Nothing Special   »   [go: up one dir, main page]

JP2013001625A - Dielectric composition and method for manufacturing the same - Google Patents

Dielectric composition and method for manufacturing the same Download PDF

Info

Publication number
JP2013001625A
JP2013001625A JP2011137308A JP2011137308A JP2013001625A JP 2013001625 A JP2013001625 A JP 2013001625A JP 2011137308 A JP2011137308 A JP 2011137308A JP 2011137308 A JP2011137308 A JP 2011137308A JP 2013001625 A JP2013001625 A JP 2013001625A
Authority
JP
Japan
Prior art keywords
dielectric composition
composition
powder
dielectric
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011137308A
Other languages
Japanese (ja)
Other versions
JP5807861B2 (en
Inventor
Tsunesuke Shioi
恒介 塩井
Naoki Ohashi
直樹 大橋
Naoto Hirosaki
尚登 広崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Resonac Holdings Corp
Original Assignee
Showa Denko KK
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, National Institute for Materials Science filed Critical Showa Denko KK
Priority to JP2011137308A priority Critical patent/JP5807861B2/en
Publication of JP2013001625A publication Critical patent/JP2013001625A/en
Application granted granted Critical
Publication of JP5807861B2 publication Critical patent/JP5807861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric composition which can be used at a higher temperature and has a higher dielectric constant, and a method for manufacturing the same.SOLUTION: The dielectric composition has a composition represented by the general formula: M(1)M(2)M(3)M(4)ON, wherein M(1) element is at least one element selected from Y, La, Ce, Pr, Nd and Gd; M(2) element is at least one element selected from Mg, Ca, Sr and Ba; M(3) element is at least one element selected from Ti and Zr; M(4) element is at least one element selected from V, Nb and Ta; and O element and N element are oxygen and nitrogen, respectively.

Description

本発明は、無機化合物を主体とする誘電体組成物とその製造方法に関する。さらに詳細には、高い比誘電率を有し、しかも従来よりも高い温度条件下でも使用可能な高温誘電体組成物とその製造方法に関する。   The present invention relates to a dielectric composition mainly composed of an inorganic compound and a method for producing the same. More specifically, the present invention relates to a high-temperature dielectric composition that has a high relative dielectric constant and can be used under higher temperature conditions than before, and a method for producing the same.

近年、地球温暖化問題に対して全世界的な注目が集まりつつあり、電気自動車やハイブリッドカー、次世代送電網等の普及によるCO排出量の削減或いはエネルギー効率の向上が強く求められている。これらには高い接合部温度を有するパワーモジュールが一般に用いられており、そのため、パワーモジュール周辺に配置される電子デバイスには、動作温度の高温化が要求されている。 In recent years, global attention has been gathered on the global warming problem, and there is a strong demand for reduction of CO 2 emissions or improvement of energy efficiency through the spread of electric vehicles, hybrid cars, next-generation power transmission networks, etc. . For these, a power module having a high junction temperature is generally used. Therefore, an electronic device disposed around the power module is required to have a high operating temperature.

誘電体はコンデンサー、サーミスター、フィルター、共振器、アンテナ、発信子などに広く用いられているが、代表的誘電体であるチタン酸バリウムは、キュリー点のために使用温度範囲の上限は125℃である。しかしながら、パワーモジュールの接合部温度は200℃に達すると見込まれており、チタン酸バリウムにかわる高温度の条件下でも使用可能な誘電体組成物の開発が強く望まれている。
加えて、電気自動車、ハイブリッドカー等の車載用途を考えた場合、一般の車載部品と同様に電子デバイスにも小型軽量化が求められている。代表的誘電体であるチタン酸バリウムは1000から2000程度の高い比誘電率を有する誘電体であるが、現今の電子デバイスに対する小型軽量化の要請から、誘電体材料(誘電体組成物)には、一層の高誘電率化が強く求められている。
Dielectrics are widely used in capacitors, thermistors, filters, resonators, antennas, oscillators, etc., but barium titanate, a typical dielectric, has an upper temperature range of 125 ° C due to the Curie point. It is. However, the junction temperature of the power module is expected to reach 200 ° C., and development of a dielectric composition that can be used even under high temperature conditions replacing barium titanate is strongly desired.
In addition, when considering in-vehicle applications such as electric vehicles and hybrid cars, electronic devices are required to be smaller and lighter as well as general in-vehicle components. Barium titanate, which is a typical dielectric, is a dielectric having a high relative dielectric constant of about 1000 to 2000. However, due to the demand for reduction in size and weight of electronic devices at present, dielectric materials (dielectric compositions) There is a strong demand for higher dielectric constants.

チタン酸バリウムの使用温度範囲の上限を拡張する試みとして、Baサイトの一部をCaで置換し、さらにDy及びMgOを添加する方法が検討されている(下記非特許文献1参照)。本方法によれば、キュリー点近傍における急激な比誘電率変化は抑制されるが、同時にキュリー点以下の使用可能温度域において比誘電率が低下するといった難点がある。 As an attempt to extend the upper limit of the operating temperature range of barium titanate, a method in which a part of the Ba site is replaced with Ca and Dy 2 O 3 and MgO are added has been studied (see Non-Patent Document 1 below). . According to this method, a rapid change in the relative dielectric constant in the vicinity of the Curie point is suppressed, but at the same time, there is a problem that the relative dielectric constant decreases in a usable temperature range below the Curie point.

窒化物、酸窒化物は、酸化物に比して共有結合性が高いことから、一般に酸化物よりも熱的相転移点が高い。チタン酸バリウムのキュリー点は相転移に起因するため、窒素を含有する誘電体材料は高いキュリー点を有するものと推察される。
チタン酸バリウムと同様の結晶構造であるペロブスカイト型構造をもつ窒化物、酸窒化物(窒化物、酸窒化物系ペロブスカイト型化合物)として、多種の化合物が知られている。特許文献1には、ペロブスカイト型構造を有する多種の窒化物、酸窒化物について、合成方法並びに誘電体特性について開示されており、加えて、90から370K(−183から97℃)の温度範囲で比誘電率に変化がないことが記載されている。しかしながら、誘電体特性に関する詳細は記載されて居らず、窒化物、酸窒化物系ペロブスカイト型化合物の誘電体的性質については明らかとなっていない。
Nitride and oxynitride generally have a higher thermal phase transition point than oxides because they have higher covalent bonding than oxides. Since the Curie point of barium titanate is caused by the phase transition, it is presumed that the dielectric material containing nitrogen has a high Curie point.
A wide variety of compounds are known as nitrides and oxynitrides (nitrides, oxynitride perovskite compounds) having a perovskite structure that is the same crystal structure as barium titanate. Patent Document 1 discloses a synthesis method and dielectric characteristics of various nitrides and oxynitrides having a perovskite structure, and in addition, in a temperature range of 90 to 370 K (−183 to 97 ° C.). It is described that there is no change in the dielectric constant. However, details regarding the dielectric properties are not described, and the dielectric properties of nitride and oxynitride perovskite compounds are not clear.

非特許文献2にはペロブスカイト型構造を有する多種の酸窒化物である、BaTaON及びSrTaONが誘電体的性質を示し、その比誘電率はそれぞれ4900、2900程度であることが開示されている。しかしながら、現今の電子デバイスに対する小型軽量化の要請に答えるためには、非特許文献2に記載された比誘電率では十分とはいえない。 Non-Patent Document 2 discloses that various types of oxynitrides having a perovskite structure, BaTaO 2 N and SrTaO 2 N, exhibit dielectric properties and have a relative dielectric constant of about 4900 and 2900, respectively. ing. However, the relative permittivity described in Non-Patent Document 2 is not sufficient to meet the current demand for smaller and lighter electronic devices.

US4734390号公報US Pat. No. 4,734,390

久保寺紀之 他 セラミックス 45 (2010)453−457.Noriyuki Kubotera et al. Ceramics 45 (2010) 453-457. Young−Il Kim, et. al., Chem. Mater.,16 (2004)1267−1276.Young-Il Kim, et. al. Chem. Mater. , 16 (2004) 1267-1276. Teruki Motohashi, et. al., Mater. Res. Bull., 44 (2009)1899−1905.Teruki Motohashi, et. al. , Mater. Res. Bull. , 44 (2009) 1899-1905.

本発明は、上記のような問題を解決しようとするものであり、室温から200℃の間にキュリー点を持たず、しかも従来知られている酸窒化物系ペロブスカイト型化合物よりも高い比誘電率を有する誘電体組成物及びその製造方法の提供を目的とする。   The present invention is intended to solve the above-mentioned problems, has no Curie point between room temperature and 200 ° C., and has a higher relative dielectric constant than the conventionally known oxynitride perovskite compounds. It is an object of the present invention to provide a dielectric composition having the above and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定の化学組成を有する化合物が、室温から200℃の間にキュリー点を持たず、しかも従来知られている酸窒化物系ペロブスカイト型化合物よりも高い比誘電率を有することを見いだし、以下に示す本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a compound having a specific chemical composition does not have a Curie point between room temperature and 200 ° C., and is a conventionally known oxynitriding process. It has been found that it has a relative dielectric constant higher than that of a physical perovskite type compound, and the present invention shown below has been completed.

[1]一般式:M(1)1−xM(2)M(3)1−yM(4)2+x―y1―x+y
で示される組成であることを特徴とする誘電体組成物。
但し、M(1)元素はY,La,Ce,Pr,Nd,Gdから選ばれる1種以上の元素であり、M(2)元素はMg,Ca,Sr,Baから選ばれる1種以上の元素であり、M(3)元素はTi,Zrから選ばれる1種以上の元素であり、M(4)元素はV,Nb,Taから選ばれる1種以上の元素であり、O元素とN元素は酸素と窒素であり、0<x<1かつ0≦y≦1である。
[2]0<x≦0.9,0≦y≦0.9であることを特徴とする上記[1]に記載の誘電体組成物。
[3]M(1)元素が、La,Ce,Pr,Ndから選ばれる一種以上であり、M(2)元素がSr,Baから選ばれる一種以上であることを特徴とする上記[2]に記載の誘電体組成物。
[4]M(1)元素がLa、M(2)元素がBa、M(3)元素がTi、M(4)元素がTaであることを特徴とする上記[3]に記載の誘電体組成物。
[1] General formula: M (1) 1-x M (2) x M (3) 1-y M (4) y O 2 + xy N 1-x + y
A dielectric composition characterized by having a composition represented by:
However, the M (1) element is one or more elements selected from Y, La, Ce, Pr, Nd, and Gd, and the M (2) element is one or more elements selected from Mg, Ca, Sr, and Ba. M (3) element is one or more elements selected from Ti and Zr, M (4) element is one or more elements selected from V, Nb, and Ta, and O element and N The elements are oxygen and nitrogen, and 0 <x <1 and 0 ≦ y ≦ 1.
[2] The dielectric composition as described in [1] above, wherein 0 <x ≦ 0.9 and 0 ≦ y ≦ 0.9.
[3] The above-mentioned [2], wherein the M (1) element is at least one selected from La, Ce, Pr, and Nd, and the M (2) element is at least one selected from Sr and Ba. The dielectric composition according to 1.
[4] The dielectric according to [3] above, wherein the M (1) element is La, the M (2) element is Ba, the M (3) element is Ti, and the M (4) element is Ta. Composition.

[5]以下の〔1〕〜〔3〕のいずれかの原料を加熱して、以下の〔4〕〜〔6〕のいずれかの中間化合物を生成する工程と、該中間化合物を還元性雰囲気中で加熱する工程とを含むことを特徴とする上記[1]〜[4]の何れか一項に記載の誘電体組成物の製造方法。
〔1〕M(1)元素、M(2)元素及びM(3)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(3)元素は前記化合物の少なくともいずれか一つに含まれる)
〔2〕M(1)元素、M(2)元素及びM(4)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔3〕M(1)元素、M(2)元素、M(3)元素及びM(4)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素、M(3)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔4〕M(1)元素及び/又はM(2)元素と、M(3)元素とを含む化合物を一又は二以上含有してなる中間化合物(但し、M(1)元素、M(2)元素及びM(3)元素は前記化合物の少なくともいずれか一つに含まれる)
〔5〕M(1)元素及び/又はM(2)元素と、M(4)元素とを含む化合物を一又は二以上含有してなる中間化合物(但し、M(1)元素、M(2)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔6〕M(1)元素及び/又はM(2)元素と、M(3)元素及び/又はM(4)元素とを含む化合物を一又は二以上含有してなる中間化合物(但し、M(1)元素、M(2)元素、M(3)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
[6]前記化合物の少なくとも一つは酸化物であることを特徴とする上記[5]に記載の誘電体組成物の製造方法。
[7]以下の〔1〕〜〔3〕のいずれかの原料を加熱する工程を含むことを特徴とする上記[1]〜[4]の何れか一項に記載の誘電体組成物の製造方法。
〔1〕M(1)元素、M(2)元素及びM(3)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(3)元素は前記化合物の少なくともいずれか一つに含まれる)
〔2〕M(1)元素、M(2)元素及びM(4)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔3〕M(1)元素、M(2)元素、M(3)元素及びM(4)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素、M(3)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)。
[8]前記化合物の少なくとも一つは酸化物であることを特徴とする上記[7]に記載の誘電体組成物の製造方法。
[9]以下の〔1〕〜〔3〕のいずれかの原料を加熱する工程を含むことを特徴とする上記[1]〜[4]の何れか一項に記載の誘電体組成物の製造方法。
〔1〕M(1)元素及び/又はM(2)元素と、M(3)元素とを含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(3)元素は前記化合物の少なくともいずれか一つに含まれる)
〔2〕M(1)元素及び/又はM(2)元素と、M(4)元素とを含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔3〕M(1)元素及び/又はM(2)元素と、M(3)元素及び/又はM(4)元素とを含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素、M(3)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)。
[10]前記化合物の少なくとも一つは酸化物であることを特徴とする上記[9]に記載の誘電体組成物の製造方法。
[5] A step of heating any of the following raw materials [1] to [3] to produce an intermediate compound of any of the following [4] to [6], and the intermediate compound in a reducing atmosphere The method for producing a dielectric composition as described in any one of [1] to [4] above, further comprising a step of heating in.
[1] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element and M (3) element (provided that M (1) element, M (2) Element and M (3) element are included in at least one of the above compounds)
[2] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element and M (4) element (provided that M (1) element, M (2) Element and M (4) element are included in at least one of the above compounds)
[3] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element, M (3) element and M (4) element (provided that M (1) Element, M (2) element, M (3) element, and M (4) element are included in at least one of the above compounds)
[4] Intermediate compound containing one or more compounds containing M (1) element and / or M (2) element and M (3) element (provided that M (1) element, M (2 ) Element and M (3) element are included in at least one of the above compounds)
[5] Intermediate compound containing one or more compounds containing M (1) element and / or M (2) element and M (4) element (provided that M (1) element, M (2 ) Element and M (4) element are included in at least one of the above compounds)
[6] Intermediate compound comprising one or more compounds containing M (1) element and / or M (2) element and M (3) element and / or M (4) element (provided that M (1) Element, M (2) element, M (3) element, and M (4) element are included in at least one of the above compounds)
[6] The method for producing a dielectric composition as described in [5] above, wherein at least one of the compounds is an oxide.
[7] The production of the dielectric composition as described in any one of [1] to [4] above, which includes a step of heating any of the following raw materials [1] to [3] Method.
[1] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element and M (3) element (provided that M (1) element, M (2) Element and M (3) element are included in at least one of the above compounds)
[2] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element and M (4) element (provided that M (1) element, M (2) Element and M (4) element are included in at least one of the above compounds)
[3] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element, M (3) element and M (4) element (provided that M (1) Element, M (2) element, M (3) element, and M (4) element are included in at least one of the compounds).
[8] The method for producing a dielectric composition as described in [7] above, wherein at least one of the compounds is an oxide.
[9] The production of the dielectric composition as described in any one of [1] to [4] above, which includes a step of heating any of the following raw materials [1] to [3] Method.
[1] A raw material containing one or more compounds containing M (1) element and / or M (2) element and M (3) element (however, M (1) element, M (2) Element and M (3) element are included in at least one of the above compounds)
[2] A raw material comprising one or more compounds containing M (1) element and / or M (2) element and M (4) element (however, M (1) element, M (2) Element and M (4) element are included in at least one of the above compounds)
[3] A raw material containing one or more compounds containing M (1) element and / or M (2) element and M (3) element and / or M (4) element (provided that M ( 1) Element, M (2) element, M (3) element and M (4) element are included in at least one of the above compounds).
[10] The method for producing a dielectric composition as described in [9] above, wherein at least one of the compounds is an oxide.

上記の構成によれば、室温から200℃の間にキュリー点を持たず、しかも従来知られている酸窒化物系ペロブスカイト型化合物よりも高い比誘電率を有する誘電体組成物を提供することができる。つまり、高い比誘電率を有するとともに、従来よりも高い温度条件下でも誘電体として使用可能な誘電体組成物を提供することができる。   According to the above configuration, it is possible to provide a dielectric composition that does not have a Curie point between room temperature and 200 ° C. and has a higher relative dielectric constant than a conventionally known oxynitride perovskite compound. it can. That is, it is possible to provide a dielectric composition that has a high relative dielectric constant and can be used as a dielectric even under higher temperature conditions than before.

以下、本実施形態に係る誘電体組成物について詳細に説明する。
本実施形態の誘電体組成物は、
一般式:M(1)1−xM(2)M(3)1−yM(4)2+x―y1―x+y
で示される組成からなることを特徴とする。
但し、M(1)元素はY,La,Ce,Pr,Nd,Gdから選ばれる1種以上の元素であり、M(2)元素はMg,Ca,Sr,Baから選ばれる1種以上の元素であり、M(3)元素はTi,Zrから選ばれる1種以上の元素であり、M(4)元素はV,Nb,Taから選ばれる1種以上の元素であり、O元素とN元素は酸素と窒素である。
なお、本発明の誘電体組成物には、本発明の効果を損なわない範囲内で他の元素を含有してもよい。また、製造工程で不可避的に導入される他の元素を含有してもよい。
なお、本実施形態において、上記xとyの値は、0<x<1,0≦y≦1の範囲である。
以下、各元素及び上記xとyの数値範囲の限定理由について詳細に説明する。
Hereinafter, the dielectric composition according to the present embodiment will be described in detail.
The dielectric composition of the present embodiment is
General formula: M (1) 1-x M (2) x M (3) 1-y M (4) y O 2 + xy N 1-x + y
It is characterized by comprising the composition shown by.
However, the M (1) element is one or more elements selected from Y, La, Ce, Pr, Nd, and Gd, and the M (2) element is one or more elements selected from Mg, Ca, Sr, and Ba. M (3) element is one or more elements selected from Ti and Zr, M (4) element is one or more elements selected from V, Nb, and Ta, and O element and N Elements are oxygen and nitrogen.
In addition, you may contain another element in the dielectric composition of this invention in the range which does not impair the effect of this invention. Moreover, you may contain the other element inevitably introduced in a manufacturing process.
In the present embodiment, the values of x and y are in the range of 0 <x <1, 0 ≦ y ≦ 1.
Hereinafter, the reasons for limiting each element and the numerical range of the above x and y will be described in detail.

M(1)元素について、好ましくは、La,Ce,Pr,Ndから選ばれる一種以上である。また、M(2)元素について、好ましくは、Sr,Baから選ばれる一種以上である。
上記の一般式で表される組成の誘電体組成物において、M(1)及びM(2)元素のそれぞれが、La,Ce,Pr,Ndから選ばれる一種以上、及びSr,Baから選ばれる一種以上である場合に、室温から200℃の間にキュリー点を持たず、しかも従来知られている酸窒化物系ペロブスカイト型化合物よりも高い比誘電率を有する誘電体組成物を得ることができる。
もっとも好ましいM(1),M(2),M(3)及びM(4)元素は、それぞれLa、Ba、Ti、Taである。M(1),M(2),M(3)及びM(4)元素を、それぞれLa、Ba、Ti、Taとした場合に、室温から200℃の間にキュリー点を持たず、しかも従来知られている酸窒化物系ペロブスカイト型化合物よりも十分に高い比誘電率を有する誘電体組成物を得ることができる。
The M (1) element is preferably at least one selected from La, Ce, Pr, and Nd. The M (2) element is preferably at least one selected from Sr and Ba.
In the dielectric composition having the composition represented by the above general formula, each of the M (1) and M (2) elements is selected from one or more selected from La, Ce, Pr, and Nd, and Sr and Ba. When it is one or more, a dielectric composition having no Curie point between room temperature and 200 ° C. and having a higher relative dielectric constant than a conventionally known oxynitride perovskite compound can be obtained. .
The most preferred M (1), M (2), M (3) and M (4) elements are La, Ba, Ti and Ta, respectively. When the elements M (1), M (2), M (3), and M (4) are La, Ba, Ti, and Ta, respectively, they do not have a Curie point between room temperature and 200 ° C. A dielectric composition having a dielectric constant sufficiently higher than that of known oxynitride perovskite compounds can be obtained.

また、本実施形態において、上記x及びyの値は、0<x<1,0≦y≦1の範囲である。なお、0<x≦0.9,0≦y≦0.9であることが好ましい。x及びyの値が0<x≦0.9,0≦y≦0.9の範囲にある場合に、室温から200℃の間にキュリー点を持たず、しかも従来知られている酸窒化物系ペロブスカイト型化合物よりも高い比誘電率を有する誘電体組成物を得ることができる。
より好ましいx及びyの値は、0<x≦0.4,0≦y≦0.5である。x及びyの値が0<x≦0.4,0≦y≦0.5の範囲にある場合に、室温から200℃の間にキュリー点を持たず、しかも従来知られている酸窒化物系ペロブスカイト型化合物よりも十分に高い比誘電率を有する誘電体組成物を得ることができる。
更に好ましいx及びyの値は、0.05<x≦0.2,0.05≦y≦0.15である。x及びyの値が0.05<x≦0.2,0.15≦y≦0.15の範囲にある場合に、室温から200℃の間にキュリー点を持たず、しかも従来知られている酸窒化物系ペロブスカイト型化合物よりも十分に高い比誘電率を有する誘電体組成物を得ることができる。
なお、誘電率の値がxとyの値によって変化する理由は定かではないが、イオン半径が異なる元素の固溶、或いは酸化数が異なる元素の固溶による窒素含有量の変化により結晶構造に適度な歪みが生じ、その結果誘電分極が生じやすくなる場合が考えられる。
In the present embodiment, the values of x and y are in the range of 0 <x <1, 0 ≦ y ≦ 1. It is preferable that 0 <x ≦ 0.9 and 0 ≦ y ≦ 0.9. A conventionally known oxynitride having no Curie point between room temperature and 200 ° C. when the values of x and y are in the range of 0 <x ≦ 0.9 and 0 ≦ y ≦ 0.9 A dielectric composition having a higher relative dielectric constant than the perovskite type compound can be obtained.
More preferable values of x and y are 0 <x ≦ 0.4 and 0 ≦ y ≦ 0.5. A conventionally known oxynitride having no Curie point between room temperature and 200 ° C. when the values of x and y are in the range of 0 <x ≦ 0.4 and 0 ≦ y ≦ 0.5 A dielectric composition having a dielectric constant sufficiently higher than that of the perovskite type compound can be obtained.
Further preferable values of x and y are 0.05 <x ≦ 0.2 and 0.05 ≦ y ≦ 0.15. When the values of x and y are in the range of 0.05 <x ≦ 0.2, 0.15 ≦ y ≦ 0.15, there is no Curie point between room temperature and 200 ° C., and it is conventionally known It is possible to obtain a dielectric composition having a dielectric constant sufficiently higher than that of the oxynitride-based perovskite compound.
The reason why the value of the dielectric constant changes depending on the values of x and y is not clear, but the crystal structure is changed by the change in nitrogen content due to the solid solution of elements having different ionic radii or the solution of elements having different oxidation numbers. It can be considered that moderate distortion is generated, and as a result, dielectric polarization is likely to occur.

次に、本実施形態に係る、誘電体組成物の製造方法について説明する。
本実施形態の誘電体組成物の製造方法は、上記した、
一般式:M(1)1−xM(2)M(3)1−yM(4)2+x―y1―x+y
(但し、M(1)元素はY,La,Ce,Pr,Nd,Gdから選ばれる1種以上の元素であり、M(2)元素はMg,Ca,Sr,Baから選ばれる1種以上の元素であり、M(3)元素はTi,Zrから選ばれる1種以上の元素であり、M(4)元素はV,Nb,Taから選ばれる1種以上の元素であり、OとNは酸素と窒素である。)で示される組成である誘電体組成物を得るために、以下の〔1〕〜〔3〕のいずれかの原料を加熱して、以下の〔4〕〜〔6〕のいずれかの中間化合物を生成する工程と、該中間化合物を還元性雰囲気中で加熱する工程とを含むことを特徴とする。
〔1〕M(1)元素、M(2)元素及びM(3)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(3)元素は前記化合物の少なくともいずれか一つに含まれる)
〔2〕M(1)元素、M(2)元素及びM(4)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔3〕M(1)元素、M(2)元素、M(3)元素及びM(4)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素、M(3)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔4〕M(1)元素及び/又はM(2)元素と、M(3)元素とを含む化合物を一又は二以上含有してなる中間化合物(但し、M(1)元素、M(2)元素及びM(3)元素は前記化合物の少なくともいずれか一つに含まれる)
〔5〕M(1)元素及び/又はM(2)元素と、M(4)元素とを含む化合物を一又は二以上含有してなる中間化合物(但し、M(1)元素、M(2)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔6〕M(1)元素及び/又はM(2)元素と、M(3)元素及び/又はM(4)元素とを含む化合物を一又は二以上含有してなる中間化合物(但し、M(1)元素、M(2)元素、M(3)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
なお、中間化合物は、上記〔1〕〜〔3〕に示すような原料(合成用原料)を機械的に混合することにより得られた混合粉末、あるいは液相を介して混合する方法により得られた原料混合物を仮焼することにより得ることができる。
Next, a method for producing a dielectric composition according to this embodiment will be described.
The manufacturing method of the dielectric composition of the present embodiment is as described above.
General formula: M (1) 1-x M (2) x M (3) 1-y M (4) y O 2 + xy N 1-x + y
(However, the M (1) element is one or more elements selected from Y, La, Ce, Pr, Nd, and Gd, and the M (2) element is one or more elements selected from Mg, Ca, Sr, and Ba. M (3) element is one or more elements selected from Ti and Zr, M (4) element is one or more elements selected from V, Nb and Ta, and O and N Are oxygen and nitrogen.) In order to obtain a dielectric composition having the composition represented by (1) to [3], any one of the following [1] to [3] is heated, and the following [4] to [6] And a step of heating the intermediate compound in a reducing atmosphere.
[1] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element and M (3) element (provided that M (1) element, M (2) Element and M (3) element are included in at least one of the above compounds)
[2] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element and M (4) element (provided that M (1) element, M (2) Element and M (4) element are included in at least one of the above compounds)
[3] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element, M (3) element and M (4) element (provided that M (1) Element, M (2) element, M (3) element, and M (4) element are included in at least one of the above compounds)
[4] Intermediate compound containing one or more compounds containing M (1) element and / or M (2) element and M (3) element (provided that M (1) element, M (2 ) Element and M (3) element are included in at least one of the above compounds)
[5] Intermediate compound containing one or more compounds containing M (1) element and / or M (2) element and M (4) element (provided that M (1) element, M (2 ) Element and M (4) element are included in at least one of the above compounds)
[6] Intermediate compound comprising one or more compounds containing M (1) element and / or M (2) element and M (3) element and / or M (4) element (provided that M (1) Element, M (2) element, M (3) element, and M (4) element are included in at least one of the above compounds)
The intermediate compound is obtained by a mixed powder obtained by mechanically mixing the raw materials (synthetic raw materials) as shown in the above [1] to [3], or by a method of mixing via a liquid phase. It can be obtained by calcining the raw material mixture.

本発明の誘電体組成物の合成用原料として用いられる、上記〔1〕〜〔3〕に記載の化合物の少なくとも一つは酸化物であることが好ましい。なお、酸化物のほかに、加熱により酸化物を形成する化合物、あるいは上記元素を含有する複化合物を用いてもよい。   It is preferable that at least one of the compounds described in the above [1] to [3] used as a raw material for synthesis of the dielectric composition of the present invention is an oxide. In addition to oxides, compounds that form oxides by heating, or complex compounds containing the above elements may be used.

また、上記合成用原料の混合方法は、粉末状の合成用原料(原料粉末)を機械的に混合する方法と、液相を介して混合する方法が挙げられる。
機械的に混合する場合は、溶媒を用いない乾式ミルによっても混合可能だが、一般には湿式ミルにより溶媒とともに混合し混合スラリーとするほうが好ましい。溶媒を用いた湿式ミル方を用いたほうが、この混合スラリーを蒸発乾固することにより、短時間で微視的に均一な混合粉末を得ることができる。
なお、ミルの種類としては、ボールミル、振動ミル、アトリッションミル等を用いることができるが、設備費用の観点からはボールミルが適している。また、湿式ミルで混合する際に用いる溶媒は、エタノール、メタノール、イソプロパノール、ヘキサン、アセトン、水等を挙げることができるが、安全性等及び原料粉末の酸化防止を勘案すると、エタノール、ヘキサンの何れかが好ましい。
Examples of the method for mixing the raw materials for synthesis include a method of mechanically mixing powdery raw materials for synthesis (raw material powder) and a method of mixing via a liquid phase.
When mixing mechanically, it can be mixed by a dry mill that does not use a solvent, but it is generally preferable to mix with a solvent by a wet mill to form a mixed slurry. When the wet mill method using a solvent is used, this mixed slurry is evaporated to dryness, whereby a microscopically uniform mixed powder can be obtained in a short time.
In addition, as a kind of mill, a ball mill, a vibration mill, an attrition mill or the like can be used, but a ball mill is suitable from the viewpoint of equipment cost. In addition, examples of the solvent used for mixing in the wet mill include ethanol, methanol, isopropanol, hexane, acetone, water, and the like. Is preferred.

また、原料粉末と溶媒の比率は、得られる混合スラリーの粘度によって決定される。好ましい混合スラリーの粘度は、50から500cpsである。混合スラリーの粘度が50cpsより小さいと、混合スラリーの乾燥に要するエネルギー量が増大するため好ましくない。一方、混合スラリーの粘度が500cpsを越えると、均一な混合粉末を得るのに長時間を要するため好ましくない。
得られた混合スラリーは、乾燥機等に静置して溶媒を蒸発させてもよいが、スプレードライヤーを用いると、原料粉末の再分離を心配することなく、さらに短時間で、溶媒を除去した混合粉末を得ることができる。また、スプレードライヤーを用いて得られた混合粉末は、数十から数百μmの顆粒状を呈しているため、流動性に優れ、取り扱いが容易となる。
Moreover, the ratio of the raw material powder and the solvent is determined by the viscosity of the obtained mixed slurry. A preferred mixed slurry has a viscosity of 50 to 500 cps. If the viscosity of the mixed slurry is less than 50 cps, the amount of energy required for drying the mixed slurry increases, which is not preferable. On the other hand, when the viscosity of the mixed slurry exceeds 500 cps, it takes a long time to obtain a uniform mixed powder, which is not preferable.
The obtained mixed slurry may be left in a dryer or the like to evaporate the solvent. However, using a spray dryer, the solvent was removed in a shorter time without worrying about re-separation of the raw material powder. A mixed powder can be obtained. Moreover, since the mixed powder obtained using the spray dryer has a granular form of several tens to several hundreds of μm, it is excellent in fluidity and easy to handle.

また、液相を介して原料粉末を混合して原料混合物とする場合について説明する。
本発明の誘電体組成物の合成に用いられる原料混合物は、共沈法、金属アルコキシド法、ゲル化法(非特許文献3参照)等の液相を介する方法によっても得ることができる。誘電体組成物の合成に液相を介する方法により得られた原料混合物を用いた場合は、原料粉末を機械的に混合した場合よりも短時間での焼成により所望の誘電体組成物を得ることができる。
Moreover, the case where a raw material powder is mixed through a liquid phase to make a raw material mixture is described.
The raw material mixture used for the synthesis of the dielectric composition of the present invention can also be obtained by a method via a liquid phase, such as a coprecipitation method, a metal alkoxide method, or a gelation method (see Non-Patent Document 3). When a raw material mixture obtained by a liquid phase method is used for synthesis of a dielectric composition, a desired dielectric composition is obtained by firing in a shorter time than when raw material powders are mechanically mixed. Can do.

本発明の誘電体組成物の合成には、上述したような、原料粉末の機械的混合により得られた混合粉末、あるいは液相を介した方法により得られた原料混合物を仮焼することにより得られる中間化合物のほかに、中間化合物同士の混合物、或いは中間化合物と原料粉末との混合物等を用いることができる。この場合の混合方法は、上記した原料粉末の混合方法と同様の方法を用いることができる。   The dielectric composition of the present invention is synthesized by calcining a mixed powder obtained by mechanical mixing of raw material powders as described above, or a raw material mixture obtained by a method via a liquid phase. In addition to the intermediate compound, a mixture of intermediate compounds or a mixture of intermediate compound and raw material powder can be used. As the mixing method in this case, the same method as the above-described raw material powder mixing method can be used.

また、中間化合物を構成する上記〔4〕〜〔6〕に記載の化合物の少なくとも一つは酸化物であることが好ましい。なお、M(1),M(2),M(3)及びM(4)元素を、それぞれLa、Ba、Ti、Taとした場合については、中間化合物として、
LaTi,LaTiO,LaTiO,LaTi12,La1.33Ti16,LaTi15,LaTi27,LaTi24,LaTi17,LaTi,BaTi13,BaTi,BaTiO,BaTi13,BaTiO,BaTi5.513,BaTi16,BaTi1740,BaTi11,BaTi,BaTi20,BaTi1322,BaTi1227,BaTi1330
BaLaTi15,BaLaTi10,BaLaTi18,Ba3.99La8.94Ti1854,Ba0.998La2.235Ti4.513.5
LaTaO,LaTaO,LaTa19,LaTa,BaTa15,BaTa,BaTa1532,BaTa15,BaTa
LaTi1.92Ta1.0811,LaTi3.84Ta2.1622
などが例示できる。
Moreover, it is preferable that at least one of the compounds described in [4] to [6] constituting the intermediate compound is an oxide. In the case where the elements M (1), M (2), M (3) and M (4) are La, Ba, Ti and Ta, respectively,
La 2 Ti 2 O 7 , LaTiO 3 , La 2 TiO 5 , La 4 Ti 3 O 12 , La 1.33 Ti 8 O 16 , La 5 Ti 4 O 15 , La 9 Ti 7 O 27 , La 4 Ti 9 O 24 , La 5 Ti 5 O 17 , La 2 Ti 3 O 9 , Ba 2 Ti 6 O 13 , BaTi 2 O 5 , Ba 2 TiO 4 , BaTi 6 O 13 , BaTiO 3 , Ba 2 Ti 5.5 O 13 , BaTi 8 O 16 , Ba 6 Ti 17 O 40 , BaTi 5 O 11 , BaTi 4 O 9 , Ba 2 Ti 9 O 20 , Ba 2 Ti 13 O 22 , Ba 4 Ti 12 O 27 , Ba 4 Ti 13 O 30
BaLa 4 Ti 4 O 15 , BaLa 2 Ti 3 O 10 , Ba 2 La 4 Ti 5 O 18 , Ba 3.99 La 8.94 Ti 18 O 54 , Ba 0.998 La 2.235 Ti 4.5 O 13 .5
LaTaO 4 , La 3 TaO 7 , LaTa 7 O 19 , LaTa 3 O 9 , Ba 5 Ta 4 O 15 , BaTa 2 O 6 , Ba 2 Ta 15 O 32 , Ba 3 Ta 5 O 15 , Ba 4 Ta 2 O 9
La 3 Ti 1.92 Ta 1.08 O 11 , La 6 Ti 3.84 Ta 2.16 O 22
Etc. can be exemplified.

上記した中間化合物は、酸化物若しくは加熱により酸化物を形成する化合物である混合粉末または原料混合物を空気中で加熱(仮焼)することにより得られる。なお、後述する窒化処理工程の反応性を勘案し、加熱温度(仮焼成温度)は1400℃以下であることが好ましい。仮焼成温度が1400℃を超えると、生成した中間化合物の粒径が大きくなるため、窒化処理工程での反応性が低下し好ましくない。   The above-mentioned intermediate compound can be obtained by heating (calcining) a mixed powder or a raw material mixture, which is an oxide or a compound that forms an oxide by heating, in air. In consideration of the reactivity of the nitriding process described later, the heating temperature (temporary firing temperature) is preferably 1400 ° C. or lower. When the pre-baking temperature exceeds 1400 ° C., the particle size of the generated intermediate compound becomes large, which is not preferable because the reactivity in the nitriding treatment process is lowered.

尚、上記した酸化物群は、あくまでも中間化合物例を示したものであり、上記した酸化物群を構成するLa、Ba、Ti及びTaのそれぞれを、M(1),M(2),M(3)及びM(4)元素(M(1)元素はY,La,Ce,Pr,Nd,Gdから選ばれる1種以上の元素であり、M(2)元素はMg,Ca,Sr,Baから選ばれる1種以上の元素であり、M(3)元素はTi,Zrから選ばれる1種以上の元素であり、M(4)元素はV,Nb,Taから選ばれる1種以上の元素)とした場合においても、同様の効果が得られる。また、上記した酸化物とM(1)元素の酸化物、M(2)元素の酸化物からなる複酸化物を用いても同様の効果が得られる。   The above-described oxide group is merely an example of an intermediate compound, and La, Ba, Ti, and Ta constituting the above-described oxide group are represented by M (1), M (2), M (3) and M (4) element (M (1) element is one or more elements selected from Y, La, Ce, Pr, Nd, Gd, and M (2) element is Mg, Ca, Sr, One or more elements selected from Ba, M (3) element is one or more elements selected from Ti, Zr, and M (4) element is one or more elements selected from V, Nb, Ta In the case of (element), the same effect can be obtained. The same effect can be obtained by using a double oxide composed of the above-described oxide, M (1) element oxide, and M (2) element oxide.

また、本実施形態に係る誘電体組成物は、上述したような原料(合成用原料)を還元性雰囲気で加熱(焼成)することにより製造することも可能である。
つまり、本実施形態に係る誘電体組成物の製造方法は、以下の〔7〕〜〔9〕のいずれかの原料を還元性雰囲気中で加熱する工程を含んでもよい。
〔7〕M(1)元素、M(2)元素及びM(3)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(3)元素は前記化合物の少なくともいずれか一つに含まれる)
〔8〕M(1)元素、M(2)元素及びM(4)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔9〕M(1)元素、M(2)元素、M(3)元素及びM(4)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素、M(3)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
このように、本実施形態に係る誘電体組成物は、上述したような中間化合物を生成せず、原料を直接還元窒化する方法でも製造することができる。
In addition, the dielectric composition according to the present embodiment can also be manufactured by heating (baking) the above-described raw material (synthetic raw material) in a reducing atmosphere.
That is, the method for manufacturing a dielectric composition according to this embodiment may include a step of heating any of the following raw materials [7] to [9] in a reducing atmosphere.
[7] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element and M (3) element (provided that M (1) element, M (2) Element and M (3) element are included in at least one of the above compounds)
[8] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element, and M (4) element (provided that M (1) element, M (2) Element and M (4) element are included in at least one of the above compounds)
[9] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element, M (3) element and M (4) element (provided that M (1) Element, M (2) element, M (3) element, and M (4) element are included in at least one of the above compounds)
As described above, the dielectric composition according to this embodiment can be manufactured by a method in which the raw material is directly reduced and nitrided without generating the intermediate compound as described above.

また、本実施形態に係る誘電体組成物は、上述したような中間化合物を出発原料として、この出発原料を還元性雰囲気で加熱(焼成)することにより製造することも可能である。
つまり、本実施形態に係る誘電体組成物の製造方法は、以下の〔10〕〜〔12〕のいずれかの原料(中間化合物)を還元性雰囲気中で加熱する工程を含んでもよい。
〔10〕M(1)元素及び/又はM(2)元素と、M(3)元素とを含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(3)元素は前記化合物の少なくともいずれか一つに含まれる)
〔11〕M(1)元素及び/又はM(2)元素と、M(4)元素とを含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔12〕M(1)元素及び/又はM(2)元素と、M(3)元素及び/又はM(4)元素とを含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素、M(3)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
In addition, the dielectric composition according to the present embodiment can be produced by using the above-described intermediate compound as a starting material and heating (baking) the starting material in a reducing atmosphere.
That is, the method for manufacturing a dielectric composition according to this embodiment may include a step of heating any of the following raw materials (intermediate compounds) [10] to [12] in a reducing atmosphere.
[10] A raw material containing one or more compounds containing M (1) element and / or M (2) element and M (3) element (however, M (1) element, M (2) Element and M (3) element are included in at least one of the above compounds)
[11] A raw material containing one or more compounds containing M (1) element and / or M (2) element and M (4) element (however, M (1) element, M (2) Element and M (4) element are included in at least one of the above compounds)
[12] A raw material containing one or more compounds containing M (1) element and / or M (2) element and M (3) element and / or M (4) element (provided that M ( 1) Element, M (2) element, M (3) element, and M (4) element are included in at least one of the above compounds)

上記の原料混合物、混合粉末、中間化合物あるいは中間化合物を含む混合物を還元性雰囲気中で焼成(窒化処理工程)する際は、嵩密度40%以下の充填率に保持した状態で焼成するとよい。嵩密度とは粉末の体積充填率であり、一定容器に充填したときの質量と体積の比を化合物の理論密度で割った値である。嵩密度を40%以下の状態に保持したまま焼成するのは、原料混合物、混合粉末、中間化合物あるいは中間化合物を含む混合物の周りに自由な空間がある状態で焼成することにより、原料混合物、混合粉末、中間化合物あるいは中間化合物を含む混合物と雰囲気ガスとの反応性が向上するためである。   When the above raw material mixture, mixed powder, intermediate compound or mixture containing the intermediate compound is fired in a reducing atmosphere (nitriding treatment step), it is preferably fired in a state where the bulk density is maintained at 40% or less. The bulk density is the volume filling rate of the powder, and is a value obtained by dividing the ratio of mass to volume when filling a certain container by the theoretical density of the compound. Firing while maintaining the bulk density at 40% or less is achieved by firing the raw material mixture, mixed powder, intermediate compound or mixture containing the intermediate compound with a free space around the raw material mixture, mixing This is because the reactivity of the powder, the intermediate compound or the mixture containing the intermediate compound and the atmospheric gas is improved.

還元性雰囲気中で焼成する際の焼成温度は、800から1500℃の温度範囲とする。これにより所望の誘電体組成物が得られるが、好ましい温度範囲は800〜1200℃である。焼成温度が800℃よりも低いと所望の誘電体組成物を得るのに長時間を要し、1500℃よりも高いと誘電体組成物の表面において熱分解が始まるため、何れも好ましくない。
また、焼成時間は1時間から20時間程度であるが、より均一な誘電体組成物とするために、繰り返し焼成を行っても差し支えない。繰り返し焼成を行う場合は、2回目以降の焼成前に一回目の焼成物を解砕混合して均一性を高めるとよい。
焼成雰囲気は、還元性雰囲気とする。なお、窒素、アンモニアから選ばれる一種以上と、必要に応じて水素を加えた雰囲気中が好ましい。もっとも好ましいのはアンモニア雰囲気中である。雰囲気ガスは、焼成炉中に充填された状態でも差し支えないが、雰囲気ガスの気流中で焼成する方が望ましい。ガス流量は、通常10ml/分以上である。
The firing temperature when firing in a reducing atmosphere is in the temperature range of 800 to 1500 ° C. Although a desired dielectric composition is obtained by this, a preferable temperature range is 800-1200 degreeC. If the firing temperature is lower than 800 ° C., it takes a long time to obtain a desired dielectric composition, and if it is higher than 1500 ° C., thermal decomposition starts on the surface of the dielectric composition, which is not preferable.
The firing time is about 1 to 20 hours, but repeated firing may be performed in order to obtain a more uniform dielectric composition. In the case of repeatedly firing, it is preferable to improve uniformity by crushing and mixing the first fired product before the second and subsequent firings.
The firing atmosphere is a reducing atmosphere. In addition, the atmosphere in which at least one selected from nitrogen and ammonia and hydrogen as necessary is added is preferable. Most preferred is in an ammonia atmosphere. The atmosphere gas may be in a state where it is filled in a firing furnace, but it is preferable to perform the firing in an atmosphere gas flow. The gas flow rate is usually 10 ml / min or more.

また、中間化合物あるいは中間化合物を含む混合物を充填する容器の材質としては、アルミナ、カルシア、マグネシア、黒鉛或いは窒化硼素を使用することが出来る。
焼成開始時は、一旦減圧もしくは真空状態として、炉内の残留空気を炉外に排気するか、若しくは、使用する雰囲気ガスを用いて炉内に残留している空気をパージする必要があるが、後者の場合、残留空気の除去には長時間を要するため、減圧もしくは真空状態とする方が好ましい。
Further, alumina, calcia, magnesia, graphite or boron nitride can be used as the material for the container filled with the intermediate compound or the mixture containing the intermediate compound.
At the start of firing, it is necessary to temporarily reduce the pressure in a reduced pressure or vacuum state and exhaust the residual air in the furnace to the outside of the furnace, or purge the residual air in the furnace using the atmospheric gas to be used. In the latter case, since it takes a long time to remove residual air, it is preferable to use a reduced pressure or vacuum state.

本発明の誘電体組成物の焼結体を作製する場合には、少量の焼結助剤を用いることができる。焼結助剤としては、アルカリ金属、アルカリ土類金属、珪素、ビスマス、硼素の酸化物、フッ化物などが挙げられる。一般に焼結助剤の添加量は、0.1から10重量%程度である。   When producing a sintered body of the dielectric composition of the present invention, a small amount of sintering aid can be used. Examples of the sintering aid include alkali metals, alkaline earth metals, silicon, bismuth, boron oxides, fluorides, and the like. Generally, the addition amount of the sintering aid is about 0.1 to 10% by weight.

また、本発明に係る誘電体組成物を用いて、積層焼結体を作製することも可能である。
この積層焼結体を作製する場合は、本発明の誘電体組成物粉末に、焼結助剤、バインダー、溶媒、その他添加剤を加えて、混練して、セラミック・スラリーを形成する。バインダーとしては、ポリビニルブチラール樹脂やポリビニルアルコール、アクリル酸ポリマー等を使用することができる。溶媒としては、エタノールやイソプロピルアルコール、水等を使用することができる。
得られたセラミック・スラリーを、PETフィルムなどの長尺のベース・フィルムに、ドクターブレード、ロールコータなどの塗布機を用いてシート状に塗布し、セラミック・グリーンシートとする。
Moreover, it is also possible to produce a laminated sintered body by using the dielectric composition according to the present invention.
When producing this laminated sintered body, a sintering aid, a binder, a solvent and other additives are added to the dielectric composition powder of the present invention and kneaded to form a ceramic slurry. As the binder, polyvinyl butyral resin, polyvinyl alcohol, acrylic acid polymer, or the like can be used. As the solvent, ethanol, isopropyl alcohol, water, or the like can be used.
The obtained ceramic slurry is applied to a long base film such as a PET film in the form of a sheet using an application machine such as a doctor blade or a roll coater to obtain a ceramic green sheet.

また、積層セラミックコンデンサーを作製する場合は、このセラミック・グリーンシートに、スクリーン印刷等によって導電ペーストを塗布し、内部電極金属層を形成する。この内部電極金属層の形成に用いる導電ペーストには、Pt,Pd,Ag,Cu,Ni等の金属粉末をバインダーに分散したものを用いる。
内部電極金属層が形成されたセラミック・グリーンシートを、所定形状に打ち抜いて、これらを積み重ね、圧着してセラミック積層体を得る。この積層体を切断分割して、積層体チップとする。この積層体チップを加熱し、脱バインダーした後、焼成する。
焼成後の積層体チップに導電ペーストを焼き付けることにより外部電極を形成して、積層セラミックコンデンサーを得る。また、未焼成の積層体チップに導電ペーストを塗布してセラミック誘電体層の焼成と同時に焼き付けるようにしてもよい。
When a multilayer ceramic capacitor is manufactured, a conductive paste is applied to the ceramic green sheet by screen printing or the like to form an internal electrode metal layer. As the conductive paste used for forming the internal electrode metal layer, a metal powder such as Pt, Pd, Ag, Cu, or Ni dispersed in a binder is used.
The ceramic green sheets on which the internal electrode metal layer is formed are punched into a predetermined shape, and these are stacked and pressure-bonded to obtain a ceramic laminate. This laminate is cut and divided to obtain laminate chips. The laminate chip is heated, debindered, and then fired.
An external electrode is formed by baking a conductive paste on the fired multilayer chip to obtain a multilayer ceramic capacitor. Alternatively, a conductive paste may be applied to an unsintered multilayer chip and baked simultaneously with the firing of the ceramic dielectric layer.

本発明の誘電体組成物は、誘電体組成物粉末と樹脂とを混合した複合体を作製することにより、コンデンサーとしての機能を有する回路基板材料とすることもできる。
この場合の樹脂は、熱可塑性、熱硬化性樹脂のいずれでも良いが、はんだ耐熱性などの点から、好ましくは熱硬化性樹脂を用いる。熱可塑性樹脂では、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルイミド樹脂、液晶ポリマー樹脂、ポリスチレン樹脂、ポリエチレン樹脂、フッ素樹脂などを用いることができる。また、熱硬化性樹脂では、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、アクリル樹脂、シアネート樹脂、ベンゾシクロブテン樹脂など一般的にプリント配線板の絶縁層に使用される樹脂を用いることができる。特に、熱硬化収縮性、粘性などの点からエポキシ樹脂が好ましい。エポキシ樹脂とは分子構造中にエポキシ基(オキシラン環)を2個以上含むプレポリマーおよび、それと硬化剤とを組合せた樹脂である。また、この硬化剤には、フェノールノボラック樹脂、ビスフェノールA型ノボラック樹脂、アミノトリアジン化合物、ナフトール化合物など、従来から用いられている硬化剤を用いることができる。
The dielectric composition of the present invention can be used as a circuit board material having a function as a capacitor by producing a composite in which a dielectric composition powder and a resin are mixed.
The resin in this case may be either thermoplastic or thermosetting resin, but is preferably a thermosetting resin from the viewpoint of solder heat resistance. As the thermoplastic resin, polyphenylene ether resin, polyphenylene sulfide resin, polyether sulfone resin, polyetherimide resin, liquid crystal polymer resin, polystyrene resin, polyethylene resin, fluorine resin, or the like can be used. Moreover, in thermosetting resin, resin generally used for the insulating layer of a printed wiring board, such as an epoxy resin, a phenol resin, a polyimide resin, an acrylic resin, a cyanate resin, a benzocyclobutene resin, can be used. In particular, an epoxy resin is preferable from the viewpoint of thermosetting shrinkage and viscosity. The epoxy resin is a resin obtained by combining a prepolymer containing two or more epoxy groups (oxirane rings) in a molecular structure and a curing agent. Moreover, conventionally used curing agents such as a phenol novolak resin, a bisphenol A type novolak resin, an aminotriazine compound, and a naphthol compound can be used as the curing agent.

複合体を作製する際の誘電体組成物粉末の樹脂への分散方法は、超音波分散、3本ロール、クレアミックス、ホモジナイザー、メディア分散機、自転・公転ミキサーなど、従来の方法を用いることができるが、分散状態の制御の点で3本ロール、メディア分散機、自転・公転ミキサーから選ばれる一種を用いるのが好ましい。
尚、誘電体組成物粉末を樹脂中に均一に分散させるための方法として、誘電体組成物粉末表面の修飾、分散剤の添加、溶剤の添加などが行われる。誘電体組成物粉末の表面の修飾としてはロジン処理、酸性処理、塩基性処理など、また、分散剤としてはノニオン性、カチオン性、アニオン性の界面活性剤、多価カルボン酸などの湿潤剤、両親和性物質、高立体障害の置換基を有する樹脂などが挙げられる。
As a method for dispersing the dielectric composition powder in the resin when producing the composite, conventional methods such as ultrasonic dispersion, three rolls, CLEARMIX, homogenizer, media disperser, and rotation / revolution mixer may be used. However, from the viewpoint of controlling the dispersion state, it is preferable to use one selected from three rolls, a media disperser, and a rotation / revolution mixer.
As a method for uniformly dispersing the dielectric composition powder in the resin, modification of the surface of the dielectric composition powder, addition of a dispersant, addition of a solvent, and the like are performed. As a modification of the surface of the dielectric composition powder, rosin treatment, acid treatment, basic treatment, etc., as a dispersant, nonionic, cationic, anionic surfactant, wetting agent such as polyvalent carboxylic acid, Examples thereof include amphoteric substances and resins having highly sterically hindered substituents.

以上のようにして、誘電体組成物粉末と樹脂、さらに適宜、溶剤、分散剤などからなるペースト溶液を、スピンナー、スクリーン印刷、ブレードコーター、ダイコーターなどを用いて基板上に塗布し、製膜した後、ホットプレート、オーブンなどの加熱装置を用いて、溶剤の除去や熱硬化を行うことによって回路基板材料を得ることができる。
基板は有機系基板、無機系基板、およびこれらの基板に回路の構成材料が配置されたものから選択できる。
上記の複合体は、プリント配線基板の内蔵キャパシタ作製に用いられる他、多層基板の層間絶縁膜、周波数フィルター、無線用アンテナ、電磁シールドなど、多くの電子部品、装置への適用が可能である。
As described above, a dielectric composition powder and a resin, and a paste solution composed of a solvent, a dispersant, etc., as appropriate, are applied onto a substrate using a spinner, screen printing, blade coater, die coater, etc. After that, the circuit board material can be obtained by removing the solvent or thermosetting using a heating device such as a hot plate or an oven.
The substrate can be selected from an organic substrate, an inorganic substrate, and a substrate in which circuit constituent materials are arranged.
In addition to being used for the production of a built-in capacitor on a printed wiring board, the above composite can be applied to many electronic components and devices such as an interlayer insulating film, a frequency filter, a radio antenna, and an electromagnetic shield of a multilayer board.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例にのみ限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited only to these Examples.

<実施例1>
まず、誘電体組成物の合成用原料として炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を用いて、中間化合物を合成した。
具体的には、本発明における一般式において、xを表1に示す値、またy=0とした組成の誘電体組成物となるよう、炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を、表1に示す割合で秤取し、溶媒としてエタノールを用いた湿式ボールミルにより均一に混合し混合スラリーとした。次に、得られたスラリーを蒸発乾固して混合粉末とした後、この混合粉末を解砕した粉末をアルミナ製容器に配置し、空気中、1100℃で2時間焼成し、中間化合物を合成した。なお、得られた中間化合物をメノー乳鉢で解砕し、粉末X線回折装置により生成相を同定したところ、LaTi,BaTiOおよび少量のLaからなることがわかった。
次に、得られた中間化合物をアルミナ製ボートに配置し、アンモニア気流中1100℃で6時間焼成し、誘電体組成物を生成した。得られた誘電体組成物は濃赤色から赤褐色を呈していた。また、得られた誘電体組成物の結晶構造は、粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成は、La0.9Ba0.1TiO0.9であった。
また、誘電率の測定には、得られた誘電体組成物の粉末を10MPaの圧力で直径10mm、厚さ1mm程度の円板状に成形し、更に、200MPaの圧力でCIP成形した試料を用いた。試料の成形体密度を測定した後、導電性ペーストを塗布し、真空中、300K、100kHzで静電容量を測定した。比誘電率は、得られた静電容量の値から、特許第3246001号公報に記載された方法に準拠して、リヒトネッカーの対数混合則を用いて補正を行った。なお、実施例1の場合の比誘電率は、11000であった。なお、実施例2〜11の比誘電率は、実施例1の比誘電率を100とした場合の相対値として表1に示す。
次に、得られた誘電体組成物の試料を冷却・加熱装置に装填し、真空中、−130℃から800℃までの温度範囲で比誘電率の変化を調べた。比誘電率には、チタン酸バリウムのキュリー・ワイス効果に相当する顕著な変化、すなわち、強誘電体から常誘電体への相転移を示す変化は認められず、本発明の誘電体組成物は広範な温度範囲で使用可能であることがわかった。
<Example 1>
First, an intermediate compound was synthesized using barium carbonate powder, lanthanum oxide powder and titanium oxide powder as raw materials for synthesis of the dielectric composition.
Specifically, in the general formula in the present invention, barium carbonate powder, lanthanum oxide powder, and titanium oxide powder are expressed in the form of a dielectric composition having a composition in which x is a value shown in Table 1 and y = 0. The mixture was weighed at a ratio shown in 1 and uniformly mixed by a wet ball mill using ethanol as a solvent to obtain a mixed slurry. Next, the obtained slurry is evaporated to dryness to obtain a mixed powder, and then the powder obtained by pulverizing the mixed powder is placed in an alumina container and baked in air at 1100 ° C. for 2 hours to synthesize an intermediate compound. did. The obtained intermediate compound was crushed in a menor mortar and the product phase was identified by a powder X-ray diffractometer. As a result, it was found that the intermediate compound was composed of La 2 Ti 2 O 7 , BaTiO 3 and a small amount of La 2 O 3 . .
Next, the obtained intermediate compound was placed in an alumina boat and baked at 1100 ° C. for 6 hours in an ammonia stream to produce a dielectric composition. The obtained dielectric composition was dark red to reddish brown. The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.9 Ba 0.1 TiO 2 N 0.9 .
The dielectric constant was measured by using a sample obtained by molding the obtained dielectric composition powder into a disk shape having a diameter of about 10 mm and a thickness of about 1 mm at a pressure of 10 MPa, and further performing CIP molding at a pressure of 200 MPa. It was. After measuring the density of the molded body of the sample, a conductive paste was applied, and the capacitance was measured at 300 K and 100 kHz in a vacuum. The specific permittivity was corrected from the obtained capacitance value using the Lichtnecker logarithmic mixing rule in accordance with the method described in Japanese Patent No. 3246001. The relative dielectric constant in the case of Example 1 was 11000. The relative dielectric constants of Examples 2 to 11 are shown in Table 1 as relative values when the relative dielectric constant of Example 1 is 100.
Next, a sample of the obtained dielectric composition was loaded into a cooling / heating device, and the change in relative dielectric constant was examined in a temperature range from −130 ° C. to 800 ° C. in a vacuum. In the relative dielectric constant, no significant change corresponding to the Curie-Weiss effect of barium titanate, that is, a change indicating a phase transition from a ferroelectric to a paraelectric, is not observed. It was found that it can be used in a wide temperature range.

<実施例2>
実施例2は、炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を表1に示す割合を用いた以外は、実施例1と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例1と同様に、LaTi,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.95Ba0.05TiO2.050.95であった。また、その比誘電率は実施例1の比誘電率を100とすると、85.2であった。
実施例2の誘電体組成物は実施例1の誘電体組成物と同じ結晶構造を有し、かつ、実施例1の誘電体組成物と組成の成分は同じであるから、実施例1の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 2>
In Example 2, a dielectric composition was produced in the same manner as in Example 1 except that barium carbonate powder, lanthanum oxide powder and titanium oxide powder were used in the proportions shown in Table 1. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 1, it was found to consist of La 2 Ti 2 O 7, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. The composition was La 0.95 Ba 0.05 TiO 2.05 N 0.95 . The relative dielectric constant was 85.2, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 2 has the same crystal structure as the dielectric composition of Example 1, and the components of the composition are the same as those of Example 1, the dielectric composition of Example 1 Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例3>
実施例3は、炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を表1に示す割合を用いた以外は、実施例1と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例1と同様に、LaTi,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.925Ba0.075TiO2.0750.925であった。また、その比誘電率は実施例1の比誘電率を100とすると、93.3であった。
実施例3の誘電体組成物は実施例1の誘電体組成物と同じ結晶構造を有し、かつ、実施例1の誘電体組成物と組成の成分は同じであるから、実施例1の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 3>
In Example 3, a dielectric composition was produced in the same manner as in Example 1 except that barium carbonate powder, lanthanum oxide powder and titanium oxide powder were used in the proportions shown in Table 1. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 1, it was found to consist of La 2 Ti 2 O 7, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.925 Ba 0.075 TiO 2.075 N 0.925 . The relative dielectric constant was 93.3, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 3 has the same crystal structure as the dielectric composition of Example 1, and the components of the composition are the same as those of Example 1, the dielectric composition of Example 1 Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例4>
実施例4は、炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を表1に示す割合を用いた以外は、実施例1と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例1と同様に、LaTi,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.91Ba0.09TiO2.090.91であった。また、その比誘電率は実施例1の比誘電率を100とすると、98.0であった。
実施例4の誘電体組成物は実施例1の誘電体組成物と同じ結晶構造を有し、かつ、実施例1の誘電体組成物と組成の成分は同じであるから、実施例1の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 4>
In Example 4, a dielectric composition was produced in the same manner as in Example 1 except that the barium carbonate powder, lanthanum oxide powder, and titanium oxide powder were used in the proportions shown in Table 1. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 1, it was found to consist of La 2 Ti 2 O 7, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. The composition was La 0.91 Ba 0.09 TiO 2.09 N 0.91 . The relative dielectric constant was 98.0, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 4 has the same crystal structure as the dielectric composition of Example 1 and the components of the composition are the same as those of Example 1, the dielectric composition of Example 1 Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例5>
実施例5は、炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を表1に示す割合を用いた以外は、実施例1と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例1と同様に、LaTi,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.89Ba0.11TiO2.110.89であった。また、その比誘電率は実施例1の比誘電率を100とすると、98.1であった。
実施例5の誘電体組成物は実施例1の誘電体組成物と同じ結晶構造を有し、かつ、実施例1の誘電体組成物と組成の成分は同じであるから、実施例1の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 5>
In Example 5, a dielectric composition was produced in the same manner as in Example 1 except that the barium carbonate powder, lanthanum oxide powder and titanium oxide powder were used in the proportions shown in Table 1. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 1, it was found to consist of La 2 Ti 2 O 7, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.89 Ba 0.11 TiO 2.11 N 0.89 . The relative dielectric constant was 98.1, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 5 has the same crystal structure as the dielectric composition of Example 1, and the components of the composition are the same as those of Example 1, the dielectric composition of Example 1 Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例6>
実施例6は、炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を表1に示す割合を用いた以外は、実施例1と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例1と同様に、LaTi,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.875Ba0.125TiO2.1250.875であった。また、その比誘電率は実施例1の比誘電率を100とすると、94.2であった。
実施例6の誘電体組成物は実施例1の誘電体組成物と同じ結晶構造を有し、かつ、実施例1の誘電体組成物と組成の成分は同じであるから、実施例1の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 6>
In Example 6, a dielectric composition was produced in the same manner as in Example 1 except that barium carbonate powder, lanthanum oxide powder and titanium oxide powder were used in the proportions shown in Table 1. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 1, it was found to consist of La 2 Ti 2 O 7, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.875 Ba 0.125 TiO 2.125 N 0.875 . The relative dielectric constant was 94.2, assuming that the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 6 has the same crystal structure as the dielectric composition of Example 1, and the components of the composition are the same as those of Example 1, the dielectric composition of Example 1 Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例7>
実施例7は、炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を表1に示す割合を用いた以外は、実施例1と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例1と同様に、LaTi,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.85Ba0.15TiO2.150.85であった。また、その比誘電率は実施例1の比誘電率を100とすると、88.8であった。
実施例7の誘電体組成物は実施例1の誘電体組成物と同じ結晶構造を有し、かつ、実施例1の誘電体組成物と組成の成分は同じであるから、実施例1の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 7>
In Example 7, a dielectric composition was produced in the same manner as in Example 1 except that the barium carbonate powder, lanthanum oxide powder and titanium oxide powder were used in the proportions shown in Table 1. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 1, it was found to consist of La 2 Ti 2 O 7, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.85 Ba 0.15 TiO 2.15 N 0.85 . The relative dielectric constant was 88.8, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 7 has the same crystal structure as the dielectric composition of Example 1, and the components of the composition are the same as those of Example 1, the dielectric composition of Example 1 Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例8>
実施例8は、炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を表1に示す割合を用いた以外は、実施例1と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例1と同様に、LaTi,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.8Ba0.2TiO2.20.8であった。また、その比誘電率は実施例1の比誘電率を100とすると、83.9であった。
実施例8の誘電体組成物は実施例1の誘電体組成物と同じ結晶構造を有し、かつ、実施例1の誘電体組成物と組成の成分は同じであるから、実施例1の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 8>
In Example 8, a dielectric composition was produced in the same manner as in Example 1 except that the barium carbonate powder, lanthanum oxide powder and titanium oxide powder were used in the proportions shown in Table 1. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 1, it was found to consist of La 2 Ti 2 O 7, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.8 Ba 0.2 TiO 2.2 N 0.8 . The relative dielectric constant was 83.9, assuming that the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 8 has the same crystal structure as the dielectric composition of Example 1, and the components of the composition are the same as those of Example 1, the dielectric composition of Example 1 Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例9>
実施例9は、炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を表1に示す割合を用いた以外は、実施例1と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例1と同様に、LaTi,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.7Ba0.3TiO2.30.7であった。また、その比誘電率は実施例1の比誘電率を100とすると、82.4であった。
実施例9の誘電体組成物は実施例1の誘電体組成物と同じ結晶構造を有し、かつ、実施例1の誘電体組成物と組成の成分は同じであるから、実施例1の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 9>
In Example 9, a dielectric composition was produced in the same manner as in Example 1 except that barium carbonate powder, lanthanum oxide powder and titanium oxide powder were used in the proportions shown in Table 1. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 1, it was found to consist of La 2 Ti 2 O 7, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.7 Ba 0.3 TiO 2.3 N 0.7 . The relative dielectric constant was 82.4, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 9 has the same crystal structure as the dielectric composition of Example 1, and the components of the composition are the same as those of Example 1, the dielectric composition of Example 1 Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例10>
実施例10は、炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を表1に示す割合を用いた以外は、実施例1と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例1と同様に、LaTi,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.6Ba0.4TiO2.40.6であった。また、その比誘電率は実施例1の比誘電率を100とすると、79.9であった。
実施例10の誘電体組成物は実施例1の誘電体組成物と同じ結晶構造を有し、かつ、実施例1の誘電体組成物と組成の成分は同じであるから、実施例1の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 10>
In Example 10, a dielectric composition was produced in the same manner as in Example 1 except that barium carbonate powder, lanthanum oxide powder and titanium oxide powder were used in the proportions shown in Table 1. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 1, it was found to consist of La 2 Ti 2 O 7, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.6 Ba 0.4 TiO 2.4 N 0.6 . The relative dielectric constant was 79.9, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 10 has the same crystal structure as the dielectric composition of Example 1, and the components of the composition are the same as those of Example 1, the dielectric composition of Example 1 Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例11>
実施例11は、炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を表1に示す割合を用いた以外は、実施例1と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例1と同様に、LaTi,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.5Ba0.5TiO2.50.5であった。また、その比誘電率は実施例1の比誘電率を100とすると、71.1であった。
実施例11の誘電体組成物は実施例1の誘電体組成物と同じ結晶構造を有し、かつ、実施例1の誘電体組成物と組成の成分は同じであるから、実施例1の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 11>
In Example 11, a dielectric composition was produced in the same manner as in Example 1 except that barium carbonate powder, lanthanum oxide powder and titanium oxide powder were used in the proportions shown in Table 1. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 1, it was found to consist of La 2 Ti 2 O 7, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.5 Ba 0.5 TiO 2.5 N 0.5 . The relative dielectric constant was 71.1, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 11 has the same crystal structure as the dielectric composition of Example 1, and the components of the composition are the same as those of Example 1, the dielectric composition of Example 1 Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

Figure 2013001625
Figure 2013001625

<実施例12>
誘電体組成物の合成用原料として炭酸バリウム粉末、酸化ランタン粉末、酸化チタン粉末及び酸化タンタル粉末を用いて、中間化合物を合成した。
具体的には、本発明における一般式において、x=0.1、またyを表2に示す値とした組成の誘電体組成物となるよう、炭酸バリウム粉末、酸化ランタン粉末及び酸化チタン粉末を、表2に示す割合で秤取し、溶媒としてエタノールを用いた湿式ボールミルにより均一に混合し混合スラリーとした。次に、得られたスラリーを蒸発乾固して混合粉末とした後、この混合粉末を解砕した粉末をアルミナ製容器に配置し、空気中、1300℃で2時間焼成し、中間化合物を合成した。なお、得られた中間化合物をメノー乳鉢で解砕し、粉末X線回折装置により生成相を同定したところ、LaTi,LaTaO,BaTiOおよび少量のLaからなることがわかった。
次に、得られた中間化合物をアルミナ製ボートに配置し、アンモニア気流中1200℃で6時間焼成し、誘電体組成物を生成した。得られた誘電体組成物は濃赤色から赤褐色を呈していた。また、得られた誘電体組成物の結晶構造は、粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成は、La0.9Ba0.1Ti0.95Ta0.052。050.95であった。
続いて、実施例1〜11と同様にして比誘電率の測定を行った。なお、実施例12〜22の比誘電率は、実施例1の比誘電率を100とした場合の相対値として表2に示す。
次に、得られた誘電体組成物の試料を冷却・加熱装置に装填し、真空中、−130℃から800℃までの温度範囲で比誘電率の変化を調べた。実施例1と同様に、比誘電率には、チタン酸バリウムのキュリー・ワイス効果に相当する顕著な変化は認められず、本発明の誘電体組成物は広範な温度範囲で使用可能であることがわかった。
<Example 12>
Intermediate compounds were synthesized using barium carbonate powder, lanthanum oxide powder, titanium oxide powder and tantalum oxide powder as raw materials for synthesis of the dielectric composition.
Specifically, in the general formula in the present invention, barium carbonate powder, lanthanum oxide powder, and titanium oxide powder are used so that the dielectric composition has a composition in which x = 0.1 and y is a value shown in Table 2. The mixture was weighed at the ratio shown in Table 2 and uniformly mixed with a wet ball mill using ethanol as a solvent to obtain a mixed slurry. Next, the obtained slurry is evaporated to dryness to obtain a mixed powder, and then the powder obtained by pulverizing the mixed powder is placed in an alumina container and baked in air at 1300 ° C. for 2 hours to synthesize an intermediate compound. did. In addition, when the obtained intermediate compound was crushed with a menor mortar and the generated phase was identified by a powder X-ray diffractometer, it was composed of La 2 Ti 2 O 7 , LaTaO 4 , BaTiO 3 and a small amount of La 2 O 3. I understood.
Next, the obtained intermediate compound was placed in an alumina boat and baked at 1200 ° C. for 6 hours in an ammonia stream to produce a dielectric composition. The obtained dielectric composition was dark red to reddish brown. The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.9 Ba 0.1 Ti 0.95 Ta 0.05 O 2.05 N 0.95.
Subsequently, the relative dielectric constant was measured in the same manner as in Examples 1-11. The relative dielectric constants of Examples 12 to 22 are shown in Table 2 as relative values when the relative dielectric constant of Example 1 is 100.
Next, a sample of the obtained dielectric composition was loaded into a cooling / heating device, and the change in relative dielectric constant was examined in a temperature range from −130 ° C. to 800 ° C. in a vacuum. As in Example 1, there was no significant change in the dielectric constant corresponding to the Curie-Weiss effect of barium titanate, and the dielectric composition of the present invention can be used in a wide temperature range. I understood.

<実施例13>
実施例13は、炭酸バリウム粉末、酸化ランタン粉末、酸化チタン粉末及び酸化タンタル粉末を表2に示す割合を用いた以外は、実施例12と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例12と同様に、LaTi,LaTaO,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.9Ba0.1Ti0.925Ta0.0752。0250.975であった。また、その比誘電率は実施例1の比誘電率を100とすると、130.0であった。
実施例13の誘電体組成物は実施例12の誘電体組成物と同じ結晶構造を有し、かつ、実施例12の誘電体組成物と組成の成分は同じであるから、実施例12の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 13>
In Example 13, a dielectric composition was produced in the same manner as in Example 12 except that barium carbonate powder, lanthanum oxide powder, titanium oxide powder and tantalum oxide powder were used in the proportions shown in Table 2. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 12, it was found to consist of La 2 Ti 2 O 7, LaTaO 4, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.9 Ba 0.1 Ti 0.925 Ta 0.075 O 2.025 N 0.975. The relative dielectric constant was 130.0, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 13 has the same crystal structure as that of Example 12, and the components of the composition are the same as those of Example 12, the dielectric composition of Example 12 is the same. Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例14>
実施例14は、炭酸バリウム粉末、酸化ランタン粉末、酸化チタン粉末及び酸化タンタル粉末を表2に示す割合を用いた以外は、実施例12と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例12と同様に、LaTi,LaTaO,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.9Ba0.1Ti0.91Ta0.092。010.99であった。また、その比誘電率は実施例1の比誘電率を100とすると、129.4であった。
実施例14の誘電体組成物は実施例12の誘電体組成物と同じ結晶構造を有し、かつ、実施例12の誘電体組成物と組成の成分は同じであるから、実施例12の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 14>
In Example 14, a dielectric composition was produced in the same manner as in Example 12, except that barium carbonate powder, lanthanum oxide powder, titanium oxide powder and tantalum oxide powder were used in the proportions shown in Table 2. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 12, it was found to consist of La 2 Ti 2 O 7, LaTaO 4, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.9 Ba 0.1 Ti 0.91 Ta 0.09 O 2.01 N 0.99. The relative dielectric constant was 129.4, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 14 has the same crystal structure as that of Example 12, and the components of the composition are the same as those of Example 12, the dielectric composition of Example 12 is the same. Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例15>
実施例15は、炭酸バリウム粉末、酸化ランタン粉末、酸化チタン粉末及び酸化タンタル粉末を表2に示す割合を用いた以外は、実施例12と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例12と同様に、LaTi,LaTaO,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.9Ba0.1Ti0.9Ta0.1Nであった。また、その比誘電率は実施例1の比誘電率を100とすると、127.4であった。
実施例15の誘電体組成物は実施例12の誘電体組成物と同じ結晶構造を有し、かつ、実施例12の誘電体組成物と組成の成分は同じであるから、実施例12の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 15>
In Example 15, a dielectric composition was produced in the same manner as in Example 12 except that barium carbonate powder, lanthanum oxide powder, titanium oxide powder, and tantalum oxide powder were used in the proportions shown in Table 2. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 12, it was found to consist of La 2 Ti 2 O 7, LaTaO 4, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.9 Ba 0.1 Ti 0.9 Ta 0.1 O 2 N. The relative dielectric constant was 127.4, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 15 has the same crystal structure as that of Example 12, and the components of the composition are the same as those of Example 12, the dielectric composition of Example 12 is the same. Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例16>
実施例16は、炭酸バリウム粉末、酸化ランタン粉末、酸化チタン粉末及び酸化タンタル粉末を表2に示す割合を用いた以外は、実施例12と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例12と同様に、LaTi,LaTaO,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.9Ba0.1Ti0.89Ta0.111.991.01であった。また、その比誘電率は実施例1の比誘電率を100とすると、125.1であった。
実施例16の誘電体組成物は実施例12の誘電体組成物と同じ結晶構造を有し、かつ、実施例12の誘電体組成物と組成の成分は同じであるから、実施例12の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 16>
In Example 16, a dielectric composition was produced in the same manner as in Example 12, except that barium carbonate powder, lanthanum oxide powder, titanium oxide powder and tantalum oxide powder were used in the proportions shown in Table 2. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 12, it was found to consist of La 2 Ti 2 O 7, LaTaO 4, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.9 Ba 0.1 Ti 0.89 Ta 0.11 O 1.99 N 1.01. The relative dielectric constant was 125.1, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 16 has the same crystal structure as the dielectric composition of Example 12, and the components of the composition are the same as those of Example 12, the dielectric composition of Example 12 Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例17>
実施例17は、炭酸バリウム粉末、酸化ランタン粉末、酸化チタン粉末及び酸化タンタル粉末を表2に示す割合を用いた以外は、実施例12と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例12と同様に、LaTi,LaTaO,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.9Ba0.1Ti0.875Ta0.1251.9751.025であった。また、その比誘電率は実施例1の比誘電率を100とすると、122.6であった。
実施例17の誘電体組成物は実施例12の誘電体組成物と同じ結晶構造を有し、かつ、実施例12の誘電体組成物と組成の成分は同じであるから、実施例12の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 17>
In Example 17, a dielectric composition was produced in the same manner as in Example 12 except that barium carbonate powder, lanthanum oxide powder, titanium oxide powder and tantalum oxide powder were used in the proportions shown in Table 2. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 12, it was found to consist of La 2 Ti 2 O 7, LaTaO 4, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.9 Ba 0.1 Ti 0.875 Ta 0.125 O 1.975 N 1.025. The relative dielectric constant was 122.6, assuming that the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 17 has the same crystal structure as that of Example 12, and the components of the composition are the same as those of Example 12, the dielectric composition of Example 12 is the same. Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例18>
実施例18は、炭酸バリウム粉末、酸化ランタン粉末、酸化チタン粉末及び酸化タンタル粉末を表2に示す割合を用いた以外は、実施例12と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例12と同様に、LaTi,LaTaO,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.9Ba0.1Ti0.85Ta0.151.951.05であった。また、その比誘電率は実施例1の比誘電率を100とすると、121.3であった。
実施例18の誘電体組成物は実施例12の誘電体組成物と同じ結晶構造を有し、かつ、実施例12の誘電体組成物と組成の成分は同じであるから、実施例12の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 18>
In Example 18, a dielectric composition was produced in the same manner as in Example 12, except that barium carbonate powder, lanthanum oxide powder, titanium oxide powder and tantalum oxide powder were used in the proportions shown in Table 2. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 12, it was found to consist of La 2 Ti 2 O 7, LaTaO 4, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.9 Ba 0.1 Ti 0.85 Ta 0.15 O 1.95 N 1.05. The relative dielectric constant was 121.3, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 18 has the same crystal structure as that of Example 12, and the components of the composition are the same as those of Example 12, the dielectric composition of Example 12 is the same. Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例19>
実施例19は、炭酸バリウム粉末、酸化ランタン粉末、酸化チタン粉末及び酸化タンタル粉末を表2に示す割合を用いた以外は、実施例12と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例12と同様に、LaTi,LaTaO,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.9Ba0.1Ti0.8Ta0.21.91.1であった。また、その比誘電率は実施例1の比誘電率を100とすると、117.4であった。
実施例19の誘電体組成物は実施例12の誘電体組成物と同じ結晶構造を有し、かつ、実施例12の誘電体組成物と組成の成分は同じであるから、実施例12の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 19>
In Example 19, a dielectric composition was produced in the same manner as in Example 12, except that barium carbonate powder, lanthanum oxide powder, titanium oxide powder and tantalum oxide powder were used in the proportions shown in Table 2. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 12, it was found to consist of La 2 Ti 2 O 7, LaTaO 4, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.9 Ba 0.1 Ti 0.8 Ta 0.2 O 1.9 N 1.1. The relative dielectric constant was 117.4, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 19 has the same crystal structure as that of Example 12, and the components of the composition are the same as those of Example 12, the dielectric composition of Example 12 is the same. Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例20>
実施例20は、炭酸バリウム粉末、酸化ランタン粉末、酸化チタン粉末及び酸化タンタル粉末を表2に示す割合を用いた以外は、実施例12と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例12と同様に、LaTi,LaTaO,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.9Ba0.1Ti0.7Ta0.31.81.2であった。また、その比誘電率は実施例1の比誘電率を100とすると、109.5であった。
実施例20の誘電体組成物は実施例12の誘電体組成物と同じ結晶構造を有し、かつ、実施例12の誘電体組成物と組成の成分は同じであるから、実施例12の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 20>
In Example 20, a dielectric composition was produced in the same manner as in Example 12 except that the barium carbonate powder, lanthanum oxide powder, titanium oxide powder and tantalum oxide powder were used in the proportions shown in Table 2. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 12, it was found to consist of La 2 Ti 2 O 7, LaTaO 4, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.9 Ba 0.1 Ti 0.7 Ta 0.3 O 1.8 N 1.2. The relative dielectric constant was 109.5, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 20 has the same crystal structure as the dielectric composition of Example 12, and the components of the composition are the same as those of Example 12, the dielectric composition of Example 12 is the same. Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例21>
実施例21は、炭酸バリウム粉末、酸化ランタン粉末、酸化チタン粉末及び酸化タンタル粉末を表2に示す割合を用いた以外は、実施例12と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例12と同様に、LaTi,LaTaO,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.9Ba0.1Ti0.6Ta0.41.71.3であった。また、その比誘電率は実施例1の比誘電率を100とすると、103.4であった。
実施例21の誘電体組成物は実施例12の誘電体組成物と同じ結晶構造を有し、かつ、実施例12の誘電体組成物と組成の成分は同じであるから、実施例12の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 21>
In Example 21, a dielectric composition was produced in the same manner as in Example 12 except that barium carbonate powder, lanthanum oxide powder, titanium oxide powder and tantalum oxide powder were used in the proportions shown in Table 2. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 12, it was found to consist of La 2 Ti 2 O 7, LaTaO 4, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.9 Ba 0.1 Ti 0.6 Ta 0.4 O 1.7 N 1.3. The relative dielectric constant was 103.4, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 21 has the same crystal structure as that of Example 12, and the components of the composition are the same as those of Example 12, the dielectric composition of Example 12 is the same. Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

<実施例22>
実施例22は、炭酸バリウム粉末、酸化ランタン粉末、酸化チタン粉末及び酸化タンタル粉末を表2に示す割合を用いた以外は、実施例12と同様の方法で誘電体組成物を生成した。なお、得られた中間化合物の生成相を同定したところ、実施例12と同様に、LaTi,LaTaO,BaTiOおよび少量のLaからなることがわかった。
得られた誘電体組成物の結晶構造は粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成はLa0.9Ba0.1Ti0.5Ta0.51.61.4であった。また、その比誘電率は実施例1の比誘電率を100とすると、101.0であった。
実施例22の誘電体組成物は実施例12の誘電体組成物と同じ結晶構造を有し、かつ、実施例12の誘電体組成物と組成の成分は同じであるから、実施例12の誘電体組成物と同様に、広範な温度範囲で強誘電体として使用可能であると考えられる。
<Example 22>
In Example 22, a dielectric composition was produced in the same manner as in Example 12 except that barium carbonate powder, lanthanum oxide powder, titanium oxide powder and tantalum oxide powder were used in the proportions shown in Table 2. Incidentally, was identified product phase of the resulting intermediate compound was synthesized in analogy to Example 12, it was found to consist of La 2 Ti 2 O 7, LaTaO 4, BaTiO 3 and a small amount of La 2 O 3.
The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. Further, the composition was La 0.9 Ba 0.1 Ti 0.5 Ta 0.5 O 1.6 N 1.4. The relative dielectric constant was 101.0, where the relative dielectric constant of Example 1 was 100.
Since the dielectric composition of Example 22 has the same crystal structure as the dielectric composition of Example 12, and the components of the composition are the same as those of Example 12, the dielectric composition of Example 12 is the same. Like body compositions, it is believed that they can be used as ferroelectrics over a wide temperature range.

Figure 2013001625
Figure 2013001625

<比較例1>
本発明における一般式のxとyを、x=0,y=0とした組成の酸窒化物を合成した。
まず、酸化ランタン粉末及び酸化チタン粉末を用いて、中間化合物の合成を行った。具体的には、酸化ランタン粉末及び酸化チタン粉末を、表3に示す割合で秤取し、溶媒としてエタノールを用いた湿式ボールミルにより均一に混合し混合スラリーとした。次に、得られたスラリーを蒸発乾固して混合粉末とした後、この混合粉末を解砕した粉末をアルミナ製容器に配置し、空気中、1100℃で2時間焼成し、中間化合物を合成した。なお、得られた中間化合物をメノー乳鉢で解砕し、粉末X線回折装置により生成相を同定したところ、LaTiおよび少量のLaからなることがわかった。
次に、得られた中間化合物をアルミナ製ボートに配置し、アンモニア気流中1100℃で6時間焼成し、誘電体組成物を生成した。得られた誘電体組成物は濃赤色から赤褐色を呈していた。また、得られた誘電体組成物の結晶構造は、粉末X線回折法により窒素を含有するペロブスカイト相であることが確認された。また、その組成は、LaTiONであった。
続いて、実施例1〜11と同様にして比誘電率の測定を行った。なお、比較例1の比誘電率は、実施例1の比誘電率を100とした場合の相対値として表3に示す。
<Comparative Example 1>
An oxynitride having a composition in which x and y in the general formula in the present invention were set to x = 0 and y = 0 was synthesized.
First, an intermediate compound was synthesized using lanthanum oxide powder and titanium oxide powder. Specifically, lanthanum oxide powder and titanium oxide powder were weighed in the proportions shown in Table 3, and uniformly mixed by a wet ball mill using ethanol as a solvent to obtain a mixed slurry. Next, the obtained slurry is evaporated to dryness to obtain a mixed powder, and then the powder obtained by pulverizing the mixed powder is placed in an alumina container and baked in air at 1100 ° C. for 2 hours to synthesize an intermediate compound. did. In addition, when the obtained intermediate compound was crushed with a menor mortar and the generated phase was identified by a powder X-ray diffractometer, it was found to be composed of La 2 Ti 2 O 7 and a small amount of La 2 O 3 .
Next, the obtained intermediate compound was placed in an alumina boat and baked at 1100 ° C. for 6 hours in an ammonia stream to produce a dielectric composition. The obtained dielectric composition was dark red to reddish brown. The crystal structure of the obtained dielectric composition was confirmed to be a perovskite phase containing nitrogen by powder X-ray diffraction. The composition was LaTiO 2 N.
Subsequently, the relative dielectric constant was measured in the same manner as in Examples 1-11. The relative dielectric constant of Comparative Example 1 is shown in Table 3 as relative values when the relative dielectric constant of Example 1 is 100.

<比較例2>
本発明における一般式のxとyを、x=1,y=0とした組成の酸化物を合成した。
酸化バリウム粉末及び酸化チタン粉末を用いて、チタン酸バリウムを合成した。具体的には、酸化バリウム粉末及び酸化チタン粉末を、表3に示す割合で秤取し、溶媒としてエタノールを用いた湿式ボールミルにより均一に混合し混合スラリーとした。次に、得られたスラリーを蒸発乾固して混合粉末とした後、アルミナ製容器に配置し、空気中、1100℃で2時間焼成した。得られた生成物をメノー乳鉢で解砕し、粉末X線回折装置により生成相を同定したところ、BaTiOからなることがわかった。
続いて、実施例1〜11と同様にして比誘電率の測定を行った。なお、比較例2の比誘電率は、実施例1の比誘電率を100とした場合の相対値として表3に示す。
<Comparative example 2>
An oxide having a composition in which x and y in the general formula in the present invention are x = 1 and y = 0 was synthesized.
Barium titanate was synthesized using barium oxide powder and titanium oxide powder. Specifically, barium oxide powder and titanium oxide powder were weighed in the proportions shown in Table 3, and uniformly mixed by a wet ball mill using ethanol as a solvent to obtain a mixed slurry. Next, the obtained slurry was evaporated to dryness to obtain a mixed powder, which was then placed in an alumina container and baked in air at 1100 ° C. for 2 hours. The obtained product was crushed with a menor mortar, and the product phase was identified by a powder X-ray diffractometer. As a result, it was found to be composed of BaTiO 3 .
Subsequently, the relative dielectric constant was measured in the same manner as in Examples 1-11. The relative dielectric constant of Comparative Example 2 is shown in Table 3 as relative values when the relative dielectric constant of Example 1 is 100.

Figure 2013001625
Figure 2013001625

<実施例23>
実施例1で用いた誘電体組成物の粉末に、B;63mol%、SiO;3mol%、LiO;34mol%の組成を有する焼結助剤を5mol%添加し、成形助剤(バインダー)として少量のポリビニルアルコールを用いて成形し、400℃で脱バインダーを行った。その後に窒素雰囲気中、1000℃で焼結した。得られた焼結体は気孔率が0.1%以下であった。
<Example 23>
A sintering aid having a composition of B 2 O 3 ; 63 mol%, SiO 2 ; 3 mol%, Li 2 O; 34 mol% was added to the dielectric composition powder used in Example 1 in an amount of 5 mol%. Molding was performed using a small amount of polyvinyl alcohol as an agent (binder), and the binder was removed at 400 ° C. Thereafter, sintering was performed at 1000 ° C. in a nitrogen atmosphere. The obtained sintered body had a porosity of 0.1% or less.

<実施例24>
エポキシ樹脂の主剤としてジシクロペンタジエン系のHP7200(大日本インキ工業(株)製);20重量部、硬化剤としてフェノールノボラック系のTD−2131(大日本インキ工業(株)製);8重量部、硬化促進剤としてトリフェニルホスフィン(北興化学(株)製);0.28重量部、溶剤γ−ブチロラクトン;30.5重量部を混合し、エポキシ樹脂溶液を作製した。この樹脂溶液に、無機フィラーとして、実施例1で用いた誘電体組成物粉末;215重量部を混合して、複合体(樹脂組成物)を調整した。このとき、無機フィラーと樹脂の合計量を100体積%としたとき、無機フィラーの含有量は65体積%であった。
次に、3本ロールを用いてこの樹脂組成物を混練したのち、厚さ300μmのアルミ基板上にダイコーターを用いて塗布し、オーブンを用いて、80℃×20分間で乾燥させ溶剤を除去した後、170℃×1時間で樹脂を硬化させ、膜厚10μmの回路基板材料としての誘電体組成物を得た。
次に、この誘電体組成物にアルミ電極を蒸着法により形成し、JIS K6911に準拠して比誘電率を測定した結果、比誘電率は650であった。
<Example 24>
Dicyclopentadiene-based HP7200 (manufactured by Dainippon Ink Industries, Ltd.) as the main component of the epoxy resin; 20 parts by weight; phenol novolac TD-2131 (manufactured by Dainippon Ink Industries, Ltd.) as the curing agent; 8 parts by weight Then, 0.28 parts by weight of triphenylphosphine (made by Hokuko Chemical Co., Ltd.) as a curing accelerator; 30.5 parts by weight of solvent γ-butyrolactone; 30.5 parts by weight were mixed to prepare an epoxy resin solution. To this resin solution, 215 parts by weight of the dielectric composition powder used in Example 1 was mixed as an inorganic filler to prepare a composite (resin composition). At this time, when the total amount of the inorganic filler and the resin was 100% by volume, the content of the inorganic filler was 65% by volume.
Next, after kneading this resin composition using three rolls, it was applied to a 300 μm thick aluminum substrate using a die coater and dried in an oven at 80 ° C. for 20 minutes to remove the solvent. Then, the resin was cured at 170 ° C. for 1 hour to obtain a dielectric composition as a circuit board material having a thickness of 10 μm.
Next, an aluminum electrode was formed on this dielectric composition by vapor deposition, and the relative dielectric constant was measured in accordance with JIS K6911. As a result, the relative dielectric constant was 650.

本発明の誘電体組成物は、室温から200℃の間にキュリー点を持たず、しかも従来知られている酸窒化物系ペロブスカイト型化合物よりも高い比誘電率を有することから、パワーモジュール周辺に配置される電子デバイスに好適である。今後、本発明が、大いに活用され、産業の発展に大きく寄与することが期待できる。   Since the dielectric composition of the present invention does not have a Curie point between room temperature and 200 ° C., and has a higher relative dielectric constant than a conventionally known oxynitride perovskite compound, Suitable for the electronic device to be arranged. In the future, it can be expected that the present invention will be greatly utilized and greatly contribute to industrial development.

Claims (10)

一般式:M(1)1−xM(2)M(3)1−yM(4)2+x―y1―x+y
で示される組成からなることを特徴とする誘電体組成物。
但し、M(1)元素はY,La,Ce,Pr,Nd,Gdから選ばれる1種以上の元素であり、M(2)元素はMg,Ca,Sr,Baから選ばれる1種以上の元素であり、M(3)元素はTi,Zrから選ばれる1種以上の元素であり、M(4)元素はV,Nb,Taから選ばれる1種以上の元素であり、OとNは酸素と窒素であり、0<x<1かつ0≦y≦1である。
General formula: M (1) 1-x M (2) x M (3) 1-y M (4) y O 2 + xy N 1-x + y
A dielectric composition comprising:
However, the M (1) element is one or more elements selected from Y, La, Ce, Pr, Nd, and Gd, and the M (2) element is one or more elements selected from Mg, Ca, Sr, and Ba. M (3) element is one or more elements selected from Ti and Zr, M (4) element is one or more elements selected from V, Nb and Ta, and O and N are Oxygen and nitrogen, 0 <x <1 and 0 ≦ y ≦ 1.
0<x≦0.9,0≦y≦0.9であることを特徴とする請求項1に記載の誘電体組成物。 The dielectric composition according to claim 1, wherein 0 <x ≦ 0.9 and 0 ≦ y ≦ 0.9. M(1)元素が、La,Ce,Pr,Ndから選ばれる1種以上であり、M(2)元素がSr,Baから選ばれる1種以上であることを特徴とする請求項2に記載の誘電体組成物。 The M (1) element is at least one selected from La, Ce, Pr, and Nd, and the M (2) element is at least one selected from Sr and Ba. Dielectric composition. M(1)元素がLa、M(2)元素がBa、M(3)元素がTi、M(4)元素がTaであることを特徴とする請求項3に記載の誘電体組成物。 The dielectric composition according to claim 3, wherein the M (1) element is La, the M (2) element is Ba, the M (3) element is Ti, and the M (4) element is Ta. 以下の〔1〕〜〔3〕のいずれかの原料を加熱して、以下の〔4〕〜〔6〕のいずれかの中間化合物を生成する工程と、該中間化合物を還元性雰囲気中で加熱する工程とを含むことを特徴とする請求項1〜4の何れか一項に記載の誘電体組成物の製造方法。
〔1〕M(1)元素、M(2)元素及びM(3)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(3)元素は前記化合物の少なくともいずれか一つに含まれる)、
〔2〕M(1)元素、M(2)元素及びM(4)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)、
〔3〕M(1)元素、M(2)元素、M(3)元素及びM(4)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素、M(3)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔4〕M(1)元素及び/又はM(2)元素と、M(3)元素とを含む化合物を一又は二以上含有してなる中間化合物(但し、M(1)元素、M(2)元素及びM(3)元素は前記化合物の少なくともいずれか一つに含まれる)
〔5〕M(1)元素及び/又はM(2)元素と、M(4)元素とを含む化合物を一又は二以上含有してなる中間化合物(但し、M(1)元素、M(2)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔6〕M(1)元素及び/又はM(2)元素と、M(3)元素及び/又はM(4)元素とを含む化合物を一又は二以上含有してなる中間化合物(但し、M(1)元素、M(2)元素、M(3)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
Heating the raw material of any of the following [1] to [3] to produce an intermediate compound of any of the following [4] to [6], and heating the intermediate compound in a reducing atmosphere The method for producing a dielectric composition according to any one of claims 1 to 4, further comprising:
[1] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element and M (3) element (provided that M (1) element, M (2) Element and M (3) element are included in at least one of the above compounds),
[2] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element and M (4) element (provided that M (1) element, M (2) Element and M (4) element are included in at least one of the above compounds),
[3] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element, M (3) element and M (4) element (provided that M (1) Element, M (2) element, M (3) element, and M (4) element are included in at least one of the above compounds)
[4] Intermediate compound containing one or more compounds containing M (1) element and / or M (2) element and M (3) element (provided that M (1) element, M (2 ) Element and M (3) element are included in at least one of the above compounds)
[5] Intermediate compound containing one or more compounds containing M (1) element and / or M (2) element and M (4) element (provided that M (1) element, M (2 ) Element and M (4) element are included in at least one of the above compounds)
[6] Intermediate compound comprising one or more compounds containing M (1) element and / or M (2) element and M (3) element and / or M (4) element (provided that M (1) Element, M (2) element, M (3) element, and M (4) element are included in at least one of the above compounds)
前記化合物の少なくとも一つは酸化物であることを特徴とする請求項5に記載の誘電体組成物の製造方法。   The method for producing a dielectric composition according to claim 5, wherein at least one of the compounds is an oxide. 以下の〔1〕〜〔3〕のいずれかの原料を還元性雰囲気中で加熱する工程を含むことを特徴とする請求項1〜4の何れか一項に記載の誘電体組成物の製造方法。
〔1〕M(1)元素、M(2)元素及びM(3)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(3)元素は前記化合物の少なくともいずれか一つに含まれる)、
〔2〕M(1)元素、M(2)元素及びM(4)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)、
〔3〕M(1)元素、M(2)元素、M(3)元素及びM(4)元素のうちの一又は二以上を含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素、M(3)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
The method for producing a dielectric composition according to any one of claims 1 to 4, further comprising a step of heating the raw material according to any one of [1] to [3] below in a reducing atmosphere. .
[1] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element and M (3) element (provided that M (1) element, M (2) Element and M (3) element are included in at least one of the above compounds),
[2] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element and M (4) element (provided that M (1) element, M (2) Element and M (4) element are included in at least one of the above compounds),
[3] A raw material containing one or more compounds containing one or more of M (1) element, M (2) element, M (3) element and M (4) element (provided that M (1) Element, M (2) element, M (3) element, and M (4) element are included in at least one of the above compounds)
前記化合物の少なくとも一つは酸化物であることを特徴とする請求項5に記載の誘電体組成物の製造方法。   The method for producing a dielectric composition according to claim 5, wherein at least one of the compounds is an oxide. 以下の〔1〕〜〔3〕のいずれかの原料を還元性雰囲気中で加熱する工程を含むことを特徴とする請求項1〜4の何れか一項に記載の誘電体組成物の製造方法。
〔1〕M(1)元素及び/又はM(2)元素と、M(3)元素とを含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(3)元素は前記化合物の少なくともいずれか一つに含まれる)
〔2〕M(1)元素及び/又はM(2)元素と、M(4)元素とを含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
〔3〕M(1)元素及び/又はM(2)元素と、M(3)元素及び/又はM(4)元素とを含む化合物を一又は二以上含有してなる原料(但し、M(1)元素、M(2)元素、M(3)元素及びM(4)元素は前記化合物の少なくともいずれか一つに含まれる)
The method for producing a dielectric composition according to any one of claims 1 to 4, further comprising a step of heating the raw material according to any one of [1] to [3] below in a reducing atmosphere. .
[1] A raw material containing one or more compounds containing M (1) element and / or M (2) element and M (3) element (however, M (1) element, M (2) Element and M (3) element are included in at least one of the above compounds)
[2] A raw material comprising one or more compounds containing M (1) element and / or M (2) element and M (4) element (however, M (1) element, M (2) Element and M (4) element are included in at least one of the above compounds)
[3] A raw material containing one or more compounds containing M (1) element and / or M (2) element and M (3) element and / or M (4) element (provided that M ( 1) Element, M (2) element, M (3) element, and M (4) element are included in at least one of the above compounds)
前記化合物の少なくとも一つは酸化物であることを特徴とする請求項7に記載の誘電体組成物の製造方法。   The method for producing a dielectric composition according to claim 7, wherein at least one of the compounds is an oxide.
JP2011137308A 2011-06-21 2011-06-21 Dielectric composition and method for producing the same Expired - Fee Related JP5807861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011137308A JP5807861B2 (en) 2011-06-21 2011-06-21 Dielectric composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011137308A JP5807861B2 (en) 2011-06-21 2011-06-21 Dielectric composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013001625A true JP2013001625A (en) 2013-01-07
JP5807861B2 JP5807861B2 (en) 2015-11-10

Family

ID=47670560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011137308A Expired - Fee Related JP5807861B2 (en) 2011-06-21 2011-06-21 Dielectric composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP5807861B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017135294A1 (en) 2016-02-01 2017-08-10 Tdk株式会社 Polycrystalline dielectric thin film and capacitor element
KR20180094021A (en) 2016-02-01 2018-08-22 티디케이가부시기가이샤 Polycrystalline dielectric thin films and capacitors
EP3382727A1 (en) 2017-03-31 2018-10-03 TDK Corporation Oxynitride thin film and capacitance element
KR20180111687A (en) 2017-03-31 2018-10-11 티디케이가부시기가이샤 Oxynitride thin film and capacitance element
EP3358039A4 (en) * 2015-10-02 2019-05-15 TDK Corporation Dielectric thin film, capacitor element, and electronic component
CN111001224A (en) * 2019-12-23 2020-04-14 武汉纺织大学 Self-cleaning anti-static high-temperature-resistant filter bag fabric and preparation method thereof
US10696598B2 (en) 2016-02-01 2020-06-30 Tdk Corporation Dielectric porcelain composition and electronic component
US11078123B2 (en) 2017-11-10 2021-08-03 Tdk Corporation Metal oxynitride thin film, process for producing metal oxynitride thin film, and capacitor element
CN114550977A (en) * 2022-03-03 2022-05-27 太原理工大学 Low-temperature co-fired ceramic dielectric material and preparation method thereof
US11532435B2 (en) * 2018-08-31 2022-12-20 Tdk Corporation Thin film capacitor and electronic circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122108A (en) * 1984-11-13 1986-06-10 サントル・ナシヨナル・ドウ・ラ・ルシエルシユ・サイエンテイフイツク(セー・エヌ・エル・エス) Nitrogen or oxynitrogen compound having perovskite type structure, manufacture and use for manufacture of dielectric
JP2000331603A (en) * 1999-03-12 2000-11-30 Tdk Corp Manufacture of electron emitting material
JP2000331593A (en) * 1999-03-12 2000-11-30 Tdk Corp Electron emission material
JP2001167730A (en) * 1999-12-06 2001-06-22 Tdk Corp Discharge lamp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122108A (en) * 1984-11-13 1986-06-10 サントル・ナシヨナル・ドウ・ラ・ルシエルシユ・サイエンテイフイツク(セー・エヌ・エル・エス) Nitrogen or oxynitrogen compound having perovskite type structure, manufacture and use for manufacture of dielectric
JP2000331603A (en) * 1999-03-12 2000-11-30 Tdk Corp Manufacture of electron emitting material
JP2000331593A (en) * 1999-03-12 2000-11-30 Tdk Corp Electron emission material
JP2001167730A (en) * 1999-12-06 2001-06-22 Tdk Corp Discharge lamp

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015012702; Franc,ois Chevire': 'Optical properties of the perovskite solid solution LaTiO2N-ATiO3 (A = Sr, Ba)' European Journal of Inorganic Chemistry Volume 2006, Issue 6, 200603, pages 1223-1230 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3358039A4 (en) * 2015-10-02 2019-05-15 TDK Corporation Dielectric thin film, capacitor element, and electronic component
US10329200B2 (en) 2015-10-02 2019-06-25 Tdk Corporation Dielectric thin film, capacitor element, and electronic component
US10611693B2 (en) 2016-02-01 2020-04-07 Tdk Corporation Polycrystalline dielectric thin film and capacitor element
KR20180094020A (en) 2016-02-01 2018-08-22 티디케이가부시기가이샤 Polycrystalline dielectric thin films and capacitors
KR20180094021A (en) 2016-02-01 2018-08-22 티디케이가부시기가이샤 Polycrystalline dielectric thin films and capacitors
US10707018B2 (en) 2016-02-01 2020-07-07 Tdk Corporation Polycrystalline dielectric thin film and capacitor element
WO2017135294A1 (en) 2016-02-01 2017-08-10 Tdk株式会社 Polycrystalline dielectric thin film and capacitor element
US10696598B2 (en) 2016-02-01 2020-06-30 Tdk Corporation Dielectric porcelain composition and electronic component
KR20180111687A (en) 2017-03-31 2018-10-11 티디케이가부시기가이샤 Oxynitride thin film and capacitance element
US10479732B2 (en) 2017-03-31 2019-11-19 Tdk Corporation Oxynitride thin film and capacitance element
US10475586B2 (en) 2017-03-31 2019-11-12 Tdk Corporation Oxynitride thin film and capacitance element
KR20180111688A (en) 2017-03-31 2018-10-11 티디케이가부시기가이샤 Oxynitride thin film and capacitance element
EP3382727A1 (en) 2017-03-31 2018-10-03 TDK Corporation Oxynitride thin film and capacitance element
US11078123B2 (en) 2017-11-10 2021-08-03 Tdk Corporation Metal oxynitride thin film, process for producing metal oxynitride thin film, and capacitor element
US11532435B2 (en) * 2018-08-31 2022-12-20 Tdk Corporation Thin film capacitor and electronic circuit board
CN111001224A (en) * 2019-12-23 2020-04-14 武汉纺织大学 Self-cleaning anti-static high-temperature-resistant filter bag fabric and preparation method thereof
CN111001224B (en) * 2019-12-23 2021-06-15 武汉纺织大学 Self-cleaning anti-static high-temperature-resistant filter bag fabric and preparation method thereof
CN114550977A (en) * 2022-03-03 2022-05-27 太原理工大学 Low-temperature co-fired ceramic dielectric material and preparation method thereof
CN114550977B (en) * 2022-03-03 2024-01-30 太原理工大学 Low-temperature co-fired ceramic dielectric material and preparation method thereof

Also Published As

Publication number Publication date
JP5807861B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5807861B2 (en) Dielectric composition and method for producing the same
KR101976963B1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
US7824642B2 (en) Method for producing forsterite powder, forsterite powder, sintered forsterite, insulating ceramic composition, and multilayer ceramic electronic component
CN103288452B (en) Dielectric ceramic composition and electronic device
JP5410982B2 (en) Non-glass microwave dielectric ceramics and method for producing the same
JP2005183972A (en) Method of manufacturing multilayer ceramic capacitor by spin coating and multilayer ceramic capacitor
CN103288449A (en) Dielectric ceramic composition and electronic device
WO2003087012A1 (en) Nonreducing dielectric ceramic, its production method, and multilayer ceramic capacitor
CN103288448A (en) Dielectric ceramic composition and electronic device
JP5760890B2 (en) Dielectric porcelain composition and electronic component
CN114242454B (en) Bismuth sodium titanate-based quaternary system high-temperature stable high-dielectric lead-free ceramic capacitor dielectric material and preparation method thereof
JP5128783B2 (en) High frequency dielectric materials
JP4692308B2 (en) Dielectric particle, method for producing the same, and circuit board
US20120250216A1 (en) Semiconductor ceramic and a multilayer semiconductor ceramic capacitor
JP7522654B2 (en) Dielectric inorganic composition
JP2016056058A (en) Dielectric composition, dielectric element, electronic component, and laminated electronic component
JP5831079B2 (en) Dielectric porcelain composition and electronic component
JP3783678B2 (en) Method for producing raw material powder for dielectric ceramic, dielectric ceramic and multilayer ceramic capacitor
CN105732023B (en) A kind of ultra-wide temperature and low-consumption lead-free ceramic capacitance device dielectric material
KR20110074486A (en) Method for manufacturing dielectric ceramic material
CN106747418A (en) A kind of Jie&#39;s ceramic capacitor material high with resistance to reduction
JP4594049B2 (en) Multilayer ceramic capacitor
US10155697B2 (en) Composite dielectric ceramic material having anti-reduction and high temperature stability characteristics and method for preparing same
JP4765367B2 (en) Dielectric porcelain composition
Zeng et al. Microstructural changes and properties of LaxBa (1-x)(Zr0· 1Ti0. 9) O3 multilayer dielectric ceramics via digital light processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150831

R150 Certificate of patent or registration of utility model

Ref document number: 5807861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees