JP2013024517A - Laminated heat exchanger - Google Patents
Laminated heat exchanger Download PDFInfo
- Publication number
- JP2013024517A JP2013024517A JP2011161818A JP2011161818A JP2013024517A JP 2013024517 A JP2013024517 A JP 2013024517A JP 2011161818 A JP2011161818 A JP 2011161818A JP 2011161818 A JP2011161818 A JP 2011161818A JP 2013024517 A JP2013024517 A JP 2013024517A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchange
- header
- refrigerant
- intermediate header
- final
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
この発明は積層型熱交換器に関し、さらに詳しくは、たとえば自動車に搭載される冷凍サイクルであるカーエアコンのエバポレータとして使用される積層型熱交換器に関する。 The present invention relates to a stacked heat exchanger, and more particularly to a stacked heat exchanger used as an evaporator of a car air conditioner that is a refrigeration cycle mounted on an automobile, for example.
この明細書および特許請求の範囲において、図1および図4の上下、左右を上下、左右といい、通風間隙を流れる空気の下流側(図1〜図3に矢印Xで示す方向)を前、これと反対側を後というものとする。 In this specification and claims, the top, bottom, left and right in FIGS. 1 and 4 are referred to as top and bottom, and left and right, and the downstream side of the air flowing in the ventilation gap (the direction indicated by the arrow X in FIGS. The other side is the back.
従来、カーエアコン用エバポレータとして、周縁部どうしが互いに接合された2枚の縦長金属板からなり、かつ両金属板間に、通風方向に間隔をおいて設けられた上下方向に伸びる2つの冷媒流通管部および各冷媒流通管部の上下両端に連なって設けられたヘッダ形成部とを備えている複数の扁平中空体が、積層状に配置されて隣接する扁平中空体のヘッダ形成部どうしが接合されることにより形成されており、上下方向に間隔をおいて設けられた2つのヘッダ部および上下両ヘッダ部間に設けられた複数の冷媒流通管部からなる複数の熱交換部が、風下側および風上側に同数ずつ配置され、全ての熱交換部が直列状に接続されて冷媒が全ての熱交換部内を順次流れるようになされ、風下側に冷媒流れ方向最上流側の第1熱交換部と最上流から2番目の第2熱交換部とが設けられ、風上側に冷媒流れ方向最下流側の第4熱交換部と、最下流から2番目の第3熱交換部が設けられ、第1熱交換部および同最下流側の第4熱交換部が、前者が風下側に来るように通風方向に並んで設けられ、第1熱交換部の上側ヘッダ部が冷媒入口ヘッダ部となるとともに、第4熱交換部における冷媒入口ヘッダ部の風上側に並んだ上側ヘッダ部が冷媒出口ヘッダ部となっており、他の熱交換部の上下ヘッダ部が中間ヘッダ部となり、第1熱交換部の2つのヘッダ部および第4熱交換部の2つのヘッダ部と、第2熱交換部の2つのヘッダ部および第3熱交換部の2つのヘッダ部との間にそれぞれ仕切が設けられ、第1熱交換部の下側ヘッダ部と第2熱交換部の下側ヘッダ部とが仕切に形成された貫通穴により通じさせられ、第3熱交換部の下側ヘッダ部と第4熱交換部の下側ヘッダ部とが仕切に形成された貫通穴により通じさせられ、第2熱交換部の上側ヘッダ部と第3熱交換部の上側ヘッダ部とが両ヘッダ部間に設けられた連通部を介して通じさせられている積層側熱交換器が広く知られている。 2. Description of the Related Art Conventionally, as an evaporator for a car air conditioner, two refrigerants which are composed of two vertically long metal plates whose peripheral portions are joined to each other and extend in the up-down direction are provided between the two metal plates at intervals in the ventilation direction. A plurality of flat hollow bodies, each having a pipe section and a header forming section provided continuously to both upper and lower ends of each refrigerant circulation pipe section, are arranged in a laminated manner and the header forming sections of adjacent flat hollow bodies are joined together A plurality of heat exchanging portions formed of two header portions provided at intervals in the vertical direction and a plurality of refrigerant flow pipe portions provided between the upper and lower header portions are arranged on the leeward side. And the same number are arranged on the windward side, all the heat exchanging parts are connected in series so that the refrigerant sequentially flows in all the heat exchanging parts, and the first heat exchanging part on the most upstream side in the refrigerant flow direction on the leeward side And the most upstream A second heat exchanging part is provided on the windward side, a fourth heat exchanging part on the furthest downstream side in the refrigerant flow direction and a third heat exchanging part second on the most downstream side are provided, and the first heat exchanging part And the fourth heat exchange part on the most downstream side is provided side by side in the ventilation direction so that the former is on the leeward side, and the upper header part of the first heat exchange part is the refrigerant inlet header part, and the fourth heat The upper header part arranged on the windward side of the refrigerant inlet header part in the exchange part is a refrigerant outlet header part, the upper and lower header parts of the other heat exchange parts are intermediate header parts, and the two headers of the first heat exchange part A partition is provided between each of the two header portions of the first and fourth heat exchanging portions and the two header portions of the second heat exchanging portion and the two header portions of the third heat exchanging portion. The through-hole formed in the partition with the lower header part of the second heat exchange part and the lower header part of the second heat exchange part The lower header part of the third heat exchange part and the lower header part of the fourth heat exchange part are communicated by a through hole formed in the partition, and the upper header part of the second heat exchange part A lamination-side heat exchanger is widely known in which the upper header portion of the third heat exchange portion is communicated via a communication portion provided between both header portions.
上述した周知の積層型熱交換器において、冷媒が、第3熱交換部の下側ヘッダ部から第4熱交換部の下側ヘッダ部内に流入する際に、慣性力により第4熱交換部の下側ヘッダ部の奥側に流れやすくなるので、第4熱交換部の全ての冷媒流通管部のうち第3熱交換部から遠くに位置する冷媒流通管部内に多くの冷媒が流入するとともに、第3熱交換部側の冷媒流通管部内には少量の冷媒が流入することになり、第4熱交換部の全冷媒流通管部への冷媒の分流が不均一になる。その結果、エバポレータを通過してきた空気の温度である吐気温度が、左右方向に不均一になるおそれがある。また、第4熱交換部の冷媒流通管部を流れる冷媒は乾き度の高い冷媒であり、第4熱交換部での熱交換効率は比較的低い。 In the well-known stacked heat exchanger described above, when the refrigerant flows from the lower header portion of the third heat exchange portion into the lower header portion of the fourth heat exchange portion, the inertial force causes the fourth heat exchange portion. Since it is easy to flow to the back side of the lower header part, a large amount of refrigerant flows into the refrigerant circulation pipe part located far from the third heat exchange part among all the refrigerant circulation pipe parts of the fourth heat exchange part, A small amount of refrigerant will flow into the refrigerant flow pipe part on the third heat exchange part side, and the flow of refrigerant to all the refrigerant flow pipe parts of the fourth heat exchange part will be uneven. As a result, the exhalation temperature, which is the temperature of the air that has passed through the evaporator, may become uneven in the left-right direction. Moreover, the refrigerant | coolant which flows through the refrigerant | coolant distribution pipe part of a 4th heat exchange part is a refrigerant | coolant with a high dryness, and the heat exchange efficiency in a 4th heat exchange part is comparatively low.
このような問題を解決するために、上述した周知の積層型熱交換器において、第2熱交換部の下側ヘッダ部と第3熱交換部の下側ヘッダ部、第2熱交換部の下側ヘッダ部と第4熱交換部の下側ヘッダ部、または第1熱交換部の下側ヘッダ部と第3熱交換部の下側ヘッダ部とが連通路を介して通じさせられた積層型熱交換器が提案されている(特許文献1参照)。 In order to solve such a problem, in the well-known stacked heat exchanger described above, the lower header portion of the second heat exchange portion, the lower header portion of the third heat exchange portion, and the lower portion of the second heat exchange portion. Laminated type in which side header part and lower header part of fourth heat exchange part or lower header part of first heat exchange part and lower header part of third heat exchange part are communicated through communication path A heat exchanger has been proposed (see Patent Document 1).
特許文献1記載の積層型熱交換器においては、第4熱交換部の下側ヘッダ部内に、第3熱交換部の下側ヘッダ部を経由して、または直接第1熱交換部または第2熱交換部の比較的乾き度の低い冷媒を流入させることが可能になるので、第4熱交換部での熱交換効率が向上する。また、第3熱交換部の下側ヘッダ部内に流入する冷媒の流れ、および第4熱交換部の下側ヘッダ部内に流入する冷媒の流れによって、第3熱交換部の下側ヘッダ部から第4熱交換部の下側ヘッダ部内に流入する冷媒の慣性力が弱められるので、第4熱交換部の下側ヘッダ部の奥側に流れ難くなり、第4熱交換部の全ての冷媒流通管部のうち第3熱交換部から遠くに位置する冷媒流通管部内に流入する冷媒量が低減されるとともに、同じく第3熱交換部側の冷媒流通管部内に流入する冷媒量が増加する。したがって、第4熱交換部の全冷媒流通管部への冷媒の分流が均一化され、エバポレータを通過してきた空気の温度である吐気温度が、左右方向に均一になる。 In the stacked heat exchanger described in Patent Document 1, the first heat exchange part or the second heat exchange part is provided in the lower header part of the fourth heat exchange part via the lower header part of the third heat exchange part or directly. Since it becomes possible to flow in the refrigerant having a relatively low dryness in the heat exchange part, the heat exchange efficiency in the fourth heat exchange part is improved. Further, the flow of the refrigerant flowing into the lower header part of the third heat exchange unit and the flow of the refrigerant flowing into the lower header part of the fourth heat exchange unit are changed from the lower header part of the third heat exchange unit. Since the inertial force of the refrigerant flowing into the lower header part of the fourth heat exchange part is weakened, it becomes difficult to flow to the back side of the lower header part of the fourth heat exchange part, and all the refrigerant flow pipes of the fourth heat exchange part The amount of refrigerant flowing into the refrigerant flow pipe part located far from the third heat exchange part among the parts is reduced, and the amount of refrigerant flowing into the refrigerant flow pipe part on the third heat exchange part side is also increased. Therefore, the flow of the refrigerant to all the refrigerant flow pipes of the fourth heat exchange unit is made uniform, and the exhaust temperature that is the temperature of the air that has passed through the evaporator becomes uniform in the left-right direction.
しかしながら、特許文献1記載の積層型熱交換器においては、第2熱交換部の下側ヘッダ部と第3熱交換部の下側ヘッダ部とを通じさせる連通路、第2熱交換部の下側ヘッダ部と第4熱交換部の下側ヘッダ部とを通じさせる連通路、または第1熱交換部の下側ヘッダ部と第3熱交換部の下側ヘッダ部とを通じさせる連通路は、それぞれ扁平中空体を形成する縦長金属板のヘッダ形成部どうしの間を変形させることによって設けられているので、連通路を有する縦長金属板をつくる作業が面倒になるともに、連通路を有する縦長金属板の決められた位置への配置作業が面倒であり、ひいては積層型熱交換器の製造作業が面倒になるという問題がある。 However, in the stacked heat exchanger described in Patent Document 1, the communication path that passes through the lower header portion of the second heat exchange portion and the lower header portion of the third heat exchange portion, the lower side of the second heat exchange portion The communication path that passes through the header part and the lower header part of the fourth heat exchange part, or the communication path that passes through the lower header part of the first heat exchange part and the lower header part of the third heat exchange part, is flat. Since it is provided by deforming between the header forming portions of the vertically long metal plate forming the hollow body, the work of creating the vertically long metal plate having the communication path becomes troublesome, and the vertically long metal plate having the communication path There is a problem that the arrangement work at the determined position is troublesome, and the manufacturing work of the laminated heat exchanger is troublesome.
この発明の目的は、上記問題を解決し、たとえばカーエアコン用エバポレータに適用した場合、吐気温度を均一化しうるとともに、製造が容易な積層型熱交換器を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a laminated heat exchanger that can make the discharge temperature uniform and can be manufactured easily when applied to an evaporator for a car air conditioner, for example.
本発明は、上記目的を達成するために以下の態様からなる。 In order to achieve the above object, the present invention comprises the following aspects.
1)周縁部どうしが互いに接合された2枚の縦長金属板からなり、かつ両金属板間に、通風方向に間隔をおいて設けられた上下方向に伸びる2つの冷媒流通管部および各冷媒流通管部の上下両端に連なって設けられたヘッダ形成部とを備えている複数の扁平中空体が、積層状に配置されて隣接する扁平中空体のヘッダ形成部どうしが接合されることにより形成されており、上下方向に間隔をおいて設けられた2つのヘッダ部および上下両ヘッダ部間に設けられた複数の冷媒流通管部からなる複数の熱交換部が、風下側および風上側に同数ずつ配置され、全ての熱交換部が直列状に接続されて冷媒が全ての熱交換部内を順次流れるようになされ、冷媒流れ方向最上流側の第1熱交換部および同最下流側の最終熱交換部が、前者が風下側に来るように通風方向に並んで設けられ、第1熱交換部の一方のヘッダ部が冷媒入口ヘッダ部となるとともに、同他方のヘッダ部が第1中間ヘッダ部となり、最終熱交換部における冷媒入口ヘッダ部の風上側に並んだヘッダ部が冷媒出口ヘッダ部となるとともに、第1中間ヘッダ部の風上側に並んだヘッダ部が、最終中間ヘッダ部となっている積層型熱交換器であって、
第1熱交換部の2つのヘッダ部および最終熱交換部の2つのヘッダ部と、第1熱交換部の冷媒流れ方向下流側に隣接した第2熱交換部の2つのヘッダ部および最終熱交換部の冷媒流れ方向上流側に隣接した最終から2番目の熱交換部の2つのヘッダ部との間にそれぞれ仕切が設けられ、これらの仕切が扁平中空体の両金属板間に配置されており、第1熱交換部の第1中間ヘッダ部と第1中間ヘッダ部の長手方向の一端部に並んだ第2熱交換部の中間ヘッダ部とが仕切に形成された貫通穴により通じさせられ、最終熱交換部の最終中間ヘッダ部と最終中間ヘッダ部の長手方向一端部に並んだ最終から2番目の熱交換部の中間ヘッダ部とが仕切に形成された貫通穴により通じさせられ、貫通穴を有する前記2つの仕切が一体化され、前記2つの貫通穴が、前記2つの仕切の一体化物に形成された連通部により通じさせられている積層型熱交換器。
1) Two refrigerant distribution pipe sections and respective refrigerant distributions which are composed of two vertically long metal plates whose peripheral portions are joined to each other and which are provided between the two metal plates and are spaced apart in the ventilation direction. A plurality of flat hollow bodies provided with header forming portions provided continuously at both upper and lower ends of the pipe portion are formed by stacking and joining the header forming portions of adjacent flat hollow bodies. A plurality of heat exchanging parts each including two header parts provided at intervals in the vertical direction and a plurality of refrigerant flow pipe parts provided between the upper and lower header parts. All the heat exchange units are connected in series so that the refrigerant sequentially flows through all the heat exchange units, and the first heat exchange unit on the most upstream side in the refrigerant flow direction and the final heat exchange on the most downstream side So that the former is on the leeward side Provided side by side in the ventilation direction, one header part of the first heat exchange part becomes the refrigerant inlet header part, and the other header part becomes the first intermediate header part, and the refrigerant inlet header part in the final heat exchange part While the header portion arranged on the windward side becomes the refrigerant outlet header portion, the header portion arranged on the windward side of the first intermediate header portion is a stacked heat exchanger that is the final intermediate header portion,
Two header sections of the first heat exchange section and two header sections of the final heat exchange section, two header sections of the second heat exchange section adjacent to the first heat exchange section on the downstream side in the refrigerant flow direction, and final heat exchange Partitions are provided between the two header parts of the second heat exchange part from the last adjacent to the upstream side of the refrigerant flow direction, and these partitions are arranged between the two metal plates of the flat hollow body. The first intermediate header portion of the first heat exchange portion and the intermediate header portion of the second heat exchange portion arranged at one end portion in the longitudinal direction of the first intermediate header portion are communicated by a through hole formed in the partition, The final intermediate header part of the final heat exchange part and the intermediate header part of the second heat exchange part from the last arranged at one end in the longitudinal direction of the final intermediate header part are communicated by a through hole formed in the partition, and the through hole The two partitions having Holes, laminated heat exchanger that is vented by the communication portion formed in the monolith of the two divider.
2)前記4つの仕切が、扁平中空体の両金属板間に配置された1枚のセパレートプレートに設けられており、セパレートプレートに、第1熱交換部の第1中間ヘッダ部と第2熱交換部の中間ヘッダ部との間の仕切の貫通穴、最終熱交換部の最終中間ヘッダ部と最終中間ヘッダ部の長手方向一端部に並んだ最終から2番目の熱交換部の中間ヘッダ部との間の仕切の貫通穴、および両貫通穴を通じさせる連通部が形成されている上記1)記載の積層型熱交換器。 2) The four partitions are provided on one separate plate disposed between the two metal plates of the flat hollow body, and the first intermediate header portion and the second heat of the first heat exchange portion are provided on the separate plate. A through hole in the partition between the intermediate header part of the exchange part, the final intermediate header part of the final heat exchange part, and the intermediate header part of the second heat exchange part from the last lined up at one end in the longitudinal direction of the final intermediate header part; The laminated heat exchanger as described in 1) above, wherein a through hole of a partition between the two and a communicating portion through which both through holes are formed.
3)セパレートプレートの厚みが0.5〜1.6mmである上記2)記載の積層型熱交換器。 3) The laminated heat exchanger according to 2) above, wherein the thickness of the separate plate is 0.5 to 1.6 mm.
上記1)〜3)の積層型熱交換器によれば、第1熱交換部の2つのヘッダ部および最終熱交換部の2つのヘッダ部と、第1熱交換部の冷媒流れ方向下流側に隣接した第2熱交換部の2つのヘッダ部および最終熱交換部の冷媒流れ方向上流側に隣接した最終から2番目の熱交換部の2つのヘッダ部との間にそれぞれ仕切が設けられ、これらの仕切が扁平中空体の両金属板間に配置されており、第1熱交換部の第1中間ヘッダ部と第1中間ヘッダ部の長手方向の一端部に並んだ第2熱交換部の中間ヘッダ部とが仕切に形成された貫通穴により通じさせられ、最終熱交換部の最終中間ヘッダ部と最終中間ヘッダ部の長手方向一端部に並んだ最終から2番目の熱交換部の中間ヘッダ部とが仕切に形成された貫通穴により通じさせられ、貫通穴を有する前記2つの仕切が一体化され、前記2つの貫通穴が、前記2つの仕切の一体化物に形成された連通部により通じさせられているので、最終熱交換部の最終中間ヘッダ部内に、第1熱交換部の第1中間ヘッダ部から第1熱交換部の第1中間ヘッダ部と第1中間ヘッダ部の長手方向の一端部に並んだ第2熱交換部の中間ヘッダ部との間の仕切に形成された貫通穴、連通部および最終熱交換部の最終中間ヘッダ部と最終中間ヘッダ部の長手方向一端部に並んだ最終から2番目の熱交換部の中間ヘッダ部とが仕切に形成された貫通穴を通して比較的乾き度の低い冷媒を流入させることが可能になり、最終熱交換部での熱交換効率が向上する。また、第1熱交換部の第1中間ヘッダ部から第1熱交換部の第1中間ヘッダ部と第1中間ヘッダ部の長手方向の一端部に並んだ第2熱交換部の中間ヘッダ部との間の仕切に形成された貫通穴、および連通部を通って最終熱交換部の最終中間ヘッダ部と最終中間ヘッダ部の長手方向一端部に並んだ最終から2番目の熱交換部の中間ヘッダ部とが仕切に形成された貫通穴に流入する冷媒の流れによって、最終から2番目の中間ヘッダ部から最終熱交換部の最終中間ヘッダ部内に流入する冷媒の慣性力が弱められるので、最終熱交換部の最終中間ヘッダ部の奥側に流れ難くなり、最終熱交換部の全ての冷媒流通管部への冷媒の分流が均一化され、エバポレータを通過してきた空気の温度である吐気温度が、左右方向に均一になる。しかも、2つの貫通穴および両貫通穴を通じさせる連通部を有する仕切の一体化物を、簡単に所定の決められた位置に配置することができる。また、扁平中空体を構成する金属板には特別な加工を施す必要がなくなる。したがって、積層型熱交換器の製造作業が簡単になる。 According to the laminated heat exchangers 1) to 3) above, the two header parts of the first heat exchange part, the two header parts of the final heat exchange part, and the downstream side of the first heat exchange part in the refrigerant flow direction. A partition is provided between each of the two header portions of the adjacent second heat exchange portion and the two header portions of the second heat exchange portion from the last adjacent to the upstream side in the refrigerant flow direction of the final heat exchange portion. Is arranged between the two metal plates of the flat hollow body, and is intermediate between the first intermediate header part of the first heat exchange part and one end part in the longitudinal direction of the first intermediate header part. The intermediate header part of the second heat exchange part from the last arranged in the longitudinal direction of the final intermediate header part and the final intermediate header part of the final heat exchange part, which is communicated by the through hole formed in the partition with the header part Are connected through a through hole formed in the partition, and have the through hole. Since the two partitions are integrated and the two through holes are communicated by a communication portion formed in the integrated body of the two partitions, the first heat exchange is provided in the final intermediate header portion of the final heat exchange portion. Formed in a partition between the first intermediate header part of the first heat exchange part and the intermediate header part of the second heat exchange part arranged at one end in the longitudinal direction of the first intermediate header part. A through hole, a communicating portion and a final intermediate header portion of the final heat exchange portion and a second intermediate heat header portion of the last heat exchange portion arranged at one end in the longitudinal direction of the final intermediate header portion are formed in a partition It becomes possible to allow a refrigerant having a relatively low dryness to flow through the hole, and the heat exchange efficiency in the final heat exchange section is improved. Moreover, the intermediate header part of the 2nd heat exchange part located in a line from the 1st intermediate header part of the 1st heat exchange part to the 1st intermediate header part of the 1st heat exchange part, and the longitudinal direction one end part of the 1st intermediate header part, Through-holes formed in the partition between the intermediate header of the second heat exchange part from the last through the communicating part and the last intermediate header part of the final heat exchange part and one end in the longitudinal direction of the final intermediate header part The inertial force of the refrigerant flowing into the final intermediate header part of the final heat exchange part from the second intermediate header part from the last is weakened by the flow of the refrigerant flowing into the through hole formed in the partition. It becomes difficult to flow to the back side of the final intermediate header part of the exchange part, the flow of refrigerant to all the refrigerant circulation pipe parts of the final heat exchange part is made uniform, and the exhalation temperature, which is the temperature of the air that has passed through the evaporator, Uniform in the horizontal direction. In addition, the integrated unit of the partitions having the two through holes and the communicating portion through both the through holes can be easily disposed at a predetermined position. Moreover, it is not necessary to perform special processing on the metal plate constituting the flat hollow body. Therefore, the manufacturing operation of the stacked heat exchanger is simplified.
上記2)の積層型熱交換器によれば、2つの貫通穴および両貫通穴を通じさせる連通部を有する仕切の一体化物、および貫通穴が形成されていない他の2つの仕切を、簡単に所定の決められた位置に配置することができる。しかも、セパレートプレートの厚みを変更することによって、連通部の通路断面積を簡単に変更することが可能になり、第1熱交換部の第1中間ヘッダ部から最終熱交換部の最終中間ヘッダ部内に流入する冷媒の量を最適化することが可能になる。 According to the laminated heat exchanger of 2), the integrated body of the partition having the two through holes and the communicating portion through both the through holes, and the other two partitions having no through holes are easily specified. It can be arranged at a predetermined position. In addition, by changing the thickness of the separate plate, it is possible to easily change the passage cross-sectional area of the communication portion, and from the first intermediate header portion of the first heat exchange portion to the final intermediate header portion of the final heat exchange portion. It is possible to optimize the amount of refrigerant flowing into the tank.
上記3)の積層型熱交換器によれば、第1熱交換部の第1中間ヘッダ部から第1中間ヘッダ部の長手方向の一端部に並んだ第2熱交換部の中間ヘッダ部に流入する冷媒の量を十分に確保した上で、最終熱交換部での熱交換効率を効果的に向上させるのに必要な量の乾き度の比較的低い冷媒を最終中間ヘッダ部に流入させることができるとともに、最終から2番目の中間ヘッダ部から最終熱交換部の最終中間ヘッダ部内に流入する冷媒の慣性力を効果的に弱めることが可能になる。 According to the laminated heat exchanger of 3) above, it flows from the first intermediate header part of the first heat exchange part into the intermediate header part of the second heat exchange part arranged at one end in the longitudinal direction of the first intermediate header part. A sufficiently low amount of refrigerant necessary to effectively improve the heat exchange efficiency in the final heat exchanging portion, while allowing a sufficient amount of refrigerant to flow into the final intermediate header portion. In addition, it is possible to effectively weaken the inertial force of the refrigerant flowing into the final intermediate header part of the final heat exchange part from the second intermediate header part from the last.
以下、この発明の実施形態を、図面を参照して説明する。この実施形態は、この発明による積層型熱交換器をカーエアコン用エバポレータに適用したものである。 Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, the laminated heat exchanger according to the present invention is applied to an evaporator for a car air conditioner.
なお、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。 In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.
図1〜図4は実施形態1のエバポレータの全体構成を示し、図4〜図9はその要部の構成を示し、図10はエバポレータにおける冷媒の流れを示す。 1 to 4 show the overall configuration of the evaporator according to the first embodiment, FIGS. 4 to 9 show the configuration of the main part, and FIG. 10 shows the flow of refrigerant in the evaporator.
図1〜図4において、エバポレータ(1)は、略縦長方形の複数の扁平中空体(2A)(2B)(2C)(2D)が、幅方向を前後方向(通風方向)に向けて左右方向に積層状に並べられるとともに、相互に接合されることにより形成されたものであり、上下方向に間隔をおいて設けられかつ左右方向にのびる2つのヘッダ部(7)(8)(9)(11)(12)(13)(14)(15)、および上下両ヘッダ部(7)(8)(9)(11)(12)(13)(14)(15)間に左右方向に間隔をおいて設けられた複数の冷媒流通管部(16)(17)からなるとともに、直列状に接続された複数、ここでは4つの熱交換部(3)(4)(5)(6)を備えている。そして、冷媒は、すべての熱交換部(3)(4)(5)(6)を順次流れるようになっている。ここで、4つの熱交換部(3)(4)(5)(6)を、冷媒の流れ方向上流側から下流側に向かって第1〜第4熱交換部というものとする。 1 to 4, the evaporator (1) has a plurality of flat hollow bodies (2A), (2B), (2C), and (2D) each having a substantially vertical rectangular shape in the left-right direction with the width direction set to the front-rear direction (ventilation direction). The two header portions (7), (8), (9), which are formed by being laminated to each other and joined to each other, are provided at intervals in the vertical direction and extend in the horizontal direction. (11) (12) (13) (14) (15) and upper and lower header parts (7) (8) (9) (11) (12) (13) (14) (15) A plurality of refrigerant flow pipe sections (16), (17) provided at a distance, and a plurality of, in this case, four heat exchange sections (3), (4), (5), (6) connected in series. I have. The refrigerant flows through all the heat exchanging sections (3), (4), (5), and (6) sequentially. Here, the four heat exchange sections (3), (4), (5), and (6) are referred to as first to fourth heat exchange sections from the upstream side to the downstream side in the refrigerant flow direction.
第1熱交換部(3)および第2熱交換部(4)は風下側において左右方向に並んで設けられており、第3熱交換部(5)および第4熱交換部(6)は、第3熱交換部(5)が第2熱交換部(4)の風上側、第4熱交換部(6)が第1熱交換部(3)の風上側に来るように左右方向に並んで設けられている。冷媒流れ方向最上流側の第1熱交換部(3)の上側ヘッダ部が冷媒入口ヘッダ部(7)であり、同下側ヘッダ部が第1中間ヘッダ部(8)である。第2熱交換部(4)の下側ヘッダ部が第2中間ヘッダ部(11)であり、同上側ヘッダ部が第3中間ヘッダ部(9)である。第3熱交換部(5)の上側ヘッダ部が第4中間ヘッダ部(12)であり、同下側ヘッダ部が第5中間ヘッダ部(13)である。また、冷媒流れ方向最下流側の第4熱交換部(6)の下側ヘッダ部が第6中間ヘッダ部(15)であり、同上側ヘッダ部が冷媒出口ヘッダ部(14)である(図10参照)。 The first heat exchange part (3) and the second heat exchange part (4) are provided side by side on the leeward side, and the third heat exchange part (5) and the fourth heat exchange part (6) Line up in the left-right direction so that the third heat exchange part (5) is on the windward side of the second heat exchange part (4) and the fourth heat exchange part (6) is on the windward side of the first heat exchange part (3). Is provided. The upper header part of the first heat exchange part (3) on the most upstream side in the refrigerant flow direction is the refrigerant inlet header part (7), and the lower header part is the first intermediate header part (8). The lower header part of the second heat exchange part (4) is the second intermediate header part (11), and the upper header part is the third intermediate header part (9). The upper header part of the third heat exchange part (5) is the fourth intermediate header part (12), and the lower header part is the fifth intermediate header part (13). Further, the lower header part of the fourth heat exchange part (6) on the most downstream side in the refrigerant flow direction is the sixth intermediate header part (15), and the upper header part is the refrigerant outlet header part (14) (see FIG. 10).
冷媒入口ヘッダ部(7)の右端に冷媒入口(18)が形成され、冷媒出口ヘッダ部(14)の右端に冷媒出口(19)が形成されている。そして、冷媒入口ヘッダ部(7)および冷媒出口ヘッダ部(14)の右端部に跨るように、冷媒入口(18)に通じる冷媒流入口(21a)および冷媒出口(19)に通じる冷媒流出口(21b)を有するアルミニウム製ジョイントプレート(21)が接合され、ジョイントプレート(21)の冷媒流入口(21a)に冷媒入口管(図示略)が、冷媒流出口(21b)に冷媒出口管(図示略)が接続されている。 A refrigerant inlet (18) is formed at the right end of the refrigerant inlet header (7), and a refrigerant outlet (19) is formed at the right end of the refrigerant outlet header (14). The refrigerant inlet (21a) leading to the refrigerant inlet (18) and the refrigerant outlet (19) leading to the refrigerant outlet (19) so as to straddle the right end of the refrigerant inlet header (7) and the refrigerant outlet header (14) ( An aluminum joint plate (21) having 21b) is joined, a refrigerant inlet pipe (not shown) is connected to the refrigerant inlet (21a) of the joint plate (21), and a refrigerant outlet pipe (not shown) is connected to the refrigerant outlet (21b). ) Is connected.
第1熱交換部(3)の上下2つのヘッダ部(7)(8)と第2熱交換部(4)の上下2つのヘッダ部(9)(11)との間、および第3熱交換部(5)の上下2つのヘッダ部(12)(13)と第4熱交換部(6)の上下2つのヘッダ部(14)(15)との間には、それぞれ仕切(22)(23)(24)(25)が設けられている。第1熱交換部(3)の第1中間ヘッダ部(8)と第2熱交換部(4)の第2中間ヘッダ部(11)との間の仕切(23)、および第3熱交換部(5)の第5中間ヘッダ部(13)と第4熱交換部(6)の第6中間ヘッダ部(15)との間の仕切(25)には、それぞれヘッダ部(8)(11)および(13)(15)どうしを通じさせる貫通穴(26)(27)が形成されている(図10参照)。また、第2熱交換部(4)の第3中間ヘッダ部(9)と第3熱交換部(5)の第4中間ヘッダ部(12)とは、複数の連通路(28)によって通じさせられている。 Between the upper and lower header sections (7) and (8) of the first heat exchange section (3) and the upper and lower header sections (9) and (11) of the second heat exchange section (4), and the third heat exchange Partition (22) (23) between the upper and lower header sections (12) (13) of the section (5) and the upper and lower header sections (14) (15) of the fourth heat exchange section (6), respectively. ) (24) (25). A partition (23) between the first intermediate header part (8) of the first heat exchange part (3) and the second intermediate header part (11) of the second heat exchange part (4), and a third heat exchange part In the partition (25) between the fifth intermediate header portion (13) of (5) and the sixth intermediate header portion (15) of the fourth heat exchange portion (6), the header portions (8) and (11) are respectively provided. And (13) and (15) are formed with through-holes (26) and (27) through which they pass (see FIG. 10). Further, the third intermediate header portion (9) of the second heat exchange portion (4) and the fourth intermediate header portion (12) of the third heat exchange portion (5) are communicated by a plurality of communication passages (28). It has been.
図2〜図5に示すように、扁平中空体(2A)(2B)(2C)(2D)は、周縁部どうしが互いにろう付された2枚の縦長方形状アルミニウム板(29A)(29B)(29C)(29D)よりなる。すべてのアルミニウム板(29A)(29B)(29C)(29D)は両面にろう材層を有するアルミニウムブレージングシートからなる。扁平中空体(2A)(2B)(2C)(2D)を構成する2枚のアルミニウム板(29A)(29B)(29C)(29D)間には、上下方向に伸びる前後2つの膨出状冷媒流通管部(16)(17)と、各冷媒流通管部(16)(17)の上下両端部にそれぞれ連なる膨出状ヘッダ形成部(31)(32)とが設けられている。左右方向中央部の扁平中空体(2D)を除いた大部分の扁平中空体(2A)(2B)(2C)の前後の冷媒流通管部(16)(17)に跨るように、アルミニウム製コルゲート状インナーフィン(33)が配置されており、両アルミニウム板(29A)(29B)(29C)にろう付されている。なお、各冷媒流通管部(16)(17)内に別々にアルミニウム製コルゲート状インナーフィンが配置されていてもよい。 As shown in FIGS. 2 to 5, the flat hollow bodies (2A), (2B), (2C), and (2D) are composed of two vertical rectangular aluminum plates (29A) (29B) in which peripheral portions are brazed to each other. (29C) (29D). All the aluminum plates (29A) (29B) (29C) (29D) are made of an aluminum brazing sheet having a brazing filler metal layer on both sides. Between the two aluminum plates (29A) (29B) (29C) (29D) constituting the flat hollow body (2A) (2B) (2C) (2D) The circulation pipe parts (16), (17) and the bulged header forming parts (31), (32) respectively connected to the upper and lower ends of each refrigerant circulation pipe part (16), (17) are provided. Aluminum corrugated so as to straddle the refrigerant flow pipe sections (16) (17) before and after most flat hollow bodies (2A) (2B) (2C) excluding the flat hollow body (2D) at the center in the left-right direction An inner fin (33) is disposed and brazed to both aluminum plates (29A) (29B) (29C). An aluminum corrugated inner fin may be separately arranged in each refrigerant flow pipe section (16) (17).
扁平中空体(2A)(2B)(2C)(2D)におけるヘッダ形成部(31)(32)の左右方向の高さは、冷媒流通管部(16)(17)の左右方向の高さよりも大きくなっており、隣接する扁平中空体(2A)(2B)(2C)(2D)のヘッダ形成部(31)(32)どうしが相互にろう付されている。そして、扁平中空体(2A)(2B)(2C)(2D)の前側の上下のヘッダ形成部(31)によって冷媒入口ヘッダ部(7)および第1〜第3中間ヘッダ部(8)(11)(9)が形成され、同じく後側の上下のヘッダ形成部(32)によって冷媒出口ヘッダ部(14)および第4〜第6中間ヘッダ部(12)(13)(15)が形成されている。また、隣接する扁平中空体(2A)(2B)(2C)(2D)の冷媒流通管部(16)(17)どうしの間が通風間隙となり、通風間隙にアルミニウム製コルゲート状アウターフィン(34)が配置されて扁平中空体(2A)(2B)(2C)(2D)にろう付されている。 The horizontal height of the header forming portions (31) and (32) in the flat hollow bodies (2A), (2B), (2C), and (2D) is higher than the horizontal height of the refrigerant flow pipe portions (16) and (17). The header forming portions (31) and (32) of adjacent flat hollow bodies (2A), (2B), (2C), and (2D) are brazed to each other. Then, the refrigerant inlet header portion (7) and the first to third intermediate header portions (8) (11) are formed by the upper and lower header forming portions (31) on the front side of the flat hollow body (2A) (2B) (2C) (2D). ) (9) is formed, and the refrigerant outlet header portion (14) and the fourth to sixth intermediate header portions (12), (13), and (15) are also formed by the upper and lower header forming portions (32) on the rear side. Yes. Also, between the adjacent flat hollow bodies (2A), (2B), (2C), and (2D), the refrigerant flow pipe portions (16) and (17) form a ventilation gap, and an aluminum corrugated outer fin (34) is provided in the ventilation gap. Are arranged and brazed to the flat hollow bodies (2A) (2B) (2C) (2D).
左右両端に配置された扁平中空体(2C)および左右方向中央部に配置された扁平中空体(2D)を除いて、冷媒入口ヘッダ部(7)、冷媒出口ヘッダ部(14)、第1中間ヘッダ部(8)および第6中間ヘッダ部(15)を形成する第1扁平中空体(2A)の構成を図6に示す。図6に示すように、第1扁平中空体(2A)を構成する右側のアルミニウム板(29A)は、上下方向に伸びかつ右方に膨出した前後2つの管部形成用膨出部(35)と、各管部形成用膨出部(35)の上下両端に連なり、かつ右方に膨出するとともに管部形成用膨出部(35)よりも膨出高さの高い4つのヘッダ形成用膨出部(36)とを備えている。各ヘッダ形成用膨出部(36)の頂壁全体は打ち抜かれて貫通穴(37)が形成されている。第1扁平中空体(2A)を構成する左側のアルミニウム板(29A)は、右側アルミニウム板(29A)を左右逆向きにしたものであり、同一部分には同一符号を付す。そして、2枚のアルミニウム板(29A)を、インナーフィン(33)を介して膨出部(35)(36)の開口どうしが対向するように組み合わせてろう付することにより、第1扁平中空体(2A)が形成されている。また、隣接する2つの第1扁平中空体(2A)のヘッダ形成部(31)(32)どうしは、内部が連通するようにろう付されている。 Except for the flat hollow body (2C) disposed at the left and right ends and the flat hollow body (2D) disposed at the center in the left-right direction, the refrigerant inlet header (7), the refrigerant outlet header (14), the first intermediate The configuration of the first flat hollow body (2A) forming the header portion (8) and the sixth intermediate header portion (15) is shown in FIG. As shown in FIG. 6, the right aluminum plate (29A) constituting the first flat hollow body (2A) extends in the up-down direction and bulges to the right and left two tube-forming bulging portions (35). ) And four header formations that are connected to the upper and lower ends of each tube forming bulge portion (35) and bulge to the right and have a bulge height higher than the tube portion bulge portion (35). And a bulging portion (36) for use. The entire top wall of each header forming bulge portion (36) is punched to form a through hole (37). The left aluminum plate (29A) constituting the first flat hollow body (2A) is the right aluminum plate (29A) reversed in the left-right direction, and the same parts are denoted by the same reference numerals. The first flat hollow body is brazed by combining two aluminum plates (29A) through the inner fins (33) so that the openings of the bulging portions (35) and (36) face each other. (2A) is formed. Further, the header forming portions (31), (32) of the two adjacent first flat hollow bodies (2A) are brazed so as to communicate with each other.
左右両端に配置された扁平中空体(2C)および左右方向中央部に配置された扁平中空体(2D)を除いて、第2中間ヘッダ部(11)、第3中間ヘッダ部(9)、第4中間ヘッダ部(12)および第5中間ヘッダ部(13)を形成する第2扁平中空体(2B)の構成を図7に示す。図7に示すように、第2扁平中空体(2B)の右側アルミニウム板(29B)における上の2つのヘッダ形成用膨出部(36)間の部分には、ヘッダ形成用膨出部(36)よりも若干低くなるように外方に膨出させられた連通路形成用膨出部(38)が形成されており、2つのヘッダ形成用膨出部(36)は、連通路形成用膨出部(38)により通じさせられている。第2扁平中空体(2B)の左側アルミニウム板(29B)は、右側アルミニウム板(29B)を左右逆向きにしたものであり、同一部分には同一符号を付す。両アルミニウム板(29B)の連通路形成用膨出部(38)により膨出状連通路(28)が形成されている。第2扁平中空体(2B)のその他の構成は、図6に示す第1扁平中空体(2A)と同じであり、隣接する2つの第2扁平中空体(2B)のヘッダ形成部(31)(32)どうしは、隣接する第1扁平中空体(2A)の場合と同様にして連通状にろう付されている。 Except for the flat hollow body (2C) arranged at the left and right ends and the flat hollow body (2D) arranged at the center in the left-right direction, the second intermediate header part (11), the third intermediate header part (9), The structure of the 2nd flat hollow body (2B) which forms the 4 intermediate header part (12) and the 5th intermediate header part (13) is shown in FIG. As shown in FIG. 7, the portion between the upper two header forming bulges (36) in the right aluminum plate (29B) of the second flat hollow body (2B) has a header forming bulge (36). ) And a communication passage forming bulge portion (38) bulged outwardly so as to be slightly lower than the two), and the two header formation bulge portions (36) are connected to each other. It is made to communicate by the exit part (38). The left aluminum plate (29B) of the second flat hollow body (2B) is obtained by inverting the right aluminum plate (29B) in the left-right direction. A bulging communication path (28) is formed by the communication path forming bulging portion (38) of both aluminum plates (29B). The other structure of the second flat hollow body (2B) is the same as that of the first flat hollow body (2A) shown in FIG. 6, and the header forming portions (31) of two adjacent second flat hollow bodies (2B) (32) The two are brazed in the same manner as in the case of the adjacent first flat hollow bodies (2A).
右端に配置された第3扁平中空体(2C)の構成を図8に示す。図8に示すように、第3扁平中空体(2C)を構成する右側のアルミニウム板(29C)は、すべてのヘッダ形成用膨出部(36A)の膨出高さが管部形成用膨出部(35)の膨出高さと等しくなっている。また、右側アルミニウム板(29C)における下の2つのヘッダ形成用膨出部(36A)の頂壁には貫通穴は形成されていない。さらに、右側アルミニウム板(29C)における上の前側のヘッダ形成用膨出部(36A)の頂壁には冷媒入口(18)が貫通状に形成され、同じく上の後側のヘッダ形成用膨出部(36A)の頂壁には冷媒出口(19)が貫通状に形成されている。第3扁平中空体(2C)のその他の構成は、図6に示す第1扁平中空体(2A)と同じであり、第3扁平中空体(2C)のヘッダ形成部(31A)(32A)と左方に隣接する第1扁平中空体(2A)のヘッダ形成部(31)(32)とは、隣接する第1扁平中空体(2A)の場合と同様にして連通状にろう付されている。また、パイプジョイントプレート(21)が、冷媒流入口(21a)が冷媒入口(18)に通じるとともに冷媒流出口(21b)が冷媒出口(19)に通じるように、第3扁平中空体(2C)にろう付されている。 The configuration of the third flat hollow body (2C) arranged at the right end is shown in FIG. As shown in FIG. 8, the right aluminum plate (29C) constituting the third flat hollow body (2C) has the bulging height of all the bulges for forming the header (36A). It is equal to the bulging height of the part (35). Also, no through hole is formed in the top wall of the lower two header forming bulges (36A) in the right aluminum plate (29C). Further, a refrigerant inlet (18) is formed in the top wall of the upper front header bulging portion (36A) in the right aluminum plate (29C), and the upper rear header bulging is also formed. A refrigerant outlet (19) is formed in the top wall of the portion (36A) so as to penetrate therethrough. The other configuration of the third flat hollow body (2C) is the same as that of the first flat hollow body (2A) shown in FIG. 6, and the header forming portions (31A) (32A) of the third flat hollow body (2C) The header forming portions (31) and (32) of the first flat hollow body (2A) adjacent to the left are brazed in the same manner as in the case of the adjacent first flat hollow body (2A). . The pipe joint plate (21) has a third flat hollow body (2C) such that the refrigerant inlet (21a) communicates with the refrigerant inlet (18) and the refrigerant outlet (21b) communicates with the refrigerant outlet (19). It is brazed.
詳細な図示は省略したが、左端に配置された扁平中空体(2C)は、すべてのヘッダ形成用膨出部(36A)の頂壁に貫通穴は形成されていない点、およびパイプジョイントプレート(21)がろう付されていない点を除いては、第3扁平中空体(2C)と同じ構成であり、左右逆向きに配置されている。 Although detailed illustration is omitted, the flat hollow body (2C) arranged at the left end has a point that no through-hole is formed in the top wall of all the header forming bulges (36A), and a pipe joint plate ( Except for the point that 21) is not brazed, it has the same configuration as the third flat hollow body (2C), and is disposed in the opposite direction.
左右方向中央部に配置された第4扁平中空体(2D)の構成を図9に示す。図9に示すように、第4扁平中空体(2D)を構成する両アルミニウム板(29D)における管部形成用膨出部(35)の頂壁には、頂壁を内側に凹ませることにより上下方向に伸びかつ内方に突出した複数のリブ(39)が前後方向に間隔をおいて形成されている。リブ(39)の突出高さは管部形成用膨出部(35)の突出高さと等しくなっている。また、両アルミニウム板(29D)間には縦長方形の平板状のアルミニウム製セパレートプレート(41)が介在させられており、セパレートプレート(41)の周縁部が両アルミニウム板(29D)の周縁部に挟まれた状態で両アルミニウム板(29D)にろう付されている。また、セパレートプレート(41)には両アルミニウム板(29D)のリブ(39)の先端部がろう付されている。なお、第4扁平中空体(2D)内にはインナーフィンは配置されていない。 FIG. 9 shows the configuration of the fourth flat hollow body (2D) arranged at the center in the left-right direction. As shown in FIG. 9, the top wall of the tube forming bulge portion (35) in both aluminum plates (29D) constituting the fourth flat hollow body (2D) is recessed inwardly. A plurality of ribs (39) extending in the vertical direction and projecting inward are formed at intervals in the front-rear direction. The protruding height of the rib (39) is equal to the protruding height of the tube portion forming bulge portion (35). In addition, a vertical rectangular plate-shaped aluminum separate plate (41) is interposed between both aluminum plates (29D), and the peripheral portion of the separate plate (41) is located at the peripheral portion of both aluminum plates (29D). It is brazed to both aluminum plates (29D) in a sandwiched state. Further, the tip of the rib (39) of both aluminum plates (29D) is brazed to the separate plate (41). In addition, the inner fin is not arrange | positioned in a 4th flat hollow body (2D).
セパレートプレート(41)には第1熱交換部(3)の冷媒入口ヘッダ部(7)と第2熱交換部(4)の第3中間ヘッダ部(9)との間の仕切(22)、第1熱交換部(3)の第1中間ヘッダ部(8)と第2熱交換部(4)の第2中間ヘッダ部(11)との間の仕切(23)、第3熱交換部(5)の第4中間ヘッダ部(12)と第4熱交換部(6)の冷媒出口ヘッダ部(14)との間の仕切(24)、および第3熱交換部(5)の第5中間ヘッダ部(13)と第4熱交換部(6)の第6中間ヘッダ部(15)との間の仕切(25)が設けられている。すなわち、すべての仕切(22)(23)(24)(25)は一体化されている。セパレートプレート(41)における第1中間ヘッダ部(8)と第2中間ヘッダ部(11)との間の仕切(23)、および第5中間ヘッダ部(13)と第6中間ヘッダ部(15)との間の仕切(25)にそれぞれ貫通穴(26)(27)が形成されており、第1中間ヘッダ部(8)と第2中間ヘッダ部(11)、および第5中間ヘッダ部(13)と第6中間ヘッダ部(15)とはそれぞれ貫通穴(26)(27)により通じさせられている。また、セパレートプレート(41)の下端寄りの部分には、2つの貫通穴(26)(27)を通じさせる連通部(42)が貫通状に形成されている。すなわち、貫通穴(26)(27)を有する2つの仕切(23)(25)は一体化されており、2つの貫通穴(26)(27)が、2つの仕切(23)(25)の一体化物に形成された連通部(42)により通じさせられている。セパレートプレート(41)の厚みは0.5〜1.6mmであることが好ましい。セパレートプレート(41)の厚みが0.5mm以上であれば、後述するように、第4熱交換部(6)での熱交換効率を効果的に向上させるのに必要な量の乾き度の比較的低い冷媒を第6中間ヘッダ部(15)に流入させることができるとともに、第5中間ヘッダ部(14)から第6中間ヘッダ部(15)内に流入する冷媒の慣性力を効果的に弱めることが可能になる。しかも、セパレートプレート(41)の厚みが1.6mm以下であれば、第1中間ヘッダ部(8)から第6中間ヘッダ部(15)内に流入する冷媒の量を過剰にすることを防止し、その結果第1中間ヘッダ部(8)から第2中間ヘッダ部(11)に流入する冷媒の量を十分に確保することができる。 The separation plate (41) has a partition (22) between the refrigerant inlet header portion (7) of the first heat exchange portion (3) and the third intermediate header portion (9) of the second heat exchange portion (4), A partition (23) between the first intermediate header portion (8) of the first heat exchange portion (3) and the second intermediate header portion (11) of the second heat exchange portion (4), a third heat exchange portion ( The partition (24) between the fourth intermediate header portion (12) of 5) and the refrigerant outlet header portion (14) of the fourth heat exchange portion (6), and the fifth middle of the third heat exchange portion (5) A partition (25) is provided between the header part (13) and the sixth intermediate header part (15) of the fourth heat exchange part (6). That is, all the partitions (22) (23) (24) (25) are integrated. A partition (23) between the first intermediate header portion (8) and the second intermediate header portion (11) in the separate plate (41), and a fifth intermediate header portion (13) and a sixth intermediate header portion (15). Through holes (26), (27) are respectively formed in the partition (25) between the first intermediate header (8), the second intermediate header (11), and the fifth intermediate header (13). ) And the sixth intermediate header portion (15) are communicated with each other through the through holes (26) and (27). In addition, a communication portion (42) through which the two through holes (26) and (27) are passed is formed in a penetrating manner in a portion near the lower end of the separate plate (41). That is, the two partitions (23) and (25) having the through holes (26) and (27) are integrated, and the two through holes (26) and (27) are integrated into the two partitions (23) and (25). It is made to communicate by the communication part (42) formed in the integrated object. The thickness of the separate plate (41) is preferably 0.5 to 1.6 mm. If the thickness of the separate plate (41) is 0.5 mm or more, as will be described later, a comparison of the amount of dryness necessary to effectively improve the heat exchange efficiency in the fourth heat exchange section (6) Low refrigerant can be caused to flow into the sixth intermediate header portion (15), and the inertial force of the refrigerant flowing from the fifth intermediate header portion (14) into the sixth intermediate header portion (15) can be effectively reduced. It becomes possible. Moreover, if the thickness of the separate plate (41) is 1.6 mm or less, it is possible to prevent the amount of refrigerant flowing from the first intermediate header portion (8) into the sixth intermediate header portion (15) from being excessive. As a result, a sufficient amount of refrigerant flowing from the first intermediate header portion (8) into the second intermediate header portion (11) can be secured.
第4扁平中空体(2D)のその他の構成は、図6に示す第1扁平中空体(2A)と同じであり、第4扁平中空体(2D)のヘッダ形成部(31)(32)と、右側に隣接する第1扁平中空体(2A)のヘッダ形成部(31)(32)および左側に隣接する第2扁平中空体(2B)のヘッダ形成部(31)(32)とは、隣接する第1扁平中空体(2A)の場合と同様にして連通状にろう付されている。 The other configurations of the fourth flat hollow body (2D) are the same as those of the first flat hollow body (2A) shown in FIG. 6, and the header forming portions (31), (32) of the fourth flat hollow body (2D) The header forming portions (31) and (32) of the first flat hollow body (2A) adjacent to the right side and the header forming portions (31) and (32) of the second flat hollow body (2B) adjacent to the left side are adjacent to each other. The first flat hollow body (2A) is brazed in the same manner as in the case of the first flat hollow body (2A).
冷媒入口ヘッダ部(7)と第1中間ヘッダ部(8)、および第2中間ヘッダ部(11)と第3中間ヘッダ部(9)とがそれぞれ扁平中空体(2A)(2B)(2C)(2D)の前側の冷媒流通管部(16)により連通させられ、冷媒出口ヘッダ部(14)と第6中間ヘッダ部(15)、および第4中間ヘッダ部(12)と第5中間ヘッダ部(13)とがそれぞれ扁平中空体(2A)(2B)(2C)(2D)の後側の冷媒流通管部(17)により連通させられている。また、第3中間ヘッダ部(9)と第4中間ヘッダ部(12)とが第2扁平中空体(2B)に形成された連通路(28)を介して連通させられている。 The refrigerant inlet header portion (7) and the first intermediate header portion (8), and the second intermediate header portion (11) and the third intermediate header portion (9) are respectively flat hollow bodies (2A) (2B) (2C). (2D) front refrigerant flow pipe part (16) is connected, refrigerant outlet header part (14) and sixth intermediate header part (15), fourth intermediate header part (12) and fifth intermediate header part (13) are communicated with each other by a refrigerant flow pipe section (17) on the rear side of the flat hollow bodies (2A), (2B), (2C), and (2D). Moreover, the 3rd intermediate header part (9) and the 4th intermediate header part (12) are connected via the communicating path (28) formed in the 2nd flat hollow body (2B).
エバポレータ(1)は、各構成部材を組み合わせて仮止めし、すべての構成部材を一括してろう付することにより製造される。 The evaporator (1) is manufactured by temporarily fastening a combination of the constituent members and brazing all the constituent members together.
エバポレータ(1)は、車両、たとえば自動車の車室内に配置されたケース内に収納され、圧縮機およびコンデンサとともに冷凍サイクルを構成し、カーエアコンとして用いられる。 The evaporator (1) is housed in a case disposed in a vehicle interior of a vehicle, for example, an automobile, constitutes a refrigeration cycle together with a compressor and a condenser, and is used as a car air conditioner.
上述したエバポレータ(1)において、図10に示すように、圧縮機、凝縮器および膨張弁(減圧手段)を通過した気液混相の2相冷媒が、入口管からパイプジョイントプレート(21)の冷媒流入口(21a)および冷媒入口(18)を通って冷媒入口ヘッダ部(7)内に入る。冷媒入口ヘッダ部(7)内に流入した冷媒は、冷媒入口ヘッダ部(7)内を左方に流れる間に分流して冷媒入口ヘッダ部(7)に通じる前側冷媒流通管部(16)内に流入し、冷媒流通管部(16)内を下方に流れて第1中間ヘッダ部(8)内に入って合流し、第1中間ヘッダ部(8)内を左方に流れ、貫通穴(26)を通って第2中間ヘッダ部(11)内に入る。これと同時に、第1中間ヘッダ部(8)内の冷媒は、貫通穴(26)および連通部(42)を通って後方に流れ、貫通穴(27)に至る。 In the above-described evaporator (1), as shown in FIG. 10, the gas-liquid mixed phase two-phase refrigerant that has passed through the compressor, the condenser, and the expansion valve (decompression means) is supplied from the inlet pipe to the pipe joint plate (21). The refrigerant enters the refrigerant inlet header (7) through the inlet (21a) and the refrigerant inlet (18). The refrigerant that has flowed into the refrigerant inlet header (7) is divided in the refrigerant inlet header (7) while flowing to the left, and communicates with the refrigerant inlet header (7) in the front refrigerant flow pipe (16). Flows into the refrigerant flow pipe part (16), enters the first intermediate header part (8) and merges, flows to the left in the first intermediate header part (8), and passes through ( 26) through the second intermediate header (11). At the same time, the refrigerant in the first intermediate header portion (8) flows backward through the through hole (26) and the communication portion (42) and reaches the through hole (27).
第2中間ヘッダ部(11)内に流入した冷媒は、第2中間ヘッダ部(11)内を左方に流れる間に分流して第2中間ヘッダ部(11)に通じる前側冷媒流通管部(16)内に流入し、冷媒流通管部(16)内を上方に流れて第3中間ヘッダ部(9)内に入る。第3中間ヘッダ部(9)内に流入した冷媒は、第2扁平中空体(2B)の連通路(28)を通って第4中間ヘッダ部(12)内に入り、第4中間ヘッダ部(12)に通じる後側冷媒流通管部(17)内に流入し、冷媒流通管部(17)内を下方に流れて第5中間ヘッダ部(13)内に入って合流する。第5中間ヘッダ部(13)内に入った冷媒は、第5中間ヘッダ部(13)内を右方に流れ、貫通穴(27)を通って第6中間ヘッダ部(15)内に入る。このとき、第1中間ヘッダ部(8)から貫通穴(26)および連通部(42)を通って貫通穴(27)側に流れた乾き度の低い冷媒も第6中間ヘッダ部(15)内に入る。 The refrigerant that has flowed into the second intermediate header portion (11) is diverted while flowing to the left in the second intermediate header portion (11), and leads to the second intermediate header portion (11). 16) flows into the refrigerant flow pipe part (16) and enters the third intermediate header part (9). The refrigerant that has flowed into the third intermediate header portion (9) passes through the communication path (28) of the second flat hollow body (2B) and enters the fourth intermediate header portion (12). The refrigerant flows into the rear refrigerant flow pipe portion (17) leading to 12), flows downward in the refrigerant flow pipe portion (17), enters the fifth intermediate header portion (13), and merges. The refrigerant that has entered the fifth intermediate header portion (13) flows to the right in the fifth intermediate header portion (13), passes through the through hole (27), and enters the sixth intermediate header portion (15). At this time, the low dryness refrigerant flowing from the first intermediate header portion (8) through the through hole (26) and the communication portion (42) to the through hole (27) side is also in the sixth intermediate header portion (15). to go into.
第6中間ヘッダ部(15)内に入った冷媒は、第6中間ヘッダ部(15)内を右方に流れる間に分流して第6中間ヘッダ部(15)に通じる後側冷媒流通管部(17)内に流入し、冷媒流通管部(17)内を上方に流れて冷媒出口ヘッダ部(14)内に入る。冷媒出口ヘッダ部(14)内に流入した冷媒は、冷媒出口(19)およびパイプジョイントプレート(21)の冷媒流出口(21b)を通って出口管に入り、出口管から送り出される。そして、扁平中空体(2A)(2B)(2C)(2D)の冷媒流通管部(16)(17)を流れる間に、通風間隙を図1および図10に矢印Xで示す方向に流れる空気と熱交換をし、気相となって流出する。 The refrigerant that has entered the sixth intermediate header portion (15) is branched while flowing to the right in the sixth intermediate header portion (15), and is then led to the sixth intermediate header portion (15). (17) flows into the refrigerant flow pipe part (17) and enters the refrigerant outlet header part (14). The refrigerant flowing into the refrigerant outlet header (14) enters the outlet pipe through the refrigerant outlet (19) and the refrigerant outlet (21b) of the pipe joint plate (21), and is sent out from the outlet pipe. Air flowing in the direction indicated by the arrow X in FIGS. 1 and 10 while flowing through the refrigerant flow pipe portions (16), (17) of the flat hollow bodies (2A), (2B), (2C), (2D). Heat exchange with the gas and flow out as a gas phase.
ここで、第6中間ヘッダ部(15)内には、第1中間ヘッダ部(8)内の乾き度の比較的低い冷媒も流入しているので、第4熱交換部(6)での熱交換効率が向上する。また、第1中間ヘッダ部(8)から貫通穴(26)および連通部(42)を通って貫通穴(27)側に流れて第6中間ヘッダ部(15)内に流入する冷媒の流れによって、第5中間ヘッダ部(14)から第6中間ヘッダ部(15)内に流入する冷媒の慣性力が弱められるので、冷媒は、第4熱交換部(6)の第6中間ヘッダ部(15)の奥側(右側)に流れ難くなり、第4熱交換部の(6)全ての冷媒流通管部(17)のうち第3熱交換部(5)から遠くに位置する冷媒流通管部(17)内に流入する冷媒量が低減されるとともに、同じく第3熱交換部(5)側の冷媒流通管部(17)内に流入する冷媒量が増加する。したがって、第4熱交換部(6)の全冷媒流通管部(17)への冷媒の分流が均一化され、エバポレータ81)を通過してきた空気の温度である吐気温度が、左右方向に均一になる。 Here, since the refrigerant having a relatively low dryness in the first intermediate header portion (8) also flows into the sixth intermediate header portion (15), the heat in the fourth heat exchange portion (6). Exchange efficiency is improved. Further, the refrigerant flows from the first intermediate header portion (8) through the through hole (26) and the communication portion (42) toward the through hole (27) and flows into the sixth intermediate header portion (15). Since the inertial force of the refrigerant flowing into the sixth intermediate header portion (15) from the fifth intermediate header portion (14) is weakened, the refrigerant is the sixth intermediate header portion (15 of the fourth heat exchange portion (6)). ) And the refrigerant flow pipe part (6) of the fourth heat exchange part located far from the third heat exchange part (5) among all the refrigerant flow pipe parts (17) 17) The amount of refrigerant flowing into the refrigerant is reduced, and the amount of refrigerant flowing into the refrigerant flow pipe section (17) on the third heat exchange section (5) side is increased. Therefore, the flow of the refrigerant to all the refrigerant flow pipe parts (17) of the fourth heat exchange part (6) is made uniform, and the exhalation temperature, which is the temperature of the air passing through the evaporator 81), is made uniform in the left-right direction. Become.
この発明による積層型熱交換器は、カーエアコンを構成する冷凍サイクルのエバポレータとして好適に用いられる。 The laminated heat exchanger according to the present invention is suitably used as an evaporator of a refrigeration cycle constituting a car air conditioner.
(1):エバポレータ
(2A)(2B)(2C)(2D):扁平中空体
(3)(4)(5)(6):熱交換部
(7):冷媒入口ヘッダ部
(8)(9)(11)(12)(13)(15):中間ヘッダ部
(14):冷媒出口ヘッダ部
(16)(17):冷媒流通管部
(22)(23)(24)(25):仕切
(26)(27):貫通穴
(31)(32):ヘッダ形成部
(41):セパレートプレート
(42):連通部
(1): Evaporator
(2A) (2B) (2C) (2D): Flat hollow body
(3) (4) (5) (6): Heat exchanger
(7): Refrigerant inlet header
(8) (9) (11) (12) (13) (15): Intermediate header
(14): Refrigerant outlet header
(16) (17): Refrigerant distribution pipe
(22) (23) (24) (25): Partition
(26) (27): Through hole
(31) (32): Header forming part
(41): Separate plate
(42): Communication part
Claims (3)
第1熱交換部の2つのヘッダ部および最終熱交換部の2つのヘッダ部と、第1熱交換部の冷媒流れ方向下流側に隣接した第2熱交換部の2つのヘッダ部および最終熱交換部の冷媒流れ方向上流側に隣接した最終から2番目の熱交換部の2つのヘッダ部との間にそれぞれ仕切が設けられ、これらの仕切が扁平中空体の両金属板間に配置されており、第1熱交換部の第1中間ヘッダ部と第1中間ヘッダ部の長手方向の一端部に並んだ第2熱交換部の中間ヘッダ部とが仕切に形成された貫通穴により通じさせられ、最終熱交換部の最終中間ヘッダ部と最終中間ヘッダ部の長手方向一端部に並んだ最終から2番目の熱交換部の中間ヘッダ部とが仕切に形成された貫通穴により通じさせられ、貫通穴を有する前記2つの仕切が一体化され、前記2つの貫通穴が、前記2つの仕切の一体化物に形成された連通部により通じさせられている積層型熱交換器。 Two refrigerant distribution pipe sections and two refrigerant distribution pipe sections, which are composed of two vertically long metal plates whose peripheral portions are joined to each other and extend between the two metal plates and spaced in the ventilation direction. A plurality of flat hollow bodies provided with header forming portions provided continuously at both upper and lower ends are formed by stacking and joining header forming portions of adjacent flat hollow bodies. A plurality of heat exchanging sections each composed of two header sections provided at intervals in the vertical direction and a plurality of refrigerant flow pipe sections provided between the upper and lower header sections are arranged in the same number on the leeward side and the windward side. All the heat exchanging parts are connected in series so that the refrigerant flows through all the heat exchanging parts sequentially, and the first heat exchanging part on the most upstream side in the refrigerant flow direction and the final heat exchanging part on the most downstream side are provided. , So that the former comes to the leeward side Provided side by side in the wind direction, one header part of the first heat exchange part becomes the refrigerant inlet header part, and the other header part becomes the first intermediate header part, and the refrigerant inlet header part in the final heat exchange part While the header portion arranged on the windward side becomes the refrigerant outlet header portion, the header portion arranged on the windward side of the first intermediate header portion is a stacked heat exchanger that is the final intermediate header portion,
Two header sections of the first heat exchange section and two header sections of the final heat exchange section, two header sections of the second heat exchange section adjacent to the first heat exchange section on the downstream side in the refrigerant flow direction, and final heat exchange Partitions are provided between the two header parts of the second heat exchange part from the last adjacent to the upstream side of the refrigerant flow direction, and these partitions are arranged between the two metal plates of the flat hollow body. The first intermediate header portion of the first heat exchange portion and the intermediate header portion of the second heat exchange portion arranged at one end portion in the longitudinal direction of the first intermediate header portion are communicated by a through hole formed in the partition, The final intermediate header part of the final heat exchange part and the intermediate header part of the second heat exchange part from the last arranged at one end in the longitudinal direction of the final intermediate header part are communicated by a through hole formed in the partition, and the through hole The two partitions having Holes, laminated heat exchanger that is vented by the communication portion formed in the monolith of the two divider.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011161818A JP2013024517A (en) | 2011-07-25 | 2011-07-25 | Laminated heat exchanger |
CN 201220363505 CN202692754U (en) | 2011-07-25 | 2012-07-24 | Stacked type heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011161818A JP2013024517A (en) | 2011-07-25 | 2011-07-25 | Laminated heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013024517A true JP2013024517A (en) | 2013-02-04 |
Family
ID=47548362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011161818A Pending JP2013024517A (en) | 2011-07-25 | 2011-07-25 | Laminated heat exchanger |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2013024517A (en) |
CN (1) | CN202692754U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016008807A (en) * | 2014-06-26 | 2016-01-18 | 株式会社ケーヒン・サーマル・テクノロジー | Heat exchanging device |
CN105758220A (en) * | 2016-04-19 | 2016-07-13 | 上海浪超电子电器有限公司太仓分公司 | Radiator with self-cleaning and automatic-adjusting functions |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103105008B (en) * | 2013-02-20 | 2014-03-12 | 安徽天祥空调科技有限公司 | Solar energy brazing laminating type heat exchanger |
JP6069080B2 (en) * | 2013-04-23 | 2017-01-25 | 株式会社ケーヒン・サーマル・テクノロジー | Evaporator and vehicle air conditioner using the same |
CN104534899A (en) * | 2014-12-26 | 2015-04-22 | 无锡博利达换热器有限公司 | Steam cooler |
CN105135754B (en) * | 2015-09-28 | 2017-06-16 | 江苏宝奥兰空调设备有限公司 | A kind of plate type heat exchanger and refrigeration system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0433886U (en) * | 1990-07-03 | 1992-03-19 | ||
JP2002340442A (en) * | 2001-05-18 | 2002-11-27 | Japan Climate Systems Corp | Heat exchanger |
JP2004162935A (en) * | 2002-11-11 | 2004-06-10 | Japan Climate Systems Corp | Evaporator |
JP2005300021A (en) * | 2004-04-12 | 2005-10-27 | Denso Corp | Heat exchanger |
US20070029075A1 (en) * | 2005-08-04 | 2007-02-08 | Mehendale Sunil S | Hybrid evaporator |
JP2009156532A (en) * | 2007-12-27 | 2009-07-16 | Denso Corp | Heat exchanger |
JP2009180383A (en) * | 2008-01-29 | 2009-08-13 | Showa Denko Kk | Evaporator |
-
2011
- 2011-07-25 JP JP2011161818A patent/JP2013024517A/en active Pending
-
2012
- 2012-07-24 CN CN 201220363505 patent/CN202692754U/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0433886U (en) * | 1990-07-03 | 1992-03-19 | ||
JP2002340442A (en) * | 2001-05-18 | 2002-11-27 | Japan Climate Systems Corp | Heat exchanger |
JP2004162935A (en) * | 2002-11-11 | 2004-06-10 | Japan Climate Systems Corp | Evaporator |
JP2005300021A (en) * | 2004-04-12 | 2005-10-27 | Denso Corp | Heat exchanger |
US20070029075A1 (en) * | 2005-08-04 | 2007-02-08 | Mehendale Sunil S | Hybrid evaporator |
JP2009156532A (en) * | 2007-12-27 | 2009-07-16 | Denso Corp | Heat exchanger |
JP2009180383A (en) * | 2008-01-29 | 2009-08-13 | Showa Denko Kk | Evaporator |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016008807A (en) * | 2014-06-26 | 2016-01-18 | 株式会社ケーヒン・サーマル・テクノロジー | Heat exchanging device |
CN105758220A (en) * | 2016-04-19 | 2016-07-13 | 上海浪超电子电器有限公司太仓分公司 | Radiator with self-cleaning and automatic-adjusting functions |
Also Published As
Publication number | Publication date |
---|---|
CN202692754U (en) | 2013-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5693346B2 (en) | Evaporator | |
JP4734021B2 (en) | Heat exchanger | |
JP2013024517A (en) | Laminated heat exchanger | |
JP5759762B2 (en) | Evaporator | |
JP5852811B2 (en) | Heat exchanger | |
JP2010197019A (en) | Evaporator | |
JP2013044504A5 (en) | ||
US10408510B2 (en) | Evaporator | |
JP2012197974A5 (en) | ||
JP2013213636A (en) | Heat exchanger and method of manufacturing the same | |
JP5636215B2 (en) | Evaporator | |
JP5990402B2 (en) | Heat exchanger | |
JP2011257111A5 (en) | ||
JP2006105581A (en) | Laminated heat exchanger | |
JP6785137B2 (en) | Evaporator | |
JP5736164B2 (en) | Evaporator | |
JP5140803B2 (en) | Heat exchanger and manufacturing method thereof | |
JP5674376B2 (en) | Evaporator | |
JP5238421B2 (en) | Heat exchanger | |
JP2009180383A (en) | Evaporator | |
JP5525805B2 (en) | Heat exchanger | |
JP5631059B2 (en) | Heat exchanger | |
JP6286294B2 (en) | Heat exchanger | |
JP5514611B2 (en) | Heat exchanger and manufacturing method thereof | |
JP5124817B2 (en) | Heat exchanger and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140716 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150320 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150324 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150721 |