JP2013012381A - Fuel cell cogeneration system - Google Patents
Fuel cell cogeneration system Download PDFInfo
- Publication number
- JP2013012381A JP2013012381A JP2011143988A JP2011143988A JP2013012381A JP 2013012381 A JP2013012381 A JP 2013012381A JP 2011143988 A JP2011143988 A JP 2011143988A JP 2011143988 A JP2011143988 A JP 2011143988A JP 2013012381 A JP2013012381 A JP 2013012381A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- water
- passage
- passage portion
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 72
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 642
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 56
- 238000010248 power generation Methods 0.000 claims abstract description 38
- 238000011084 recovery Methods 0.000 claims description 19
- 239000012535 impurity Substances 0.000 claims description 6
- 239000008399 tap water Substances 0.000 abstract description 3
- 235000020679 tap water Nutrition 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 36
- 230000037452 priming Effects 0.000 description 19
- 239000002737 fuel gas Substances 0.000 description 16
- 238000002407 reforming Methods 0.000 description 13
- 238000002156 mixing Methods 0.000 description 11
- 238000002485 combustion reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000010763 heavy fuel oil Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
本発明は燃料電池コージェネレーションシステムに関し、燃料電池セルスタックから発生する排気ガス中に含まれる水蒸気から改質用の水を回収する構成において、特に貯湯槽内の湯水を循環させて改質用の水を回収するようにした燃料電池コージェネレーションシステムに関する。 TECHNICAL FIELD The present invention relates to a fuel cell cogeneration system, and in a configuration for recovering reforming water from water vapor contained in exhaust gas generated from a fuel cell stack, particularly for reforming by circulating hot water in a hot water tank. The present invention relates to a fuel cell cogeneration system that collects water.
従来、空気と改質燃料ガス(水素含有ガス)とを燃料電池セルスタックに供給することで電力を発生させ、この発電の際に副次的に発生する熱を湯水として回収する燃料電池コージェネレーションシステムが実用に供されている。従来の燃料電池コージェネレーションシステムは、発電を行なう発電ユニットと、熱交換後の湯水を貯湯する貯湯槽を有する貯湯ユニットと、発電ユニットと貯湯ユニットとの間に湯水を循環させる湯水循環通路であって湯水を冷却する為のラジエータが設けられた湯水循環通路等を備えている。 Conventionally, a fuel cell cogeneration system that generates electric power by supplying air and reformed fuel gas (hydrogen-containing gas) to the fuel cell stack, and recovers the secondary heat generated during this power generation as hot water The system is in practical use. A conventional fuel cell cogeneration system has a power generation unit for generating power, a hot water storage unit having a hot water storage tank for storing hot water after heat exchange, and a hot water circulation passage for circulating hot water between the power generation unit and the hot water storage unit. And a hot water circulation passage provided with a radiator for cooling the hot water.
ここで、上記の発電ユニットは、一般に、空気と改質燃料ガスとで発電を行なう燃料電池セルスタックと、この燃料電池セルスタックに供給する改質燃料ガスを水と天然ガス等の燃料ガスから生成する改質器と、前記燃料電池セルスタックからの排気ガスと貯湯槽の湯水との間で熱交換する熱交換器と、前記改質器に供給する水を貯留する貯留タンク等を備えている。 Here, the power generation unit generally includes a fuel cell stack that generates power using air and reformed fuel gas, and the reformed fuel gas supplied to the fuel cell stack from water and a fuel gas such as natural gas. A reformer to be generated, a heat exchanger for exchanging heat between exhaust gas from the fuel cell stack and hot water in a hot water tank, a storage tank for storing water to be supplied to the reformer, and the like Yes.
ところで、燃料電池コージェネレーションシステムにおいて、上記の改質器に供給される改質用の水を供給する手段として、熱交換器で排気ガスと貯湯槽の湯水との間で熱交換を行ない、その際に発生する凝縮水を回収して改質用の水として再利用する方法が採用されている。この方法を採用することで、改質用の水を外部から供給する必要のない、所謂水自立システムが成立する。 By the way, in the fuel cell cogeneration system, as means for supplying the reforming water supplied to the reformer, heat exchange is performed between the exhaust gas and the hot water in the hot water tank using a heat exchanger. A method has been adopted in which condensed water generated at the time is recovered and reused as reforming water. By adopting this method, a so-called water self-supporting system that does not need to supply water for reforming from the outside is established.
しかし、貯湯槽から湯水循環通路を介して熱交換器へ流れる湯水の温度は、貯湯槽の蓄熱状況により上昇し、やがて、貯湯槽が満蓄状態となり、湯水循環通路を循環する湯水が熱交換器における露点以上の温度に達する。すると、熱交換器で発生する凝縮水の量が減少して十分な量の凝縮水を回収できなくなり、改質用の水の供給が不足する。 However, the temperature of the hot water flowing from the hot water tank to the heat exchanger via the hot water circulation passage rises due to the heat storage condition of the hot water tank, and eventually the hot water tank becomes full, and the hot water circulating through the hot water circulation passage is heat exchanged. Reaches a temperature above the dew point in the vessel. As a result, the amount of condensed water generated in the heat exchanger decreases and a sufficient amount of condensed water cannot be recovered, and the supply of reforming water becomes insufficient.
このような場合には、通常、前記ラジエータを作動することによって、熱交換器へ供給される湯水の温度を低下させて凝縮水を回収している。
特許文献1には、満蓄状態になった場合に、満蓄状態の貯湯槽の湯水の一部を排出して低温の上水を貯湯槽に補給することで貯湯槽内の湯水の温度を低下させ、この低下させた湯水を、湯水循環通路に循環させて凝縮水を回収することにより、ラジエータを省略可能にした構成も開示されている。
In such a case, normally, by operating the radiator, the temperature of the hot water supplied to the heat exchanger is lowered to recover the condensed water.
In Patent Document 1, when the full storage state is reached, the temperature of the hot water in the hot water tank is determined by discharging a part of the hot water in the hot water storage tank and supplying low temperature clean water to the hot water tank. There is also disclosed a configuration in which the radiator can be omitted by circulating the reduced hot water in the hot water circulation passage and collecting the condensed water.
しかし、上記特許文献1における、満蓄状態となった貯湯槽内の湯水の一部を外部に排出し、低温の上水を補給して湯水の温度を低下させる技術は、貯湯槽から湯水を急に出湯する場合に対応できない虞がある。つまり、出湯時に湯水の温度が不足している場合、補助給湯器等で再度加熱する必要があり、無駄なコストが発生してしまう。 However, the technique of discharging a part of hot water in a hot water storage tank in the above-mentioned Patent Document 1 to the outside and supplying low temperature clean water to lower the temperature of the hot water, There is a possibility that it may not be possible to take out hot water suddenly. That is, when the temperature of hot water is insufficient at the time of hot water discharge, it is necessary to heat again with an auxiliary water heater or the like, resulting in useless costs.
一方、前記ラジエータを備えている場合には、上記のような問題は生じない。しかし、一般にラジエータは複雑な構造で高価なものであるから、湯水循環通路にラジエータを設けることは、製作コストの低減及び装置の小型化を図る上で不利である。 On the other hand, when the radiator is provided, the above problem does not occur. However, since a radiator is generally complicated and expensive, it is disadvantageous to provide a radiator in the hot water circulation passage in order to reduce manufacturing costs and downsize the apparatus.
さらに、燃料電池コージェネレーションシステムにおいて、発電ユニット(又は貯湯ユニット)内に湯水循環通路内の湯水を循環させる循環ポンプが設けられるが、一般に湯水循環通路は閉回路に構成されるので、前記循環ポンプへの呼び水を行う場合や運転開始時の水張りを行なう場合、マニュアル操作でバルブ等の開閉操作を手順通り実行しなければならず、運転開始時に非常に手間がかかるという問題がある。 Furthermore, in the fuel cell cogeneration system, a circulation pump for circulating hot water in the hot water circulation passage is provided in the power generation unit (or hot water storage unit). Generally, the hot water circulation passage is configured in a closed circuit, so the circulation pump When priming water or filling with water at the start of operation, there is a problem in that it is necessary to manually open and close valves and the like according to the procedure, which is very troublesome at the start of operation.
本発明の目的は、満蓄状態となった貯湯槽の湯水を湯水循環通路に循環させずに、上水を利用して燃料電池セルスタックからの排気ガス中に含まれる水蒸気から水を回収することができる燃料電池コージェネレーションシステムを提供すること、湯水循環通路の循環ポンプへの呼び水や運転開始時の水張りを容易に行え且つ製作コストや運転コストを低減可能な燃料電池コージェネレーションシステムを提供すること等である。 An object of the present invention is to recover water from water vapor contained in exhaust gas from a fuel cell stack by using tap water without circulating hot water in a hot water storage tank that has been fully stored in a hot water circulation passage. To provide a fuel cell cogeneration system that can perform the priming to the circulation pump of the hot water circulation passage and water filling at the start of operation, and to reduce the production cost and operation cost And so on.
請求項1の燃料電池コージェネレーションシステムは、燃料電池発電部から排出される排気ガス中に含まれる水蒸気を凝縮して回収する水回収手段と、この水回収手段が回収した凝縮水の不純物を取り除く水処理手段と、この水処理手段により処理された水を貯留する貯留タンクと、この貯留タンク内の水を燃料電池発電部へ供給する水供給手段と、湯水を貯湯する貯湯槽と、前記水回収手段の熱交換通路部を含む排熱回収用の湯水循環通路であって前記貯湯槽内の湯水を循環させて前記水蒸気の凝縮を行う湯水循環通路とを備えた燃料電池コージェネレーションシステムにおいて、前記湯水循環通路のうちの前記水回収手段の熱交換通路部より下流側且つ前記貯湯槽より上流側において、前記湯水循環通路から外部へ分岐する分岐通路部を設け、前記貯湯槽内の湯温が所定の設定温度以上且つ前記貯留タンク内の水が所定の設定水位に低下時には、前記貯湯槽への湯水の循環を停止して前記分岐通路部を開放することによって、前記湯水循環通路から湯水を排水するとともに、前記湯水循環通路に接続された入水通路から低温の上水を導入することを特徴としている。 The fuel cell cogeneration system according to claim 1 removes impurities of the condensed water recovered by the water recovery means that condenses and recovers water vapor contained in the exhaust gas discharged from the fuel cell power generation unit. A water treatment means, a storage tank for storing the water treated by the water treatment means, a water supply means for supplying water in the storage tank to the fuel cell power generation unit, a hot water storage tank for storing hot water, and the water In a fuel cell cogeneration system comprising a hot water circulation passage for exhaust heat recovery including a heat exchange passage portion of a recovery means and circulating hot water in the hot water tank to condense the water vapor, A branch passage portion branched from the hot water circulation passage to the outside on the downstream side of the heat exchange passage portion of the water recovery means and the upstream side of the hot water storage tank in the hot water circulation passage. When the hot water temperature in the hot water storage tank is equal to or higher than a predetermined set temperature and the water in the storage tank drops to a predetermined set water level, the hot water circulation to the hot water tank is stopped and the branch passage portion is opened. Thus, hot water is drained from the hot water circulation passage, and low temperature clean water is introduced from an incoming passage connected to the hot water circulation passage.
請求項2の燃料電池コージェネレーションシステムは、請求項1の発明において、前記湯水循環通路から前記分岐通路部が分岐する分岐部に三方弁が設けられ、前記貯湯槽内の湯水を前記湯水循環通路に循環させる場合には、前記三方弁を介して前記分岐通路部を閉止して前記湯水循環通路を循環状態にし、前記分岐通路部を開放する場合には、前記三方弁を介して前記分岐通路部を開放し且つ前記貯湯槽への湯水の循環を停止することを特徴としている。 A fuel cell cogeneration system according to a second aspect is the invention according to the first aspect, wherein a three-way valve is provided at a branch portion where the branch passage portion branches from the hot water circulation passage, and the hot water in the hot water storage tank is supplied to the hot water circulation passage. When the circulation passage is closed, the branch passage portion is closed through the three-way valve to bring the hot water circulation passage into a circulation state, and when the branch passage portion is opened, the branch passage is passed through the three-way valve. And the circulation of hot water to the hot water tank is stopped.
請求項3の燃料電池コージェネレーションシステムは、請求項2の発明において、前記分岐通路部に開閉弁が設けられ、前記三方弁と前記開閉弁との間において前記分岐通路部から分岐して前記湯水循環通路の熱交換通路部より上流側に接続されたバイパス通路が設けられ、前記分岐通路部を開放する場合には、前記開閉弁を開弁状態にし、前記湯水循環通路内の湯水と前記入水通路からの上水を前記バイパス通路を介して混合して排水することを特徴としている。 According to a third aspect of the present invention, there is provided the fuel cell cogeneration system according to the second aspect, wherein an opening / closing valve is provided in the branch passage portion, and the hot water is branched from the branch passage portion between the three-way valve and the opening / closing valve. A bypass passage connected upstream of the heat exchange passage portion of the circulation passage is provided, and when the branch passage portion is opened, the on-off valve is opened, and the hot water in the hot water circulation passage and the inlet are opened. It is characterized by mixing and draining the clean water from the water passage through the bypass passage.
請求項4の燃料電池コージェネレーションシステムは、請求項3の発明において、前記分岐通路部の開放後に、前記湯水循環通路内の湯水が所定の設定温度以下になった場合、前記開閉弁を閉弁状態にするとともに前記入水通路からの上水の導入を停止して、前記バイパス通路を介して湯水を前記熱交換通路部に循環させることを特徴としている。 A fuel cell cogeneration system according to a fourth aspect of the present invention is the fuel cell cogeneration system according to the third aspect, wherein the on-off valve is closed when the hot water in the hot water circulation passage becomes a predetermined set temperature or less after the branch passage portion is opened. It is characterized by stopping the introduction of clean water from the water intake passage and circulating hot water to the heat exchange passage portion through the bypass passage.
請求項1の発明によれば、湯水循環通路のうちの水回収手段の熱交換通路部より下流側且つ貯湯槽より上流側において、湯水循環通路から外部へ分岐する分岐通路部を設け、前記貯湯槽内の湯温が所定の設定温度以上且つ前記貯留タンク内の水が所定の設定水位に低下時には、貯湯槽への湯水の循環を停止して分岐通路部を開放することによって、湯水循環通路から湯水を排水するとともに、湯水循環通路に接続された入水通路から低温の上水を導入するので、貯湯槽が満蓄状態になった場合でも貯湯槽内の湯水を排水せずに維持したまま、熱交換器において低温の上水と排気ガスとの間で熱交換することで、排気ガスから凝縮水を容易に回収することができる。従って、高価なラジエータを設ける必要もなく、出湯時に貯湯槽内の湯水を再加熱する必要もないので、燃料電池コージェネレーションシステムの小型化を図り、製作コストや運転コストを低減することができる。 According to the first aspect of the present invention, a branch passage portion that branches from the hot water circulation passage to the outside is provided downstream of the heat exchange passage portion of the water recovery means in the hot water circulation passage and upstream of the hot water storage tank. When the hot water temperature in the tank is equal to or higher than a predetermined set temperature and the water in the storage tank is lowered to the predetermined set water level, the hot water circulation to the hot water tank is stopped and the branch passage section is opened to open the hot water circulation path. In addition to draining hot water from the hot water, low-temperature clean water is introduced from the water passage connected to the hot water circulation passage, so that the hot water in the hot water tank is maintained without draining even when the hot water tank is full. The heat exchange between the low temperature clean water and the exhaust gas in the heat exchanger makes it possible to easily recover the condensed water from the exhaust gas. Therefore, it is not necessary to provide an expensive radiator and it is not necessary to reheat the hot water in the hot water storage tank at the time of hot water, so that the fuel cell cogeneration system can be downsized, and the manufacturing cost and the operating cost can be reduced.
請求項2の発明によれば、三方弁を介して分岐通路部を開放すると、給水から導入される上水は、湯水循環通路の上流側を流れ、熱交換器の熱交換通路部を経て湯水循環通路の下流側を流れ、分岐通路部から外部に排出されるので、湯水循環通路の循環ポンプへの呼び水を容易に行なえ、運転初期の操作を簡略化できる。また、ユーザーの都合により長期不在時の水抜き後の運転開始時の水張りを、システム起動が専用のメンテナンス員がいなくても、ユーザー自身が容易に行える。 According to the second aspect of the present invention, when the branch passage portion is opened via the three-way valve, the clean water introduced from the water supply flows upstream of the hot water circulation passage and passes through the heat exchange passage portion of the heat exchanger. Since it flows downstream from the circulation passage and is discharged to the outside from the branch passage portion, priming water to the circulation pump of the hot water circulation passage can be easily performed, and the operation at the initial stage of operation can be simplified. In addition, for the convenience of the user, water filling at the start of operation after draining in the absence of a long period of time can be easily performed by the user himself / herself even if there is no dedicated maintenance staff for system startup.
請求項3の発明によれば、バイパス通路を介して湯水と上水を混合させて排出することができるので、湯水循環通路内から高温の湯水を直接外部に排出することを防止し、高温の湯水を排出することに伴う危険を回避することができる。また、高温の湯水の直接排水を防止するので、耐久性の高い排水配管を必要とせず、製作コストを低減することができる。 According to the invention of claim 3, since hot water and clean water can be mixed and discharged through the bypass passage, high temperature hot water is prevented from being discharged directly from the hot water circulation passage to The danger associated with discharging hot water can be avoided. Moreover, since direct drainage of high-temperature hot water is prevented, a highly durable drain pipe is not required, and the manufacturing cost can be reduced.
請求項4の発明によれば、分岐通路部の開放後に、湯水循環通路内の湯水が所定の温度以下になった場合、開閉弁を閉弁状態にするとともに入水通路からの上水の導入を停止して、バイパス通路を介して湯水を熱交換通路部に循環させるので、低温の上水を有効に活用して上水の無駄をなくし、運転コストを低減することができる。 According to the invention of claim 4, when the hot water in the hot water circulation passage becomes a predetermined temperature or less after the branch passage portion is opened, the open / close valve is closed and the introduction of clean water from the water inlet passage is performed. Since the hot water is circulated to the heat exchange passage through the bypass passage, low temperature clean water can be effectively used to eliminate waste of the clean water and reduce the operating cost.
以下、本発明を実施するための形態について実施例に基づいて説明する。 Hereinafter, modes for carrying out the present invention will be described based on examples.
先ず、燃料電池コージェネレーションシステム1の全体構成について説明する。
図1〜図3に示すように、燃料電池コージェネレーションシステム1は、発電を行なう発電ユニット2と、熱交換後の湯水を貯湯する貯湯槽31を有する貯湯ユニット3と、これらのユニット2,3間に湯水を循環させる為の湯水循環配管4等から構成されている。
First, the overall configuration of the fuel cell cogeneration system 1 will be described.
As shown in FIGS. 1 to 3, the fuel cell cogeneration system 1 includes a power generation unit 2 that generates power, a hot water storage unit 3 that has a hot water storage tank 31 that stores hot water after heat exchange, and these units 2 and 3. It consists of a hot water circulation pipe 4 for circulating hot water between them.
次に、発電ユニット2について説明する。
図1に示すように、発電ユニット2は、発電モジュール5と、カソード空気ブロア6と、燃料ガス昇圧ブロア7と、燃料改質空気ブロア8と、排気ガス排出通路9と、熱交換器11と、水処理装置12と、インバータ13等から構成されている。発電モジュール5にて発電された直流電力は、インバータ13を介して交流電力に変換されて外部に出力される。
Next, the power generation unit 2 will be described.
As shown in FIG. 1, the power generation unit 2 includes a power generation module 5, a cathode air blower 6, a fuel gas booster blower 7, a fuel reforming air blower 8, an exhaust gas discharge passage 9, a heat exchanger 11, The water treatment device 12 and the inverter 13 are included. The DC power generated by the power generation module 5 is converted into AC power via the inverter 13 and output to the outside.
次に、発電モジュール5について説明する。
発電モジュール5(燃料電池発電部に相当する)は、燃料電池セルスタック14と、蒸発器15と、燃料改質器16と、オフガス燃焼室17等を備え、燃料改質器16によって改質された改質燃料ガス及び酸化剤としての空気を燃料電池セルスタック14で化学反応させることで発電を行うものでる。
Next, the power generation module 5 will be described.
The power generation module 5 (corresponding to a fuel cell power generation unit) includes a fuel cell stack 14, an evaporator 15, a fuel reformer 16, an off-gas combustion chamber 17, and the like, and is reformed by the fuel reformer 16. The reformed fuel gas and air as an oxidant are chemically reacted in the fuel cell stack 14 to generate power.
蒸発器15は、燃料ガスに混合する為の水蒸気を生成して燃料改質器16に供給するものである。蒸発器15には、燃料ガス昇圧ブロア7によって取り込まれて昇圧された燃料ガス(天然ガス、都市ガスやプロパン等)と、燃料改質空気ブロア8によって取り込まれた燃料改質用の空気とが、共通供給通路18aを介して供給され、水処理装置12から水供給通路28を介して水が供給され、これらを混合して気化させて、燃料ガスと水蒸気を生成する。 The evaporator 15 generates steam for mixing with fuel gas and supplies it to the fuel reformer 16. In the evaporator 15, fuel gas (natural gas, city gas, propane, etc.) taken in by the fuel gas booster blower 7 and pressurized and fuel reforming air taken in by the fuel reforming air blower 8 are contained. The water is supplied through the common supply passage 18a, and water is supplied from the water treatment device 12 through the water supply passage 28, and these are mixed and vaporized to generate fuel gas and water vapor.
燃料改質器16は、その内部に白金等の改質触媒を備え、蒸発器15から混合供給通路18bを介して供給される燃料ガスと水蒸気とを混合して反応(所謂、水蒸気改質)させて、水素含有ガスを含む改質燃料ガスを生成し、この改質燃料ガスを、改質燃料ガス供給路18cを介して燃料電池セルスタック14の燃料電極側に供給する。 The fuel reformer 16 includes a reforming catalyst such as platinum therein, and mixes the fuel gas supplied from the evaporator 15 via the mixing supply passage 18b with water vapor to react (so-called steam reforming). Thus, a reformed fuel gas containing a hydrogen-containing gas is generated, and this reformed fuel gas is supplied to the fuel electrode side of the fuel cell stack 14 via the reformed fuel gas supply path 18c.
燃料電池セルスタック14は、複数の燃料電池セルを多層に積層して構成されている。各燃料電池セルは、ジルコニア等の固定電解質と燃料電極と酸素電極から夫々形成されている。燃料電池セルスタック14の燃料電極側には、燃料改質器16から改質燃料ガスが供給され、燃料電池セルスタック14の酸素電極側には、カソード空気ブロア6から空気供給通路18dを介して空気が供給され、これらを高温下の環境で電気化学反応させて直流電力を生成する。 The fuel cell stack 14 is configured by stacking a plurality of fuel cells in multiple layers. Each fuel cell is formed of a fixed electrolyte such as zirconia, a fuel electrode, and an oxygen electrode. The reformed fuel gas is supplied from the fuel reformer 16 to the fuel electrode side of the fuel cell stack 14, and the oxygen electrode side of the fuel cell stack 14 is supplied from the cathode air blower 6 through the air supply passage 18d. Air is supplied, and these are electrochemically reacted in a high temperature environment to generate DC power.
オフガス燃焼室17は、燃料電池セルスタック14の発電に伴い生じる残余燃料ガスを処理する為のものであり、燃料電池セルスタック14の燃料電極側及び酸素電極側の各排出側と接続されている。このオフガス燃焼室17には、燃料電極側から排出された残余燃料ガスを含む反応燃料ガスと、酸素電極側から排出された酸素を含む空気とが供給され、これらを公知の燃焼触媒を用いて燃焼させることによって高温の排気ガスを生成し、この排気ガスの中の水蒸気を熱交換器11で凝縮させてから、排気ガス排出通路9を介して外部に排出する。 The off-gas combustion chamber 17 is for processing the residual fuel gas generated with the power generation of the fuel cell stack 14 and is connected to the discharge side of the fuel cell stack 14 on the fuel electrode side and the oxygen electrode side. . The off-gas combustion chamber 17 is supplied with a reaction fuel gas containing residual fuel gas discharged from the fuel electrode side and air containing oxygen discharged from the oxygen electrode side, and these are used using a known combustion catalyst. High-temperature exhaust gas is generated by burning, and water vapor in the exhaust gas is condensed in the heat exchanger 11 and then discharged to the outside through the exhaust gas discharge passage 9.
次に、熱交換器11について説明する。
図1に示すように、熱交換器11(水回収手段に相当する)は、排気ガス排出通路9の内部に設けられ、湯水循環通路4の一部を構成する熱交換通路部11aを備えている。この熱交換器11において、発電モジュール5から排出される排気ガスを、熱交換通路部11aを流れる湯水との間で熱交換させて、排気ガス中に含まれる水蒸気は冷却され凝縮されて凝縮水となる。
Next, the heat exchanger 11 will be described.
As shown in FIG. 1, the heat exchanger 11 (corresponding to water recovery means) is provided inside the exhaust gas discharge passage 9, and includes a heat exchange passage portion 11 a that constitutes a part of the hot water circulation passage 4. Yes. In this heat exchanger 11, the exhaust gas discharged from the power generation module 5 is heat-exchanged with hot water flowing through the heat exchange passage portion 11a, and the water vapor contained in the exhaust gas is cooled and condensed to be condensed water. It becomes.
次に、水処理装置12について説明する。
図2に示すように、水処理装置12は、水処理手段19と、貯留タンク21と、水供給手段22等を備え、熱交換器11にて凝縮された凝縮水を、回収通路23を介して回収し、水処理手段19により不純物を取り除いた水を、水供給通路28を介して発電モジュール5の蒸発器15に供給するものである。
Next, the water treatment device 12 will be described.
As shown in FIG. 2, the water treatment device 12 includes a water treatment means 19, a storage tank 21, a water supply means 22, and the like, and condensate water condensed in the heat exchanger 11 is passed through a recovery passage 23. Then, the water from which impurities are removed by the water treatment means 19 is supplied to the evaporator 15 of the power generation module 5 through the water supply passage 28.
水処理手段19は、熱交換器11から回収した凝縮水の不純物を取り除く為のものであり、処理タンク24を備えている。処理タンク24には、凝縮水に含まれる不純物をイオン交換により除去するイオン交換樹脂が設けられている。処理タンク24の下部に回収通路23が接続される。 The water treatment means 19 is for removing impurities of condensed water collected from the heat exchanger 11 and includes a treatment tank 24. The treatment tank 24 is provided with an ion exchange resin that removes impurities contained in the condensed water by ion exchange. A recovery passage 23 is connected to the lower portion of the processing tank 24.
貯留タンク21は、水処理手段19により処理された水を一時的に貯留する為のものである。貯留タンク21の上部には、処理タンク24の上部と接続するタンク連結通路25と、貯留タンク21内が水で満杯になった場合に外部のドレン排出部27に排出する為の排出通路26とが接続されている。貯留タンク21内には、例えば、貯留タンク21内の1/5程度の高さ位置(所定の設定水位に相当する)に低下した水を検知する水位センサ21aが設けられ、この水位センサ21aが貯留された水の液面を検知すると、通常運転モードから上水導入運転モードに切り換えられる。通常運転モードは、貯湯槽31内の湯水を湯水循環通路4に循環させて熱交換器11で排気ガスと熱交換する運転状態であり、上水導入運転モードは、上水源から低温の上水を導入して熱交換器11で排気ガスと熱交換する運転状態である。 The storage tank 21 is for temporarily storing the water treated by the water treatment means 19. In the upper part of the storage tank 21, a tank connecting passage 25 connected to the upper part of the processing tank 24, and a discharge passage 26 for discharging to the external drain discharge part 27 when the storage tank 21 is filled with water, Is connected. In the storage tank 21, for example, a water level sensor 21 a that detects water that has dropped to a height position of about 1/5 in the storage tank 21 (corresponding to a predetermined set water level) is provided, and the water level sensor 21 a When the liquid level of the stored water is detected, the normal operation mode is switched to the clean water introduction operation mode. The normal operation mode is an operation state in which hot water in the hot water tank 31 is circulated through the hot water circulation passage 4 and heat exchange with the exhaust gas is performed by the heat exchanger 11, and the water supply operation mode is a low temperature water supply from a water source. And the heat exchanger 11 exchanges heat with the exhaust gas.
水供給手段22は、貯留タンク21内の浄化された水を発電モジュール5の蒸発器15へ供給する為のものであり、貯留タンク21の下端部に接続された水供給通路28と、この水供給通路28の途中部に介装された送水ポンプ29とを備え、送水ポンプ29の駆動により、貯留タンク21内の水を、水供給通路28を介して蒸発器15に供給する。 The water supply means 22 is for supplying the purified water in the storage tank 21 to the evaporator 15 of the power generation module 5, the water supply passage 28 connected to the lower end of the storage tank 21, and this water The water supply pump 29 is provided in the middle of the supply passage 28, and the water in the storage tank 21 is supplied to the evaporator 15 through the water supply passage 28 by driving the water supply pump 29.
次に、貯湯ユニット3について説明する。
図3に示すように、貯湯ユニット3は、排気ガスの熱を湯水として蓄熱する為の貯湯槽31、入水通路32、出湯通路33、湯水循環通路4、三方弁35、混合弁36、補助給湯器37等を有する。貯湯槽31は湯水を貯留可能な上下方向に比較的長い断熱性の密閉タンクであり、貯湯槽31内の複数の貯留層の湯水の温度が複数のタンク湯水温度センサ38a〜38dにより検出される。
Next, the hot water storage unit 3 will be described.
As shown in FIG. 3, the hot water storage unit 3 includes a hot water storage tank 31 for storing heat of exhaust gas as hot water, a water inlet passage 32, a hot water passage 33, a hot water circulation passage 4, a three-way valve 35, a mixing valve 36, an auxiliary hot water supply. A container 37 and the like. The hot water storage tank 31 is a heat insulating sealed tank that can store hot water and is relatively long in the vertical direction, and the temperature of hot water in a plurality of reservoirs in the hot water storage tank 31 is detected by a plurality of tank hot water temperature sensors 38a to 38d. .
貯湯槽31の下部には、入水通路32の下流端と湯水循環通路4の上流端とが接続される下部通路部41が接続されている。その貯湯槽31から循環ポンプ39を介して湯水が下部通路部41、湯水循環通路4の往き通路部4aを通り熱交換器11の熱交換通路部11aに送られる。熱交換器11で加熱された温水は上流側戻り通路部4bと下流側戻り通路部4cへ流れる。貯湯槽31の上部には、下流側戻り通路部4cと出湯通路33とが接続されている。貯湯槽31内に貯留された高温の湯水(例えば、80〜90℃)を出湯通路33に供給することができる。 Connected to the lower part of the hot water storage tank 31 is a lower passage portion 41 to which the downstream end of the incoming water passage 32 and the upstream end of the hot water circulation passage 4 are connected. Hot water is sent from the hot water storage tank 31 via the circulation pump 39 to the heat exchange passage 11 a of the heat exchanger 11 through the lower passage 41 and the forward passage 4 a of the hot water circulation passage 4. The hot water heated by the heat exchanger 11 flows to the upstream return passage portion 4b and the downstream return passage portion 4c. A downstream return passage 4 c and a hot water passage 33 are connected to the upper part of the hot water storage tank 31. Hot hot water (for example, 80 to 90 ° C.) stored in the hot water tank 31 can be supplied to the hot water passage 33.
入水通路32は、共通通路部32a、上側通路部32b、下側通路部32cを有する。上側通路部32bの下流端が混合弁36に接続され、下側通路部32cの下流端が下部通路部41に接続されている。共通通路部32aの上流端に上水源(図示略)が接続されている。共通通路部32aに減圧弁42が設けられている。減圧弁42の入口付近の共通通路部32a内の上水の温度が入水温度センサ43により検出される。 The water inlet passage 32 has a common passage portion 32a, an upper passage portion 32b, and a lower passage portion 32c. The downstream end of the upper passage portion 32 b is connected to the mixing valve 36, and the downstream end of the lower passage portion 32 c is connected to the lower passage portion 41. A water source (not shown) is connected to the upstream end of the common passage portion 32a. A pressure reducing valve 42 is provided in the common passage portion 32a. The temperature of clean water in the common passage portion 32 a near the inlet of the pressure reducing valve 42 is detected by the incoming water temperature sensor 43.
湯水循環通路4は、熱交換器11の熱交換通路部11aにより水蒸気と熱交換される湯水が流れる流路であり、往き通路部4a、上流側戻り通路部4b,下流側戻り通路部4cを有する。往き通路部4aの上流端が下部通路部41に接続され、往き通路部4aの下流端が熱交換通路部11aに接続されている。上流側戻り通路部4bの上流端が熱交換通路部11aに接続され、下流端が三方弁35に接続されている。下流側戻り通路部4cの上流端が三方弁35に接続され、下流端が貯湯槽31の上部に接続されている。 The hot water circulation passage 4 is a passage through which hot water is exchanged with water vapor by the heat exchange passage portion 11a of the heat exchanger 11, and the forward passage portion 4a, the upstream return passage portion 4b, and the downstream return passage portion 4c. Have. The upstream end of the forward passage portion 4a is connected to the lower passage portion 41, and the downstream end of the forward passage portion 4a is connected to the heat exchange passage portion 11a. The upstream end of the upstream return passage portion 4 b is connected to the heat exchange passage portion 11 a and the downstream end is connected to the three-way valve 35. The upstream end of the downstream return passage portion 4 c is connected to the three-way valve 35, and the downstream end is connected to the upper part of the hot water storage tank 31.
湯水循環通路4のうちの熱交換器11の熱交換通路部11aより下流側且つ貯湯槽31より上流側において、湯水循環通路4から外部へ分岐する分岐通路部45が設けられている。この分岐通路部45が分岐する分岐部46に三方弁35が設けられている。分岐通路部45の下流端には、ドレン放出部47が設けられている。 In the hot water circulation passage 4, a branch passage portion 45 that branches from the hot water circulation passage 4 to the outside is provided on the downstream side of the heat exchange passage portion 11 a of the heat exchanger 11 and the upstream side of the hot water storage tank 31. A three-way valve 35 is provided at a branch portion 46 where the branch passage portion 45 branches. A drain discharge portion 47 is provided at the downstream end of the branch passage portion 45.
上流側戻り通路部4bの下流端が三方弁35(ポートA)に接続され、分岐通路部45の上流端が三方弁35(ポートB)に接続され、下流側戻り通路部4cの上流端が三方弁35(ポートC)に接続され、この三方弁35により上流側戻り通路部4bが下流側戻り通路部4cと分岐通路部45の何れかに択一的に接続される。 The downstream end of the upstream return passage 4b is connected to the three-way valve 35 (port A), the upstream end of the branch passage 45 is connected to the three-way valve 35 (port B), and the upstream end of the downstream return passage 4c is The three-way valve 35 (port C) is connected, and the three-way valve 35 selectively connects the upstream return passage portion 4b to either the downstream return passage portion 4c or the branch passage portion 45.
通常運転モードにおいて、貯湯槽31内の湯水を湯水循環通路4に循環させる場合には、三方弁35を介して分岐通路部45を閉止して湯水循環通路4を循環状態にする。つまり、三方弁35のポートA−ポートC間を開弁状態にして、上流側戻り通路部4bと下流側戻り通路部4cとを接続する。上水導入運転モードにおいて、分岐通路部45を開放する場合には、三方弁35を介して分岐通路部45を開放し且つ貯湯槽31への湯水の循環を停止する。つまり、三方弁35のポートA−ポートB間を開弁状態にして、上流側戻り通路部4bと分岐通路部45とを接続する。 In the normal operation mode, when the hot water in the hot water storage tank 31 is circulated through the hot water circulation passage 4, the branch passage portion 45 is closed via the three-way valve 35 so that the hot water circulation passage 4 is circulated. That is, the port A and the port C of the three-way valve 35 are opened, and the upstream return passage 4b and the downstream return passage 4c are connected. In the water supply operation mode, when the branch passage 45 is opened, the branch passage 45 is opened via the three-way valve 35 and the circulation of hot water to the hot water tank 31 is stopped. That is, the port A and the port B of the three-way valve 35 are opened, and the upstream return passage 4b and the branch passage 45 are connected.
循環ポンプ39は、湯水循環通路4に湯水を循環させる為のポンプであり、往き通路部4aの発電ユニット2側に設けられている(図1参照)。尚、循環ポンプ39は貯湯ユニット3側に配置しても良い。 The circulation pump 39 is a pump for circulating hot water in the hot water circulation passage 4, and is provided on the power generation unit 2 side of the forward passage portion 4a (see FIG. 1). The circulation pump 39 may be disposed on the hot water storage unit 3 side.
貯湯ユニット3の出口付近(発電ユニット2の入口付近)の往き通路部4a内の湯水の温度が、入口湯水温度センサ49aにより検出され、貯湯ユニット3の入口付近(発電ユニット2の出口付近)の上流側戻り通路部4b内の湯水の温度が、出口湯水温度センサ49bにより検出される。 The temperature of hot water in the outgoing passage portion 4a near the outlet of the hot water storage unit 3 (near the inlet of the power generation unit 2) is detected by the inlet hot water temperature sensor 49a, and is near the inlet of the hot water storage unit 3 (near the outlet of the power generation unit 2). The temperature of the hot water in the upstream return passage portion 4b is detected by the outlet hot water temperature sensor 49b.
出湯通路33は、高温の湯水が流れる上流側通路部33a、水と高温の湯水が混合された混合湯水が流れる下流側通路部33bを有する。上流側通路部33aの上流端が貯湯槽31の上部に接続され、上流側通路部33aの下流端が混合弁36に接続されている。下流側通路部33bの上流端が混合弁36に接続され、下流側通路部33bの下流端に給湯栓51が接続されている。上流側通路部33aの途中部から分岐して外部のドレン放出部47に接続される排出通路部52が設けられ、この排出通路部52に圧力リリーフ弁53が設けられている。 The outlet hot water passage 33 has an upstream passage portion 33a through which high-temperature hot water flows and a downstream passage portion 33b through which mixed hot water mixed with water and high-temperature hot water flows. The upstream end of the upstream passage portion 33 a is connected to the upper part of the hot water storage tank 31, and the downstream end of the upstream passage portion 33 a is connected to the mixing valve 36. The upstream end of the downstream passage portion 33b is connected to the mixing valve 36, and the hot water tap 51 is connected to the downstream end of the downstream passage portion 33b. A discharge passage portion 52 that branches off from the middle portion of the upstream-side passage portion 33 a and is connected to the external drain discharge portion 47 is provided, and a pressure relief valve 53 is provided in the discharge passage portion 52.
混合弁36は、出湯温度が指令温度になるように、混合される水と高温の湯水の流量比が制御される。混合弁36の入口付近の上流側通路部33a内の湯水の流量と温度が、上流側流量センサ54aと上流側出湯温度センサ54bにより夫々検出され、混合弁36の出口付近の下流側通路部33b内の湯水の流量と温度が、下流側流量センサ55aと下流側出湯温度センサ55bにより夫々検出される。 The mixing valve 36 controls the flow rate ratio of water to be mixed and hot hot water so that the tapping temperature becomes the command temperature. The flow rate and temperature of the hot water in the upstream passage portion 33a near the inlet of the mixing valve 36 are detected by the upstream flow rate sensor 54a and the upstream hot water temperature sensor 54b, respectively, and the downstream passage portion 33b near the outlet of the mixing valve 36 is detected. The flow rate and temperature of the inside hot water are detected by the downstream flow rate sensor 55a and the downstream hot water temperature sensor 55b, respectively.
入水通路32の共通通路部32aと出湯通路33の下流側通路部33bがバイパス通路57により接続され、このバイパス通路57に高温出湯回避用の安全弁58が設けられている。出湯通路33の下流側通路部33bの途中部には、湯水の熱量が不足している場合に湯水を加熱する為の補助給湯器37が設けられている。 A common passage portion 32a of the water intake passage 32 and a downstream passage portion 33b of the hot water discharge passage 33 are connected by a bypass passage 57, and a safety valve 58 for avoiding high temperature hot water discharge is provided in the bypass passage 57. An auxiliary hot water heater 37 for heating the hot water when the amount of heat of the hot water is insufficient is provided in the middle of the downstream passage portion 33 b of the hot water passage 33.
複数のタンク湯水温度センサ38a〜38d、入水温度センサ43,入口湯水温度センサ49a、出口湯水温度センサ49b、上流側流量センサ54a、下流側流量センサ55a、上流側出湯温度センサ54b、下流側出湯温度センサ55b、水位センサ21aからの信号を制御装置(図示略)に送信し、この信号に基づいて、三方弁35、混合弁36、循環ポンプ39等を制御し、各種運転(通常の排熱回収運転、水回収運転、呼び水運転、出湯運転、給湯加熱運転等)を実行する。 A plurality of tank hot water temperature sensors 38a to 38d, incoming water temperature sensor 43, inlet hot water temperature sensor 49a, outlet hot water temperature sensor 49b, upstream flow rate sensor 54a, downstream flow rate sensor 55a, upstream hot water temperature sensor 54b, downstream hot water temperature Signals from the sensor 55b and the water level sensor 21a are transmitted to a control device (not shown), and based on this signal, the three-way valve 35, the mixing valve 36, the circulation pump 39, etc. are controlled to perform various operations (normal exhaust heat recovery). Operation, water recovery operation, priming operation, hot water operation, hot water supply heating operation, etc.).
次に、燃料電池コージェネレーションシステム1の作用について説明する。
図4に示すように、燃料電池コージェネレーションシステム1は、貯留タンク21内の水の貯留状態と貯湯槽31の湯水の貯湯状態等に応じて、貯湯槽31内の湯水を湯水循環通路4に循環させて熱交換器11で排気ガスと熱交換する通常運転モード(a)と、貯湯槽31内の湯水を使用せずに上水源から低温の上水を導入して熱交換器11で排気ガスと熱交換する上水導入運転モード(b)と、循環ポンプ39への呼び水を実行する呼び水運転モード(c)との3つの運転パターンを有する。
Next, the operation of the fuel cell cogeneration system 1 will be described.
As shown in FIG. 4, the fuel cell cogeneration system 1 supplies hot water in the hot water tank 31 to the hot water circulation passage 4 according to the storage state of the water in the storage tank 21 and the hot water storage state of the hot water tank 31. Normal operation mode (a) in which heat is exchanged with the exhaust gas in the heat exchanger 11 and low temperature clean water is introduced from the water source without using hot water in the hot water tank 31 and exhausted in the heat exchanger 11 There are three operation patterns: a clean water introduction operation mode (b) for exchanging heat with gas, and a priming operation mode (c) for executing priming water to the circulation pump 39.
図4に示すように、この通常運転モード(a)においては、三方弁35をポートA−ポートC間を接続する開弁状態に設定する。つまり、三方弁35は、分岐通路部45を閉止して湯水循環通路4を循環状態になるように制御される。循環ポンプ39の駆動により貯湯槽31の下端部から下部通路部41と湯水循環通路4の往き通路部4aとを経て熱交換通路部11aに流入した湯水は、オフガス燃焼室17から排出された排気ガスと熱交換し、この湯水を暖め、加熱された湯水が上流側戻り通路部4bと下流側戻り通路部4cを通って貯湯槽31に貯留され、この運転を繰り返すことで貯湯槽31に高温の湯水が貯留される。 As shown in FIG. 4, in this normal operation mode (a), the three-way valve 35 is set to an open state in which the port A and the port C are connected. That is, the three-way valve 35 is controlled so that the branch passage portion 45 is closed and the hot water circulation passage 4 is circulated. The hot water flowing into the heat exchange passage portion 11a from the lower end portion of the hot water tank 31 through the lower passage portion 41 and the forward passage portion 4a of the hot water circulation passage 4 by driving the circulation pump 39 is exhausted from the off-gas combustion chamber 17. Heat is exchanged with gas to warm this hot water, and the heated hot water is stored in the hot water storage tank 31 through the upstream return passage portion 4b and the downstream return passage portion 4c. Hot water is stored.
一方、発電ユニット2においては、熱交換器11で排気ガスに含まれる水蒸気が冷却されて凝縮水を発生し、この凝縮水は、回収通路23を介して水処理手段19の処理タンク24に送られ、処理タンク24内で凝縮水の不純物を除去し、この浄化された水を貯留タンク21に送り一時的に貯留する。その後、この貯留タンク21に貯留された水は、水供給手段22によって発電モジュール5の蒸発器15に送られ、改質用の水として再利用される。 On the other hand, in the power generation unit 2, the water vapor contained in the exhaust gas is cooled by the heat exchanger 11 to generate condensed water, and this condensed water is sent to the treatment tank 24 of the water treatment means 19 via the recovery passage 23. Then, impurities in the condensed water are removed in the processing tank 24, and the purified water is sent to the storage tank 21 to be temporarily stored. Thereafter, the water stored in the storage tank 21 is sent to the evaporator 15 of the power generation module 5 by the water supply means 22 and reused as reforming water.
しかし、貯湯槽31から往き通路部4aを介して熱交換器11へ流れる湯水の温度は、貯湯槽31の蓄熱状況により上昇し、やがて、貯湯槽31が満蓄状態となり、湯水循環通路4を循環する湯水が熱交換器11における露点近傍の温度に達する。すると、排気ガスの温度低下が小さくなり、熱交換器11で発生する凝縮水の量が低減して十分な量の凝縮水を回収できなくなり、改質用の水の供給が不足する。この場合、貯湯槽31の複数のタンク湯水温度センサ38a〜38dが満蓄状態を検知し、貯留タンク21の水位センサ21aが低下した水の液面を検知した場合に、これら検知信号に基づいて運転モードを、以下に説明する上水導入運転モード(b)に切り換える。尚、満畜状態とは、貯湯槽31内が、例えば90℃度(所定の設定温度に相当する)の高温の湯水で満たされた状態である。 However, the temperature of the hot water flowing from the hot water storage tank 31 to the heat exchanger 11 through the outgoing passage portion 4a rises due to the heat storage state of the hot water storage tank 31, and eventually the hot water storage tank 31 becomes fully stored, and the hot water circulation path 4 passes through. The circulating hot water reaches a temperature near the dew point in the heat exchanger 11. As a result, the temperature drop of the exhaust gas is reduced, the amount of condensed water generated in the heat exchanger 11 is reduced, and a sufficient amount of condensed water cannot be recovered, and the supply of reforming water is insufficient. In this case, when the plurality of tank hot water temperature sensors 38a to 38d of the hot water storage tank 31 detect the full storage state and the water level sensor 21a of the storage tank 21 detects the level of the lowered water, based on these detection signals. The operation mode is switched to a clean water introduction operation mode (b) described below. The full animal state is a state in which the inside of the hot water tank 31 is filled with high-temperature hot water of, for example, 90 ° C. (corresponding to a predetermined set temperature).
図4に示すように、この上水導入運転モード(b)においては、貯湯ユニット3の三方弁35のポートA−ポートB間を接続する開弁状態に設定する。上記のように貯湯槽31内の湯水の温度が所定の設定温度以上且つ貯留タンク21内の水が所定の設定水位に低下時には、三方弁35を介して貯湯槽31への湯水の循環を停止して分岐通路部45を開放することによって、湯水循環通路4から湯水を排水するとともに、湯水循環通路4に接続された入水通路32から低温の上水を往き通路部4aへ導入する。このとき排水する温水は、往き通路部4aと熱交換通路部11aと上流側戻り通路部4b内の比較的少量の温水である。 As shown in FIG. 4, in this clean water introduction operation mode (b), the valve-opening state in which the port A and the port B of the three-way valve 35 of the hot water storage unit 3 are connected is set. As described above, when the temperature of the hot water in the hot water tank 31 is equal to or higher than the predetermined set temperature and the water in the storage tank 21 is lowered to the predetermined set water level, the circulation of the hot water to the hot water tank 31 is stopped via the three-way valve 35. Then, by opening the branch passage portion 45, hot water is drained from the hot water circulation passage 4, and low temperature clean water is introduced from the incoming passage 32 connected to the hot water circulation passage 4 into the forward passage portion 4a. The warm water drained at this time is a relatively small amount of warm water in the forward passage portion 4a, the heat exchange passage portion 11a, and the upstream return passage portion 4b.
次に、入水通路32と湯水循環通路4の往き通路部4aとを経て熱交換通路部11aに流入した低温の上水は、オフガス燃焼室17から排出された排気ガスに含まれる水蒸気と熱交換し、この上水を暖め、加熱された上水が上流側戻り通路部4bと分岐通路部45を通って貯湯ユニット3の外部(ドレン放出部47)に排出される。 Next, the low temperature clean water that has flowed into the heat exchange passage portion 11 a through the incoming water passage 32 and the forward passage portion 4 a of the hot water circulation passage 4 exchanges heat with water vapor contained in the exhaust gas discharged from the off-gas combustion chamber 17. Then, the clean water is warmed, and the heated clean water is discharged to the outside (drain discharge portion 47) of the hot water storage unit 3 through the upstream return passage portion 4b and the branch passage portion 45.
一方、発電ユニット2においては、低温の上水が導入されることで、熱交換器11の冷却能力が増すので、通常運転モード(a)の場合と比較して多めの凝縮水が発生し、この凝縮水を、回収通路23を介して水処理手段19の処理タンク24に送られ、処理タンク24内で処理した後に貯留タンク21に貯留する。 On the other hand, in the power generation unit 2, since the cooling capacity of the heat exchanger 11 is increased by introducing low temperature clean water, a larger amount of condensed water is generated than in the normal operation mode (a). This condensed water is sent to the treatment tank 24 of the water treatment means 19 through the recovery passage 23, processed in the treatment tank 24, and then stored in the storage tank 21.
このように、満蓄状態となった貯湯槽31内の湯水に代えて低温の上水を熱交換に利用する事で、水蒸気との間の熱交換を促進し、十分な量の凝縮水を回収することができ、改質用の水不足による異常運転を回避することができる。その後、貯留タンク21の水位が設定水位以上に回復した場合や貯湯槽31内の湯水の温度が所定の設定温度より低下した場合は、上水源からの上水の導入を停止して、通常運転モード(a)に切り換えても良い。 Thus, instead of hot water in the hot water storage tank 31 that has become fully charged, low-temperature clean water is used for heat exchange, thereby promoting heat exchange with steam and supplying a sufficient amount of condensed water. It can be recovered, and abnormal operation due to lack of water for reforming can be avoided. After that, when the water level of the storage tank 21 is restored to the set water level or higher, or when the temperature of the hot water in the hot water storage tank 31 is lower than the predetermined set temperature, the introduction of the clean water from the clean water source is stopped and the normal operation is performed. You may switch to mode (a).
ところで、発電ユニット2内に湯水循環通路4内の湯水を循環させる循環ポンプ39が設けられているが、燃料電池コージェネレーションシステム1の施工後における、運転初期の循環ポンプ39への呼び水を行う場合や運転開始時の水張りを行なう場合、以下に説明する呼び水運転モード(c)で制御される。 By the way, although the circulation pump 39 which circulates the hot water in the hot water circulation passage 4 in the power generation unit 2 is provided, the priming water to the circulation pump 39 in the initial operation after the construction of the fuel cell cogeneration system 1 is performed. When water filling is performed at the start of operation, control is performed in a priming operation mode (c) described below.
図4に示すように、この呼び水運転モード(c)においては、貯湯ユニット3の三方弁35のポートA−ポートB間を接続する開弁状態に設定する。つまり、三方弁35は、下流側戻り通路部4cを閉止して分岐通路部45を開放するように制御される。この状態で、上水源から低温の上水が入水通路32に供給されると、湯水循環通路4の往き通路部4aを経て熱交換通路部11aに流入し、上流側戻り通路部4b、分岐通路部45を通って貯湯槽31の外部に排出されるので、運転初期の循環ポンプ39への呼び水や運転開始時の水張りを行うことができる。 As shown in FIG. 4, in this priming operation mode (c), the valve-opening state in which the port A and the port B of the three-way valve 35 of the hot water storage unit 3 are connected is set. That is, the three-way valve 35 is controlled to close the downstream return passage portion 4c and open the branch passage portion 45. In this state, when low temperature clean water is supplied from the clean water source to the incoming water passage 32, it flows into the heat exchange passage portion 11 a via the forward passage portion 4 a of the hot water circulation passage 4, and is connected to the upstream return passage portion 4 b, the branch passage. Since it is discharged to the outside of the hot water storage tank 31 through the section 45, it is possible to perform priming water to the circulation pump 39 at the initial stage of operation and water filling at the start of operation.
次に、本発明の燃料電池コージェネレーションシステム1の効果について説明する。
上記の構成によれば、湯水循環通路4のうちの熱交換器11(水回収手段)の熱交換通路部11aより下流側且つ貯湯槽31より上流側において、湯水循環通路4から外部へ分岐する分岐通路部45を設け、貯湯槽31内の湯温が所定の設定温度以上且つ貯留タンク21内の水が設定水位に低下時には、貯湯槽31への湯水の循環を停止して分岐通路部45を開放することによって、湯水循環通路4から湯水を排水するとともに、湯水循環通路4に接続された入水通路32から低温の上水を導入するので、貯湯槽31が満蓄状態になった場合でも貯湯槽31内の湯水を排水せずに維持したまま、熱交換器11において低温の上水と排気ガスとの間で熱交換することで、排気ガスから凝縮水を容易に回収することができる。
Next, the effect of the fuel cell cogeneration system 1 of the present invention will be described.
According to the above configuration, the hot water circulation passage 4 branches outside from the hot water circulation passage 4 on the downstream side of the heat exchange passage portion 11 a of the heat exchanger 11 (water recovery means) and the upstream side of the hot water storage tank 31 in the hot water circulation passage 4. A branch passage portion 45 is provided. When the hot water temperature in the hot water storage tank 31 is equal to or higher than a predetermined set temperature and the water in the storage tank 21 is lowered to the set water level, the circulation of the hot water to the hot water storage tank 31 is stopped and the branch passage portion 45 is provided. Since the hot water is drained from the hot water circulation passage 4 and low temperature clean water is introduced from the incoming water passage 32 connected to the hot water circulation passage 4, even when the hot water storage tank 31 becomes full. Condensed water can be easily recovered from the exhaust gas by exchanging heat between the low temperature clean water and the exhaust gas in the heat exchanger 11 while maintaining the hot water in the hot water storage tank 31 without draining. .
従って、高価なラジエータを設ける必要もなく、貯湯槽31内の湯水を再加熱する必要もないので、燃料電池コージェネレーションシステム1の小型化を図り、製作コストや運転コストを低下することができる。 Therefore, it is not necessary to provide an expensive radiator and it is not necessary to reheat the hot water in the hot water tank 31, so that the fuel cell cogeneration system 1 can be downsized, and the manufacturing cost and the operating cost can be reduced.
また、三方弁35を介して分岐通路部45を開放すると、給水から導入される上水は、湯水循環通路4の上流側を流れ、熱交換器11の熱交換通路部11aを経て湯水循環通路4の下流側を流れ、分岐通路部45から外部に排出されるので、湯水循環通路4の循環ポンプ39への呼び水を容易に行なえ、運転初期の操作を簡略化できる。
さらに、ユーザーの都合により長期不在時の水抜き後の運転開始時の水張りを、システム起動が専用のメンテナンス員がいなくても、ユーザー自身が容易に行える。
When the branch passage portion 45 is opened via the three-way valve 35, the clean water introduced from the water supply flows upstream of the hot water circulation passage 4 and passes through the heat exchange passage portion 11a of the heat exchanger 11 to pass the hot water circulation passage. 4, and is discharged to the outside from the branch passage portion 45, so that the priming water to the circulation pump 39 of the hot water circulation passage 4 can be easily performed, and the operation at the initial stage of operation can be simplified.
Further, for the convenience of the user, water filling at the start of operation after draining in the absence of a long period of time can be easily performed by the user himself / herself even if there is no dedicated maintenance staff to start the system.
次に、実施例1の貯湯ユニット3を部分的に変更した実施例2について説明するが、前記実施例1と同様の構成要素には同様の参照符号を付して説明を省略し、異なる構成要素についてのみ説明する。図5に示すように、この貯湯ユニット3Aは、実施例1の三方弁35の代わりに第1,第2開閉弁61,62が設けられている。 Next, a second embodiment in which the hot water storage unit 3 of the first embodiment is partially changed will be described. However, the same components as those in the first embodiment are denoted by the same reference numerals, the description thereof is omitted, and different configurations are described. Only the elements are described. As shown in FIG. 5, the hot water storage unit 3 </ b> A is provided with first and second on-off valves 61 and 62 instead of the three-way valve 35 of the first embodiment.
図5に示すように、貯湯ユニット3Aにおいて、湯水循環通路4のうちの熱交換器11の熱交換通路部11aより下流側且つ貯湯槽31より上流側において、湯水循環通路4から分岐部46において外部へ分岐する分岐通路部45が設けられ、この分岐通路部45に第1開閉弁61が設けられている。下流側戻り通路部4cに第2開閉弁62が設けられている。第1,第2開閉弁61,62により上流側戻り通路部4bが下流側戻り通路部4cと分岐通路部45の何れかに択一的に接続される。 As shown in FIG. 5, in the hot water storage unit 3 </ b> A, in the hot water circulation passage 4, on the downstream side of the heat exchange passage portion 11 a of the heat exchanger 11 and on the upstream side of the hot water storage tank 31, A branch passage portion 45 that branches to the outside is provided, and a first on-off valve 61 is provided in the branch passage portion 45. A second on-off valve 62 is provided in the downstream return passage portion 4c. The upstream return passage portion 4 b is alternatively connected to either the downstream return passage portion 4 c or the branch passage portion 45 by the first and second on-off valves 61 and 62.
通常運転モードにおいて、貯湯槽31内の湯水を湯水循環通路4に循環させる場合には、第1開閉弁61を閉弁状態にして分岐通路部45を閉止して、第2開閉弁62を開弁状態にして上流側戻り通路部4bと下流側戻り通路部4cとを接続して湯水循環通路4を循環状態にする。上水導入運転モードにおいて、分岐通路部45を開放する場合には、第1開閉弁61を開弁状態にして分岐通路部45を開放し、第2開閉弁62を閉弁状態にして上流側戻り通路部4bと分岐通路部45とを接続して貯湯槽31への湯水の循環を停止する。 In the normal operation mode, when the hot water in the hot water tank 31 is circulated through the hot water circulation passage 4, the first opening / closing valve 61 is closed, the branch passage portion 45 is closed, and the second opening / closing valve 62 is opened. The upstream return passage 4b and the downstream return passage 4c are connected in a valve state to bring the hot water circulation passage 4 into a circulation state. In the water supply operation mode, when the branch passage portion 45 is opened, the first on-off valve 61 is opened, the branch passage portion 45 is opened, the second on-off valve 62 is closed, and the upstream side The return passage portion 4b and the branch passage portion 45 are connected to stop the circulation of hot water to the hot water tank 31.
次に、燃料電池コージェネレーションシステム1Aの作用について説明する。
図6に示すように、燃料電池コージェネレーションシステム1Aは、前記実施例1と同様の通常運転モード(a)と、上水導入運転モード(b)と、循環ポンプ39への呼び水を実行する呼び水運転モード(c)との3つの運転パターンを有する。
Next, the operation of the fuel cell cogeneration system 1A will be described.
As shown in FIG. 6, the fuel cell cogeneration system 1 </ b> A includes a normal operation mode (a), a clean water introduction operation mode (b) similar to the first embodiment, and a priming water that performs priming water to the circulation pump 39. It has three operation patterns with the operation mode (c).
図6に示すように、通常運転モード(a)においては、貯湯ユニット3Aの第1開閉弁61を閉弁状態に設定し、第2開閉弁62を開弁状態に設定する。つまり、第1,第2開閉弁61,62は、分岐通路部45を閉止して湯水循環通路4を循環状態になるように制御される。この通常運転モード(a)による熱交換器11における作用は、貯湯ユニット3A側と発電ユニット2側の両方とも、前記実施例1と同様であるので詳細な説明は省略する。 As shown in FIG. 6, in the normal operation mode (a), the first on-off valve 61 of the hot water storage unit 3A is set to the closed state, and the second on-off valve 62 is set to the open state. That is, the first and second on-off valves 61 and 62 are controlled so that the branch passage portion 45 is closed and the hot water circulation passage 4 is circulated. Since the operation of the heat exchanger 11 in the normal operation mode (a) is the same as that of the first embodiment on both the hot water storage unit 3A side and the power generation unit 2 side, detailed description thereof is omitted.
図6に示すように、上水導入運転モード(b)においては、貯湯ユニット3Aの第1開閉弁61を開弁状態に設定し、第2開閉弁62を閉弁状態に設定する。貯湯槽31内の湯温が所定の設定温度以上且つ貯留タンク21内の水が所定の設定水位に低下時には、貯湯槽31への湯水の循環を停止して分岐通路部45を開放することによって、湯水循環通路4から湯水を排水するとともに、湯水循環通路4に接続された入水通路32から低温の上水を導入する。このとき排水する温水は、往き通路部4aと熱交換通路部11aと上流側戻り通路部4b内の比較的少量の温水である。この上水導入運転モード(b)による熱交換器11における作用は、貯湯ユニット3A側と発電ユニット2側の両方とも、前記実施例1と同様であるので詳細な説明は省略する。 As shown in FIG. 6, in the clean water introduction operation mode (b), the first on-off valve 61 of the hot water storage unit 3A is set to the open state, and the second on-off valve 62 is set to the close state. When the hot water temperature in the hot water storage tank 31 is equal to or higher than a predetermined set temperature and the water in the storage tank 21 is lowered to a predetermined set water level, the circulation of the hot water to the hot water storage tank 31 is stopped and the branch passage portion 45 is opened. Then, hot water is drained from the hot water circulation passage 4, and low temperature clean water is introduced from the incoming water passage 32 connected to the hot water circulation passage 4. The warm water drained at this time is a relatively small amount of warm water in the forward passage portion 4a, the heat exchange passage portion 11a, and the upstream return passage portion 4b. Since the operation of the heat exchanger 11 in the water supply operation mode (b) is the same as that of the first embodiment on both the hot water storage unit 3A side and the power generation unit 2 side, detailed description thereof is omitted.
図6に示すように、呼び水運転モード(c)においては、貯湯ユニット3Aの第1開閉弁61を開弁状態に設定し、第2開閉弁62を閉弁状態に設定する。つまり、第1,第2開閉弁61,62は、下流側戻り通路部4cを閉止して分岐通路部45を開放するように制御される。この状態で、上水源から低温の上水が入水通路32に供給されると、湯水循環通路4の往き通路部4aを経て熱交換通路部11aに流入し、上流側戻り通路部4b、分岐通路部45を通って貯湯槽31の外部に排出されるので、運転初期の循環ポンプ39への呼び水や運転開始時の水張りを行うことができる。
その他の構成及び作用は前記実施例1と同様であるので説明は省略する。
As shown in FIG. 6, in the priming operation mode (c), the first on-off valve 61 of the hot water storage unit 3A is set to the valve open state, and the second on-off valve 62 is set to the valve close state. That is, the first and second on-off valves 61 and 62 are controlled to close the downstream return passage portion 4c and open the branch passage portion 45. In this state, when low temperature clean water is supplied from the clean water source to the incoming water passage 32, it flows into the heat exchange passage portion 11 a via the forward passage portion 4 a of the hot water circulation passage 4, and is connected to the upstream return passage portion 4 b, the branch passage. Since it is discharged to the outside of the hot water storage tank 31 through the section 45, it is possible to perform priming water to the circulation pump 39 at the initial stage of operation and water filling at the start of operation.
Since other configurations and operations are the same as those of the first embodiment, description thereof is omitted.
次に、実施例1の貯湯ユニット3を部分的に変更した実施例3について説明するが、前記実施例1と同様の構成要素には同様の参照符号を付して説明を省略し、異なる構成要素についてのみ説明する。図7に示すように、この貯湯ユニット3Bは、実施例1の主要な構成に加えて、分岐通路部45Bから分岐するバイパス通路65と、分岐通路部45Bに設けられた開閉弁66を備えている。 Next, a third embodiment in which the hot water storage unit 3 of the first embodiment is partially changed will be described. However, the same components as those in the first embodiment are denoted by the same reference numerals, the description thereof is omitted, and different configurations are described. Only the elements are described. As shown in FIG. 7, in addition to the main configuration of the first embodiment, the hot water storage unit 3B includes a bypass passage 65 branched from the branch passage portion 45B and an on-off valve 66 provided in the branch passage portion 45B. Yes.
図7に示すように、貯湯ユニット3Bにおいて、湯水循環通路4Bのうちの熱交換器11の熱交換通路部11aより下流側且つ貯湯槽31より上流側において、湯水循環通路4Bから分岐部46Bにおいて外部へ分岐する分岐通路部45Bが設けられ、この分岐通路部45Bが分岐する分岐部46Bに三方弁35Bが設けられている。 As shown in FIG. 7, in the hot water storage unit 3B, in the hot water circulation passage 4B, on the downstream side of the heat exchange passage portion 11a of the heat exchanger 11 and on the upstream side of the hot water storage tank 31, from the hot water circulation passage 4B to the branch portion 46B. A branch passage portion 45B branching to the outside is provided, and a three-way valve 35B is provided at a branch portion 46B where the branch passage portion 45B branches.
上流側戻り通路部4bの下流端が三方弁35B(ポートA)に接続され、分岐通路部45Bの上流端が三方弁35B(ポートB)に接続され、下流側戻り通路部4cの上流端が三方弁35B(ポートC)に接続され、この三方弁35Bにより上流側戻り通路部4bが下流側戻り通路部4cと分岐通路部45Bの何れかに択一的に接続される。 The downstream end of the upstream return passage 4b is connected to the three-way valve 35B (port A), the upstream end of the branch passage 45B is connected to the three-way valve 35B (port B), and the upstream end of the downstream return passage 4c is The three-way valve 35B (port C) is connected, and the three-way valve 35B selectively connects the upstream return passage portion 4b to either the downstream return passage portion 4c or the branch passage portion 45B.
さらに、分岐通路部45Bに開閉弁66が設けられ、三方弁35Bと開閉弁66との間において分岐通路部45Bから分岐して湯水循環通路4Bの熱交換通路部11aより上流側の往き通路部4aに接続されたバイパス通路65が設けられている。 Further, an opening / closing valve 66 is provided in the branch passage portion 45B. The forward passage portion branches from the branch passage portion 45B between the three-way valve 35B and the opening / closing valve 66 and is upstream of the heat exchange passage portion 11a of the hot water circulation passage 4B. A bypass passage 65 connected to 4a is provided.
通常運転モードにおいて、貯湯槽31内の湯水を湯水循環通路4Bに循環させる場合には、三方弁35BのポートA−ポートC間を開弁状態にし、開閉弁66を閉弁状態にして、上流側戻り通路部4bと下流側戻り通路部4cとを接続することで、湯水循環通路4Bを循環状態にする。上水導入運転モードにおいて、分岐通路部45Bを開放する場合には、三方弁35BのポートA−ポートB間を開弁状態にし、開閉弁66を開弁状態にして、上流側戻り通路部4bと分岐通路部45Bとを接続することで、三方弁35Bを介して分岐通路部45Bを開放し且つ貯湯槽31への湯水の循環を停止する。 In the normal operation mode, when the hot water in the hot water storage tank 31 is circulated to the hot water circulation passage 4B, the port A-port C of the three-way valve 35B is opened, the on-off valve 66 is closed, and the upstream By connecting the side return passage portion 4b and the downstream side return passage portion 4c, the hot water circulation passage 4B is brought into a circulation state. In the water supply operation mode, when the branch passage 45B is opened, the port A-port B of the three-way valve 35B is opened, the on-off valve 66 is opened, and the upstream return passage 4b is opened. And the branch passage portion 45B are connected, the branch passage portion 45B is opened via the three-way valve 35B, and the circulation of hot water to the hot water storage tank 31 is stopped.
次に、燃料電池コージェネレーションシステム1Bの作用について説明する。
図8に示すように、燃料電池コージェネレーションシステム1Bは、前記実施例1と同様の通常運転モード(a)と上水導入運転モード(b)と循環ポンプ39への呼び水を実行する呼び水運転モード(c)に加えて、低温の上水を湯水循環通路4Bに循環させる上水導入循環運転モード(b’)の4つの運転パターンを有する。
Next, the operation of the fuel cell cogeneration system 1B will be described.
As shown in FIG. 8, the fuel cell cogeneration system 1B includes a normal operation mode (a), a clean water introduction operation mode (b), and a priming water operation mode for executing priming water to the circulation pump 39 as in the first embodiment. In addition to (c), there are four operation patterns of a water supply introduction circulation operation mode (b ′) in which low temperature clean water is circulated in the hot water circulation passage 4B.
図8に示すように、通常運転モード(a)においては、貯湯ユニット3Bの三方弁35BをポートA−ポートC間を接続する開弁状態に設定し、開閉弁66を閉弁状態に設定する。つまり、三方弁35Bと開閉弁66は、分岐通路部45Bを閉止して湯水循環通路4Bを循環状態になるように制御される。この通常運転モード(a)による熱交換器11における作用は、貯湯ユニット3B側と発電ユニット2側の両方とも、前記実施例1と同様であるので詳細な説明は省略する。 As shown in FIG. 8, in the normal operation mode (a), the three-way valve 35B of the hot water storage unit 3B is set to an open state that connects between the ports A and C, and the on-off valve 66 is set to a closed state. . That is, the three-way valve 35B and the on-off valve 66 are controlled so that the branch passage portion 45B is closed and the hot water circulation passage 4B is circulated. Since the operation of the heat exchanger 11 in the normal operation mode (a) is the same as that of the first embodiment on both the hot water storage unit 3B side and the power generation unit 2 side, detailed description thereof is omitted.
図8に示すように、上水導入運転モード(b)においては、貯湯ユニット3Bの三方弁35BをポートA−ポートB間を接続する開弁状態に設定し、開閉弁66を開弁状態に設定する。貯湯槽31内の湯温が所定の設定温度以上且つ貯留タンク21内の水が所定の設定水位に低下時には、貯湯槽31への湯水の循環を停止して分岐通路部45Bを開放することによって、湯水循環通路4Bから湯水を排水するとともに、湯水循環通路4Bに接続された入水通路32から低温の上水を導入する。このとき排水する温水は、往き通路部4aと熱交換通路部11aと上流側戻り通路部4b内の比較的少量の温水であり、これら湯水と入水通路32からの上水を、バイパス通路65を介して混合して排水することができる。この上水導入運転モード(b)による熱交換器11における作用は、貯湯ユニット3B側と発電ユニット2側の両方とも、前記実施例1と同様であるので詳細な説明は省略する。 As shown in FIG. 8, in the water supply operation mode (b), the three-way valve 35B of the hot water storage unit 3B is set to an open state that connects between the ports A and B, and the on-off valve 66 is set to an open state. Set. When the hot water temperature in the hot water storage tank 31 is equal to or higher than the predetermined set temperature and the water in the storage tank 21 is lowered to the predetermined set water level, the circulation of the hot water to the hot water storage tank 31 is stopped and the branch passage portion 45B is opened. Then, hot water is drained from the hot water circulation passage 4B, and low temperature clean water is introduced from the incoming water passage 32 connected to the hot water circulation passage 4B. The warm water drained at this time is a comparatively small amount of warm water in the forward passage portion 4a, the heat exchange passage portion 11a, and the upstream return passage portion 4b. Can be mixed and drained. Since the operation of the heat exchanger 11 in the water supply operation mode (b) is the same as that of the first embodiment on both the hot water storage unit 3B side and the power generation unit 2 side, detailed description thereof is omitted.
ここで、貯湯槽31への湯水の循環を停止して分岐通路部45Bの開放後に、入口湯水温度センサ49a(又は出口湯水温度センサ49b)によって、湯水循環通路4B内の湯水が所定の設定温度以下(例えば、50度以下)になったと検知した場合、この入口湯水温度センサ49aからの検知信号に基づいて、運転モードを、以下に説明する上水導入循環運転モード(b’)に切り換える。 Here, after the circulation of the hot water to the hot water tank 31 is stopped and the branch passage 45B is opened, the hot water in the hot water circulation passage 4B is set at a predetermined set temperature by the inlet hot water temperature sensor 49a (or the outlet hot water temperature sensor 49b). When it is detected that the temperature is below (for example, 50 degrees or less), the operation mode is switched to a clean water introduction circulation operation mode (b ′) described below based on the detection signal from the inlet hot water temperature sensor 49a.
図8に示すように、上水導入循環運転モード(b’)においては、上水導入運転モード(b)の設定状態から、開閉弁66を閉弁状態に切り換え、入水通路32からの低温の上水の導入を停止する。すると、低温の上水を供給されたことによって低下した湯水循環通路4B内の湯水は、循環ポンプ39の駆動により、上流側戻り通路部4bから分岐通路部45Bの分岐部46Bの近傍部とバイパス通路65を介して往き通路部4aに流れて、湯水を熱交換通路部11aに循環させ、排気ガスとの間で熱交換させる。 As shown in FIG. 8, in the clean water introduction / circulation operation mode (b ′), the open / close valve 66 is switched to the closed state from the set state of the clean water introduction operation mode (b), and the low temperature from the incoming water passage 32 is reduced. Stop the introduction of clean water. Then, the hot water in the hot water circulation passage 4B, which has decreased due to the supply of low temperature clean water, bypasses the vicinity of the branch portion 46B of the branch passage portion 45B from the upstream return passage portion 4b by driving the circulation pump 39. It flows to the going passage part 4a via the passage 65, and hot water is circulated through the heat exchange passage part 11a to exchange heat with the exhaust gas.
その後、入口湯水温度センサ49a(又は出口湯水温度センサ49b)によって、湯水循環通路4B内の湯水が所定の設定温度以上(例えば、90度以上)になったと検知した場合、上水導入運転モード(b)に切り換え、開閉弁66を開弁状態に切り換え、湯水循環通路4B内の湯水を、分岐通路部45Bを介して排出するとともに、上水源から低温の上水を導入する。このときも、湯水循環通路4B内の湯水と入水通路32からの上水を、バイパス通路65を介して混合して分岐通路部45Bから排水することができる。一方、前記実施例1と同様に、発電ユニット2の貯留タンク21の水位が設定水位以上に回復した場合や貯湯槽31内の湯水の温度が所定の設定温度より低下した場合は、上水源からの上水の導入を停止して、通常運転モード(a)に切り換えても良い。 Thereafter, when it is detected by the inlet hot water temperature sensor 49a (or the outlet hot water temperature sensor 49b) that the hot water in the hot water circulation passage 4B is equal to or higher than a predetermined set temperature (for example, 90 degrees or higher), the water supply operation mode ( Switching to b), the on-off valve 66 is switched to the open state, hot water in the hot water circulation passage 4B is discharged through the branch passage portion 45B, and low temperature clean water is introduced from the water supply source. Also at this time, the hot water in the hot water circulation passage 4B and the clean water from the incoming water passage 32 can be mixed through the bypass passage 65 and drained from the branch passage portion 45B. On the other hand, as in the first embodiment, when the water level of the storage tank 21 of the power generation unit 2 recovers to a set water level or higher, or when the temperature of the hot water in the hot water storage tank 31 falls below a predetermined set temperature, the water source The introduction of clean water may be stopped and switched to the normal operation mode (a).
図8に示すように、呼び水運転モード(c)においては、貯湯ユニット3Bの三方弁35BのポートA−ポートB間を接続する開弁状態に設定し、開閉弁66を開弁状態に設定する。つまり、三方弁35Bと開閉弁66は、下流側戻り通路部4cを閉止して分岐通路部45Bを開放するように制御される。この状態で、上水源から低温の上水が入水通路32から供給されると、上水の一部はバイパス通路65を介して分岐通路部45Bを通って貯湯ユニット3Bの外部に排出されるが、上水の残りは、湯水循環通路4Bの往き通路部4aを経て熱交換通路部11aに流入し、上流側戻り通路部4b、分岐通路部45Bを通って貯湯ユニット3Bの外部に排出されるので、運転初期の循環ポンプ39への呼び水や運転開始時の水張りを行うことができる。 As shown in FIG. 8, in the priming operation mode (c), the valve opening state is set to connect between the ports A and B of the three-way valve 35B of the hot water storage unit 3B, and the on-off valve 66 is set to the valve opening state. . That is, the three-way valve 35B and the on-off valve 66 are controlled so as to close the downstream return passage portion 4c and open the branch passage portion 45B. In this state, when low temperature clean water is supplied from the clean water source through the water intake passage 32, a part of the clean water is discharged to the outside of the hot water storage unit 3B through the bypass passage portion 45B via the bypass passage 65. The remainder of the clean water flows into the heat exchange passage portion 11a through the forward passage portion 4a of the hot water circulation passage 4B, and is discharged outside the hot water storage unit 3B through the upstream return passage portion 4b and the branch passage portion 45B. Therefore, priming water to the circulation pump 39 in the initial stage of operation and water filling at the start of operation can be performed.
次に、本発明の燃料電池コージェネレーションシステム1Bの効果について説明する。
上記の構成によれば、バイパス通路65を介して湯水と上水を混合させて排出することができるので、湯水循環通路4B内から高温の湯水を直接外部に排出することを防止し、高温の湯水を排出することに伴う危険を回避することができる。また、高温の湯水の直接排水を防止するので、耐久性の高い排水配管を必要とせず、製作コストを低減することができる。
Next, the effect of the fuel cell cogeneration system 1B of the present invention will be described.
According to said structure, since hot water and clean water can be mixed and discharged | emitted via the bypass channel 65, it is prevented that high temperature hot water is discharged | emitted directly from the inside of the hot water circulation channel | path 4B to high temperature. The danger associated with discharging hot water can be avoided. Moreover, since direct drainage of high-temperature hot water is prevented, a highly durable drain pipe is not required, and the manufacturing cost can be reduced.
さらに、分岐通路部45Bの開放後に、湯水循環通路4B内の湯水が所定の温度以下になった場合、開閉弁66を閉弁状態にするとともに入水通路32からの上水の導入を停止して、バイパス通路65を介して湯水を熱交換通路部11aに循環させるので、低温の上水を有効に活用して上水の無駄をなくし、運転コストを低減することができる。
その他の構成及び作用は前記実施例1と同様であるので説明は省略する。
Furthermore, when the hot water in the hot water circulation passage 4B becomes a predetermined temperature or less after the branch passage portion 45B is opened, the on-off valve 66 is closed and the introduction of clean water from the incoming water passage 32 is stopped. Since hot water is circulated through the bypass passage 65 to the heat exchange passage portion 11a, it is possible to effectively use low temperature clean water to eliminate waste water and to reduce operating costs.
Since other configurations and operations are the same as those of the first embodiment, description thereof is omitted.
次に、前記実施例を部分的に変更した形態について説明する。
[1]前記実施例1〜3において、三方弁35,35B,開閉弁61,62,66に流量調整機能を設け、湯水循環通路4,4B内からの湯水の排出量を調整可能に構成しても良い。この構成によれば、熱交換通路部11a内を流れる上水の流量を調整することができ、上水と水蒸気との間で熱交換を効率よく行い上水の無駄を無くすことができる。
Next, a mode in which the above embodiment is partially changed will be described.
[1] In the first to third embodiments, the three-way valves 35, 35B and the on-off valves 61, 62, 66 are provided with a flow rate adjusting function so that the amount of hot water discharged from the hot water circulation passages 4, 4B can be adjusted. May be. According to this configuration, it is possible to adjust the flow rate of clean water flowing through the heat exchange passage portion 11a, and efficiently exchange heat between clean water and water vapor, thereby eliminating waste of clean water.
[2]前記実施例1〜3において、水位センサ21aが検知する所定の設定水位は、貯留タンク21の1/5程度の高さ位置に設定されているが、特にこの位置に限定する必要はなく、他の高さ位置に設定しても良い。また、水位センサ21aが検知するのは、貯留された水の液面に限定する必要はなく液面近傍部であっても良い。 [2] In the first to third embodiments, the predetermined set water level detected by the water level sensor 21a is set to a height position of about 1/5 of the storage tank 21, but it is particularly necessary to limit to this position. Alternatively, other height positions may be set. Further, the water level sensor 21a does not need to be limited to the liquid level of the stored water, but may be in the vicinity of the liquid level.
[3]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例の種々の変更を付加した形態で実施可能で、本発明はそのような変更形態を包含するものである。 [3] In addition, those skilled in the art can implement the present invention in various forms added with various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. is there.
1,1A,1B 燃料電池コージェネレーションシステム
2 発電ユニット
3,3A,3B 貯湯ユニット
4,4B 湯水循環通路
5 発電モジュール(燃料電池発電部)
11 熱交換器(水回収手段)
11a 熱交換通路部
19 水処理手段
21 貯留タンク
22 水供給手段
31 貯湯槽
32 入水通路
35,35B 三方弁
45,45B 分岐通路部
46,46B 分岐部
61,62 第1,第2開閉弁
65 バイパス通路
66 開閉弁
1, 1A, 1B Fuel cell cogeneration system 2 Power generation unit 3, 3A, 3B Hot water storage unit 4, 4B Hot water circulation passage 5 Power generation module (fuel cell power generation section)
11 Heat exchanger (water recovery means)
11a Heat exchange passage portion 19 Water treatment means 21 Storage tank 22 Water supply means 31 Hot water storage tank 32 Water entry passages 35, 35B Three-way valves 45, 45B Branch passage portions 46, 46B Branch portions 61, 62 First and second on-off valves 65 Bypass Passage 66 on-off valve
Claims (4)
前記湯水循環通路のうちの前記水回収手段の熱交換通路部より下流側且つ前記貯湯槽より上流側において、前記湯水循環通路から外部へ分岐する分岐通路部を設け、
前記貯湯槽内の湯温が所定の設定温度以上且つ前記貯留タンク内の水が所定の設定水位に低下時には、前記貯湯槽への湯水の循環を停止して前記分岐通路部を開放することによって、前記湯水循環通路から湯水を排水するとともに、前記湯水循環通路に接続された入水通路から低温の上水を導入することを特徴とする燃料電池コージェネレーションシステム。 Water recovery means for condensing and recovering water vapor contained in the exhaust gas discharged from the fuel cell power generation unit, water treatment means for removing impurities of condensed water recovered by the water recovery means, and processing by the water treatment means A storage tank for storing the generated water, water supply means for supplying the water in the storage tank to the fuel cell power generation section, a hot water storage tank for storing hot water, and a heat exchange passage section for the water recovery means In a fuel cell cogeneration system comprising a hot water circulation passage for recovery and circulating hot water in the hot water storage tank to condense the water vapor,
In the hot water circulation passage, on the downstream side of the heat exchange passage portion of the water recovery means and the upstream side of the hot water storage tank, a branch passage portion branching from the hot water circulation passage to the outside is provided,
When the hot water temperature in the hot water tank is equal to or higher than a predetermined set temperature and the water in the storage tank is lowered to a predetermined set water level, the circulation of the hot water to the hot water tank is stopped and the branch passage portion is opened. A fuel cell cogeneration system characterized in that hot water is drained from the hot water circulation passage and low temperature clean water is introduced from a water inlet passage connected to the hot water circulation passage.
前記貯湯槽内の湯水を前記湯水循環通路に循環させる場合には、前記三方弁を介して前記分岐通路部を閉止して前記湯水循環通路を循環状態にし、
前記分岐通路部を開放する場合には、前記三方弁を介して前記分岐通路部を開放し且つ前記貯湯槽への湯水の循環を停止することを特徴とする請求項1に記載の燃料電池コージェネレーションシステム。 A three-way valve is provided at a branching portion where the branching passage portion branches from the hot water circulation passage,
When circulating the hot water in the hot water tank to the hot water circulation passage, the branch passage portion is closed via the three-way valve to bring the hot water circulation passage into a circulation state,
2. The fuel cell core according to claim 1, wherein when the branch passage portion is opened, the branch passage portion is opened via the three-way valve and the circulation of hot water to the hot water storage tank is stopped. Generation system.
前記三方弁と前記開閉弁との間において前記分岐通路部から分岐して前記湯水循環通路の熱交換通路部より上流側に接続されたバイパス通路が設けられ、
前記分岐通路部を開放する場合には、前記開閉弁を開弁状態にし、
前記湯水循環通路内の湯水と前記入水通路からの上水を前記バイパス通路を介して混合して排水することを特徴とする請求項2に記載の燃料電池コージェネレーションシステム。 An opening / closing valve is provided in the branch passage portion,
A bypass passage is provided between the three-way valve and the on-off valve that is branched from the branch passage portion and connected to the upstream side of the heat exchange passage portion of the hot water circulation passage,
When opening the branch passage portion, the open / close valve is opened,
3. The fuel cell cogeneration system according to claim 2, wherein hot water in the hot water circulation passage and clean water from the incoming passage are mixed and drained through the bypass passage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011143988A JP5760749B2 (en) | 2011-06-29 | 2011-06-29 | Fuel cell cogeneration system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011143988A JP5760749B2 (en) | 2011-06-29 | 2011-06-29 | Fuel cell cogeneration system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013012381A true JP2013012381A (en) | 2013-01-17 |
JP5760749B2 JP5760749B2 (en) | 2015-08-12 |
Family
ID=47686101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011143988A Expired - Fee Related JP5760749B2 (en) | 2011-06-29 | 2011-06-29 | Fuel cell cogeneration system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5760749B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015046327A (en) * | 2013-08-28 | 2015-03-12 | 東芝燃料電池システム株式会社 | Co-generation system and method for operating the same |
JP2015129591A (en) * | 2014-01-06 | 2015-07-16 | 大阪瓦斯株式会社 | Trial operation method of cogeneration system |
JP2015209985A (en) * | 2014-04-23 | 2015-11-24 | 株式会社ノーリツ | Cogeneration system |
JP2016176657A (en) * | 2015-03-20 | 2016-10-06 | アイシン精機株式会社 | Co-generation system |
JP2016176656A (en) * | 2015-03-20 | 2016-10-06 | アイシン精機株式会社 | Co-generation system |
JP2017109885A (en) * | 2015-12-14 | 2017-06-22 | パナソニックIpマネジメント株式会社 | Hydrogen generator and fuel cell system |
JP2018009784A (en) * | 2017-09-01 | 2018-01-18 | ダイニチ工業株式会社 | Cogeneration system |
WO2024038834A1 (en) * | 2022-08-18 | 2024-02-22 | 京セラ株式会社 | Fuel cell system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010182484A (en) * | 2009-02-04 | 2010-08-19 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation system and method for operating the same |
JP2010277973A (en) * | 2009-06-01 | 2010-12-09 | Osaka Gas Co Ltd | Solid oxide fuel cell system |
JP2011096422A (en) * | 2009-10-28 | 2011-05-12 | Kyocera Corp | Fuel cell cogeneration system |
-
2011
- 2011-06-29 JP JP2011143988A patent/JP5760749B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010182484A (en) * | 2009-02-04 | 2010-08-19 | Toshiba Fuel Cell Power Systems Corp | Fuel cell power generation system and method for operating the same |
JP2010277973A (en) * | 2009-06-01 | 2010-12-09 | Osaka Gas Co Ltd | Solid oxide fuel cell system |
JP2011096422A (en) * | 2009-10-28 | 2011-05-12 | Kyocera Corp | Fuel cell cogeneration system |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015046327A (en) * | 2013-08-28 | 2015-03-12 | 東芝燃料電池システム株式会社 | Co-generation system and method for operating the same |
JP2015129591A (en) * | 2014-01-06 | 2015-07-16 | 大阪瓦斯株式会社 | Trial operation method of cogeneration system |
JP2015209985A (en) * | 2014-04-23 | 2015-11-24 | 株式会社ノーリツ | Cogeneration system |
JP2016176657A (en) * | 2015-03-20 | 2016-10-06 | アイシン精機株式会社 | Co-generation system |
JP2016176656A (en) * | 2015-03-20 | 2016-10-06 | アイシン精機株式会社 | Co-generation system |
JP2017109885A (en) * | 2015-12-14 | 2017-06-22 | パナソニックIpマネジメント株式会社 | Hydrogen generator and fuel cell system |
JP2018009784A (en) * | 2017-09-01 | 2018-01-18 | ダイニチ工業株式会社 | Cogeneration system |
WO2024038834A1 (en) * | 2022-08-18 | 2024-02-22 | 京セラ株式会社 | Fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JP5760749B2 (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5760749B2 (en) | Fuel cell cogeneration system | |
JP5371554B2 (en) | Solid oxide fuel cell system | |
EP2215679A2 (en) | Fuel cell system | |
JP2017068913A (en) | Fuel battery system | |
JP5142604B2 (en) | Fuel cell device | |
JP5383111B2 (en) | Fuel cell | |
JP2003142132A (en) | Fuel cell system | |
JP2008300059A (en) | Fuel cell device | |
JP2009009807A (en) | Fuel cell device | |
JP5529618B2 (en) | Fuel cell system and control method thereof | |
JP4106356B2 (en) | Fuel cell system | |
JP5667252B2 (en) | Solid oxide fuel cell system | |
JP2008130252A (en) | Fuel cell device | |
JP5593808B2 (en) | Fuel cell hot water supply system | |
JP5171103B2 (en) | Fuel cell cogeneration system | |
JP2017069104A (en) | Fuel cell system | |
JP4719407B2 (en) | Fuel cell cogeneration system | |
JP5919939B2 (en) | Hot water storage heater | |
JP2008269930A (en) | Fuel cell system | |
JP6299383B2 (en) | Cogeneration system | |
JP2008243590A (en) | Fuel cell device | |
JP2006318750A (en) | Fuel cell system | |
JP2006032153A (en) | Fuel cell cogeneration system | |
JP2016157621A (en) | Fuel battery system | |
KR102634123B1 (en) | Fuel cell apparatus and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150414 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150512 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150525 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5760749 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |