Nothing Special   »   [go: up one dir, main page]

JP2013002974A - Current measuring device - Google Patents

Current measuring device Download PDF

Info

Publication number
JP2013002974A
JP2013002974A JP2011134709A JP2011134709A JP2013002974A JP 2013002974 A JP2013002974 A JP 2013002974A JP 2011134709 A JP2011134709 A JP 2011134709A JP 2011134709 A JP2011134709 A JP 2011134709A JP 2013002974 A JP2013002974 A JP 2013002974A
Authority
JP
Japan
Prior art keywords
current
current detection
detection elements
electric wire
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011134709A
Other languages
Japanese (ja)
Inventor
Fumiya Kuroda
文哉 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MegaChips Corp
Original Assignee
MegaChips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MegaChips Corp filed Critical MegaChips Corp
Priority to JP2011134709A priority Critical patent/JP2013002974A/en
Priority to PCT/JP2012/058979 priority patent/WO2012172852A1/en
Publication of JP2013002974A publication Critical patent/JP2013002974A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current measuring device capable of easily measuring a current in an arbitrary electric wire including a plurality of conductors.SOLUTION: A current measuring device 1, which measures a current flowing through an electric wire 10 including a plurality of conductors 11A to 11C, includes a plurality of current detection elements 22A to 22C which are separately arranged on an outer periphery of an arbitrary cross section of the electric wire 10 and which detect the current on the basis of a magnetic flux caused by the current flowing through the conductors 11A, 11B, and current measuring means 50 for measuring the current flowing through the electric wire 10 on the basis of an output value of one current detection element having the largest output value among the current detection elements 22A to 22C.

Description

本発明は、電流測定装置に関し、特に、複数の導線を内包する電線に流れる電流を測定する電流測定装置に関する。   The present invention relates to a current measuring device, and more particularly, to a current measuring device that measures a current flowing in an electric wire including a plurality of conductive wires.

例えば下記特許文献1には、背景技術に係る電流測定装置が開示されている。当該電流測定装置は、2本の導線を含む平形の平行コードに流れる電流を測定するための装置である。1個のホール素子を有する磁気検出器によって平行コードを挟むことにより、2本の導線間にホール素子が配置される。そして、2本の導線間に発生する磁束をホール素子によって検出することにより、平行コードに流れる電流が測定される。   For example, Patent Document 1 below discloses a current measuring device according to the background art. The current measuring device is a device for measuring a current flowing in a flat parallel cord including two conductive wires. By sandwiching the parallel cord by the magnetic detector having one Hall element, the Hall element is arranged between the two conductors. And the electric current which flows into a parallel cord is measured by detecting the magnetic flux which generate | occur | produces between two conducting wires with a Hall element.

特開平9−189723号公報Japanese Patent Laid-Open No. 9-189723

しかしながら、上記特許文献1に開示された電流測定装置によると、測定対象が、2本の導線を含む平形の平行コードに限定される。そのため、丸形の電線や3本以上の導線を含む電線等を対象として電流測定を行うことができないという問題がある。   However, according to the current measuring device disclosed in Patent Document 1, the measurement target is limited to a flat parallel cord including two conductive wires. Therefore, there is a problem that current measurement cannot be performed on a round electric wire or an electric wire including three or more conducting wires.

本発明はかかる問題を解決するために成されたものであり、複数の導線を内包する任意の電線を対象として簡易に電流を測定することが可能な電流測定装置を得ることを目的とするものである。   The present invention has been made to solve such a problem, and an object of the present invention is to obtain a current measuring device capable of easily measuring a current for an arbitrary electric wire including a plurality of conductive wires. It is.

本発明の第1の態様に係る電流測定装置は、複数の導線を内包する電線に流れる電流を測定する電流測定装置であって、前記電線の任意断面の外周上に離間して配置され、前記導線を流れる電流に起因して発生した磁束に基づいて当該電流を検出する、複数の電流検出素子と、前記複数の電流検出素子のうち出力値が最大である一の電流検出素子の当該出力値に基づいて、前記電線に流れる電流を測定する測定手段と、を備えることを特徴とするものである。   The current measuring device according to the first aspect of the present invention is a current measuring device for measuring a current flowing in an electric wire containing a plurality of conducting wires, and is arranged separately on an outer periphery of an arbitrary cross section of the electric wire, A plurality of current detection elements that detect the current based on a magnetic flux generated due to a current flowing through the conducting wire, and the output value of one current detection element having the maximum output value among the plurality of current detection elements And measuring means for measuring the current flowing through the electric wire.

第1の態様に係る電流測定装置によれば、複数の電流検出素子が、電線の任意断面の外周上に離間して配置される。電流検出素子の配置位置での磁束は、電流検出素子と導線との間の距離が大きくなるほど小さくなる。従って、ある導線の周囲に発生する磁束の向きと他の導線の周囲に発生する磁束の向きとが互いに逆である場合であっても、両導線からの距離の差が大きい位置に配置された電流検出素子からは、比較的大きい出力値が得られる。そこで、複数の電流検出素子のうち出力値が最大である一の電流検出素子の当該出力値に基づくことにより、電線に流れる電流を測定手段によって測定することが可能となる。しかも、第1の態様に係る電流測定装置によれば、測定対象は2本の導線を含む平形の平行コードに限定されず、丸形の電線や3本以上の導線を含む電線等の任意の電線を対象として電流測定を行うことが可能となる。   According to the current measuring device concerning the 1st mode, a plurality of current detecting elements are arranged apart on the perimeter of the arbitrary section of an electric wire. The magnetic flux at the position where the current detection element is arranged becomes smaller as the distance between the current detection element and the conductor increases. Therefore, even when the direction of the magnetic flux generated around one conductor and the direction of the magnetic flux generated around another conductor are opposite to each other, the distance between the two conductors is arranged at a large position. A relatively large output value can be obtained from the current detection element. Therefore, based on the output value of one current detection element having the maximum output value among the plurality of current detection elements, the current flowing through the electric wire can be measured by the measuring means. In addition, according to the current measuring device according to the first aspect, the measurement target is not limited to a flat parallel cord including two conductive wires, and is arbitrary such as a round electric wire or an electric wire including three or more conductive wires. Current measurement can be performed on an electric wire.

本発明の第2の態様に係る電流測定装置は、第1の態様に係る電流測定装置において特に、前記複数の電流検出素子の各々に対応して配置され、発生した前記磁束を各前記電流検出素子に誘導する複数の磁性体をさらに備え、隣接する前記磁性体同士の間には所定のギャップが設けられていることを特徴とするものである。   The current measurement device according to the second aspect of the present invention is arranged in correspondence with each of the plurality of current detection elements, particularly in the current measurement device according to the first aspect. It further includes a plurality of magnetic bodies guided to the element, and a predetermined gap is provided between the adjacent magnetic bodies.

第2の態様に係る電流測定装置によれば、複数の電流検出素子の各々に対応して複数の磁性体が配置されており、隣接する磁性体同士の間には所定のギャップが設けられている。隣接する磁性体同士の間にギャップを設け、導線の周囲に発生した磁束の一部をギャップから外部に漏洩させることにより、ある向きの磁束の合計と、その向きとは逆向きの磁束の合計とを意図的に異ならせることができる。その結果、逆向きの磁束同士が完全に打ち消し合ってしまうという事態を回避することが可能となる。   According to the current measurement device according to the second aspect, a plurality of magnetic bodies are arranged corresponding to each of the plurality of current detection elements, and a predetermined gap is provided between adjacent magnetic bodies. Yes. By providing a gap between adjacent magnetic materials and leaking a part of the magnetic flux generated around the conducting wire from the gap to the outside, the total of the magnetic flux in one direction and the total of the magnetic flux in the opposite direction Can be intentionally different. As a result, it is possible to avoid a situation in which the opposite magnetic fluxes completely cancel each other.

本発明の第3の態様に係る電流測定装置は、第1又は第2の態様に係る電流測定装置において特に、前記複数の電流検出素子は、少なくとも三つの電流検出素子を含むことを特徴とするものである。   The current measurement device according to a third aspect of the present invention is characterized in that, in the current measurement device according to the first or second aspect, the plurality of current detection elements include at least three current detection elements. Is.

第3の態様に係る電流測定装置によれば、複数の電流検出素子は、少なくとも三つの電流検出素子を含む。少なくとも三つの電流検出素子を配置することによって、全ての電流検出素子において逆向きの磁束同士が完全に打ち消し合ってしまうという事態は発生しないため、電流測定を適切に行うことが可能となる。   According to the current measurement device according to the third aspect, the plurality of current detection elements include at least three current detection elements. By arranging at least three current detection elements, the situation in which the opposite magnetic fluxes completely cancel each other out of all the current detection elements does not occur, so that current measurement can be performed appropriately.

本発明の第4の態様に係る電流測定装置は、第3の態様に係る電流測定装置において特に、前記複数の電流検出素子は、等間隔に配置された三つの電流検出素子から成ることを特徴とするものである。   The current measurement device according to a fourth aspect of the present invention is the current measurement device according to the third aspect, in particular, wherein the plurality of current detection elements are composed of three current detection elements arranged at equal intervals. It is what.

第4の態様に係る電流測定装置によれば、複数の電流検出素子は、等間隔に配置された三つの電流検出素子から成る。従って、四つ以上の電流検出素子を用いる場合と比較して、製造コストを削減できるとともに、ギャップから漏洩する磁束を最小限に抑えることができるため、電流の測定精度を向上することが可能となる。   According to the current measurement device according to the fourth aspect, the plurality of current detection elements are composed of three current detection elements arranged at equal intervals. Therefore, compared to the case of using four or more current detection elements, the manufacturing cost can be reduced and the magnetic flux leaking from the gap can be minimized, so that the current measurement accuracy can be improved. Become.

本発明の第5の態様に係る電流測定装置は、第1〜第4のいずれか一つの態様に係る電流測定装置において特に、前記複数の電流検出素子を含むユニットが、前記電流検出素子の配置位置をずらして複数個配置されることを特徴とするものである。   The current measurement device according to a fifth aspect of the present invention is the current measurement device according to any one of the first to fourth aspects, in particular, the unit including the plurality of current detection elements is an arrangement of the current detection elements. A plurality of the sensors are arranged at different positions.

第5の態様に係る電流測定装置によれば、複数の電流検出素子を含むユニットが、電流検出素子の配置位置をずらして複数個配置される。従って、複数の導線からの距離の差がより大きい位置にいずれかの電流検出素子が配置される可能性が高まる。従って、より大きい最大出力値が得られる可能性が高まるため、電流の測定精度を向上することが可能となる。   According to the current measurement device according to the fifth aspect, a plurality of units including a plurality of current detection elements are arranged with the arrangement positions of the current detection elements being shifted. Therefore, the possibility that any one of the current detection elements is arranged at a position where the difference in distance from the plurality of conductive wires is larger is increased. Therefore, since the possibility that a larger maximum output value can be obtained increases, the current measurement accuracy can be improved.

本発明の第6の態様に係る電流測定装置は、第1〜第5のいずれか一つの態様に係る電流測定装置において特に、前記測定手段は、前記複数の電流検出素子の出力に接続された複数の増幅回路と、前記複数の増幅回路の出力に接続された信号処理装置と、を有することを特徴とするものである。   The current measurement device according to a sixth aspect of the present invention is the current measurement device according to any one of the first to fifth aspects, and in particular, the measurement means is connected to outputs of the plurality of current detection elements. A plurality of amplifier circuits; and a signal processing device connected to outputs of the plurality of amplifier circuits.

第6の態様に係る電流測定装置によれば、各電流検出素子の出力に増幅回路が接続されることにより、各電流検出素子の出力値が各増幅回路によってそれぞれ増幅されて信号処理装置に入力される。そのため、複数の電流検出素子の各出力値をリアルタイムに信号処理装置に入力することが可能となる。   According to the current measurement device according to the sixth aspect, the amplifier circuit is connected to the output of each current detection element, so that the output value of each current detection element is amplified by each amplifier circuit and input to the signal processing device. Is done. Therefore, it is possible to input the output values of the plurality of current detection elements to the signal processing device in real time.

本発明の第7の態様に係る電流測定装置は、第1〜第5のいずれか一つの態様に係る電流測定装置において特に、前記測定手段は、前記複数の電流検出素子の出力に接続され、前記複数の電流検出素子からの出力値を順に切り換えて出力する切換回路と、前記切換回路の出力に接続された増幅回路と、前記増幅回路の出力に接続された信号処理装置と、を有することを特徴とするものである。   In the current measurement device according to the seventh aspect of the present invention, in particular, in the current measurement device according to any one of the first to fifth aspects, the measurement means is connected to outputs of the plurality of current detection elements, A switching circuit that sequentially switches and outputs output values from the plurality of current detection elements; an amplifier circuit connected to the output of the switching circuit; and a signal processing device connected to the output of the amplifier circuit. It is characterized by.

第7の態様に係る電流測定装置によれば、各電流検出素子の出力は切換回路に接続され、切換回路の出力が増幅回路に接続される。従って、各電流検出素子の出力にそれぞれ増幅回路が接続される場合と比較すると、増幅回路の個数を削減できるため、低コスト化を図ることが可能となる。   According to the current measuring device according to the seventh aspect, the output of each current detection element is connected to the switching circuit, and the output of the switching circuit is connected to the amplifier circuit. Therefore, compared with the case where an amplifier circuit is connected to the output of each current detection element, the number of amplifier circuits can be reduced, so that the cost can be reduced.

本発明の第8の態様に係る電流測定装置は、第1〜第7のいずれか一つの態様に係る電流測定装置において特に、前記電線は円形の断面形状を有することを特徴とするものである。   The current measurement device according to an eighth aspect of the present invention is characterized in that, in the current measurement device according to any one of the first to seventh aspects, the electric wire has a circular cross-sectional shape. .

第8の態様に係る電流測定装置によれば、測定対象である電線は円形の断面形状を有する。このように本発明に係る電流測定装置は、複数の電流検出素子を用いることにより、平形のケーブルに限らず、丸形のケーブル等を対象として電流測定を行うことが可能となる。   According to the current measuring device concerning the 8th mode, the electric wire which is a measuring object has circular section shape. As described above, the current measuring apparatus according to the present invention can perform current measurement on not only a flat cable but also a round cable by using a plurality of current detection elements.

本発明によれば、複数の導線を内包する任意の電線を対象として簡易に電流を測定することが可能な電流測定装置を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the electric current measuring apparatus which can measure an electric current easily about the arbitrary electric wires which contain several conducting wire as object can be obtained.

本発明の実施の形態に係る電流測定装置の構成を概略的に示す図である。It is a figure showing roughly the composition of the current measuring device concerning an embodiment of the invention. 電線の断面構造を示す断面図である。It is sectional drawing which shows the cross-section of an electric wire. 電線の周囲に電流センサユニットが取り付けられた状態を示す断面図である。It is sectional drawing which shows the state in which the current sensor unit was attached to the circumference | surroundings of an electric wire. 電線への電流センサユニットの取り付け構造の具体例を示す図である。It is a figure which shows the specific example of the attachment structure of the current sensor unit to an electric wire. 導線に電流が流れた時に電流検出素子を貫通して発生する磁束を示す図である。It is a figure which shows the magnetic flux which generate | occur | produces through a current detection element, when an electric current flows into a conducting wire. 電流測定手段の第1の例を示すブロック図である。It is a block diagram which shows the 1st example of an electric current measurement means. 電流測定手段の第2の例を示すブロック図である。It is a block diagram which shows the 2nd example of an electric current measurement means. 電線の周囲に追加の電流センサユニットが取り付けられた状態を示す断面図である。It is sectional drawing which shows the state in which the additional current sensor unit was attached to the circumference | surroundings of an electric wire. 電線の周囲に複数の電流センサユニットが取り付けられた状態を示す図である。It is a figure which shows the state in which the some current sensor unit was attached to the circumference | surroundings of an electric wire. 電線及び電流センサユニットの構造の変形例を示す断面図である。It is sectional drawing which shows the modification of the structure of an electric wire and a current sensor unit. 電線及び電流センサユニットの構造の変形例を示す断面図である。It is sectional drawing which shows the modification of the structure of an electric wire and a current sensor unit. 電線及び電流センサユニットの構造の変形例を示す断面図である。It is sectional drawing which shows the modification of the structure of an electric wire and a current sensor unit.

以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、異なる図面において同一の符号を付した要素は、同一又は相応する要素を示すものとする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the element which attached | subjected the same code | symbol in different drawing shall show the same or corresponding element.

図1は、本発明の実施の形態に係る電流測定装置1の構成を概略的に示す図である。図1の(A)は側面図を示し、図1の(B)は正面図を示している。電流測定装置1は、回路基板5を内蔵する下部筐体3と、下部筐体3に着脱自在な上部筐体2とを有している。測定対象である電線10は、電流センサユニット4を介して、下部筐体3と上部筐体2とによって上下から挟み込まれて固定される。図1の(C)に示すように、電流センサユニット4は、電線10の長さ方向における任意断面の外周上に配置される。本実施の形態の例において、電線10は、円形の断面形状を有する丸形電源ケーブルである。図1の(B)に示すように、下部筐体3の正面には、LED又はLCD等の表示部6と、無線LAN又はUSB等の通信部7とが配置されている。   FIG. 1 is a diagram schematically showing a configuration of a current measuring apparatus 1 according to an embodiment of the present invention. FIG. 1A shows a side view, and FIG. 1B shows a front view. The current measuring device 1 has a lower housing 3 in which a circuit board 5 is built, and an upper housing 2 that is detachably attached to the lower housing 3. The electric wire 10 to be measured is sandwiched and fixed between the lower housing 3 and the upper housing 2 via the current sensor unit 4 from above and below. As shown in FIG. 1C, the current sensor unit 4 is disposed on the outer periphery of an arbitrary cross section in the length direction of the electric wire 10. In the example of the present embodiment, the electric wire 10 is a round power cable having a circular cross-sectional shape. As shown in FIG. 1B, a display unit 6 such as an LED or LCD and a communication unit 7 such as a wireless LAN or USB are arranged on the front surface of the lower housing 3.

図2は、電線10の断面構造を示す断面図である。電線10は、複数本(この例では3本)の導線11A〜11Cを内包している。導線11A〜11Cは、ビニル絶縁体等の絶縁体12A〜12Cによってそれぞれ被覆されており、さらにその周囲がビニルシース等の絶縁体13によって被覆されている。導線11Aは、商用電源の非接地側に接続されるL端子用の導線である。導線11Bは、商用電源の接地側に接続されるN端子用の導線である。導線11Cは、アースに接続されるFG端子用の導線である。導線11Aと導線11Bとには、電流値が同じで方向が逆向きの電流が流れる。導線11Cには、通常状態では電流は流れない。   FIG. 2 is a cross-sectional view showing a cross-sectional structure of the electric wire 10. The electric wire 10 includes a plurality (three in this example) of conductive wires 11A to 11C. The conducting wires 11A to 11C are respectively covered with insulators 12A to 12C such as vinyl insulators, and the periphery thereof is covered with an insulator 13 such as a vinyl sheath. The conducting wire 11A is a conducting wire for L terminal connected to the non-ground side of the commercial power source. The conducting wire 11B is a conducting wire for an N terminal connected to the ground side of the commercial power source. The conducting wire 11C is a conducting wire for an FG terminal connected to the ground. A current having the same current value and a reverse direction flows through the conducting wire 11A and the conducting wire 11B. No electric current flows through the conducting wire 11C in the normal state.

図3は、図2に示した電線10の周囲に電流センサユニット4が取り付けられた状態を示す断面図である。電流センサユニット4は、互いに離間して電線10の外周上に等間隔に配置された複数個(この例では3個)の電流検出素子22A〜22Cを有している。電流検出素子22A〜22Cは、例えばホール素子であり、導線11A〜11Cを流れる電流に起因してその周囲に発生した磁束に基づいて、当該電流を検出する。電流検出素子22A〜22Cは、発生した磁束を電流検出素子22A〜22Cに誘導するためのフェライトコア等の磁性体21A〜21Cの一方端面に、それぞれ固定されている。磁性体21A〜21Cは、電線10の外周円の曲率に対応する円弧状の外形を有している。図3に示すように、電流検出素子22Aと磁性体21Bの他方端面との間にはギャップ23Aが設けられており、電流検出素子22Bと磁性体21Cの他方端面との間にはギャップ23Bが設けられており、電流検出素子22Cと磁性体21Aの他方端面との間にはギャップ23Cが設けられている。   FIG. 3 is a cross-sectional view showing a state where the current sensor unit 4 is attached around the electric wire 10 shown in FIG. The current sensor unit 4 includes a plurality (three in this example) of current detection elements 22 </ b> A to 22 </ b> C that are spaced apart from each other and arranged at equal intervals on the outer periphery of the electric wire 10. The current detection elements 22A to 22C are, for example, Hall elements, and detect the current based on the magnetic flux generated around the current due to the current flowing through the conducting wires 11A to 11C. The current detection elements 22A to 22C are respectively fixed to one end surfaces of magnetic bodies 21A to 21C such as ferrite cores for guiding the generated magnetic flux to the current detection elements 22A to 22C. The magnetic bodies 21 </ b> A to 21 </ b> C have an arcuate outer shape corresponding to the curvature of the outer circumference circle of the electric wire 10. As shown in FIG. 3, a gap 23A is provided between the current detection element 22A and the other end face of the magnetic body 21B, and a gap 23B is provided between the current detection element 22B and the other end face of the magnetic body 21C. A gap 23C is provided between the current detection element 22C and the other end surface of the magnetic body 21A.

図4は、電線10への電流センサユニット4の取り付け構造の具体例を示す図である。上部筐体2の内面にはバネ25A,25Bが固定されており、下部筐体3の内面にはバネ25Cが固定されている。上部筐体2及び下部筐体3の各一方側面は、ヒンジ26によって回動自在に連結されている。ユーザは、上部筐体2を開いて下部筐体3の所定の箇所に電線10及び電流センサユニット4を配置する。次に、上部筐体2を閉じた後、ストッパ27によって上部筐体2及び下部筐体3の各他方側面を固定する。これにより、バネ25A〜25Cの付勢力によって磁性体21A〜21Cが電線10に向けて押し付けられ、その結果、磁性体21A〜21Cと電線10とが密着する。このような取り付け構造を採用することにより、直径が異なる様々な電線10に対して電流センサユニット4を適切に取り付けることができる。   FIG. 4 is a diagram illustrating a specific example of a structure for attaching the current sensor unit 4 to the electric wire 10. The springs 25 </ b> A and 25 </ b> B are fixed to the inner surface of the upper housing 2, and the spring 25 </ b> C is fixed to the inner surface of the lower housing 3. Each one side surface of the upper housing 2 and the lower housing 3 is rotatably connected by a hinge 26. The user opens the upper housing 2 and arranges the electric wire 10 and the current sensor unit 4 at predetermined locations on the lower housing 3. Next, after closing the upper casing 2, the other side surfaces of the upper casing 2 and the lower casing 3 are fixed by the stopper 27. Thereby, magnetic body 21A-21C is pressed toward the electric wire 10 by the urging | biasing force of spring 25A-25C, As a result, magnetic body 21A-21C and the electric wire 10 contact | adhere. By adopting such an attachment structure, the current sensor unit 4 can be appropriately attached to various electric wires 10 having different diameters.

図5は、導線11A,11Bに電流が流れた時に電流検出素子22A,22Bを貫通して発生する磁束を示す図である。この例では、導線11Aには紙面の手前から奥に向かって電流が流れ、導線11Bには紙面の奥から手前に向かって電流が流れている状態を示している。周知のビオサバールの法則より、導線に流れる電流に起因してその周囲に発生する磁束の大きさは、導線との距離が大きくなるほど小さくなる。図5に示した例では、電流検出素子22Aと導線11Aとの間の距離は、電流検出素子22Aと導線11Bとの間の距離よりも小さい。従って、導線11Aに流れる電流に起因して電流検出素子22Aを貫通して発生する磁束(矢印Y1)の大きさは、導線11Bに流れる電流に起因して電流検出素子22Aを貫通して発生する磁束(矢印Y2)の大きさよりも大きくなる。よって、電流検出素子22Aには、両磁束が打ち消し合った後の矢印Y1の向きの残余の磁束に応じた起電力が現れる。また、電流検出素子22Bと導線11Aとの間の距離は、電流検出素子22Bと導線11Bとの間の距離よりも大きい。従って、導線11Aに流れる電流に起因して電流検出素子22Bを貫通して発生する磁束(矢印Y3)の大きさは、導線11Bに流れる電流に起因して電流検出素子22Bを貫通して発生する磁束(矢印Y4)の大きさよりも小さくなる。よって、電流検出素子22Bには、両磁束が打ち消し合った後の矢印Y4の向きの残余の磁束に応じた起電力が現れる。   FIG. 5 is a diagram showing magnetic flux generated through the current detection elements 22A and 22B when a current flows through the conducting wires 11A and 11B. In this example, a current flows from the front of the paper to the back in the lead wire 11A, and a current flows from the back of the paper to the front in the lead wire 11B. According to the well-known Biosavart's law, the magnitude of the magnetic flux generated around the conductor due to the current flowing in the conductor decreases as the distance from the conductor increases. In the example shown in FIG. 5, the distance between the current detection element 22A and the conductor 11A is smaller than the distance between the current detection element 22A and the conductor 11B. Therefore, the magnitude of the magnetic flux (arrow Y1) generated through the current detection element 22A due to the current flowing through the conductive wire 11A is generated through the current detection element 22A due to the current flowing through the conductive wire 11B. It becomes larger than the magnitude of the magnetic flux (arrow Y2). Therefore, an electromotive force corresponding to the remaining magnetic flux in the direction of the arrow Y1 after the two magnetic fluxes cancel each other appears in the current detection element 22A. Further, the distance between the current detection element 22B and the conductor 11A is larger than the distance between the current detection element 22B and the conductor 11B. Therefore, the magnitude of the magnetic flux (arrow Y3) generated through the current detection element 22B due to the current flowing through the conductive wire 11A is generated through the current detection element 22B due to the current flowing through the conductive wire 11B. It becomes smaller than the magnitude of the magnetic flux (arrow Y4). Therefore, an electromotive force corresponding to the remaining magnetic flux in the direction of the arrow Y4 after the two magnetic fluxes cancel each other appears in the current detection element 22B.

理論上は、導線11A,11Bの中心点を通る直線X1上に電流検出素子が配置された場合に、当該電流検出素子と導線11A,11Bとの距離の差が最も大きくなり、直線X1に直交する直線X2上に電流検出素子が配置された場合に、当該電流検出素子と導線11A,11Bとの距離の差が最も小さくなる。従って、直線X1の近くに配置されている電流検出素子ほどその出力値は大きくなり、直線X2の近くに配置されている電流検出素子ほどその出力値は小さくなる。図5に示した例では、電流検出素子22Aが直線X1の最も近くに配置されているため、電流検出素子22Aの出力値が最も大きくなる。また、電流検出素子22Cは直線X2の近くに配置されているため、電流検出素子22Cの出力値は小さくなる。   Theoretically, when the current detection element is arranged on the straight line X1 passing through the center point of the conductive wires 11A and 11B, the difference in the distance between the current detection element and the conductive wires 11A and 11B becomes the largest and orthogonal to the straight line X1. When the current detection element is arranged on the straight line X2, the difference in the distance between the current detection element and the conductors 11A and 11B is the smallest. Therefore, the current detection element arranged near the straight line X1 has a larger output value, and the current detection element arranged near the straight line X2 has a smaller output value. In the example shown in FIG. 5, since the current detection element 22A is disposed closest to the straight line X1, the output value of the current detection element 22A is the largest. Further, since the current detection element 22C is disposed near the straight line X2, the output value of the current detection element 22C becomes small.

図6は、図1に示した回路基板5上に形成される電流測定手段50の第1の例を示すブロック図である。電流測定手段50は、増幅回路31A〜31Cと、マイコン等の信号処理装置34とを有している。信号処理装置34は、ADコンバータ32A〜32Cとデータ処理部33とを有している。電流検出素子22A〜22Cの各出力は増幅回路31A〜31Cにそれぞれ接続されており、増幅回路31A〜31Cの各出力はADコンバータ32A〜32Cにそれぞれ接続されており、ADコンバータ32A〜32Cの各出力はデータ処理部33に接続されている。電流検出素子22A〜22Cからの各出力値は、まず増幅回路31A〜31Cによってそれぞれ増幅され、次にADコンバータ32A〜32Cによってディジタルデータにそれぞれ変換されて、データ処理部33に入力される。データ処理部33は、電流検出素子22A〜22Cからの各出力値のうち最大の出力値を選択し、その最大出力値に基づいて電線10に流れる電流を測定する。例えば、電線10に電流が流れている状態と流れていない状態とを区別するための所定のしきい値を予め設定してデータ処理部33内に保存しておき、最大出力値がしきい値以上である場合には電線10に電流が流れていると判定し、最大出力値がしきい値未満である場合には電線10に電流が流れていないと判定する。そして、その判定の結果を、表示部6に表示するとともに、通信部7からパソコンや表示装置等の外部端末に向けて送信する。あるいは、最大出力値を電流値に換算することによって電線10に流れている電流値を算出し、その算出した電流値を、表示部6に表示するとともに、通信部7から外部端末に向けて送信する。   FIG. 6 is a block diagram showing a first example of current measuring means 50 formed on the circuit board 5 shown in FIG. The current measuring means 50 includes amplifier circuits 31A to 31C and a signal processing device 34 such as a microcomputer. The signal processing device 34 includes AD converters 32 </ b> A to 32 </ b> C and a data processing unit 33. The outputs of the current detection elements 22A to 22C are connected to the amplifier circuits 31A to 31C, respectively, and the outputs of the amplifier circuits 31A to 31C are connected to the AD converters 32A to 32C, respectively. The output is connected to the data processing unit 33. The output values from the current detection elements 22A to 22C are first amplified by the amplifier circuits 31A to 31C, respectively, then converted into digital data by the AD converters 32A to 32C, and input to the data processing unit 33. The data processing unit 33 selects the maximum output value from the output values from the current detection elements 22A to 22C, and measures the current flowing through the electric wire 10 based on the maximum output value. For example, a predetermined threshold value for distinguishing between a state where current is flowing through the electric wire 10 and a state where current is not flowing is set in advance and stored in the data processing unit 33, and the maximum output value is the threshold value. When it is above, it determines with the electric current flowing into the electric wire 10, and when the maximum output value is less than a threshold value, it determines with the electric current not flowing into the electric wire 10. FIG. The result of the determination is displayed on the display unit 6 and transmitted from the communication unit 7 to an external terminal such as a personal computer or a display device. Alternatively, the current value flowing through the electric wire 10 is calculated by converting the maximum output value into the current value, and the calculated current value is displayed on the display unit 6 and transmitted from the communication unit 7 to the external terminal. To do.

図7は、図1に示した回路基板5上に形成される電流測定手段50の第2の例を示すブロック図である。電流測定手段50は、アナログマルチプレクサ等の切換回路35と、増幅回路31と、信号処理装置34とを有している。信号処理装置34は、ADコンバータ32とデータ処理部33とを有している。電流検出素子22A〜22Cの各出力は切換回路35に接続されており、切換回路35の出力は増幅回路31に接続されており、増幅回路31の出力はADコンバータ32に接続されており、ADコンバータ32の出力はデータ処理部33に接続されている。電流検出素子22A〜22Cからの各出力値は、切換回路35に入力される。切換回路35は、データ処理部33から定期的に入力される制御信号に基づいて、電流検出素子22A〜22Cからの各出力値を順に切り換えて出力する。切換回路35から順に出力された各出力値は、まず増幅回路31によって増幅され、次にADコンバータ32によってディジタルデータに変換されて、データ処理部33に順に入力される。データ処理部33は、電流検出素子22A〜22Cからの各出力値のうち最大の出力値を選択し、上記と同様にその最大出力値に基づいて電線10に流れる電流を測定する。   FIG. 7 is a block diagram showing a second example of the current measuring means 50 formed on the circuit board 5 shown in FIG. The current measuring means 50 includes a switching circuit 35 such as an analog multiplexer, an amplifier circuit 31, and a signal processing device 34. The signal processing device 34 includes an AD converter 32 and a data processing unit 33. Each output of the current detection elements 22A to 22C is connected to the switching circuit 35. The output of the switching circuit 35 is connected to the amplifier circuit 31, and the output of the amplifier circuit 31 is connected to the AD converter 32. The output of the converter 32 is connected to the data processing unit 33. Each output value from the current detection elements 22 </ b> A to 22 </ b> C is input to the switching circuit 35. The switching circuit 35 sequentially switches and outputs the output values from the current detection elements 22A to 22C based on a control signal periodically input from the data processing unit 33. The output values sequentially output from the switching circuit 35 are first amplified by the amplifier circuit 31, then converted into digital data by the AD converter 32, and sequentially input to the data processing unit 33. The data processing unit 33 selects the maximum output value among the output values from the current detection elements 22A to 22C, and measures the current flowing through the electric wire 10 based on the maximum output value as described above.

<第1の変形例>
図8は、図2に示した電線10の周囲に追加の電流センサユニット8が取り付けられた状態を示す断面図である。電流センサユニット8は、図3に示した電流センサユニット4と同様に、互いに離間して電線10の外周上に等間隔に配置された複数個(この例では3個)の電流検出素子22D〜22Fを有している。電流検出素子22D〜22Fは、発生した磁束を電流検出素子22D〜22Fに誘導するための磁性体21D〜21Fの一方端面に、それぞれ固定されている。磁性体21D〜21Fは、電線10の外周円の曲率に対応する円弧状の外形を有している。図8に示すように、電流検出素子22Dと磁性体21Eの他方端面との間にはギャップ23Dが設けられており、電流検出素子22Eと磁性体21Fの他方端面との間にはギャップ23Eが設けられており、電流検出素子22Fと磁性体21Dの他方端面との間にはギャップ23Fが設けられている。
<First Modification>
FIG. 8 is a cross-sectional view showing a state where an additional current sensor unit 8 is attached around the electric wire 10 shown in FIG. Similarly to the current sensor unit 4 shown in FIG. 3, the current sensor unit 8 includes a plurality (three in this example) of current detection elements 22 </ b> D to 22 that are spaced apart from each other and arranged on the outer periphery of the electric wire 10 at equal intervals. 22F. The current detection elements 22D to 22F are respectively fixed to one end surfaces of the magnetic bodies 21D to 21F for guiding the generated magnetic flux to the current detection elements 22D to 22F. The magnetic bodies 21 </ b> D to 21 </ b> F have an arcuate outer shape corresponding to the curvature of the outer circumference circle of the electric wire 10. As shown in FIG. 8, a gap 23D is provided between the current detection element 22D and the other end face of the magnetic body 21E, and a gap 23E is provided between the current detection element 22E and the other end face of the magnetic body 21F. A gap 23F is provided between the current detection element 22F and the other end surface of the magnetic body 21D.

図9は、電線10の周囲に複数の電流センサユニット4,8が取り付けられた状態を示す図である。図9に示すように、電流センサユニット8は電流センサユニット4に近接して配置される。また、図3と図8とを比較すると明らかなように、電流センサユニット8における電流検出素子22D〜22Fの配置位置と、電流センサユニット4における電流検出素子22A〜22Cの配置位置とは、互いに補間する位置関係にある。具体的には、電流検出素子22Dは電流検出素子22Aと電流検出素子22Bとの中間の位置(つまり電流検出素子22A,22Bの各配置位置に対して60度ずれた位置)に配置され、電流検出素子22Eは電流検出素子22Bと電流検出素子22Cとの中間の位置(つまり電流検出素子22B,22Cの各配置位置に対して60度ずれた位置)に配置され、電流検出素子22Fは電流検出素子22Cと電流検出素子22Aとの中間の位置(つまり電流検出素子22C,22Aの各配置位置に対して60度ずれた位置)に配置される。   FIG. 9 is a diagram illustrating a state in which a plurality of current sensor units 4 and 8 are attached around the electric wire 10. As shown in FIG. 9, the current sensor unit 8 is disposed close to the current sensor unit 4. 3 and FIG. 8, the arrangement positions of the current detection elements 22D to 22F in the current sensor unit 8 and the arrangement positions of the current detection elements 22A to 22C in the current sensor unit 4 are mutually clear. There is a positional relationship to interpolate. Specifically, the current detection element 22D is arranged at an intermediate position between the current detection element 22A and the current detection element 22B (that is, a position shifted by 60 degrees with respect to each arrangement position of the current detection elements 22A and 22B). The detection element 22E is arranged at an intermediate position between the current detection element 22B and the current detection element 22C (that is, a position shifted by 60 degrees with respect to each arrangement position of the current detection elements 22B and 22C), and the current detection element 22F is a current detection element. It is arranged at an intermediate position between the element 22C and the current detection element 22A (that is, a position shifted by 60 degrees with respect to the arrangement positions of the current detection elements 22C and 22A).

<第2の変形例>
図10〜12は、電線及び電流センサユニットの構造の変形例をそれぞれ示す断面図である。上記実施の形態では、電線10が3本の導線11A〜11Cを内包し、電流センサユニット4がそれぞれ3個の電流検出素子22A〜22C及び磁性体21A〜21Cを有する例について述べたが、導線の本数は二本以上であればよく、電流検出素子及び磁性体の個数はそれぞれ2個以上(望ましくは3個以上)であればよい。
<Second Modification>
10 to 12 are cross-sectional views showing modifications of the structure of the electric wire and the current sensor unit, respectively. In the said embodiment, although the electric wire 10 included the three conducting wires 11A-11C and the current sensor unit 4 each had the three current detection elements 22A-22C and the magnetic bodies 21A-21C, the conducting wire was described. May be two or more, and the number of current detecting elements and magnetic bodies may be two or more (preferably three or more).

図10に示した例では、電線10は2本の導線11A,11Bを内包し、電流センサユニット4はそれぞれ3個の電流検出素子22A〜22C及び磁性体21A〜21Cを有する。   In the example shown in FIG. 10, the electric wire 10 includes two conducting wires 11A and 11B, and the current sensor unit 4 includes three current detection elements 22A to 22C and magnetic bodies 21A to 21C, respectively.

図11に示した例では、電線10は3本の導線11A〜11Cを内包し、電流センサユニット4はそれぞれ4個の電流検出素子22A〜22D及び磁性体21A〜21Dを有する。   In the example shown in FIG. 11, the electric wire 10 includes three conducting wires 11A to 11C, and the current sensor unit 4 includes four current detecting elements 22A to 22D and magnetic bodies 21A to 21D, respectively.

図12に示した例では、電線10は2本の導線11A,11Bを内包し、電流センサユニット4はそれぞれ4個の電流検出素子22A〜22D及び磁性体21A〜21Dを有する。   In the example shown in FIG. 12, the electric wire 10 includes two conducting wires 11A and 11B, and the current sensor unit 4 includes four current detection elements 22A to 22D and magnetic bodies 21A to 21D, respectively.

また、電線10の断面形状は円形に限らず、平形、四角形、又は楕円形等の任意の形状であってよい。   Moreover, the cross-sectional shape of the electric wire 10 is not limited to a circle, and may be an arbitrary shape such as a flat shape, a square shape, or an oval shape.

<まとめ>
このように本実施の形態に係る電流測定装置1によれば、複数の電流検出素子22A〜22Cが、電線10の任意断面の外周上に離間して配置される。電流検出素子22A〜22Cの配置位置での磁束は、電流検出素子22A〜22Cと導線11A,11Bとの間の距離が大きくなるほど小さくなる。従って、導線11Aの周囲に発生する磁束の向きと導線11Bの周囲に発生する磁束の向きとが互いに逆である場合であっても、両導線11A,11Bからの距離の差が大きい位置に配置された電流検出素子22A,22Bからは、比較的大きい出力値が得られる。そこで、複数の電流検出素子22A〜22Cのうち出力値が最大である電流検出素子22Aの当該出力値に基づくことにより、電線10に流れる電流を電流測定手段50によって測定することが可能となる。しかも、本実施の形態に係る電流測定装置1によれば、測定対象は2本の導線を含む平形の平行コードに限定されず、丸形の電線や3本以上の導線を含む電線等の任意の電線を対象として電流測定を行うことが可能となる。
<Summary>
As described above, according to the current measurement device 1 according to the present embodiment, the plurality of current detection elements 22 </ b> A to 22 </ b> C are arranged separately on the outer periphery of the arbitrary cross section of the electric wire 10. The magnetic flux at the arrangement position of the current detection elements 22A to 22C decreases as the distance between the current detection elements 22A to 22C and the conductors 11A and 11B increases. Therefore, even if the direction of the magnetic flux generated around the conducting wire 11A and the direction of the magnetic flux generated around the conducting wire 11B are opposite to each other, the distance between the conducting wires 11A and 11B is arranged at a large position. A relatively large output value is obtained from the current detection elements 22A and 22B. Therefore, based on the output value of the current detection element 22A having the maximum output value among the plurality of current detection elements 22A to 22C, the current flowing through the electric wire 10 can be measured by the current measurement means 50. Moreover, according to the current measuring apparatus 1 according to the present embodiment, the object to be measured is not limited to a flat parallel cord including two conducting wires, and may be an arbitrary one such as a round electric wire or an electric wire containing three or more conducting wires. Current measurement can be performed on the electric wire of the type.

また、本実施の形態に係る電流測定装置1によれば、複数の電流検出素子22A〜22Cの各々に対応して複数の磁性体21A〜21Cが配置されており、隣接する磁性体21A〜21C同士の間には所定のギャップ23A〜23Cが設けられている。隣接する磁性体21A〜21C同士の間にギャップ23A〜23Cを設け、導線10の周囲に発生した磁束の一部をギャップ23A〜23Cから外部に漏洩させることにより、ある向きの磁束の合計と、その向きとは逆向きの磁束の合計とを意図的に異ならせることができる。その結果、逆向きの磁束同士が完全に打ち消し合ってしまうという事態を回避することが可能となる。   Further, according to the current measuring apparatus 1 according to the present embodiment, the plurality of magnetic bodies 21A to 21C are arranged corresponding to each of the plurality of current detection elements 22A to 22C, and the adjacent magnetic bodies 21A to 21C are arranged. Predetermined gaps 23A to 23C are provided between them. By providing gaps 23A to 23C between adjacent magnetic bodies 21A to 21C and leaking a part of the magnetic flux generated around the conducting wire 10 from the gaps 23A to 23C to the outside, The total magnetic flux in the opposite direction can be intentionally different. As a result, it is possible to avoid a situation in which the opposite magnetic fluxes completely cancel each other.

また、本実施の形態に係る電流測定装置1によれば、電流センサユニット4は、少なくとも三つの電流検出素子22A〜22Cを含む。少なくとも三つの電流検出素子22A〜22Cを配置することによって、全ての電流検出素子22A〜22Cにおいて逆向きの磁束同士が完全に打ち消し合ってしまうという事態は発生しないため、電流測定を適切に行うことが可能となる。   Moreover, according to the current measurement device 1 according to the present embodiment, the current sensor unit 4 includes at least three current detection elements 22A to 22C. By arranging at least three current detection elements 22A to 22C, the situation in which the opposite magnetic fluxes completely cancel each other does not occur in all the current detection elements 22A to 22C. Is possible.

また、本実施の形態に係る電流測定装置1によれば、電流センサユニット4は、等間隔に配置された三つの電流検出素子22A〜22Cから成る。従って、四つ以上の電流検出素子を用いる場合(例えば図11,12)と比較して、製造コストを削減できるとともに、ギャップから漏洩する磁束を最小限に抑えることができるため、電流の測定精度を向上することが可能となる。   Moreover, according to the current measurement device 1 according to the present embodiment, the current sensor unit 4 includes three current detection elements 22A to 22C arranged at equal intervals. Therefore, compared to the case where four or more current detection elements are used (for example, FIGS. 11 and 12), the manufacturing cost can be reduced and the magnetic flux leaking from the gap can be minimized, so that the current measurement accuracy can be reduced. Can be improved.

また、上記第1の変形例に係る電流測定装置1によれば、複数の電流検出素子22A〜22C,22D〜22Fを含む複数の電流センサユニット4,8が、電流検出素子の配置位置をずらして配置される。従って、導線11A,11Bからの距離の差がより大きい位置にいずれかの電流検出素子が配置される可能性が高まる。従って、より大きい最大出力値が得られる可能性が高まるため、電流の測定精度を向上することが可能となる。   Moreover, according to the current measuring apparatus 1 according to the first modification, the plurality of current sensor units 4 and 8 including the plurality of current detection elements 22A to 22C and 22D to 22F shift the arrangement positions of the current detection elements. Arranged. Therefore, the possibility that any current detection element is arranged at a position where the difference in distance from the conductive wires 11A and 11B is larger is increased. Therefore, since the possibility that a larger maximum output value can be obtained increases, the current measurement accuracy can be improved.

また、図6に示した電流測定手段50によれば、各電流検出素子22A〜22Cの出力に増幅回路31A〜31Cが接続されることにより、各電流検出素子22A〜22Cの出力値が各増幅回路31A〜31Cによってそれぞれ増幅されて信号処理装置34に入力される。そのため、複数の電流検出素子22A〜22Cの各出力値をリアルタイムに信号処理装置34に入力することが可能となる。   Further, according to the current measuring means 50 shown in FIG. 6, the output values of the current detection elements 22A to 22C are amplified by connecting the amplification circuits 31A to 31C to the outputs of the current detection elements 22A to 22C. The signals are amplified by the circuits 31 </ b> A to 31 </ b> C and input to the signal processing device 34. Therefore, each output value of the plurality of current detection elements 22A to 22C can be input to the signal processing device 34 in real time.

また、図7に示した電流測定手段50によれば、各電流検出素子22A〜22Cの出力は切換回路35に接続され、切換回路35の出力が増幅回路31に接続される。従って、各電流検出素子22A〜22Cの出力にそれぞれ増幅回路31A〜31Cが接続される場合(図6)と比較すると、増幅回路の個数を削減できるため、低コスト化を図ることが可能となる。   Further, according to the current measuring means 50 shown in FIG. 7, the outputs of the current detection elements 22 </ b> A to 22 </ b> C are connected to the switching circuit 35, and the output of the switching circuit 35 is connected to the amplifier circuit 31. Therefore, the number of amplifier circuits can be reduced compared with the case where the amplifier circuits 31A to 31C are connected to the outputs of the current detection elements 22A to 22C, respectively (FIG. 6), so that the cost can be reduced. .

また、本実施の形態に係る電流測定装置1によれば、測定対象である電線10は円形の断面形状を有する。このように本発明に係る電流測定装置1は、複数の電流検出素子22A〜22Cを用いることにより、平形のケーブルに限らず、丸形のケーブル等を対象として電流測定を行うことが可能となる。   Moreover, according to the current measurement device 1 according to the present embodiment, the electric wire 10 that is a measurement target has a circular cross-sectional shape. As described above, the current measuring apparatus 1 according to the present invention can perform current measurement on not only a flat cable but also a round cable or the like by using the plurality of current detection elements 22A to 22C. .

1 電流測定装置
4,8 電流センサユニット
10 電線
11A〜11C 導線
21A〜21F 磁性体
22A〜22F 電流検出素子
23A〜23F ギャップ
31,31A〜31C 増幅回路
34 信号処理装置
DESCRIPTION OF SYMBOLS 1 Current measuring device 4,8 Current sensor unit 10 Electric wire 11A-11C Conductor 21A-21F Magnetic body 22A-22F Current detection element 23A-23F Gap 31, 31A-31C Amplifying circuit 34 Signal processing device

Claims (8)

複数の導線を内包する電線に流れる電流を測定する電流測定装置であって、
前記電線の任意断面の外周上に離間して配置され、前記導線を流れる電流に起因して発生した磁束に基づいて当該電流を検出する、複数の電流検出素子と、
前記複数の電流検出素子のうち出力値が最大である一の電流検出素子の当該出力値に基づいて、前記電線に流れる電流を測定する測定手段と、
を備える、電流測定装置。
A current measuring device for measuring a current flowing in an electric wire containing a plurality of conductive wires,
A plurality of current detecting elements that are arranged on the outer periphery of the arbitrary cross section of the electric wire and detect the current based on the magnetic flux generated due to the current flowing through the conducting wire;
Based on the output value of one current detection element having the maximum output value among the plurality of current detection elements, measuring means for measuring the current flowing through the wire;
A current measuring device.
前記複数の電流検出素子の各々に対応して配置され、発生した前記磁束を各前記電流検出素子に誘導する複数の磁性体をさらに備え、
隣接する前記磁性体同士の間には所定のギャップが設けられている、請求項1に記載の電流測定装置。
A plurality of magnetic bodies arranged corresponding to each of the plurality of current detection elements and guiding the generated magnetic flux to each of the current detection elements;
The current measuring apparatus according to claim 1, wherein a predetermined gap is provided between the adjacent magnetic bodies.
前記複数の電流検出素子は、少なくとも三つの電流検出素子を含む、請求項1又は2に記載の電流測定装置。   The current measurement device according to claim 1, wherein the plurality of current detection elements include at least three current detection elements. 前記複数の電流検出素子は、等間隔に配置された三つの電流検出素子から成る、請求項3に記載の電流測定装置。   The current measurement device according to claim 3, wherein the plurality of current detection elements include three current detection elements arranged at equal intervals. 前記複数の電流検出素子を含むユニットが、前記電流検出素子の配置位置をずらして複数個配置される、請求項1〜4のいずれか一つに記載の電流測定装置。   5. The current measuring device according to claim 1, wherein a plurality of units including the plurality of current detection elements are arranged by shifting an arrangement position of the current detection elements. 前記測定手段は、
前記複数の電流検出素子の出力に接続された複数の増幅回路と、
前記複数の増幅回路の出力に接続された信号処理装置と、
を有する、請求項1〜5のいずれか一つに記載の電流測定装置。
The measuring means includes
A plurality of amplifier circuits connected to outputs of the plurality of current detection elements;
A signal processing device connected to the outputs of the plurality of amplifier circuits;
The current measuring device according to claim 1, comprising:
前記測定手段は、
前記複数の電流検出素子の出力に接続され、前記複数の電流検出素子からの出力値を順に切り換えて出力する切換回路と、
前記切換回路の出力に接続された増幅回路と、
前記増幅回路の出力に接続された信号処理装置と、
を有する、請求項1〜5のいずれか一つに記載の電流測定装置。
The measuring means includes
A switching circuit connected to the outputs of the plurality of current detection elements, and sequentially switching and outputting the output values from the plurality of current detection elements;
An amplifier circuit connected to the output of the switching circuit;
A signal processing device connected to the output of the amplifier circuit;
The current measuring device according to claim 1, comprising:
前記電線は円形の断面形状を有する、請求項1〜7のいずれか一つに記載の電流測定装置。


The current measuring device according to claim 1, wherein the electric wire has a circular cross-sectional shape.


JP2011134709A 2011-06-17 2011-06-17 Current measuring device Pending JP2013002974A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011134709A JP2013002974A (en) 2011-06-17 2011-06-17 Current measuring device
PCT/JP2012/058979 WO2012172852A1 (en) 2011-06-17 2012-04-02 Current measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011134709A JP2013002974A (en) 2011-06-17 2011-06-17 Current measuring device

Publications (1)

Publication Number Publication Date
JP2013002974A true JP2013002974A (en) 2013-01-07

Family

ID=47356850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011134709A Pending JP2013002974A (en) 2011-06-17 2011-06-17 Current measuring device

Country Status (2)

Country Link
JP (1) JP2013002974A (en)
WO (1) WO2012172852A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206674A (en) * 2014-04-21 2015-11-19 富士通株式会社 Current measuring device and current measurement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020127667A1 (en) 2020-10-21 2022-04-21 Phoenix Contact Gmbh & Co. Kg Current measuring system for measuring a current flowing through an electrical current conductor and a method that can be carried out using such a current measuring system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755845A (en) * 1993-08-12 1995-03-03 Nippon Denki Keiki Kenteishiyo Current sensor for forward and backward current flow wire
JPH08334533A (en) * 1995-06-05 1996-12-17 Hikari Kobo:Kk Annular optical circuit
EP1113277A1 (en) * 1999-12-29 2001-07-04 ABB T&amp;D Technologies Ltd. A bushing element for medium and high voltage applications
JP2003315375A (en) * 2002-04-26 2003-11-06 Tempearl Ind Co Ltd Current sensor
US20090251308A1 (en) * 2008-04-04 2009-10-08 Schweitzer Iii Edmund O Three-phase faulted circuit indicator
US7755347B1 (en) * 2007-06-12 2010-07-13 Geist Manufacturing Inc. Current and voltage measurement device
JP2011112488A (en) * 2009-11-26 2011-06-09 Asahi Kasei Electronics Co Ltd Current sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755845A (en) * 1993-08-12 1995-03-03 Nippon Denki Keiki Kenteishiyo Current sensor for forward and backward current flow wire
JPH08334533A (en) * 1995-06-05 1996-12-17 Hikari Kobo:Kk Annular optical circuit
EP1113277A1 (en) * 1999-12-29 2001-07-04 ABB T&amp;D Technologies Ltd. A bushing element for medium and high voltage applications
JP2003315375A (en) * 2002-04-26 2003-11-06 Tempearl Ind Co Ltd Current sensor
US7755347B1 (en) * 2007-06-12 2010-07-13 Geist Manufacturing Inc. Current and voltage measurement device
US20090251308A1 (en) * 2008-04-04 2009-10-08 Schweitzer Iii Edmund O Three-phase faulted circuit indicator
JP2011112488A (en) * 2009-11-26 2011-06-09 Asahi Kasei Electronics Co Ltd Current sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206674A (en) * 2014-04-21 2015-11-19 富士通株式会社 Current measuring device and current measurement method

Also Published As

Publication number Publication date
WO2012172852A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
CN103383453B (en) The neighbouring sensing of material identification
JP2008541065A5 (en)
US8754636B2 (en) Clamp meter with multipoint measurement
RU2551259C2 (en) Rogowski(s coil unit
CN105264389B (en) Current measuring device and current calculation method
JP2011247699A (en) Current sensor with electric leakage detection function
JP2013008314A (en) Operation terminal
US20160370881A1 (en) Electronic apparatus including a strap and method of controlling the same
WO2012172852A1 (en) Current measuring apparatus
CN103620421A (en) Current detector and electricity meter
JP6566188B2 (en) Current sensor
KR20070047397A (en) Cable connector capable of wiring selection
JP2007303952A (en) Current measuring device
JP2019526805A (en) Apparatus and method for measuring the current intensity of one individual conductor of a multiconductor system
JP2019012028A (en) Current detection device and measuring device
JP2011174769A (en) Rogowski coil and current detection device
CN101478583A (en) Mobile phone having multimeter function and multimeter function implementation method
JP5633917B2 (en) Current detection device and watt-hour meter using the same
JP6413317B2 (en) Current sensor
JP3223244U (en) Current detection module and current tester device
JP6433420B2 (en) Torque sensor terminal block structure
JP2011022070A (en) Magnetic field sensor
JP5731876B2 (en) Current detection device and watt-hour meter using the same
US10788519B1 (en) Current detecting module and current tester
JP5869785B2 (en) Current detection device and watt-hour meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160309