオロエチル−2’,2’−ジフルオロエチルカーボネート、ビス(2,2,2−トリフルオロエチル)カーボネート等が挙げられる。 Fluorinated diethyl carbonate derivatives include ethyl- (2-fluoroethyl) carbonate, ethyl- (2,2-difluoroethyl) carbonate, bis (2-fluoroethyl) carbonate, ethyl- (2,2,2-trifluoro). Ethyl) carbonate, 2,2-difluoroethyl-2′-fluoroethyl carbonate, bis (2,2-difluoroethyl) carbonate, 2,2,2-trifluoroethyl-2′-fluoroethyl carbonate, 2,2, Examples include 2-trifluoroethyl-2 ′, 2′-difluoroethyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, and the like.
フッ素化飽和鎖状カーボネートとしては、特に2,2,2−トリフルオロエチルメチルカーボネート、及びビス(2,2,2−トリフルオロエチル)カーボネートが好ましい。
また、フッ素化飽和鎖状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
フッ素化飽和環状カーボネートとしては、炭素原子数2〜6のアルキレン基を有する飽和環状カーボネートの誘導体が挙げられ、例えばエチレンカーボネート誘導体である。エチレンカーボネート誘導体としては、例えば、エチレンカーボネート又はアルキル基(例えば、炭素原子数1〜4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられ、中でもフッ素原子が1〜8個のものが好ましい。
As the fluorinated saturated chain carbonate, 2,2,2-trifluoroethyl methyl carbonate and bis (2,2,2-trifluoroethyl) carbonate are particularly preferable.
Moreover, a fluorinated saturated chain carbonate may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios.
Examples of the fluorinated saturated cyclic carbonate include derivatives of saturated cyclic carbonates having an alkylene group having 2 to 6 carbon atoms, such as ethylene carbonate derivatives. Examples of the ethylene carbonate derivative include fluorinated products of ethylene carbonate or ethylene carbonate substituted with an alkyl group (for example, an alkyl group having 1 to 4 carbon atoms), and particularly those having 1 to 8 fluorine atoms. Is preferred.
具体的には、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート等が挙げられる。 Specifically, monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4-methylethylene carbonate, 4- Fluoro-5-methylethylene carbonate, 4,4-difluoro-5-methylethylene carbonate, 4- (fluoromethyl) -ethylene carbonate, 4- (difluoromethyl) -ethylene carbonate, 4- (trifluoromethyl) -ethylene carbonate 4- (fluoromethyl) -4-fluoroethylene carbonate, 4- (fluoromethyl) -5-fluoroethylene carbonate, 4-fluoro-4,5-dimethylethylene carbonate, 4,5-difluoro-4,5-dimethyl Le ethylene carbonate, 4,4-difluoro-5,5-dimethylethylene carbonate.
フッ素化飽和環状カーボネートとしては、モノフルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート及び4,
5−ジフルオロ−4,5−ジメチルエチレンカーボネートよりなる群から選ばれる少なくとも1種が特に好ましい。これらは高イオン伝導性を与え、かつ好適に界面保護被膜を形成する。
Examples of the fluorinated saturated cyclic carbonate include monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, and 4,
Particularly preferred is at least one selected from the group consisting of 5-difluoro-4,5-dimethylethylene carbonate. These provide high ionic conductivity and preferably form an interface protective coating.
また、フッ素化飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
フッ素原子を少なくとも1つを有するカーボネートを用いる場合の配合量は、非水系電解液100質量%中、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常90質量%以下、好ましくは85質量%以下、より好ましくは80質量%以下である。
Moreover, a fluorinated saturated cyclic carbonate may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios.
The blending amount in the case of using a carbonate having at least one fluorine atom is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.2% by mass in 100% by mass of the non-aqueous electrolyte solution. In addition, it is usually 90% by mass or less, preferably 85% by mass or less, and more preferably 80% by mass or less.
特にフッ素原子を少なくとも1つを有するカーボネートを溶媒的に用いる場合の配合量は、非水系電解液100質量%中、通常5質量%以上、好ましくは7質量%以上、より好ましくは10質量%以上であり、また、通常90質量%以下、好ましくは70質量%以下、より好ましくは50質量%以下である。上記範囲内にあることにより、電池を高電圧動作させた際に非水系電解液の副分解反応を抑制でき、電池耐久性を高めることができると共に、非水系電解液の電気伝導率の極端な低下を防ぐことができる。溶媒的に用いる場合は、フッ素原子を少なくとも1つを有するカーボネートの中でも、フッ素化飽和カーボネートであることが好ましい。 In particular, when a carbonate having at least one fluorine atom is used as a solvent, the blending amount is usually 5% by mass or more, preferably 7% by mass or more, more preferably 10% by mass or more in 100% by mass of the non-aqueous electrolyte. Moreover, it is 90 mass% or less normally, Preferably it is 70 mass% or less, More preferably, it is 50 mass% or less. By being in the above range, when the battery is operated at a high voltage, the secondary decomposition reaction of the non-aqueous electrolyte can be suppressed, the battery durability can be enhanced, and the electrical conductivity of the non-aqueous electrolyte is extremely low. Decline can be prevented. When used as a solvent, a fluorinated saturated carbonate is preferable among carbonates having at least one fluorine atom.
一方、フッ素原子を少なくとも1つを有するカーボネートを助剤的に用いる場合の配合量は、非水系電解液100質量%中、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常5質量%以下、好ましくは4質量%以下、より好ましくは3質量%以下である。上記範囲内にあることにより、電荷移動抵抗を過度に増加させずに耐久性を向上できるため、高電流密度での充放電耐久性を向上させることができる。 On the other hand, the blending amount in the case of using a carbonate having at least one fluorine atom as an auxiliary agent is usually 0.01% by mass or more, preferably 0.1% by mass or more, in 100% by mass of the non-aqueous electrolyte. Preferably it is 0.2 mass% or more, and is 5 mass% or less normally, Preferably it is 4 mass% or less, More preferably, it is 3 mass% or less. By being in the above range, durability can be improved without excessively increasing the charge transfer resistance, so that charge / discharge durability at a high current density can be improved.
フッ素原子を少なくとも1つを有するカーボネートを2種以上併用する場合であっても、上記の範囲内で調整することが好ましい。
尚、上記フッ素原子を少なくとも1つ有するカーボネートを溶媒的および助剤的に用いる場合について記載したが、実際に用いる場合は溶媒あるいは助剤に明確な境界線は存在せず、任意の割合で非水系電解液を調製できるものとする。
Even when two or more carbonates having at least one fluorine atom are used in combination, it is preferable to adjust within the above range.
In addition, although the case where the carbonate having at least one fluorine atom is used as a solvent and an auxiliary was described, in the actual use, there is no clear boundary line in the solvent or the auxiliary, and the non-limiting ratio is An aqueous electrolyte solution can be prepared.
<環状カルボン酸エステル>
環状カルボン酸エステルとしては、その構造式中の全炭素原子数が3〜12のものが挙げられる。具体的には、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、イプシロンカプロラクトン等が挙げられる。中でも、ガンマブチロラクトンがリチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
<Cyclic carboxylic acid ester>
Examples of the cyclic carboxylic acid ester include those having 3 to 12 total carbon atoms in the structural formula. Specific examples include gamma butyrolactone, gamma valerolactone, gamma caprolactone, epsilon caprolactone, and the like. Among these, gamma butyrolactone is particularly preferable from the viewpoint of improving battery characteristics resulting from an improvement in the degree of lithium ion dissociation.
環状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
環状カルボン酸エステルの配合量は、非水溶媒100体積%中、通常5体積%以上、好ましくは10体積%以上、また、通常50体積%以下、好ましくは40体積%以下である。上記範囲内にあることにより、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避し、負極抵抗の増大を抑制し、非水系電解液二次電池の大電流放電特性を良好な範囲としやすくなる。
A cyclic carboxylic acid ester may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios.
The compounding amount of the cyclic carboxylic acid ester is usually 5% by volume or more, preferably 10% by volume or more, and usually 50% by volume or less, preferably 40% by volume or less in 100% by volume of the non-aqueous solvent. By being in the said range, it becomes easy to improve the electrical conductivity of a non-aqueous electrolyte solution, and to improve the large current discharge characteristic of a non-aqueous electrolyte battery. In addition, the viscosity of the non-aqueous electrolyte solution is set in an appropriate range, the decrease in electrical conductivity is avoided, the increase in negative electrode resistance is suppressed, and the large current discharge characteristics of the non-aqueous electrolyte secondary battery are easily set in a favorable range. .
<鎖状カルボン酸エステル>
鎖状カルボン酸エステルとしては、その構造式中の全炭素数が3〜7のものが挙げられる。具体的には、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、プロピオン酸−n−ブチル、プロピオン酸イソブチル、プロピオン酸−t−ブチル、酪酸メチル、酪酸エチル、酪酸−n−プロピル、酪酸イソプロピル、イソ酪酸メチル、イソ酪酸エチル、イソ酪酸−n−プロピル、イソ酪酸イソプロピル等が挙げられる。
<Chain carboxylic acid ester>
Examples of the chain carboxylic acid ester include those having 3 to 7 carbon atoms in the structural formula. Specifically, methyl acetate, ethyl acetate, acetic acid-n-propyl, isopropyl acetate, acetic acid-n-butyl, isobutyl acetate, acetic acid-t-butyl, methyl propionate, ethyl propionate, propionate-n-propyl, Isopropyl propionate, n-butyl propionate, isobutyl propionate, t-butyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, methyl isobutyrate, ethyl isobutyrate, isobutyric acid-n- Examples include propyl and isopropyl isobutyrate.
中でも、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−n−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸イソプロピル、酪酸メチル、酪酸エチル等が、粘度低下によるイオン伝導度の向上の点から好ましい。
鎖状カルボン酸エステルは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
Among them, methyl acetate, ethyl acetate, acetate-n-propyl, acetate-n-butyl, methyl propionate, ethyl propionate, propionate-n-propyl, isopropyl propionate, methyl butyrate, ethyl butyrate, etc. It is preferable from the viewpoint of improvement of ionic conductivity.
A chain carboxylic acid ester may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios.
鎖状カルボン酸エステルの配合量は、非水溶媒100体積%中、通常10体積%以上、好ましくは15体積%以上、また、通常60体積%以下、好ましくは50体積%以下である。上記範囲内にあることにより、非水系電解液の電気伝導率を改善し、非水系電解液電池の大電流放電特性を向上させやすくなる。また、負極抵抗の増大を抑制し、非水系電解液電池の大電流放電特性、サイクル特性を良好な範囲としやすくなる。 The amount of the chain carboxylic acid ester is usually 10% by volume or more, preferably 15% by volume or more, and usually 60% by volume or less, preferably 50% by volume or less in 100% by volume of the non-aqueous solvent. By being in the said range, it becomes easy to improve the electrical conductivity of a non-aqueous electrolyte solution, and to improve the large current discharge characteristic of a non-aqueous electrolyte battery. Moreover, increase in negative electrode resistance is suppressed, and the large current discharge characteristics and cycle characteristics of the non-aqueous electrolyte battery are easily set in a favorable range.
<エーテル系化合物>
エーテル系化合物としては、一部の水素がフッ素にて置換されていてもよい炭素数3〜10の鎖状エーテル、及び炭素数3〜6の環状エーテルが好ましい。
炭素数3〜10の鎖状エーテルとしては、ジエチルエーテル、ジ(2−フルオロエチル)エーテル、ジ(2,2−ジフルオロエチル)エーテル、ジ(2,2,2−トリフルオロエチル)エーテル、エチル(2−フルオロエチル)エーテル、エチル(2,2,2−トリフルオロエチル)エーテル、エチル(1,1,2,2−テトラフルオロエチル)エーテル
、(2−フルオロエチル)(2,2,2−トリフルオロエチル)エーテル、(2−フルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、(2,2,2−トリフルオロエチル)(1,1,2,2−テトラフルオロエチル)エーテル、エチル−n−プロピルエーテル、エチル(3−フルオロ−n−プロピル)エーテル、エチル(3,3,3−トリフルオロ−n−プロピル)エーテル、エチル(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、エチル(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2−フルオロエチル−n−プロピルエーテル、(2−フルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2−フルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2−フルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、2,2,2−トリフルオロエチル−n−プロピルエーテル、(2,2,2−トリフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,2−トリフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、1,1,2,2−テトラフルオロエチル−n−プロピルエーテル、(1,1,2,2−テトラフルオロエチル)(3−フルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(1,1,2,2−テトラフルオロエチル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−プロピルエーテル、(n−プロピル)(3−フルオロ−n−プロピル)エーテル、(n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3−フルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(3,3,3−トリフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3−フルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(3,3,3−トリフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(3,3,3−トリフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3−テトラフルオロ−n−プロピル)エーテル、(2,2,3,3−テトラフルオロ−n−プロピル)(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ(2,2,3,3,3−ペンタフルオロ−n−プロピル)エーテル、ジ−n−ブチルエーテル、ジメトキシメタン、メトキシエトキシメタン、メトキシ(2−フルオロエトキシ)メタン、メトキシ(2,2,2−トリフルオロエトキシ)メタンメトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジエトキシメタン、エトキシ(2−フルオロエトキシ)メタン、エトキシ(2,2,2−トリフルオロエトキシ)メタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(2−フルオロエトキシ)メタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)メタン、(2−フルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタンジ(2,2,2−トリフルオロエトキシ)メタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)メタン、ジ(1,1,2,2−テトラフルオロエトキシ)メタン、ジメトキシエタン、メトキシエトキシエタン、メトキシ(2−フルオロエトキシ)エタン、メトキシ(2,2,2−トリフルオロエトキシ)エタン、メトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジエトキシエタン、エトキシ(2−フルオロエトキシ)エタン、エトキシ(2,2,2−トリフルオロエトキシ)エタン、エトキシ(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(2−フルオロエトキシ)エタン、(2−フルオロエトキシ)(2,2,2−トリフルオロエトキシ)エタン、(2−フルオロエトキシ)(1,1,
2,2−テトラフルオロエトキシ)エタン、ジ(2,2,2−トリフルオロエトキシ)エタン、(2,2,2−トリフルオロエトキシ)(1,1,2,2−テトラフルオロエトキシ)エタン、ジ(1,1,2,2−テトラフルオロエトキシ)エタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテル等が挙げられる。
<Ether compound>
As the ether compound, a chain ether having 3 to 10 carbon atoms in which part of hydrogen may be substituted with fluorine, and a cyclic ether having 3 to 6 carbon atoms are preferable.
Examples of the chain ether having 3 to 10 carbon atoms include diethyl ether, di (2-fluoroethyl) ether, di (2,2-difluoroethyl) ether, di (2,2,2-trifluoroethyl) ether, ethyl (2-fluoroethyl) ether, ethyl (2,2,2-trifluoroethyl) ether, ethyl (1,1,2,2-tetrafluoroethyl) ether, (2-fluoroethyl) (2,2,2 -Trifluoroethyl) ether, (2-fluoroethyl) (1,1,2,2-tetrafluoroethyl) ether, (2,2,2-trifluoroethyl) (1,1,2,2-tetrafluoro) Ethyl) ether, ethyl-n-propyl ether, ethyl (3-fluoro-n-propyl) ether, ethyl (3,3,3-trifluoro-n-propyl) Ether, ethyl (2,2,3,3-tetrafluoro-n-propyl) ether, ethyl (2,2,3,3,3-pentafluoro-n-propyl) ether, 2-fluoroethyl-n-propyl Ether, (2-fluoroethyl) (3-fluoro-n-propyl) ether, (2-fluoroethyl) (3,3,3-trifluoro-n-propyl) ether, (2-fluoroethyl) (2, 2,3,3-tetrafluoro-n-propyl) ether, (2-fluoroethyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, 2,2,2-trifluoroethyl -N-propyl ether, (2,2,2-trifluoroethyl) (3-fluoro-n-propyl) ether, (2,2,2-trifluoroethyl) (3,3,3-trifluoro Olo-n-propyl) ether, (2,2,2-trifluoroethyl) (2,2,3,3-tetrafluoro-n-propyl) ether, (2,2,2-trifluoroethyl) (2 , 2,3,3,3-pentafluoro-n-propyl) ether, 1,1,2,2-tetrafluoroethyl-n-propyl ether, (1,1,2,2-tetrafluoroethyl) (3 -Fluoro-n-propyl) ether, (1,1,2,2-tetrafluoroethyl) (3,3,3-trifluoro-n-propyl) ether, (1,1,2,2-tetrafluoroethyl) ) (2,2,3,3-tetrafluoro-n-propyl) ether, (1,1,2,2-tetrafluoroethyl) (2,2,3,3,3-pentafluoro-n-propyl) Ether, di-n-propyl Ether, (n-propyl) (3-fluoro-n-propyl) ether, (n-propyl) (3,3,3-trifluoro-n-propyl) ether, (n-propyl) (2,2,3 , 3-tetrafluoro-n-propyl) ether, (n-propyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, di (3-fluoro-n-propyl) ether, ( 3-Fluoro-n-propyl) (3,3,3-trifluoro-n-propyl) ether, (3-fluoro-n-propyl) (2,2,3,3-tetrafluoro-n-propyl) ether , (3-fluoro-n-propyl) (2,2,3,3,3-pentafluoro-n-propyl) ether, di (3,3,3-trifluoro-n-propyl) ether, (3 3,3-triflu (Ro-n-propyl) (2,2,3,3-tetrafluoro-n-propyl) ether, (3,3,3-trifluoro-n-propyl) (2,2,3,3,3-penta Fluoro-n-propyl) ether, di (2,2,3,3-tetrafluoro-n-propyl) ether, (2,2,3,3-tetrafluoro-n-propyl) (2,2,3 3,3-pentafluoro-n-propyl) ether, di (2,2,3,3,3-pentafluoro-n-propyl) ether, di-n-butyl ether, dimethoxymethane, methoxyethoxymethane, methoxy (2 -Fluoroethoxy) methane, methoxy (2,2,2-trifluoroethoxy) methanemethoxy (1,1,2,2-tetrafluoroethoxy) methane, diethoxymethane, ethoxy (2-fur Roethoxy) methane, ethoxy (2,2,2-trifluoroethoxy) methane, ethoxy (1,1,2,2-tetrafluoroethoxy) methane, di (2-fluoroethoxy) methane, (2-fluoroethoxy) ( 2,2,2-trifluoroethoxy) methane, (2-fluoroethoxy) (1,1,2,2-tetrafluoroethoxy) methanedi (2,2,2-trifluoroethoxy) methane, (2,2, 2-trifluoroethoxy) (1,1,2,2-tetrafluoroethoxy) methane, di (1,1,2,2-tetrafluoroethoxy) methane, dimethoxyethane, methoxyethoxyethane, methoxy (2-fluoroethoxy) ) Ethane, methoxy (2,2,2-trifluoroethoxy) ethane, methoxy (1,1,2,2-tetrafluoroeth) Xyl) ethane, diethoxyethane, ethoxy (2-fluoroethoxy) ethane, ethoxy (2,2,2-trifluoroethoxy) ethane, ethoxy (1,1,2,2-tetrafluoroethoxy) ethane, di (2 -Fluoroethoxy) ethane, (2-fluoroethoxy) (2,2,2-trifluoroethoxy) ethane, (2-fluoroethoxy) (1,1,
2,2-tetrafluoroethoxy) ethane, di (2,2,2-trifluoroethoxy) ethane, (2,2,2-trifluoroethoxy) (1,1,2,2-tetrafluoroethoxy) ethane, Examples include di (1,1,2,2-tetrafluoroethoxy) ethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether.
炭素数3〜6の環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、1,3−ジオキサン、2−メチル−1,3−ジオキサン、4−メチル−1,3−ジオキサン、1,4−ジオキサン等、及びこれらのフッ素化化合物が挙げられる。
中でも、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタン、エチレングリコールジ−n−プロピルエーテル、エチレングリコールジ−n−ブチルエーテル、ジエチレングリコールジメチルエーテルが、リチウムイオンへの溶媒和能力が高く、イオン解離性を向上させる点で好ましく、特に好ましくは、粘性が低く、高いイオン伝導度を与えることから、ジメトキシメタン、ジエトキシメタン、エトキシメトキシメタンである。
Examples of the cyclic ether having 3 to 6 carbon atoms include tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, 1,3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 1 , 4-dioxane and the like, and fluorinated compounds thereof.
Among them, dimethoxymethane, diethoxymethane, ethoxymethoxymethane, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, and diethylene glycol dimethyl ether have high solvating ability to lithium ions and improve ion dissociation. Of these, dimethoxymethane, diethoxymethane, and ethoxymethoxymethane are preferable because they have low viscosity and give high ionic conductivity.
エーテル系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
エーテル系化合物の配合量は、非水溶媒100体積%中、通常5体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上、また、通常70体積%以下、好ましくは60体積%以下、より好ましくは50体積%以下である。上記範囲内にあることにより、鎖状エーテルのリチウムイオン解離度の向上と粘度低下に由来するイオン伝導度の向上効果を確保しやすく、負極活物質が炭素質材料の場合、鎖状エーテルがリチウムイオンと共に共挿入されて容量が低下するといった事態を回避しやすい。
An ether type compound may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios.
The compounding amount of the ether compound is usually 5% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more, and usually 70% by volume or less, preferably 60% by volume in 100% by volume of the non-aqueous solvent. Hereinafter, it is more preferably 50% by volume or less. By being within the above range, it is easy to ensure the improvement effect of the lithium ion dissociation degree of the chain ether and the improvement of the ionic conductivity derived from the decrease in the viscosity. It is easy to avoid a situation where the capacity is reduced due to co-insertion with ions.
<スルホン系化合物>
スルホン系化合物としては、炭素数3〜6の環状スルホン、及び炭素数2〜6の鎖状スルホンが好ましい。1分子中のスルホニル基の数は、1又は2であることが好ましい。 環状スルホンとしては、モノスルホン化合物であるトリメチレンスルホン類、テトラメチレンスルホン類、ヘキサメチレンスルホン類;ジスルホン化合物であるトリメチレンジスルホン類、テトラメチレンジスルホン類、ヘキサメチレンジスルホン類等が挙げられる。中でも誘電率と粘性の観点から、テトラメチレンスルホン類、テトラメチレンジスルホン類、ヘキサメチレンスルホン類、ヘキサメチレンジスルホン類がより好ましく、テトラメチレンスルホン類(スルホラン類)が特に好ましい。
スルホラン類としては、スルホラン及び/又はスルホラン誘導体(以下、スルホランも含めてスルホラン類ともいう)が好ましい。スルホラン誘導体としては、スルホラン環を構成する炭素原子上に結合した水素原子の1以上がフッ素原子やアルキル基で置換されたものが好ましい。
<Sulfone compounds>
As the sulfone compound, a cyclic sulfone having 3 to 6 carbon atoms and a chain sulfone having 2 to 6 carbon atoms are preferable. The number of sulfonyl groups in one molecule is preferably 1 or 2. Examples of the cyclic sulfone include trimethylene sulfones, tetramethylene sulfones, and hexamethylene sulfones that are monosulfone compounds; trimethylene disulfones, tetramethylene disulfones, and hexamethylene disulfones that are disulfone compounds. Among these, from the viewpoint of dielectric constant and viscosity, tetramethylene sulfones, tetramethylene disulfones, hexamethylene sulfones, and hexamethylene disulfones are more preferable, and tetramethylene sulfones (sulfolanes) are particularly preferable.
As sulfolanes, sulfolane and / or sulfolane derivatives (hereinafter also referred to as sulfolanes including sulfolane) are preferable. As the sulfolane derivative, one in which one or more hydrogen atoms bonded to the carbon atom constituting the sulfolane ring are substituted with a fluorine atom or an alkyl group is preferable.
中でも、2−メチルスルホラン、3−メチルスルホラン、2−フルオロスルホラン、3−フルオロスルホラン、2,2−ジフルオロスルホラン、2,3−ジフルオロスルホラン、2,4−ジフルオロスルホラン、2,5−ジフルオロスルホラン、3,4−ジフルオロスルホラン、2−フルオロ−3−メチルスルホラン、2−フルオロ−2−メチルスルホラン、3−フルオロ−3−メチルスルホラン、3−フルオロ−2−メチルスルホラン、4−フルオロ−3−メチルスルホラン、4−フルオロ−2−メチルスルホラン、5−フルオロ−3−メチルスルホラン、5−フルオロ−2−メチルスルホラン、2−フルオロメチルスルホラン、3−フルオロメチルスルホラン、2−ジフルオロメチルスルホラン、3−ジフルオロメチルスルホラン、2−トリフルオロメチルスルホラン、3−トリフルオロメチルスルホラン、2−フルオロ−3−(トリフルオロメチル)スルホラン、3−フルオロ−3−(トリフルオロメチル)スルホラン、4−フルオロ−3−(トリフルオロメチル)スル
ホラン、5−フルオロ−3−(トリフルオロメチル)スルホラン等が、イオン伝導度が高く入出力が高い点で好ましい。
Among them, 2-methylsulfolane, 3-methylsulfolane, 2-fluorosulfolane, 3-fluorosulfolane, 2,2-difluorosulfolane, 2,3-difluorosulfolane, 2,4-difluorosulfolane, 2,5-difluorosulfolane, 3,4-difluorosulfolane, 2-fluoro-3-methylsulfolane, 2-fluoro-2-methylsulfolane, 3-fluoro-3-methylsulfolane, 3-fluoro-2-methylsulfolane, 4-fluoro-3-methyl Sulfolane, 4-fluoro-2-methylsulfolane, 5-fluoro-3-methylsulfolane, 5-fluoro-2-methylsulfolane, 2-fluoromethylsulfolane, 3-fluoromethylsulfolane, 2-difluoromethylsulfolane, 3-difluoro Methyl sulfolane, 2- Trifluoromethylsulfolane, 3-trifluoromethylsulfolane, 2-fluoro-3- (trifluoromethyl) sulfolane, 3-fluoro-3- (trifluoromethyl) sulfolane, 4-fluoro-3- (trifluoromethyl) sulfolane , 5-fluoro-3- (trifluoromethyl) sulfolane and the like are preferable in terms of high ionic conductivity and high input / output.
また、鎖状スルホンとしては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、n−プロピルエチルスルホン、ジ−n−プロピルスルホン、イソプロピルメチルスルホン、イソプロピルエチルスルホン、ジイソプロピルスルホン、n−ブチルメチルスルホン、n−ブチルエチルスルホン、t−ブチルメチルスルホン、t−ブチルエチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、パーフルオロエチルメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、ジ(トリフルオロエチル)スルホン、パーフルオロジエチルスルホン、フルオロメチル−n−プロピルスルホン、ジフルオロメチル−n−プロピルスルホン、トリフルオロメチル−n−プロピルスルホン、フルオロメチルイソプロピルスルホン、ジフルオロメチルイソプロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−プロピルスルホン、トリフルオロエチルイソプロピルスルホン、ペンタフルオロエチル−n−プロピルスルホン、ペンタフルオロエチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、ペンタフルオロエチル−n−ブチルスルホン、ペンタフルオロエチル−t−ブチルスルホン等が挙げられる。 As the chain sulfone, dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, n-propyl methyl sulfone, n-propyl ethyl sulfone, di-n-propyl sulfone, isopropyl methyl sulfone, isopropyl ethyl sulfone, diisopropyl sulfone, n- Butyl methyl sulfone, n-butyl ethyl sulfone, t-butyl methyl sulfone, t-butyl ethyl sulfone, monofluoromethyl methyl sulfone, difluoromethyl methyl sulfone, trifluoromethyl methyl sulfone, monofluoroethyl methyl sulfone, difluoroethyl methyl sulfone, Trifluoroethyl methyl sulfone, pentafluoroethyl methyl sulfone, ethyl monofluoromethyl sulfone, ethyl difluoromethyl sulfone, ethyl trif Oromethylsulfone, perfluoroethylmethylsulfone, ethyltrifluoroethylsulfone, ethylpentafluoroethylsulfone, di (trifluoroethyl) sulfone, perfluorodiethylsulfone, fluoromethyl-n-propylsulfone, difluoromethyl-n-propylsulfone Trifluoromethyl-n-propylsulfone, fluoromethylisopropylsulfone, difluoromethylisopropylsulfone, trifluoromethylisopropylsulfone, trifluoroethyl-n-propylsulfone, trifluoroethylisopropylsulfone, pentafluoroethyl-n-propylsulfone, Pentafluoroethyl isopropyl sulfone, trifluoroethyl-n-butyl sulfone, trifluoroethyl-t-butyl sulfone Emissions, pentafluoroethyl -n- butyl sulfone, pentafluoroethyl -t- butyl sulfone, and the like.
中でも、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、n−プロピルメチルスルホン、イソプロピルメチルスルホン、n−ブチルメチルスルホン、t−ブチルメチルスルホン、モノフルオロメチルメチルスルホン、ジフルオロメチルメチルスルホン、トリフルオロメチルメチルスルホン、モノフルオロエチルメチルスルホン、ジフルオロエチルメチルスルホン、トリフルオロエチルメチルスルホン、ペンタフルオロエチルメチルスルホン、エチルモノフルオロメチルスルホン、エチルジフルオロメチルスルホン、エチルトリフルオロメチルスルホン、エチルトリフルオロエチルスルホン、エチルペンタフルオロエチルスルホン、トリフルオロメチル−n−プロピルスルホン、トリフルオロメチルイソプロピルスルホン、トリフルオロエチル−n−ブチルスルホン、トリフルオロエチル−t−ブチルスルホン、トリフルオロメチル−n−ブチルスルホン、トリフルオロメチル−t−ブチルスルホン等がイオン伝導度が高く入出力が高い点で好ましい。 Among them, dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, n-propyl methyl sulfone, isopropyl methyl sulfone, n-butyl methyl sulfone, t-butyl methyl sulfone, monofluoromethyl methyl sulfone, difluoromethyl methyl sulfone, trifluoromethyl methyl sulfone , Monofluoroethyl methyl sulfone, difluoroethyl methyl sulfone, trifluoroethyl methyl sulfone, pentafluoroethyl methyl sulfone, ethyl monofluoromethyl sulfone, ethyl difluoromethyl sulfone, ethyl trifluoromethyl sulfone, ethyl trifluoroethyl sulfone, ethyl pentafluoro Ethyl sulfone, trifluoromethyl-n-propyl sulfone, trifluoromethyl isopropyl sulfone, tri Ruoroechiru -n- butyl sulfone, trifluoroethyl -t- butyl sulfone, trifluoromethyl -n- butyl sulfone, trifluoromethyl -t- butyl sulfone is preferred because a higher high output ionic conductivity.
スルホン系化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。
スルホン系化合物の配合量は、非水溶媒100体積%中、通常5体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上であり、また、通常40体積%以下、好ましくは35体積%以下、より好ましくは30体積%以下である。上記範囲内にあることにより、サイクル特性や保存特性等の耐久性の向上効果が得られやすく、また、非水系電解液の粘度を適切な範囲とし、電気伝導率の低下を回避することができ、非水系電解液電池の充放電を高電流密度で行う場合に、充放電容量維持率が低下するといった事態を回避しやすい。
A sulfone type compound may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios.
The compounding amount of the sulfone compound is usually 5% by volume or more, preferably 10% by volume or more, more preferably 15% by volume or more, and usually 40% by volume or less, preferably 35% in 100% by volume of the non-aqueous solvent. Volume% or less, More preferably, it is 30 volume% or less. By being in the above-mentioned range, it is easy to obtain durability improvement effects such as cycle characteristics and storage characteristics, and the viscosity of the non-aqueous electrolyte solution can be set to an appropriate range to avoid a decrease in electrical conductivity. When charging / discharging the non-aqueous electrolyte battery at a high current density, it is easy to avoid a situation in which the charge / discharge capacity retention rate decreases.
<イソシアネート基を有する化合物>
本発明におけるイソシアネート基を有する化合物(以下適宜、「イソシアネート化合物」という)は、分子内にイソシアネート基を少なくとも1つ以上有する化合物であれば特に制限はない。
イソシアネート化合物としては、下記一般式(1)で表されるものが好ましい。
<Compound having an isocyanate group>
The compound having an isocyanate group in the present invention (hereinafter appropriately referred to as “isocyanate compound”) is not particularly limited as long as it is a compound having at least one isocyanate group in the molecule.
As an isocyanate compound, what is represented by following General formula (1) is preferable.
上記式中、Aは、水素原子、ハロゲン原子、ビニル基、イソシアネート基、又はC 1 〜 C 2 0 の脂肪族炭化水素基(ヘテロ原子を有していてもよい)又はC 6 〜C 2 0 の芳香族炭化水素基( ヘテロ原子を有していてもよい)を表す。B は、酸素原子 、S O 2 、OSO2、SO3、OCO、COO、又は、C 1〜 C 2 0 の脂肪族炭化水素基( ヘテロ原子を有していてもよい)、又はC 6 〜C 2 0の芳香族炭化水素基
( ヘテロ原子を有していてもよい)を表す。
In the above formula, A represents a hydrogen atom, a halogen atom, a vinyl group, an isocyanate group, or a C 1 to C 20 aliphatic hydrocarbon group (which may have a hetero atom) or C 6 to C 20. Represents an aromatic hydrocarbon group (which may have a hetero atom). B is an oxygen atom, S 2 O 2 , OSO 2 , SO 3, OCO, COO, or a C 1 to C 20 aliphatic hydrocarbon group (which may have a hetero atom), or C 6 to C 2. 0 represents an aromatic hydrocarbon group (which may have a hetero atom).
一例としては次のような化合物などが挙げられる。
ジイソシアナトスルホン、ジイソシアナトエーテル、トリフルオロメタンイソシアネート、ペンタフルオロエタンイソシアネート、トリフルオロメタンスルホニルイソシアネート、ペンタフルオロエタンスルホニルイソシアネート、ベンゼンスルホニルイソシアネート、p-トルエンスルホニルイソシアネート、4−フルオロベンゼンスルホニルイソシアネート、1,3−ジイソシアナトプロパン、1,3−ジイソシアナトプロペン、1,3−ジイソシアナト−2−フルオロプロパン、1,4−ジイソシアナトブタン、1,4−ジイソシアナト−2−ブテン、1,4−ジイソシアナト−2−フルオロブタン、1,4−ジイソシアナト−2,3−ジフルオロブタン、1,5−ジイソシアナトペンタン、1,5−ジイソシアナト−2−ペンテン、1,5−ジイソシアナト−2−メチルペンタン、1,6−ジイ
ソシアナトヘキサン、1,6−ジイソシアナト−2−ヘキセン、1,6−ジイソシアナト−3−ヘキセン、1,6−ジイソシアナト−3−フルオロヘキサン、1,6−ジイソシアナト−3,4−ジフルオロヘキサン、2,4,4−トリメチルヘキサメチレンジイソシアナート、2,2,4−トリメチルヘキサメチレンジイソシアナート、1,7−ジイソシアナトヘプタン、1,8−ジイソシアナトオクタン、1,9−ジイソシアナトノナン、1,10−ジイソシアナトデカン、1,12−ジイソシアナトデカン、1−イソシアナトエチレン、イソシアナトメタン、1−イソシアナトエタン、1−イソシアナト−2−メトキシエタン、3−イソシアナト−1−プロペン、イソシアナトシクロプロパン、2−イソシアナトプロパン、1−イソシアナトプロパン、1−イソシアナト−3−メトキシプロパン、1−イソシアナト−3−エトキシプロパン、2−イソシアナト−2−メチルプロパン、1−イソシアナトブタン、2−イソシアナトブタン、1−イソシアナト−4−メトキシブタン、1−イソシアナト−4−エトキシブタン、メチルイソシナトホルメート、イソアナトシクロペンタン、1−イソシアナトペンタン、1−イソシアナト−5−メトキシペンタン、1−イソシアナト−5−エトキシペンタン、2−(イソシアナトメチル)フラン、イソシアナトシクロヘキサン、1−イソシアナトヘキサン、1−イソシアナト−6−メトキシヘキサン、1−イソシアナト−6−エトキシヘキサン、エチルイソシアナトアセテート、イソシアナトシクロペンタン、イソシアナトメチル( シクロヘキサン)、1−イソシア
ナトヘプタン、エチル3−イソシアナトプロパノエート、イソシアナトシクロオクタン、2−イソシアナトエチル−2−メチルアクリレート、1−イソシアナトオクタン、2 −
イソシアナト− 2,4 ,4 − トリメチルペンタン、ブチルイソシアナトアセテート、エチル4−イソシアナトブタノエート、1−イソシアナトノナン、1−イソシアナトアダマンタン、1−イソシアナトデカン、エチル6−イソシアナトヘキサノエート、1,2−ビス(イソシアナトメチル)シクロヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、1,4−ビス(イソシアナトメチル)シクロヘキサン、1,2−ジイソシアナトシクロヘキサン、1,3−ジイソシアナトシクロヘキサン、1,4−ジイソシアナトシクロヘキサン、ジシクロヘキシルメタン−1,1’−ジイソシアネート、ジシクロヘキシ
ルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメタン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、イソホロンジイソシア
ネート、1,6,11−トリイソシアナトウンデカン、4−イソシアナトメチル−1,8
−オクタメチレンジイソシアネート、1,3,5−トリイソシアネートメチルベンゼン、ビシクロ[2.2.1]ヘプタン−2,5−ジイルビス(メチル=イソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチル=イソシアネート)、1,3,5−トリス(6−イソシアナトヘキサ−1−イル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、4−(イソシアナトメチル)オクタメチレン=ジイソシアネート、1−イソシアナトウンデカン、ジイソシアナトベンゼン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、エチルジイソシアナトベンゼン、トリメチルジイソシアナトベンゼン、ジイソシアナトナフタレン、ジイソシアナトビフェニル、ジフェニルメタンジイソシアネート、2,2−ビス(イソシアナトフェニル)ヘキサフルオロプロパン、メトキシカルボニルイソシアネート、メトキシスルホニルイソシアネート、アリルイソシアネート、ビニルイソシアネート。
Examples include the following compounds.
Diisocyanato sulfone, diisocyanato ether, trifluoromethane isocyanate, pentafluoroethane isocyanate, trifluoromethanesulfonyl isocyanate, pentafluoroethanesulfonyl isocyanate, benzenesulfonyl isocyanate, p-toluenesulfonyl isocyanate, 4-fluorobenzenesulfonyl isocyanate, 1,3 -Diisocyanatopropane, 1,3-diisocyanatopropene, 1,3-diisocyanato-2-fluoropropane, 1,4-diisocyanatobutane, 1,4-diisocyanato-2-butene, 1,4-diisocyanato -2-fluorobutane, 1,4-diisocyanato-2,3-difluorobutane, 1,5-diisocyanatopentane, 1,5-diisocyanato-2-pentene, 1, -Diisocyanato-2-methylpentane, 1,6-diisocyanatohexane, 1,6-diisocyanato-2-hexene, 1,6-diisocyanato-3-hexene, 1,6-diisocyanato-3-fluorohexane, 1, 6-diisocyanato-3,4-difluorohexane, 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 1,7-diisocyanatoheptane, 1,8- Diisocyanatooctane, 1,9-diisocyanatononane, 1,10-diisocyanatodecane, 1,12-diisocyanatodecane, 1-isocyanatoethylene, isocyanatomethane, 1-isocyanatoethane, 1- Isocyanato-2-methoxyethane, 3-isocyanato-1-propene, isocyanato Ropropane, 2-isocyanatopropane, 1-isocyanatopropane, 1-isocyanato-3-methoxypropane, 1-isocyanato-3-ethoxypropane, 2-isocyanato-2-methylpropane, 1-isocyanatobutane, 2-isocyanate Natobutane, 1-isocyanato-4-methoxybutane, 1-isocyanato-4-ethoxybutane, methyl isosinatoformate, isanatocyclopentane, 1-isocyanatopentane, 1-isocyanato-5-methoxypentane, 1-isocyanato -5-ethoxypentane, 2- (isocyanatomethyl) furan, isocyanatocyclohexane, 1-isocyanatohexane, 1-isocyanato-6-methoxyhexane, 1-isocyanato-6-ethoxyhexane, ethyl isocyanatoacetate, Socyanatocyclopentane, isocyanatomethyl (cyclohexane), 1-isocyanatoheptane, ethyl 3-isocyanatopropanoate, isocyanatocyclooctane, 2-isocyanatoethyl-2-methyl acrylate, 1-isocyanatooctane, 2 −
Isocyanato-2,4,4-trimethylpentane, butylisocyanatoacetate, ethyl 4-isocyanatobutanoate, 1-isocyanatononane, 1-isocyanatoadamantane, 1-isocyanatodecane, ethyl 6-isocyanatohexano 1,2-bis (isocyanatomethyl) cyclohexane, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, 1,2-diisocyanatocyclohexane, 1,3 -Diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, dicyclohexylmethane-1,1'-diisocyanate, dicyclohexylmethane-2,2'-diisocyanate, dicyclohexylmethane-3,3'-diisocyanate, dicyclohexylmethane-4, 4'-diisocyanate, isophorone diisocyanate, 1,6,11-triisocyanatoundecane, 4-isocyanatomethyl-1,8
-Octamethylene diisocyanate, 1,3,5-triisocyanate methylbenzene, bicyclo [2.2.1] heptane-2,5-diylbis (methyl = isocyanate), bicyclo [2.2.1] heptane-2,6 -Diylbis (methyl = isocyanate), 1,3,5-tris (6-isocyanatohex-1-yl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 4- (isocyanatomethyl) octamethylene = diisocyanate, 1-isocyanatoundecane, diisocyanatobenzene, toluene diisocyanate, xylene diisocyanate, tolylene diisocyanate, ethyl diisocyanatobenzene, trimethyldiisocyanatobenzene, diisocyanatonaphthalene, Diisocyanatobiphenyl, di E methane diisocyanate, 2,2-bis (isocyanatomethyl) hexafluoropropane, methoxycarbonyl isocyanate, methoxy sulfonyl isocyanates, allyl isocyanate, vinyl isocyanate.
中でも、1,4−ジイソシアナトブタン、1,5−ジイソシアナトペンタン、1,6−ジイソシアナトヘキサン、1,7−ジイソシアナトヘプタン、1,8−ジイソシアナトオクタン、1,9−ジイソシアナトノナン、1,10−ジイソシアナトデカン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、1,3−ビス(イソシアナトメチル)シクロヘキサン、ジシクロヘキシルメタン−1,1’−ジイソシ
アネート、ジシクロヘキシルメタン−2,2’−ジイソシアネート、ジシクロヘキシルメ
タン−3,3’−ジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、イソホロンジイソシアネート、1,6,11−トリイソシアナトウンデカン、4−イソシアナトメチル−1,8−オクタメチレンジイソシアネート、1,3,5−トリイソシアネートメチルベンゼン、ビシクロ[2.2.1]ヘプタン−2,5−ジイルビス(メチル=イソシアネート)、ビシクロ[2.2.1]ヘプタン−2,6−ジイルビス(メチル=イソシアネート)、1,3,5−トリス(6−イソシアナトヘキサ−1−イル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、2,4,4−トリメチルヘキサメチレンジイソシアナート、2,2,4−トリメチルヘキサメチレンジイソシアナート、4−(イソシアナトメチル)オクタメチレン=ジイソシアネート、メトキシカルボニルイソシアネート、メトキシスルホニルイソシアネートが好ましい。
Among them, 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, 1,6-diisocyanatohexane, 1,7-diisocyanatoheptane, 1,8-diisocyanatooctane, 1,9 -Diisocyanatononane, 1,10-diisocyanatodecane, toluene diisocyanate, xylene diisocyanate, tolylene diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane-1,1'-diisocyanate, dicyclohexylmethane- 2,2′-diisocyanate, dicyclohexylmethane-3,3′-diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, isophorone diisocyanate, 1,6,11-triisocyanatoundecane, 4-isocyanatomethyl-1,8 -Octameth Diisocyanate, 1,3,5-triisocyanate methylbenzene, bicyclo [2.2.1] heptane-2,5-diylbis (methyl = isocyanate), bicyclo [2.2.1] heptane-2,6-diylbis (Methyl = isocyanate), 1,3,5-tris (6-isocyanatohex-1-yl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 2, 4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 4- (isocyanatomethyl) octamethylene diisocyanate, methoxycarbonyl isocyanate, and methoxysulfonyl isocyanate are preferred.
これらのうち、1,6−ジイソシアナトヘキサン、1,3−ビス(イソシアナトメチル)シクロヘキサン、2,4,4−トリメチルヘキサメチレンジイソシアナート、2,2,4−トリメチルヘキサメチレンジイソシアナート、メトキシカルボニルイソシアネート、メトキシスルホニルイソシアネートが特に好ましい。
上記化合物が好ましい理由として、原料が工業的な入手し易いものであり、電解液の製造コストが低く抑えられる点や、イソシアネート化合物の中でも非水系電解液中に溶解し易い点や電極表面での反応性が最適である点が挙げられる。
Of these, 1,6-diisocyanatohexane, 1,3-bis (isocyanatomethyl) cyclohexane, 2,4,4-trimethylhexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate , Methoxycarbonyl isocyanate, and methoxysulfonyl isocyanate are particularly preferable.
The reason why the above compound is preferable is that the raw materials are industrially easily available, the production cost of the electrolytic solution is kept low, the isocyanate compound is easily dissolved in the non-aqueous electrolytic solution, and the electrode surface The point that the reactivity is optimal is mentioned.
また、下記の式(2)で示される構造を有するジイソシアネート化合物は、充放電に伴う電極の膨張・収縮の物理的変形に対する耐性を効果的に高めることができるため好ましい。これは鎖状のメチレン基が皮膜及び/又は電極構造中に取り込まれることで、そうした構造体に適度な弾性を付与する為である。従って、この目的においてはメチレン基の長さが重要であって、式中、xは4〜12が好ましく、さらに好ましくは4〜8である。具
体的には、1,4−ジイソシアナトブタン、1,5−ジイソシアナトペンタン、1,6−ジイソシアナトヘキサン、1,7−ジイソシアナトヘプタン、1,8−ジイソシアナトオクタン等が挙げられる。
Moreover, the diisocyanate compound which has a structure shown by following formula (2) is preferable since the tolerance with respect to the physical deformation | transformation of the expansion | swelling / contraction of an electrode accompanying charging / discharging can be improved effectively. This is because chain-like methylene groups are incorporated into the film and / or electrode structure to impart appropriate elasticity to such a structure. Therefore, for this purpose, the length of the methylene group is important. In the formula, x is preferably 4 to 12, and more preferably 4 to 8. Specifically, 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, 1,6-diisocyanatohexane, 1,7-diisocyanatoheptane, 1,8-diisocyanatooctane, etc. Is mentioned.
また、本発明に用いるイソシアネート化合物は、式(2)で示されるジイソシアネート化合物を主原料にして製造されるポリイソシアネートを用いても良い。製造上の容易性から、ウレトジオン、オキサジアジトリオン、ビウレット、ウレタン、アロファネート、イソシアヌレートから選ばれる一種以上の骨格を有するポリイソシアネートが好ましく用いられる。各々の骨格は分子内に2つ以上含まれていても良い。 Moreover, the isocyanate compound used for this invention may use the polyisocyanate manufactured by using the diisocyanate compound shown by Formula (2) as a main raw material. From the viewpoint of ease of production, polyisocyanates having one or more skeletons selected from uretdione, oxadiaditrione, biuret, urethane, allophanate and isocyanurate are preferably used. Two or more of each skeleton may be contained in the molecule.
ポリイソシアネートの数平均分子量は、通常200以上、好ましくは300以上、また、通常10000以下、好ましくは5000以下、より好ましくは3000以下である。数平均分子量が上記範囲にあることにより、電解液への溶解が容易である傾向にある。
平均官能基数は2以上、好ましくは3以上、また、通常12以下、好ましくは10以下、より好ましくは8以下である。平均官能基数が上記範囲にあることにより、皮膜の安定性を高めることができ、また、官能基の増加による正極の電荷移動抵抗の増加が容認できる。
The number average molecular weight of the polyisocyanate is usually 200 or more, preferably 300 or more, and usually 10,000 or less, preferably 5000 or less, more preferably 3000 or less. When the number average molecular weight is in the above range, dissolution in the electrolytic solution tends to be easy.
The average number of functional groups is 2 or more, preferably 3 or more, and is usually 12 or less, preferably 10 or less, more preferably 8 or less. When the average number of functional groups is within the above range, the stability of the film can be increased, and an increase in charge transfer resistance of the positive electrode due to the increase in functional groups is acceptable.
本発明で用いるイソシアネート化合物は、ブロック剤でブロックして保存安定性を高めた、所謂ブロックイソシアネートも含まれる。ブロック剤には、アルコール類、フェノール類、有機アミン類、オキシム類、ラクタム類を挙げることができ、具体的には、n−ブタノール、フェノール、トリブチルアミン、ジエチルエタノールアミン、メチルエチルケトキシム、ε−カプロラクタム等を挙げることができる。 The isocyanate compound used in the present invention also includes so-called blocked isocyanate, which is blocked with a blocking agent to enhance storage stability. Examples of the blocking agent include alcohols, phenols, organic amines, oximes, and lactams. Specific examples include n-butanol, phenol, tributylamine, diethylethanolamine, methyl ethyl ketoxime, and ε-caprolactam. Etc.
イソシアネート化合物に基づく反応を促進し、より高い効果を得る目的で、ジブチルスズジラウレート等のような金属触媒や、1,8−ジアザビシクロ[5.4.0]ウンデセン−7のようなアミン系触媒等を併用することも好ましい。
本発明のイソシアネート化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
For the purpose of promoting a reaction based on an isocyanate compound and obtaining a higher effect, a metal catalyst such as dibutyltin dilaurate or an amine catalyst such as 1,8-diazabicyclo [5.4.0] undecene-7 is used. Use in combination is also preferred.
The isocyanate compound of this invention may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
本発明の非水系電解液の組成中におけるイソシアネート化合物の濃度は、本発明の効果を著しく損なわない限り任意であるが、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、また、通常5質量%以下、好ましくは3質量%以下、より好ましくは1.5質量%以下の範囲である。上記範囲であれば、電池内の化学的及び物理的安定性を十分に高めることができるとともに、皮膜形成による過度な抵抗増加を抑制することができる。
なお、イソシアネート化合物は市販のものを用いても良く、また、製造する場合にはその製造方法は限定されず、公知の方法により製造したものを用いることができる。
The concentration of the isocyanate compound in the composition of the non-aqueous electrolyte solution of the present invention is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably Is 0.1% by mass or more, and is usually 5% by mass or less, preferably 3% by mass or less, more preferably 1.5% by mass or less. If it is the said range, while being able to fully improve the chemical and physical stability in a battery, the excessive increase in resistance by film formation can be suppressed.
In addition, a commercially available thing may be used for an isocyanate compound, and when manufacturing, the manufacturing method is not limited, What was manufactured by the well-known method can be used.
<1−4.助剤>
本発明の非水系電解液には、上述の電解質、非水溶媒、イソシアネート化合物以外に、目的に応じて適宜助剤を配合しても良い。助剤としては、以下に示される不飽和結合を有する環状カーボネート、フッ素原子を有する不飽和環状カーボネート、過充電防止剤、その他の助剤、等が挙げられる。
<1-4. Auxiliary>
In addition to the above-mentioned electrolyte, non-aqueous solvent, and isocyanate compound, an auxiliary may be appropriately added to the non-aqueous electrolyte of the present invention depending on the purpose. Examples of the auxiliary agent include a cyclic carbonate having an unsaturated bond shown below, an unsaturated cyclic carbonate having a fluorine atom, an overcharge inhibitor, and other auxiliary agents.
(不飽和結合を有する環状カーボネート)
不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と略記する場合がある)も、負極表面に皮膜を形成するため、電池の寿命を向上させる効果を有する。
前記不飽和環状カーボネートとしては、炭素−炭素二重結合及び/又は炭素−炭素三重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
(Cyclic carbonate having an unsaturated bond)
The cyclic carbonate having an unsaturated bond (hereinafter sometimes abbreviated as “unsaturated cyclic carbonate”) also has an effect of improving the battery life because it forms a film on the negative electrode surface.
The unsaturated cyclic carbonate is not particularly limited as long as it is a cyclic carbonate having a carbon-carbon double bond and / or a carbon-carbon triple bond, and any unsaturated carbonate can be used. The cyclic carbonate having an aromatic ring is also included in the unsaturated cyclic carbonate.
不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環や炭素−炭素二重結合又は炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類、エチニルカーボネート類、プロパルギルカーボネート等が挙げられる。
ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート等が挙げられる。
Examples of the unsaturated cyclic carbonate include vinylene carbonates, ethylene carbonates substituted with a substituent having an aromatic ring, a carbon-carbon double bond or a carbon-carbon triple bond, phenyl carbonates, vinyl carbonates, allyl carbonates, Catechol carbonates, ethynyl carbonates, propargyl carbonate and the like can be mentioned.
As vinylene carbonates, vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl vinylene carbonate, 4,5-vinyl vinylene carbonate, allyl vinylene carbonate, 4 , 5-diallyl vinylene carbonate and the like.
芳香環や炭素−炭素二重結合又は炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート等が挙げられる。 Specific examples of the ethylene carbonate substituted with a substituent having an aromatic ring, a carbon-carbon double bond or a carbon-carbon triple bond include vinyl ethylene carbonate, 4,5-divinylethylene carbonate, 4-methyl-5- Vinylethylene carbonate, 4-allyl-5-vinylethylene carbonate, phenylethylene carbonate, 4,5-diphenylethylene carbonate, 4-phenyl-5-vinylethylene carbonate, 4-allyl-5-phenylethylene carbonate, allylethylene carbonate, Examples include 4,5-diallyl ethylene carbonate, 4-methyl-5-allyl ethylene carbonate, ethynyl ethylene carbonate, propargyl ethylene carbonate, and the like.
中でも、特に本発明の化合物と併用するのに好ましい不飽和環状カーボネートとしては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。 Among them, particularly preferable unsaturated cyclic carbonates for use in combination with the compound of the present invention include vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, vinyl vinylene carbonate, 4,5-vinyl vinylene carbonate, allyl vinylene carbonate. 4,5-diallyl vinylene carbonate, vinyl ethylene carbonate, 4,5-divinyl ethylene carbonate, 4-methyl-5-vinyl ethylene carbonate, allyl ethylene carbonate, 4,5-diallyl ethylene carbonate, 4-methyl-5-allyl Since ethylene carbonate, 4-allyl-5-vinylethylene carbonate, and ethynyl ethylene carbonate form a stable interface protective film, they are more preferably used.
不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、通常50以上、好ましくは80以上、また、通常250以下、好ましくは150以下である。上記範囲内にあることにより、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現しやすい。不飽和環状カーボネートの分子量は、不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。 The molecular weight of the unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is usually 50 or more, preferably 80 or more, and usually 250 or less, preferably 150 or less. By being in the said range, it is easy to ensure the solubility of the unsaturated cyclic carbonate with respect to a non-aqueous electrolyte solution, and the effect of this invention is fully easy to be expressed. The molecular weight of the unsaturated cyclic carbonate is not particularly limited as to the method for producing the unsaturated cyclic carbonate, and can be produced by arbitrarily selecting a known method.
不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。不飽和環状カーボネートの配合量は、非水系電解液100質量%中、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常5質量%以下、好ましくは4質量%以下、より好ましくは3質量%以下である。上記範囲であれば、非水系電解液二次電池のサイクル特性の向上を図ることができ、さらに高温保存特性の低下に伴う放電容量維持率の低下を抑制できる一方、過度な皮膜形成による抵抗の増加を抑制することができる。 An unsaturated cyclic carbonate may be used individually by 1 type, or may have 2 or more types by arbitrary combinations and ratios. Moreover, the compounding quantity of unsaturated cyclic carbonate is not restrict | limited in particular, As long as the effect of this invention is not impaired remarkably, it is arbitrary. The blending amount of the unsaturated cyclic carbonate is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.2% by mass or more in 100% by mass of the non-aqueous electrolyte solution. 5% by mass or less, preferably 4% by mass or less, more preferably 3% by mass or less. Within the above range, the cycle characteristics of the non-aqueous electrolyte secondary battery can be improved, and further, the decrease in the discharge capacity retention rate due to the decrease in the high temperature storage characteristics can be suppressed, while the resistance due to excessive film formation is reduced. Increase can be suppressed.
(フッ素化不飽和環状カーボネート)
フッ素化環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と略記する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上があれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は
2個のものが最も好ましい。
(Fluorinated unsaturated cyclic carbonate)
As the fluorinated cyclic carbonate, it is also preferable to use a cyclic carbonate having an unsaturated bond and a fluorine atom (hereinafter sometimes abbreviated as “fluorinated unsaturated cyclic carbonate”). The number of fluorine atoms contained in the fluorinated unsaturated cyclic carbonate is not particularly limited as long as it is 1 or more. Among them, the number of fluorine atoms is usually 6 or less, preferably 4 or less, and most preferably 1 or 2 fluorine atoms.
フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート等が挙げられる。
Examples of the fluorinated unsaturated cyclic carbonate include a fluorinated vinylene carbonate derivative, a fluorinated ethylene carbonate derivative substituted with a substituent having an aromatic ring or a carbon-carbon double bond.
Fluorinated vinylene carbonate derivatives include 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-phenyl vinylene carbonate, 4-allyl-5-fluoro vinylene carbonate, 4-fluoro-5- And vinyl vinylene carbonate.
芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。 Examples of the fluorinated ethylene carbonate derivative substituted with an aromatic ring or a substituent having a carbon-carbon double bond include 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5. -Vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4,4-difluoro-4-vinylethylene carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate 4,5-difluoro-4-allylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate 4,5-diflu B-4,5-diallylethylene carbonate, 4-fluoro-4-phenylethylene carbonate, 4-fluoro-5-phenylethylene carbonate, 4,4-difluoro-5-phenylethylene carbonate, 4,5-difluoro-4- Examples thereof include phenylethylene carbonate.
中でも、特に本発明の化合物と併用するのに好ましいフッ素化不飽和環状カーボネートとしては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。 Among them, particularly preferred fluorinated unsaturated cyclic carbonates for use in combination with the compounds of the present invention include 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-vinyl vinylene carbonate, 4- Allyl-5-fluorovinylene carbonate, 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5-vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4, 4-difluoro-4-vinylethylene carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate, 4,5-difluoro-4-allylethylene carbonate, 4-fluoro- , 5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate, 4,5-difluoro-4,5-diallylethylene carbonate are stable. Since an interface protective film is formed, it is used more suitably.
フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、250以下である。上記範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現しやすい。フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。 The molecular weight of the fluorinated unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 50 or more and 250 or less. If it is the said range, it will be easy to ensure the solubility of the fluorinated cyclic carbonate with respect to a non-aqueous electrolyte solution, and the effect of this invention will be easy to be expressed. The production method of the fluorinated unsaturated cyclic carbonate is not particularly limited, and can be produced by arbitrarily selecting a known method. The molecular weight is more preferably 100 or more, and more preferably 200 or less.
フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。また、フッ素化不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。フッ素化不飽和環状カーボネートの配合量は、通常、非水系電解液100質量%中、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常5質量%以下、好ましくは4質量%以下、より好ましくは3質量%以下である。上記範囲であれば、非水系電解液二次電池のサイクル特性の向上を図ることができ、さらに高温保
存特性の低下に伴う放電容量維持率の低下を抑制できる一方、過度な皮膜形成による抵抗増加を抑制することができる。
A fluorinated unsaturated cyclic carbonate may be used individually by 1 type, and may have 2 or more types by arbitrary combinations and ratios. Moreover, the compounding quantity of a fluorinated unsaturated cyclic carbonate is not restrict | limited in particular, As long as the effect of this invention is not impaired remarkably, it is arbitrary. The blending amount of the fluorinated unsaturated cyclic carbonate is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.2% by mass or more in 100% by mass of the non-aqueous electrolyte. Moreover, it is 5 mass% or less normally, Preferably it is 4 mass% or less, More preferably, it is 3 mass% or less. Within the above range, the cycle characteristics of the non-aqueous electrolyte secondary battery can be improved, and further, the decrease in the discharge capacity retention rate due to the decrease in the high temperature storage characteristics can be suppressed, while the resistance increase due to excessive film formation Can be suppressed.
(過充電防止剤)
本発明の非水系電解液において、非水系電解液二次電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
(Overcharge prevention agent)
In the non-aqueous electrolyte solution of the present invention, an overcharge inhibitor can be used in order to effectively suppress battery explosion / ignition when the non-aqueous electrolyte secondary battery is in an overcharged state or the like. .
As an overcharge inhibitor, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl, Partially fluorinated products of the above aromatic compounds such as o-cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole and the like And a fluorine-containing anisole compound. Of these, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, terphenyl partially hydrogenated, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran are preferable. These may be used alone or in combination of two or more. When two or more kinds are used in combination, in particular, a combination of cyclohexylbenzene and t-butylbenzene or t-amylbenzene, biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, Using at least one selected from aromatic compounds not containing oxygen, such as t-amylbenzene, and at least one selected from oxygen-containing aromatic compounds such as diphenyl ether, dibenzofuran, and the like is an overcharge prevention property and a high temperature storage property. From the standpoint of balance.
過充電防止剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。過充電防止剤は、非水系電解液100質量%中、通常0.1質量%以上であり、また、通常5質量%以下である。また、好ましくは0.2質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、また、好ましくは3質量%以下、より好ましくは2質量%以下である。上記範囲でれば、過充電防止効果を十分に図ることができ、一方、高温保存特性等の電池特性を確保することができる。 The amount of the overcharge inhibitor is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. The overcharge inhibitor is usually 0.1% by mass or more and usually 5% by mass or less in 100% by mass of the non-aqueous electrolyte solution. Further, it is preferably 0.2% by mass or more, more preferably 0.3% by mass or more, further preferably 0.5% by mass or more, and preferably 3% by mass or less, more preferably 2% by mass or less. is there. If it is the said range, the overcharge prevention effect can fully be aimed at, On the other hand, battery characteristics, such as a high temperature storage characteristic, can be ensured.
<その他の助剤>
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤としては、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、リチウムビス(フルオロスルホニル)イミド、リチウムビス(トリフルオロメタンスルホニル)イミド、フルオロスルホン酸リチウム、トリフルオロメタンスルホン酸リチウム、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロオキサラトホスフェートなどのリチウム塩が挙げられる。これらの助剤を添加することにより、サイクル特性や低温放電特性を向上させることができる。
<Other auxiliaries>
Other known auxiliary agents can be used in the non-aqueous electrolyte solution of the present invention. Other auxiliary agents include lithium monofluorophosphate, lithium difluorophosphate, lithium tetrafluoroborate, lithium bis (fluorosulfonyl) imide, lithium bis (trifluoromethanesulfonyl) imide, lithium fluorosulfonate, trifluoromethanesulfonic acid Examples of the lithium salt include lithium, lithium bis (oxalato) borate, lithium difluorooxalatoborate, lithium tris (oxalato) phosphate, lithium difluorobis (oxalato) phosphate, and lithium tetrafluorooxalatophosphate. By adding these auxiliaries, cycle characteristics and low-temperature discharge characteristics can be improved.
また、高温保存後の容量維持特性やサイクル特性を向上させることができる助剤として、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、
3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、1−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド等の含窒素化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等が挙げられる。これらの助剤は1種を単独で用いても、2種以上を併用してもよい。
Further, as an auxiliary capable of improving capacity maintenance characteristics and cycle characteristics after high temperature storage, carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate; succinic anhydride, anhydrous glutar Carboxylic anhydrides such as acid, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride; Spiro compounds such as 2,4,8,10-tetraoxaspiro [5.5] undecane and 3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5] undecane; ethylene sulfite; 1,3-propane sultone, 1-fluoro-1,3-propa Sultone, 2-fluoro-1,3-propane sultone,
3-fluoro-1,3-propane sultone, 1-propene-1,3-sultone, 1-fluoro-1-propene-1,3-sultone, 2-fluoro-1-propene-1,3-sultone, 3 -Fluoro-1-propene-1,3-sultone, 1,4-butane sultone, 1-butene-1,4-sultone, 3-butene-1,4-sultone, methyl fluorosulfonate, ethyl fluorosulfonate, methane Sulfur-containing compounds such as methyl sulfonate, ethyl methanesulfonate, busulfan, sulfolene, diphenylsulfone, N, N-dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide; 1-methyl-2-pyrrolidinone, 1-methyl 2-piperidone, 3-methyl-2-oxazolidinone, 1,3-dimethyl-2-imidazolidinone and - nitrogen-containing compounds such as methyl succinimide; heptane, octane, nonane, decane, hydrocarbon compounds cycloheptane, etc., fluorobenzene, difluorobenzene, hexafluorobenzene, fluorinated aromatic compounds such as benzotrifluoride, and the like. These auxiliary agents may be used alone or in combination of two or more.
その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤は、非水系電解液100質量%中、通常0.01質量%以上であり、また、通常5質量%以下である。その他の助剤の配合量は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、好ましくは3質量%以下、より好ましくは1質量%以下である。上記範囲であれば、助剤の効果を十分に発揮しつつ、電池への悪影響を抑制することができる。 The blending amount of other auxiliary agents is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. The other auxiliary agent is usually 0.01% by mass or more and usually 5% by mass or less in 100% by mass of the non-aqueous electrolyte solution. The blending amount of other auxiliaries is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and preferably 3% by mass or less, more preferably 1% by mass or less. If it is the said range, the bad influence to a battery can be suppressed, fully exhibiting the effect of an adjuvant.
以上に記載してきた非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調製し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。 The non-aqueous electrolyte solution described above includes those existing inside the non-aqueous electrolyte battery according to the present invention. Specifically, the components of the non-aqueous electrolyte such as lithium salt, solvent, and auxiliary agent are separately synthesized, and the non-aqueous electrolyte is prepared from the substantially isolated one by the method described below. In the case of a nonaqueous electrolyte solution in a nonaqueous electrolyte battery obtained by pouring into a separately assembled battery, the components of the nonaqueous electrolyte solution of the present invention are individually placed in the battery, In order to obtain the same composition as the non-aqueous electrolyte solution of the present invention by mixing in a non-aqueous electrolyte battery, the compound constituting the non-aqueous electrolyte solution of the present invention is further generated in the non-aqueous electrolyte battery. The case where the same composition as the aqueous electrolyte is obtained is also included.
3.電池構成
本発明の非水系電解液電池は、非水系電解液電池の中でも二次電池用、例えばリチウム二次電池用の電解液として用いるのに好適である。以下、本発明の非水系電解液を用いた非水系電解液電池について説明する。
本発明の非水系電解液二次電池は、公知の構造を採ることができ、典型的には、イオン(例えば、リチウムイオン)を吸蔵・放出可能な負極及び正極と、上記の本発明の非水系電解液とを備える。
3. Battery Configuration The non-aqueous electrolyte battery of the present invention is suitable for use as an electrolyte for a secondary battery, for example, a lithium secondary battery, among non-aqueous electrolyte batteries. Hereinafter, a non-aqueous electrolyte battery using the non-aqueous electrolyte of the present invention will be described.
The non-aqueous electrolyte secondary battery of the present invention can adopt a known structure. Typically, the negative electrode and the positive electrode capable of occluding and releasing ions (for example, lithium ions), and the non-aqueous electrolyte of the present invention described above. An aqueous electrolyte solution.
4.正極
<正極活物質>
以下に正極に使用される正極活物質について述べる。
(組成)
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
4). Positive electrode <Positive electrode active material>
The positive electrode active material used for the positive electrode is described below.
(composition)
The positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. For example, a material containing lithium and at least one transition metal is preferable. Specific examples include lithium transition metal composite oxides and lithium-containing transition metal phosphate compounds.
リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO2等のリチウム・コバルト複合酸化物、LiMnO2、LiMn2O4、Li2MnO4等のリチウム・マンガン複合酸化
物、LiNiO2等のリチウム・ニッケル複合酸化物、等が挙げられる。また、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられ、具体例としては、リチウム・ニッケル・コバルト・アルミ複合酸化物、リチウム・コバルト・ニッケル複合酸化物、リチウム・コバルト・マンガン複合酸化物、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物等が挙げられる。これらの中でも、電池特性が良好であるため、リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト・マンガン複合酸化物が好ましい。
V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable as the transition metal of the lithium transition metal composite oxide. Specific examples include lithium-cobalt composite oxides such as LiCoO 2 , LiMnO 2 , LiMn. Examples thereof include lithium / manganese composite oxides such as 2 O 4 and Li 2 MnO 4 and lithium / nickel composite oxides such as LiNiO 2. Further, some of the transition metal atoms that are the main components of these lithium transition metal composite oxides are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, and Si. Specific examples include lithium-nickel-cobalt-aluminum composite oxides, lithium-cobalt-nickel composite oxides, lithium-cobalt-manganese composite oxides, lithium- Nickel / manganese composite oxide, lithium / nickel / cobalt / manganese composite oxide, and the like can be given. Among these, lithium / nickel / manganese composite oxide and lithium / nickel / cobalt / manganese composite oxide are preferable because of good battery characteristics.
置換されたものの具体例としては、例えば、Li1+aNi0.5Mn0.5O2、Li1+aNi0.8Co0.2O2、Li1+aNi0.85Co0.10Al0.05O2、Li1+aNi0.33Co0.33Mn0.33O2、Li1+aNi0.45Mn0.45Co0.1O2、Li1+aNi0.475Mn0.475Co0.05O2、Li1+aMn1.8Al0.2O4、Li1+aMn2O4、Li1+aMn1.5Ni0.5O4、xLi2MnO3・(1−x)Li1+aMO2(M=遷移金属であり、例えば、Li、Ni、Mn及びCoからなる群より選ばれる金属など)等が挙げられる(a;0<a≦3.0)。これらの置換金属元素の組成式中での比率は、それを用いた電池の電池特性や材料のコストなどの関係により適宜調節される。 Specific examples of the substituted ones include, for example, Li 1 + a Ni 0.5 Mn 0.5 O 2 , Li 1 + a Ni 0.8 Co 0.2 O 2 , Li 1 + a Ni 0.85 Co 0.10 Al 0. 05 O 2 , Li 1 + a Ni 0.33 Co 0.33 Mn 0.33 O 2 , Li 1 + a Ni 0.45 Mn 0.45 Co 0.1 O 2 , Li 1 + a Ni 0.475 Mn 0.475 Co 0 .05 O 2 , Li 1 + a Mn 1.8 Al 0.2 O 4 , Li 1 + a Mn 2 O 4 , Li 1 + a Mn 1.5 Ni 0.5 O 4 , xLi 2 MnO 3. (1-x) Li 1 + a MO 2 (M = transition metal, such as a metal selected from the group consisting of Li, Ni, Mn, and Co) (a; 0 <a ≦ 3.0). The ratio of these substituted metal elements in the composition formula is appropriately adjusted depending on the relationship between the battery characteristics of the battery using the element and the cost of the material.
リチウム含有遷移金属リン酸化合物は、LixMPO4(M=周期表の第4周期の4族〜11族の遷移金属からなる群より選ばれた一種の元素、xは0<x<1.2)で表すことができ、上記遷移金属(M)としては、V, Ti, Cr, Mg, Zn, Ca, Cd, Sr, Ba, Co, Ni,
Fe, MnおよびCuからなる群より選ばれる少なくとも一種の元素であることが好ましく、Co,Ni,Fe,Mnからなる群より選ばれる少なくとも一種の元素であることがより好ましい
。例えば、LiFePO4、Li3Fe2(PO4)3、LiFeP2O7等のリン酸鉄類、LiCoPO4等のリン酸コバルト類、LiMnPO4等のリン酸マンガン類、LiNiPO4等のリン酸ニッケル類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
The lithium-containing transition metal phosphate compound is Li x MPO 4 (M = a kind of element selected from the group consisting of group 4 to group 11 transition metals in the periodic table, x is 0 <x <1. 2), and the transition metal (M) includes V, Ti, Cr, Mg, Zn, Ca, Cd, Sr, Ba, Co, Ni,
It is preferably at least one element selected from the group consisting of Fe, Mn and Cu, and more preferably at least one element selected from the group consisting of Co, Ni, Fe and Mn. For example, iron phosphates such as LiFePO 4 , Li 3 Fe 2 (PO4) 3 , LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , manganese phosphates such as LiMnPO 4 , nickel phosphates such as LiNiPO 4 A part of transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, and Nb. And those substituted with other metals such as Si.
これらの中でも、LiFePO4、Li3Fe2(PO4)3、LiFeP2O7等のリン酸鉄類が、高温・充電状態での金属溶出が起こりにくく、また安価であるために好適に用いられる。
なお、上述の「LixMPO4を基本組成とする」とは、その組成式で表される組成のものだけでなく、結晶構造におけるFe等のサイトの一部を他の元素で置換したものも含むことを意味する。さらに、化学量論組成のものだけでなく、一部の元素が欠損等した非化学量論組成のものも含むことを意味する。置換する他の元素はAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の元素であることが好ましい。上記他元素置換を
行う場合は、0.1mol%以上5mol%以下が好ましく、さらに好ましくは0.2mol%以上2.5mol%以下である。
Among these, iron phosphates such as LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 are preferably used because they are less likely to cause metal elution at a high temperature and in a charged state and are inexpensive. It is done.
In addition, the above-mentioned “having Li x MPO 4 as a basic composition” means not only the composition represented by the composition formula but also a part of a site such as Fe in the crystal structure substituted with another element. Is also included. Furthermore, it means that not only a stoichiometric composition but also a non-stoichiometric composition in which some elements are deficient or the like is included. Other elements to be substituted are preferably elements such as Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, and Si. When the substitution of other elements is performed, the content is preferably 0.1 mol% or more and 5 mol% or less, more preferably 0.2 mol% or more and 2.5 mol% or less.
上記正極活物質は、単独で用いてもよく、2種以上を併用してもよい。
また、本発明のリチウム遷移金属系化合物粉体は、異元素が導入されてもよい。異元素としては、B、Na、Mg、Al、K、Ca、Ti、V、Cr、Fe、Cu、Zn、Sr、Y、Zr、Nb、Ru、Rh、Pd、Ag、In、Sn、Sb、Te、Ba、Ta、Mo、W、Re、Os、Ir、Pt、Au、Pb、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、N、F、Cl、Br、Iの何れか1種以上の中から選択される。これらの異元素は、リチウム遷移金属系化合物の結晶構造内に取り込まれていてもよく、あるいは、リチウム遷移金属系化合物の結晶構造内に
取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物として偏在していてもよい。
The said positive electrode active material may be used independently and may use 2 or more types together.
Further, foreign elements may be introduced into the lithium transition metal-based compound powder of the present invention. Different elements include B, Na, Mg, Al, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Sr, Y, Zr, Nb, Ru, Rh, Pd, Ag, In, Sn, Sb. Te, Ba, Ta, Mo, W, Re, Os, Ir, Pt, Au, Pb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu , Bi, N, F, Cl, Br, or I. These foreign elements may be incorporated into the crystal structure of the lithium transition metal compound, or may not be incorporated into the crystal structure of the lithium transition metal compound, and may be a single element or compound on the particle surface or grain boundary. May be unevenly distributed.
(表面被覆)
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
(Surface coating)
Moreover, you may use what the substance of the composition different from this adhered to the surface of the said positive electrode active material. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により該正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。 For example, these surface adhering substances are dissolved or suspended in a solvent, impregnated and added to the positive electrode active material, and dried. After the surface adhering substance precursor is dissolved or suspended in a solvent and impregnated and added to the positive electrode active material, It can be made to adhere to the surface of the positive electrode active material by a method of reacting by heating or the like, a method of adding to the positive electrode active material precursor and firing simultaneously. In addition, when making carbon adhere, the method of making carbonaceous adhere mechanically later in the form of activated carbon etc. can also be used, for example.
表面付着物質の量としては、該正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができるが、その付着量が少なすぎる場合その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合があるため、本組成範囲が好ましい。
本発明においては、正極活物質の表面に、これとは異なる組成の物質が付着したものをも「正極活物質」という。
The amount of the surface adhering substance is by mass with respect to the positive electrode active material, preferably 0.1 ppm or more, more preferably 1 ppm or more, still more preferably 10 ppm or more, and the upper limit, preferably 20% or less, more preferably, as the lower limit. Is used at 10% or less, more preferably 5% or less. The surface adhering substance can suppress the oxidation reaction of the electrolyte solution on the surface of the positive electrode active material, and can improve the battery life. In the case where it is too high, the resistance may increase in order to inhibit the entry and exit of lithium ions, so this composition range is preferable.
In the present invention, a material in which a material having a different composition is attached to the surface of the positive electrode active material is also referred to as “positive electrode active material”.
(形状)
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電材との混合においても、均一に混合されやすいため好ましい。
(shape)
Examples of the shape of the positive electrode active material particles include a lump shape, a polyhedron shape, a sphere shape, an oval sphere shape, a plate shape, a needle shape, and a column shape, which are conventionally used. It is preferable that the secondary particles have a spherical shape or an elliptical shape. In general, an electrochemical element expands and contracts as the active material in the electrode expands and contracts as it is charged and discharged. Therefore, the active material is easily damaged due to the stress or the conductive path is broken. Therefore, it is preferable that the primary particles are aggregated to form secondary particles, rather than a single particle active material having only primary particles, in order to relieve expansion and contraction stress and prevent deterioration. In addition, spherical or oval spherical particles are less oriented during molding of the electrode than plate-like equiaxed particles, so that the expansion and contraction of the electrode during charging and discharging is small, and the electrode is produced. The mixing with the conductive material is also preferable because it is easy to mix uniformly.
(メジアン径d50)
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは1.0μm以上、最も好ましくは2μm以上であり、上限は、好ましくは20μm以下、より好ましくは18μm以下、さらに好ましくは16μm以下、最も好ましくは15μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引く等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ該正極活物質を2種類以上混合することで、正極作成時の充填性をさらに向上させることができる。
(Median diameter d 50 )
The median diameter d 50 of the positive electrode active material particles (secondary particle diameter when primary particles are aggregated to form secondary particles) is preferably 0.1 μm or more, more preferably 0.5 μm or more, and further The upper limit is preferably 20 μm or less, more preferably 18 μm or less, still more preferably 16 μm or less, and most preferably 15 μm or less. If the lower limit is not reached, a high tap density product may not be obtained. If the upper limit is exceeded, it takes time to diffuse lithium in the particles, so that the battery performance may be lowered, or the positive electrode of the battery, that is, the active material When a conductive material, a binder, or the like is slurried with a solvent and applied as a thin film, problems such as streaking may occur. Here, by mixing two or more kinds of the positive electrode active materials having different median diameters d 50 , the filling property at the time of forming the positive electrode can be further improved.
なお、本発明では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA−920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。 In the present invention, the median diameter d 50 is measured by a known laser diffraction / scattering particle size distribution measuring apparatus. When LA-920 manufactured by HORIBA is used as a particle size distribution meter, a 0.1% by mass sodium hexametaphosphate aqueous solution is used as a dispersion medium for measurement, and a measurement refractive index of 1.24 is set after ultrasonic dispersion for 5 minutes. Measured.
(平均一次粒子径)
一次粒子が凝集して二次粒子を形成している場合には、該正極活物質の平均一次粒子径としては、好ましくは0.03μm以上、より好ましくは0.05μm以上、さらに好ましくは0.08μm以上であり、特に好ましくは0.1μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、さらに好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下するために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
(Average primary particle size)
When primary particles are aggregated to form secondary particles, the average primary particle diameter of the positive electrode active material is preferably 0.03 μm or more, more preferably 0.05 μm or more, and still more preferably 0.8. The upper limit is preferably 5 μm or less, more preferably 4 μm or less, still more preferably 3 μm or less, and most preferably 2 μm or less. If the above upper limit is exceeded, it is difficult to form spherical secondary particles, which adversely affects the powder filling property, or the specific surface area is greatly reduced, so that there is a high possibility that battery performance such as output characteristics will deteriorate. is there. On the other hand, when the value falls below the lower limit, there is a case where problems such as inferior reversibility of charge / discharge are usually caused because crystals are not developed.
なお、本発明では、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。 In the present invention, the primary particle diameter is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles and obtained by taking the average value. It is done.
<正極の構成と作製法>
以下に、正極の構成について述べる。本発明において、正極は、正極活物質と結着材とを含有する正極活物質層を、集電体上に形成して作製することができる。正極活物質を用いる正極の製造は、常法により行うことができる。即ち、正極活物質と結着材、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成されることにより正極を得ることができる。
<Configuration and manufacturing method of positive electrode>
The structure of the positive electrode will be described below. In the present invention, the positive electrode can be produced by forming a positive electrode active material layer containing a positive electrode active material and a binder on a current collector. Manufacture of the positive electrode using a positive electrode active material can be performed by a conventional method. That is, a positive electrode active material, a binder, and, if necessary, a conductive material and a thickener mixed in a dry form into a sheet form are pressure-bonded to the positive electrode current collector, or these materials are liquid media A positive electrode can be obtained by forming a positive electrode active material layer on the current collector by applying it to a positive electrode current collector and drying it as a slurry by dissolving or dispersing in a slurry.
正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは95質量%以下、より好ましくは93質量%以下である。正極活物質層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。 The content of the positive electrode active material in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more. Moreover, an upper limit becomes like this. Preferably it is 95 mass% or less, More preferably, it is 93 mass% or less. If the content of the positive electrode active material in the positive electrode active material layer is low, the electric capacity may be insufficient. Conversely, if the content is too high, the strength of the positive electrode may be insufficient.
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、下限として好ましくは1.5g/cm3以上、より好ましくは2g/cm3、さらに好ましくは2.2g/cm3以上であり、上限としては、好ましくは4.0g/cm3以下、より好ましくは3.8g/cm3以下、さらに好ましくは3.6g/cm3以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。 The positive electrode active material layer obtained by coating and drying is preferably consolidated by a hand press, a roller press or the like in order to increase the packing density of the positive electrode active material. The density of the positive electrode active material layer is preferably 1.5 g / cm 3 or more as a lower limit, more preferably 2 g / cm 3 , further preferably 2.2 g / cm 3 or more, and preferably 4.0 g as an upper limit. / cm 3 or less, more preferably 3.8 g / cm 3 or less, more preferably 3.6 g / cm 3 or less. If it exceeds this range, the permeability of the electrolyte solution to the vicinity of the current collector / active material interface decreases, and the charge / discharge characteristics particularly at a high current density decrease, and a high output may not be obtained. On the other hand, if it is lower, the conductivity between the active materials is lowered, the battery resistance is increased, and a high output may not be obtained.
(導電材)
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で
併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また上限は、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
(Conductive material)
A known conductive material can be arbitrarily used as the conductive material. Specific examples include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbon materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio. The conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more in the positive electrode active material layer, and the upper limit is usually 50% by mass or less, preferably It is used so as to contain 30% by mass or less, more preferably 15% by mass or less. If the content is lower than this range, the conductivity may be insufficient. Conversely, if the content is higher than this range, the battery capacity may decrease.
(結着材)
正極活物質層の製造に用いる結着材としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Binder)
The binder used for manufacturing the positive electrode active material layer is not particularly limited, and in the case of a coating method, any material that can be dissolved or dispersed in a liquid medium used during electrode manufacturing may be used. Resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine rubber, isoprene rubber , Rubber polymers such as butadiene rubber and ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / Ethylene copolymer, styrene Thermoplastic elastomeric polymer such as isoprene / styrene block copolymer or hydrogenated product thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer Soft resinous polymers such as polymers; Fluoropolymers such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymers; alkali metal ions (especially lithium ions) And a polymer composition having ion conductivity. In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
正極活物質層中の結着材の割合は、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは3質量%以上であり、上限は、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。結着材の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。 The ratio of the binder in the positive electrode active material layer is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 3% by mass or more, and the upper limit is usually 80% by mass or less, preferably 60%. It is not more than mass%, more preferably not more than 40 mass%, most preferably not more than 10 mass%. If the ratio of the binder is too low, the positive electrode active material cannot be sufficiently retained, and the mechanical strength of the positive electrode is insufficient, which may deteriorate battery performance such as cycle characteristics. On the other hand, if it is too high, battery capacity and conductivity may be reduced.
(増粘剤)
増粘剤は、通常、正極活物質層の製造に用いるスラリーの粘度を調製するために使用することができる。特に水系媒体を用いる場合、増粘剤と、スチレン−ブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。さらに増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、また、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。この範囲を下回ると、著しく塗布性が低下する場合がある。上回ると、正極活物質層に占める活物質の割合が低下し、電池の容量が低下する問題や正極活物質間の抵抗が増大する問題が生じる場合がある。
(Thickener)
A thickener can be used normally in order to adjust the viscosity of the slurry used for manufacture of a positive electrode active material layer. In particular, when an aqueous medium is used, it is preferable to make a slurry using a thickener and a latex such as styrene-butadiene rubber (SBR). The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios. When a thickener is further added, the ratio of the thickener to the active material is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more. The upper limit is 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less. Below this range, applicability may be significantly reduced. If it exceeds, the ratio of the active material in the positive electrode active material layer may decrease, and there may be a problem that the capacity of the battery decreases and a problem that the resistance between the positive electrode active materials increases.
(集電体)
正極集電体の材質としては特に制限されず、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
(Current collector)
The material of the positive electrode current collector is not particularly limited, and a known material can be arbitrarily used. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbon materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また上限は、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、薄膜がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電子接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal in the case of a metal material. A thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape. Although the thickness of the thin film is arbitrary, it is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and the upper limit is usually 1 mm or less, preferably 100 μm or less, more preferably 50 μm or less. If the thin film is thinner than this range, the strength required for the current collector may be insufficient. Conversely, if the thin film is thicker than this range, the handleability may be impaired.
Moreover, it is also preferable from the viewpoint of reducing the electronic contact resistance between the current collector and the positive electrode active material layer that a conductive additive is applied to the surface of the current collector. Examples of the conductive assistant include noble metals such as carbon, gold, platinum, and silver.
(正極板の厚さ)
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、正極板から金属箔(集電体)厚さを差し引いた正極活物質層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、上限としては、好ましくは500μm以下、より好ましくは450μm以下である。
(Thickness of positive plate)
The thickness of the positive electrode plate is not particularly limited, but from the viewpoint of high capacity and high output, the thickness of the positive electrode active material layer obtained by subtracting the thickness of the metal foil (current collector) from the positive electrode plate is set on one side of the current collector. On the other hand, the lower limit is preferably 10 μm or more, more preferably 20 μm or more, and the upper limit is preferably 500 μm or less, more preferably 450 μm or less.
(正極板の表面被覆)
また、上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
(Positive electrode surface coating)
Moreover, you may use what adhered the substance of the composition different from this to the surface of the said positive electrode plate. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.
5.セパレータ
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
5. Separator Normally, a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit. In this case, the nonaqueous electrolytic solution of the present invention is usually used by impregnating the separator.
The material and shape of the separator are not particularly limited, and known ones can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired. Among them, a resin, glass fiber, inorganic material, etc. formed of a material that is stable with respect to the non-aqueous electrolyte solution of the present invention is used, and a porous sheet or a nonwoven fabric-like material having excellent liquid retention properties is used. Is preferred.
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 As materials for the resin and glass fiber separator, for example, polyolefins such as polyethylene and polypropylene, aromatic polyamides, polytetrafluoroethylene, polyethersulfone, glass filters and the like can be used. Of these, glass filters and polyolefins are preferred, and polyolefins are more preferred. These materials may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、非水系電解液二次電池全体としてのエネルギー密度が低下する場合がある。 The thickness of the separator is arbitrary, but is usually 1 μm or more, preferably 5 μm or more, more preferably 8 μm or more, and usually 50 μm or less, preferably 40 μm or less, more preferably 30 μm or less. If the separator is too thin than the above range, the insulating properties and mechanical strength may decrease. On the other hand, if it is thicker than the above range, not only the battery performance such as the rate characteristic may be lowered, but also the energy density of the whole non-aqueous electrolyte secondary battery may be lowered.
さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%
以上がさらに好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
Furthermore, when a porous material such as a porous sheet or nonwoven fabric is used as the separator, the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, and 45%
The above is more preferable, and it is usually 90% or less, preferably 85% or less, and more preferably 75% or less. If the porosity is too smaller than the above range, the membrane resistance tends to increase and the rate characteristics tend to deteriorate. Moreover, when larger than the said range, it exists in the tendency for the mechanical strength of a separator to fall and for insulation to fall.
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。
Moreover, although the average pore diameter of a separator is also arbitrary, it is 0.5 micrometer or less normally, 0.2 micrometer or less is preferable, and it is 0.05 micrometer or more normally. If the average pore diameter exceeds the above range, a short circuit tends to occur. On the other hand, below the above range, the film resistance may increase and the rate characteristics may deteriorate.
On the other hand, as inorganic materials, for example, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used. Used.
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。 As the form, a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used. In the thin film shape, those having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm are preferably used. In addition to the above-mentioned independent thin film shape, a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used. For example, a porous layer may be formed by using alumina particles having a 90% particle size of less than 1 μm on both surfaces of the positive electrode and using a fluororesin as a binder.
セパレータのガーレ値はフィルム厚さ方向の空気の通り抜け難さを表し、100mlの空気が該フィルムを通過するのに必要な秒数で表現するため、数値が小さい方が通り抜け易く、数値が大きい方が通り抜け難いことを意味する。すなわち、その数値が小さい方がフィルムの厚さ方向の連通性が良いことを意味し、その数値が大きい方がフィルムの厚さ方向の連通性が悪いことを意味する。連通性とは、フィルム厚さ方向の孔のつながり度合いである。本発明のセパレータのガーレ値が低ければ、様々な用途に使用することが出来る。例えば非水系リチウム二次電池のセパレータとして使用した場合、ガーレ値が低いということは、リチウムイオンの移動が容易であることを意味し、電池性能に優れるため好ましい。セパレータのガーレ値は、任意ではあるが、好ましくは10〜1000秒/100mlであり、より好ましくは15〜800秒/100mlであり、更に好ましくは20〜500秒/100mlである。ガーレ値が1000秒/100ml以下であれば、実質的には電気抵抗が低く、セパレータとしては好ましい。 The Gurley value of the separator represents the difficulty of air passage in the film thickness direction, and is expressed as the number of seconds required for 100 ml of air to pass through the film. Means that it is difficult to get through. That is, a smaller value means better communication in the thickness direction of the film, and a larger value means lower communication in the thickness direction of the film. Communication is the degree of connection of holes in the film thickness direction. If the Gurley value of the separator of the present invention is low, it can be used for various purposes. For example, when used as a separator for a non-aqueous lithium secondary battery, a low Gurley value means that lithium ions can be easily transferred and is preferable because of excellent battery performance. Although the Gurley value of a separator is arbitrary, Preferably it is 10-1000 second / 100ml, More preferably, it is 15-800 second / 100ml, More preferably, it is 20-500 second / 100ml. If the Gurley value is 1000 seconds / 100 ml or less, the electrical resistance is substantially low, which is preferable as a separator.
6.電池設計
<電極群>
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
6). Battery design <Electrode group>
The electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate are interposed through the separator, and a structure in which the positive electrode plate and the negative electrode plate are wound in a spiral shape through the separator. Either is acceptable. The ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupation ratio) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. .
電極群占有率が、上記範囲を下回ると、電池容量が小さくなる。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、さらには、内部圧力を外に逃がすガス放出弁が作動する場合がある。 When the electrode group occupancy is below the above range, the battery capacity decreases. Also, if the above range is exceeded, the void space is small, the battery expands, and the member expands or the vapor pressure of the electrolyte liquid component increases and the internal pressure rises. In some cases, the gas release valve that lowers various characteristics such as storage at high temperature and the like, or releases the internal pressure to the outside is activated.
<外装ケース>
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合
金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
<Exterior case>
The material of the outer case is not particularly limited as long as it is a substance that is stable with respect to the non-aqueous electrolyte used. Specifically, a nickel-plated steel plate, stainless steel, aluminum, an aluminum alloy, a metal such as a magnesium alloy, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used.
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。 In an exterior case using metals, the metal is welded together by laser welding, resistance welding, or ultrasonic welding to form a sealed sealed structure, or a caulking structure using the above metals via a resin gasket. Things. Examples of the outer case using the laminate film include a case where a resin-sealed structure is formed by heat-sealing resin layers. In order to improve sealing performance, a resin different from the resin used for the laminate film may be interposed between the resin layers. In particular, when a resin layer is heat-sealed through a current collecting terminal to form a sealed structure, a metal and a resin are joined, so that a resin having a polar group or a modified group having a polar group introduced as an intervening resin is used. Resins are preferably used.
<保護素子>
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
<Protective element>
Protective elements such as PTC (Positive Temperature Coefficient), thermal fuse, thermistor, whose resistance increases when abnormal heat generation or excessive current flows, cut off current flowing in the circuit due to sudden rise in battery internal pressure or internal temperature in abnormal heat generation A valve (current cutoff valve) or the like can be used. It is preferable to select a protective element that does not operate under normal use at a high current, and it is more preferable that the protective element is designed so as not to cause abnormal heat generation or thermal runaway even without the protective element.
<外装体>
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体は、特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
<Exterior body>
The non-aqueous electrolyte secondary battery of the present invention is usually configured by housing the non-aqueous electrolyte, the negative electrode, the positive electrode, the separator, and the like in an exterior body. This exterior body is not particularly limited, and any known one can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired. Specifically, the material of the exterior body is arbitrary, but usually, for example, nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, or the like is used.
The shape of the exterior body is also arbitrary, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.
以下に、実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
<実施例1>
[負極]
以下の物性を有する炭素質材料を負極活物質として用いた。具体的には、上記の方法にて測定した負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が11.6μm、BET比表面積が3.4m2/g、タップ密度が0.99g・cm−3、ラマンR値が0.33、O/C値が0.91である天然黒鉛を用いた。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
<Example 1>
[Negative electrode]
A carbonaceous material having the following physical properties was used as the negative electrode active material. Specifically, the d value (interlayer distance) of the lattice plane (002 plane) of the negative electrode active material measured by the above method is 0.336 nm, the volume-based average particle diameter is 11.6 μm, and the BET specific surface area is 3. Natural graphite having 4 m 2 / g, tap density of 0.99 g · cm −3 , Raman R value of 0.33, and O / C value of 0.91 was used.
前記負極活物質98質量部に、増粘剤及びバインダーとして、それぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)100質量部及びスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ18μmの銅箔に塗布して乾燥し、プレス機で電極密度1.7g/cm3に圧延し、切り出したものを負極として用いた。 98 parts by mass of the negative electrode active material, 100 parts by mass of an aqueous dispersion of sodium carboxymethyl cellulose (concentration of 1% by mass of sodium carboxymethyl cellulose) and an aqueous dispersion of styrene-butadiene rubber (styrene) as a thickener and binder, respectively. 1 part by mass of a butadiene rubber concentration of 50% by mass was added and mixed with a disperser to form a slurry. The obtained slurry was applied to a copper foil having a thickness of 18 μm, dried, rolled to an electrode density of 1.7 g / cm 3 with a press, and the cut out was used as the negative electrode.
[正極]
正極活物質としてニッケルマンガンコバルト酸リチウム(LiNi1/3Mn1/3Co1/3O2)90質量部を用い、カーボンブラック7質量部とポリフッ化ビニリデン3
質量部を混合し、N−メチル−2−ピロリドンを加えスラリー化し、これを厚さ15μmのアルミニウム箔の両面に均一に塗布、乾燥した後、正極活物質層の密度が2.6g・cm−3になるようにプレスして正極とした。
[Positive electrode]
Using 90 parts by mass of lithium nickel manganese cobaltate (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) as a positive electrode active material, 7 parts by mass of carbon black and polyvinylidene fluoride 3
After mixing parts by mass, N-methyl-2-pyrrolidone was added to form a slurry, which was uniformly coated on both sides of an aluminum foil having a thickness of 15 μm and dried, and then the density of the positive electrode active material layer was 2.6 g · cm −. 3 was pressed to obtain a positive electrode.
[電解液]
乾燥アルゴン雰囲気下、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合物(容量比3:3:4)に、十分に乾燥したLiPF6を非水電解液全量で1モル/Lとなるように溶解させた(この電解液を「基準電解液」と称する場合がある)。基準電解液に、1,6−ジイソシアナトヘキサン(HDI)を0.5質量%となるように加え、非水系電解液を調製した。
[Electrolyte]
Under a dry argon atmosphere, fully dried LiPF6 was dissolved in a mixture of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate (volume ratio 3: 3: 4) so that the total amount of the non-aqueous electrolyte was 1 mol / L. (This electrolyte may be referred to as a “reference electrolyte”). To the reference electrolyte, 1,6-diisocyanatohexane (HDI) was added to 0.5% by mass to prepare a non-aqueous electrolyte.
[リチウム二次電池]
上記の正極、負極、及びポリエチレン製セパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層した。こうして得られた電池要素を筒状のアルミニウムラミネートフィルムで包み込み、電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。更に、電極間の密着性を高めるために、ガラス板でシート状電池を挟んで加圧した。
[Lithium secondary battery]
The positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the negative electrode, the separator, the positive electrode, the separator, and the negative electrode. The battery element thus obtained was wrapped in a cylindrical aluminum laminate film, injected with an electrolytic solution, and then vacuum sealed to produce a sheet-like non-aqueous electrolyte secondary battery. Furthermore, in order to improve the adhesion between the electrodes, the sheet-like battery was sandwiched between glass plates and pressurized.
[電池の評価]
[慣らし運転]
25℃の恒温槽中、シート状の非水系電解液二次電池を0.2Cで4.1Vまで定電流−定電圧充電した後、0.2Cで3.0Vまで放電した。これを5サイクル行って電池を安定させた。なお、1Cとは電池の全容量を1時間で放電させる場合の電流値のことである。
[Battery evaluation]
[Run-in operation]
In a constant temperature bath at 25 ° C., the sheet-like non-aqueous electrolyte secondary battery was charged at constant current-constant voltage to 4.1 V at 0.2 C, and then discharged to 3.0 V at 0.2 C. This was performed for 5 cycles to stabilize the battery. In addition, 1C is a current value when discharging the entire capacity of the battery in one hour.
[サイクル特性の評価]
慣らし運転が終了した電池を60℃において2Cに相当する定電流で充電後、2Cの定電流で放電する過程を1サイクルとして、750サイクル実施した。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、2Cとはその2倍の電流値を、また0.2Cとはその1/5の電流値を表す。(750サイクル目の放電容量)÷(1サイクル目の放電容量)×100の計算式から、容量維持率を求めた。
[Evaluation of cycle characteristics]
The battery after the running-in operation was charged with a constant current corresponding to 2C at 60 ° C., and then discharged with a constant current of 2C as one cycle, and 750 cycles were performed. Here, 1C represents a current value that discharges the reference capacity of the battery in one hour, 2C represents a current value that is twice that, and 0.2C represents a current value that is 1/5 of the current value. The capacity retention rate was calculated from the formula of (discharge capacity at the 750th cycle) ÷ (discharge capacity at the first cycle) × 100.
[低温放電特性の評価]
初期容量の50%に相当する電気量だけ充電させた電池に対して、−30℃の環境下で0.3C、0.5C、1.0C、1.5C、2.0C、および2.5Cで各々10秒間放電させ、その2秒目の電圧を測定した。このようにして得られた電流−電圧曲線において、3Vになるときの電流値を算出し、この値を低温放電特性(出力)とした。{(慣らし
運転後の低温放電特性)−(1000サイクル後の低温放電特性)}÷(慣らし運転後の
低温放電特性)×100の計算式から、低温放電特性の変化率を求めた。
[Evaluation of low-temperature discharge characteristics]
For a battery charged by an amount of electricity corresponding to 50% of the initial capacity, 0.3C, 0.5C, 1.0C, 1.5C, 2.0C, and 2.5C under an environment of −30 ° C. Each was discharged for 10 seconds, and the voltage for the second second was measured. In the current-voltage curve thus obtained, a current value at 3 V was calculated, and this value was used as a low temperature discharge characteristic (output). The rate of change in the low temperature discharge characteristics was determined from the formula {(low temperature discharge characteristics after running-in) − (low temperature discharge characteristics after 1000 cycles)} ÷ (low temperature discharge characteristics after running-in) × 100.
<実施例2>
以下の物性を有する炭素質材料を負極活物質として用いた。具体的には、負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が9.8μm、BET比表面積が4.2m2/g、タップ密度が1.00g・cm−3、ラマンR値が0.39、O/C値が1.02である天然黒鉛を用いた。負極活物質を変えた以外は、実施例1と同じ正極、電解液を用い電池を組み立て、同様に容量維持率のみを求めた。
<Example 2>
A carbonaceous material having the following physical properties was used as the negative electrode active material. Specifically, the d value (interlayer distance) of the lattice plane (002 plane) of the negative electrode active material is 0.336 nm, the volume reference average particle size is 9.8 μm, the BET specific surface area is 4.2 m 2 / g, the tap density. There 1.00 g · cm -3, the Raman R value is 0.39, O / C value using natural graphite is 1.02. A battery was assembled using the same positive electrode and electrolytic solution as in Example 1 except that the negative electrode active material was changed, and only the capacity retention rate was obtained in the same manner.
<実施例3>
以下の物性を有する炭素質材料を負極活物質として用いた。ここで、負極活物質は窒素雰囲気下で1000℃焼成した後に過酸化水素水による酸化処理を行った。具体的な物性値は
、負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が9.7μm、BET比表面積が3.7m2/g、タップ密度が1.00g・cm−3、ラマンR値が0.51、O/C値が1.50である天然黒鉛を用いた。負極活物質を変えた以外は、実施例1と同じ正極、電解液を用い電池を組み立て、同様に容量維持率を求めた。
<Example 3>
A carbonaceous material having the following physical properties was used as the negative electrode active material. Here, the negative electrode active material was baked at 1000 ° C. in a nitrogen atmosphere and then oxidized with hydrogen peroxide. Specific physical property values include a d value (interlayer distance) of the lattice plane (002 plane) of the negative electrode active material of 0.336 nm, a volume-based average particle diameter of 9.7 μm, a BET specific surface area of 3.7 m 2 / g, Natural graphite having a tap density of 1.00 g · cm −3 , a Raman R value of 0.51, and an O / C value of 1.50 was used. A battery was assembled using the same positive electrode and electrolyte as in Example 1 except that the negative electrode active material was changed, and the capacity retention rate was similarly determined.
<実施例4>
以下の物性を有する炭素質材料を負極活物質として用いた。ここで、負極活物質は空気中でメカノケミカル処理を行った。具体的な物性値は、負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が9.7μm、BET比表面積が4.4m2/g、タップ密度が0.94g・cm−3、ラマンR値が0.39、O/C値が4.07である天然黒鉛を用いた。負極活物質を変えた以外は、実施例1と同じ正極、電解液を用い電池を組み立て、同様に容量維持率を求めた。
<Example 4>
A carbonaceous material having the following physical properties was used as the negative electrode active material. Here, the negative electrode active material was mechanochemically treated in air. Specific physical property values include a d value (interlayer distance) of the lattice plane (002 plane) of the negative electrode active material of 0.336 nm, a volume-based average particle diameter of 9.7 μm, a BET specific surface area of 4.4 m 2 / g, Natural graphite having a tap density of 0.94 g · cm −3 , a Raman R value of 0.39, and an O / C value of 4.07 was used. A battery was assembled using the same positive electrode and electrolyte as in Example 1 except that the negative electrode active material was changed, and the capacity retention rate was similarly determined.
<実施例5>
以下の物性を有する炭素質材料を負極活物質として用いた。ここで、負極活物質は空気中でメカノケミカル処理を行った。具体的な物性値は、負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が9.7μm、BET比表面積が4.5m2/g、タップ密度が0.91g・cm−3、ラマンR値が0.50、O/C値が6.2である天然黒鉛を用いた。負極活物質を変えた以外は、実施例1と同じ正極、電解液を用い電池を組み立て、同様に容量維持率を求めた。
<Example 5>
A carbonaceous material having the following physical properties was used as the negative electrode active material. Here, the negative electrode active material was mechanochemically treated in air. Specific physical property values include a d value (interlayer distance) of the lattice plane (002 plane) of the negative electrode active material of 0.336 nm, a volume-based average particle size of 9.7 μm, a BET specific surface area of 4.5 m 2 / g, Natural graphite having a tap density of 0.91 g · cm −3 , a Raman R value of 0.50, and an O / C value of 6.2 was used. A battery was assembled using the same positive electrode and electrolyte as in Example 1 except that the negative electrode active material was changed, and the capacity retention rate was similarly determined.
<比較例1>
負極活物質として、実施例1と同じ活物質を水素存在下で焼成した材料を用いた。具体的な物性値は負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が11.6μm、BET比表面積が3.4m2/g、タップ密度が0.99g・cm−3、ラマンR値が0.28、O/C値が0.41である。負極活物質を変えた以外は、実施例1と同じ正極、電解液を用い電池を組み立て、同様に容量維持率を求めた。
<Comparative Example 1>
As the negative electrode active material, a material obtained by firing the same active material as in Example 1 in the presence of hydrogen was used. Specific physical property values include a d-value (interlayer distance) of the lattice plane (002 plane) of the negative electrode active material of 0.336 nm, a volume-based average particle diameter of 11.6 μm, a BET specific surface area of 3.4 m 2 / g, and a tap. The density is 0.99 g · cm −3 , the Raman R value is 0.28, and the O / C value is 0.41. A battery was assembled using the same positive electrode and electrolyte as in Example 1 except that the negative electrode active material was changed, and the capacity retention rate was similarly determined.
<比較例2>
負極活物質として、実施例5と同じ活物質を窒素雰囲気下で1000℃焼成した材料を用いた。具体的な物性値は負極活物質の格子面(002面)のd値(層間距離)が0.336nm、体積基準平均粒径が9.7μm、BET比表面積が4.5m2/g、タップ密度が0.91g・cm−3、ラマンR値が0.46、O/C値が0.59である。負極活物質を変えた以外は、実施例1と同じ正極、電解液を用い電池を組み立て、同様に容量維持率を求めた。
<Comparative example 2>
As the negative electrode active material, a material obtained by firing the same active material as in Example 5 at 1000 ° C. in a nitrogen atmosphere was used. Specific physical property values include a d-value (interlayer distance) of the lattice plane (002 plane) of the negative electrode active material of 0.336 nm, a volume-based average particle diameter of 9.7 μm, a BET specific surface area of 4.5 m 2 / g, and a tap. The density is 0.91 g · cm −3 , the Raman R value is 0.46, and the O / C value is 0.59. A battery was assembled using the same positive electrode and electrolyte as in Example 1 except that the negative electrode active material was changed, and the capacity retention rate was similarly determined.
<比較例3>
電解液を基準電解液に変えた以外は、比較例2と同じ負極、正極を用い電池を組み立て、同様に容量維持率を求めた。
<比較例4>
電解液を基準電解液に変えた以外は、実施例1と同じ負極、正極を用い電池を組み立て、同様に容量維持率を求めた。
<Comparative Example 3>
A battery was assembled using the same negative electrode and positive electrode as in Comparative Example 2 except that the electrolytic solution was changed to the reference electrolytic solution, and the capacity retention rate was similarly determined.
<Comparative example 4>
A battery was assembled using the same negative electrode and positive electrode as in Example 1 except that the electrolytic solution was changed to the reference electrolytic solution, and the capacity retention rate was similarly determined.
<比較例5>
電解液を基準電解液に変えた以外は、実施例2と同じ負極、正極を用い電池を組み立て、同様に容量維持率を求めた。
<比較例6>
電解液を基準電解液に変えた以外は、実施例5と同じ負極、正極を用い電池を組み立て
、同様に容量維持率を求めた。
実施例2、実施例5、比較例2、比較例3、比較例5と比較例6の電池についてはサイクル試験を1000サイクルまで継続し、低温放電特性の変化率を求めた。
<Comparative Example 5>
A battery was assembled using the same negative electrode and positive electrode as in Example 2 except that the electrolytic solution was changed to the reference electrolytic solution, and the capacity retention rate was similarly determined.
<Comparative Example 6>
A battery was assembled using the same negative electrode and positive electrode as in Example 5 except that the electrolytic solution was changed to the reference electrolytic solution, and the capacity retention rate was similarly determined.
For the batteries of Example 2, Example 5, Comparative Example 2, Comparative Example 3, Comparative Example 5 and Comparative Example 6, the cycle test was continued up to 1000 cycles, and the change rate of the low-temperature discharge characteristics was obtained.
表1から明らかなように、O/C値が本発明の範囲内である負極と本発明のイソシアネート化合物を含有する非水系電解液を組み合わせた場合は(実施例1〜5)、O/C値が本発明の範囲外である負極と本発明のイソシアネート化合物を含有する非水系電解液を組み合わせた場合(比較例1〜2)及び非水系電解液に本発明のイソシアネート化合物を含有しない場合(比較例3〜6)と比較してサイクル容量維持に優れることが分かる。 As is apparent from Table 1, when a negative electrode having an O / C value within the range of the present invention and a non-aqueous electrolyte solution containing the isocyanate compound of the present invention were combined (Examples 1 to 5), O / C When the negative electrode whose value is outside the scope of the present invention and the non-aqueous electrolyte solution containing the isocyanate compound of the present invention are combined (Comparative Examples 1-2) and when the isocyanate compound of the present invention is not contained in the non-aqueous electrolyte solution ( It turns out that it is excellent in cycle capacity maintenance compared with Comparative Examples 3-6).
また、サイクル維持率に及ぼす効果の程度は、O/C値が0.8付近をしきい値として顕著になり、さらにO/C値が増加するに従ってサイクル維持率が増加する傾向があるが、その増加の程度は非水電解液中にイソシアネート化合物が含まれる場合の方がより大きい。すなわち、O/C値が高いほど本発明の化合物の効能が高まることを示している。一般に電池は繰り返し使用に対して性能が安定していることが望ましいが、本発明によればサイクル試験に伴う低温放電特性の変化も大幅に抑制可能である(実施例2、5と比較例5、6の比較)。上記と同じように、非水系電解液中にイソシアネート化合物が含まれる場合において、O/C値に依存して顕著にその効果が大きくなる傾向がある。 In addition, the degree of the effect on the cycle retention rate becomes prominent with the O / C value near 0.8 as a threshold, and the cycle retention rate tends to increase as the O / C value increases. The degree of increase is greater when the isocyanate compound is contained in the non-aqueous electrolyte. That is, the higher the O / C value, the higher the efficacy of the compound of the present invention. In general, it is desirable that the battery has stable performance against repeated use. However, according to the present invention, the change in the low-temperature discharge characteristics associated with the cycle test can be greatly suppressed (Examples 2 and 5 and Comparative Example 5). , 6 comparison). As described above, when an isocyanate compound is contained in the nonaqueous electrolytic solution, the effect tends to be significantly increased depending on the O / C value.
このように優れた電池耐久性を発揮する理由は、イソシアネート化合物による溶媒の還元分解を効果的に抑制する良質な皮膜の形成と、その皮膜の一部が負極活物質表面の酸素官能基との間の強い相互作用によって強固に結着するためと推測される。 The reason for exhibiting such excellent battery durability is that the formation of a high-quality film that effectively suppresses the reductive decomposition of the solvent by the isocyanate compound, and that part of the film is composed of oxygen functional groups on the surface of the negative electrode active material. This is presumed to be firmly bound by the strong interaction between them.
Claims (8)
C 2 0 の脂肪族炭化水素基(ヘテロ原子を有していてもよい)又はC 6 〜C 2 0 の芳香族炭化水素基( ヘテロ原子を有していてもよい)を表す。B は、酸素原子 、S O 2 、OSO2、SO3、OCO、COO、又は、C 1〜 C 2 0 の脂肪族炭化水
素基( ヘテロ原子を有していてもよい)、又はC 6 〜C 2 0の芳香族炭化水素基( ヘテロ原子を有していてもよい) を表す。) 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein at least part of the compound having an isocyanate group is a compound represented by the general formula (1).
C represents a 2 0 aliphatic hydrocarbon group (which may have a hetero atom) or a C 6 -C 2 0 aromatic hydrocarbon group (which may have a hetero atom). B is an oxygen atom, S 2 O 2 , OSO 2 , SO 3, OCO, COO, or a C 1 to C 20 aliphatic hydrocarbon group (which may have a hetero atom), or C 6 to C 2. 0 represents an aromatic hydrocarbon group (which may have a hetero atom). )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012155492A JP6031856B2 (en) | 2011-07-12 | 2012-07-11 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011153805 | 2011-07-12 | ||
JP2011153805 | 2011-07-12 | ||
JP2012155492A JP6031856B2 (en) | 2011-07-12 | 2012-07-11 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013038072A true JP2013038072A (en) | 2013-02-21 |
JP6031856B2 JP6031856B2 (en) | 2016-11-24 |
Family
ID=47887454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012155492A Active JP6031856B2 (en) | 2011-07-12 | 2012-07-11 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6031856B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014185005A1 (en) * | 2013-05-15 | 2014-11-20 | 信越化学工業株式会社 | Negative electrode material for nonaqueous electrolyte secondary batteries, method for producing same and lithium ion secondary battery |
WO2015152046A1 (en) * | 2014-03-31 | 2015-10-08 | 三菱化学株式会社 | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary cell using same |
JP2015195202A (en) * | 2014-03-26 | 2015-11-05 | 三菱化学株式会社 | Nonaqueous electrolyte secondary battery |
KR20160141667A (en) * | 2015-06-01 | 2016-12-09 | 삼성에스디아이 주식회사 | Electrolyte additive for lithium battery, and electrolyte for lithium battery lithium battery including the electrolyte additive |
US10020539B2 (en) | 2014-03-14 | 2018-07-10 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery and battery pack |
CN112956062A (en) * | 2018-10-31 | 2021-06-11 | 松下知识产权经营株式会社 | Nonaqueous electrolyte secondary battery and nonaqueous electrolyte solution |
CN113906604A (en) * | 2019-06-04 | 2022-01-07 | 三菱化学株式会社 | Nonaqueous electrolyte solution and nonaqueous electrolyte battery |
WO2022111345A1 (en) * | 2020-11-30 | 2022-06-02 | 深圳新宙邦科技股份有限公司 | Lithium ion battery |
WO2022111346A1 (en) * | 2020-11-30 | 2022-06-02 | 深圳新宙邦科技股份有限公司 | Lithium-ion battery |
WO2023116497A1 (en) * | 2021-12-21 | 2023-06-29 | 深圳新宙邦科技股份有限公司 | Secondary battery |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002059040A1 (en) * | 2001-01-25 | 2002-08-01 | Hitachi Chemical Co., Ltd. | Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery |
JP2002222650A (en) * | 2001-01-25 | 2002-08-09 | Hitachi Chem Co Ltd | Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery |
JP2003132889A (en) * | 2001-08-10 | 2003-05-09 | Kawasaki Steel Corp | Anode material for lithium ion secondary battery and its manufacturing method |
JP2005158671A (en) * | 2003-10-28 | 2005-06-16 | Nitto Denko Corp | Battery |
JP2006164759A (en) * | 2004-12-07 | 2006-06-22 | Tomiyama Pure Chemical Industries Ltd | Nonaqueous electrolyte for electrochemical device |
JP2008277004A (en) * | 2007-04-26 | 2008-11-13 | Mitsubishi Chemicals Corp | Non-aqueous electrolytic solution for secondary battery and non-aqueous electrolytic solution secondary battery using the same |
JP2008291046A (en) * | 2007-05-22 | 2008-12-04 | Toyota Motor Corp | Polymer-inorganic fine particle composite material |
JP2010118330A (en) * | 2008-10-15 | 2010-05-27 | Furukawa Electric Co Ltd:The | Anode material for lithium secondary battery, anode for lithium secondary battery, lithium secondary battery using the anode material and anode, and method for manufacturing anode material for lithium secondary battery and for anode for lithium secondary battery |
JP2010251315A (en) * | 2009-03-27 | 2010-11-04 | Mitsubishi Chemicals Corp | Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte battery using the same |
JP2011014379A (en) * | 2009-07-02 | 2011-01-20 | Sony Corp | Nonaqueous electrolyte secondary battery, and method of manufacturing the same |
WO2013100081A1 (en) * | 2011-12-28 | 2013-07-04 | 三菱化学株式会社 | Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery |
-
2012
- 2012-07-11 JP JP2012155492A patent/JP6031856B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002059040A1 (en) * | 2001-01-25 | 2002-08-01 | Hitachi Chemical Co., Ltd. | Artificial graphite particle and method for producing the same, nonaqueous electrolyte secondary battery negative electrode and method for producing the same, and lithium secondary battery |
JP2002222650A (en) * | 2001-01-25 | 2002-08-09 | Hitachi Chem Co Ltd | Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery |
JP2003132889A (en) * | 2001-08-10 | 2003-05-09 | Kawasaki Steel Corp | Anode material for lithium ion secondary battery and its manufacturing method |
JP2005158671A (en) * | 2003-10-28 | 2005-06-16 | Nitto Denko Corp | Battery |
JP2006164759A (en) * | 2004-12-07 | 2006-06-22 | Tomiyama Pure Chemical Industries Ltd | Nonaqueous electrolyte for electrochemical device |
JP2008277004A (en) * | 2007-04-26 | 2008-11-13 | Mitsubishi Chemicals Corp | Non-aqueous electrolytic solution for secondary battery and non-aqueous electrolytic solution secondary battery using the same |
JP2008291046A (en) * | 2007-05-22 | 2008-12-04 | Toyota Motor Corp | Polymer-inorganic fine particle composite material |
JP2010118330A (en) * | 2008-10-15 | 2010-05-27 | Furukawa Electric Co Ltd:The | Anode material for lithium secondary battery, anode for lithium secondary battery, lithium secondary battery using the anode material and anode, and method for manufacturing anode material for lithium secondary battery and for anode for lithium secondary battery |
JP2010251315A (en) * | 2009-03-27 | 2010-11-04 | Mitsubishi Chemicals Corp | Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte battery using the same |
JP2011014379A (en) * | 2009-07-02 | 2011-01-20 | Sony Corp | Nonaqueous electrolyte secondary battery, and method of manufacturing the same |
WO2013100081A1 (en) * | 2011-12-28 | 2013-07-04 | 三菱化学株式会社 | Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014225347A (en) * | 2013-05-15 | 2014-12-04 | 信越化学工業株式会社 | Negative electrode material for nonaqueous electrolytic secondary batteries, method for manufacturing the same, and lithium ion secondary battery |
WO2014185005A1 (en) * | 2013-05-15 | 2014-11-20 | 信越化学工業株式会社 | Negative electrode material for nonaqueous electrolyte secondary batteries, method for producing same and lithium ion secondary battery |
US9865868B2 (en) | 2013-05-15 | 2018-01-09 | Shin-Etsu Chemical Co., Ltd. | Negative electrode material for use in non-aqueous electrolyte secondary battery, method of producing the same, and lithium-ion secondary battery |
US10020539B2 (en) | 2014-03-14 | 2018-07-10 | Kabushiki Kaisha Toshiba | Nonaqueous electrolyte secondary battery and battery pack |
JP2015195202A (en) * | 2014-03-26 | 2015-11-05 | 三菱化学株式会社 | Nonaqueous electrolyte secondary battery |
WO2015152046A1 (en) * | 2014-03-31 | 2015-10-08 | 三菱化学株式会社 | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary cell using same |
KR102562683B1 (en) * | 2015-06-01 | 2023-08-03 | 삼성에스디아이 주식회사 | Electrolyte additive for lithium battery, and electrolyte for lithium battery lithium battery including the electrolyte additive |
KR20160141667A (en) * | 2015-06-01 | 2016-12-09 | 삼성에스디아이 주식회사 | Electrolyte additive for lithium battery, and electrolyte for lithium battery lithium battery including the electrolyte additive |
CN112956062A (en) * | 2018-10-31 | 2021-06-11 | 松下知识产权经营株式会社 | Nonaqueous electrolyte secondary battery and nonaqueous electrolyte solution |
US11973188B2 (en) | 2018-10-31 | 2024-04-30 | Panasonic Intellectual Property Management Co., Ltd. | Non-aqueous electrolyte secondary battery and non-aqueous electrolyte |
CN112956062B (en) * | 2018-10-31 | 2024-06-18 | 松下知识产权经营株式会社 | Nonaqueous electrolyte secondary battery and nonaqueous electrolyte |
CN113906604A (en) * | 2019-06-04 | 2022-01-07 | 三菱化学株式会社 | Nonaqueous electrolyte solution and nonaqueous electrolyte battery |
CN113906604B (en) * | 2019-06-04 | 2024-02-23 | 三菱化学株式会社 | Nonaqueous electrolyte solution and nonaqueous electrolyte battery |
WO2022111345A1 (en) * | 2020-11-30 | 2022-06-02 | 深圳新宙邦科技股份有限公司 | Lithium ion battery |
WO2022111346A1 (en) * | 2020-11-30 | 2022-06-02 | 深圳新宙邦科技股份有限公司 | Lithium-ion battery |
WO2023116497A1 (en) * | 2021-12-21 | 2023-06-29 | 深圳新宙邦科技股份有限公司 | Secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP6031856B2 (en) | 2016-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6750716B2 (en) | Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery | |
JP6906476B2 (en) | Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it | |
JP6624243B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same | |
JP6069843B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP6031856B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6167470B2 (en) | Non-aqueous electrolyte battery | |
EP2571090B9 (en) | Nonaqueous-electrolyte secondary battery | |
JP5962028B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
JP2018088385A (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery | |
WO2011099585A1 (en) | Nonaqueous electrolyte solution, and nonaqueous electrolyte secondary battery | |
JP5655653B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
JP6035776B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
JP2013051198A (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery using the same | |
JP6201485B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6131757B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same | |
JP2013206843A (en) | Nonaqueous electrolyte battery | |
JP2013178953A (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery using the same | |
JP5906915B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP5842379B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6500541B2 (en) | Nonaqueous Electrolyte and Nonaqueous Electrolyte Battery Using the Same | |
JP6191395B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same | |
JP5760665B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery | |
JP6759847B2 (en) | Non-aqueous electrolyte solution and non-aqueous electrolyte battery using it | |
JP2019186222A (en) | Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery using the same | |
JP6221632B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150618 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160927 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161010 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6031856 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313121 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |