JP2013088457A - Four-core single mode optical fiber and optical cable - Google Patents
Four-core single mode optical fiber and optical cable Download PDFInfo
- Publication number
- JP2013088457A JP2013088457A JP2011225743A JP2011225743A JP2013088457A JP 2013088457 A JP2013088457 A JP 2013088457A JP 2011225743 A JP2011225743 A JP 2011225743A JP 2011225743 A JP2011225743 A JP 2011225743A JP 2013088457 A JP2013088457 A JP 2013088457A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- core
- diameter
- range
- clad
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 87
- 230000003287 optical effect Effects 0.000 title claims abstract description 9
- 238000005253 cladding Methods 0.000 claims description 43
- 239000000835 fiber Substances 0.000 claims description 4
- 238000009826 distribution Methods 0.000 abstract description 16
- 238000005452 bending Methods 0.000 description 19
- 230000005540 biological transmission Effects 0.000 description 14
- 230000008878 coupling Effects 0.000 description 14
- 238000010168 coupling process Methods 0.000 description 14
- 238000005859 coupling reaction Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000005684 electric field Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02042—Multicore optical fibres
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
本発明は単一モード光通信に供する、単一モード光ファイバおよび光ケーブルに関する。 The present invention relates to a single mode optical fiber and an optical cable for single mode optical communication.
データ通信の急速な普及に伴い、伝送容量の更なる拡大に対する要望は年々高まる一方にある。このため、様々な多重化技術を用いることにより、光ファイバ1心当たりの伝送容量を拡大する検討が盛んに行われている。また、アクセスネットワークやデータセンタ等における光通信設備の増大も問題となっており、大量の光ファイバを効率良く処理する技術についても重要性が高まりつつある。 With the rapid spread of data communication, the demand for further expansion of transmission capacity is increasing year by year. For this reason, studies have been actively conducted to increase the transmission capacity per optical fiber by using various multiplexing techniques. In addition, an increase in optical communication facilities in an access network, a data center, etc. is also a problem, and the importance of a technique for efficiently processing a large amount of optical fibers is increasing.
このような背景を踏まえ、同一のクラッド断面内に複数のコアを配置することにより、光ファイバ1心当たりの空間多重効率を向上させる多コア光ファイバ技術が提案されている(非特許文献1、2参照)。
Based on such a background, a multi-core optical fiber technology has been proposed in which a plurality of cores are arranged in the same cladding cross section to improve the spatial multiplexing efficiency per optical fiber (
しかしながら、前述した多コア光ファイバ技術では、隣接するコア間のクロストークの累積による伝送品質の劣化が問題となる。このため、非特許文献1では、多数の空孔を配置してコア部を形成することにより、また、非特許文献2では、各コアの屈折率分布を多層化することによりクロストーク特性を改善する技術が開示されている。しかしながら、これらの先行技術では、光ファイバの断面構造、もしくは屈折率分布が複雑化する傾向となり、製造上の困難性が増大するといった課題があった。
However, in the above-described multi-core optical fiber technology, degradation of transmission quality due to accumulation of crosstalk between adjacent cores becomes a problem. For this reason, Non-Patent
本発明は以上のような背景に鑑みてなされたものであり、その目的とするところは、光ファイバ断面内における空孔数の増大や、コアの屈折率分布の多層化を抑制しつつ、隣接コア間のクロストーク特性の改善を可能とする4芯単一モード光ファイバおよび光ケーブルを提供することにある。 The present invention has been made in view of the background as described above, and its object is to suppress the increase in the number of vacancies in the cross section of the optical fiber and the multilayered refractive index distribution of the core while adjacent to each other. An object of the present invention is to provide a four-core single-mode optical fiber and an optical cable that can improve crosstalk characteristics between cores.
本発明の4芯単一モード光ファイバでは、同一のクラッド部断面内に4個のコア部を正方格子状または直線状に配置し、前記クラッド部断面内の隣接する各コア部間の中央に適切な断面積および屈折率を有する低屈折率領域を配置することにより、前記課題を解決するための手段としている。 In the four-core single-mode optical fiber of the present invention, four core parts are arranged in a square lattice shape or a straight line shape in the same cladding section, and in the center between adjacent core sections in the cladding section. By arranging a low refractive index region having an appropriate cross-sectional area and refractive index, the above-described problem is solved.
本発明の4芯単一モード光ファイバによれば、隣接するコア部間に適切な断面積および屈折率を有する低屈折率領域を配置したため、隣接するコア間のクロストーク特性を5割〜1割以下にまで低減できるといった効果を奏する。 According to the four-core single mode optical fiber of the present invention, since the low refractive index region having an appropriate cross-sectional area and refractive index is disposed between the adjacent core portions, the crosstalk characteristic between the adjacent cores is 50% to 1%. There is an effect that it can be reduced to below 10%.
また、光ファイバ断面内における空孔数の増大やコア部の屈折率分布の多層化を行うことなく、上述のクロストーク特性の改善を可能としたため、光ファイバの製造性を飛躍的に向上できるといった効果も奏する。 In addition, the above-described crosstalk characteristics can be improved without increasing the number of holes in the cross section of the optical fiber and making the refractive index distribution of the core multi-layered, so that the productivity of the optical fiber can be dramatically improved. There are also effects such as.
また、隣接するコア間のクロストーク特性の改善を可能としたため、限られた断面内におけるコアの多重効率も向上できるといった効果も奏する。 In addition, since the crosstalk characteristics between adjacent cores can be improved, the multi-efficiency of cores within a limited cross section can be improved.
また、本発明の4芯単一モード光ファイバにおけるクロストークの低減技術では、低屈折率領域のコア部の直径に対する比率を、各コア部の実効断面積の低減が1%未満となるように設定するため、各コア部を伝搬可能な光強度の減少や、光ファイバ同士の接続特性の劣化も回避できるといった効果も奏する。 Further, in the technology for reducing crosstalk in the four-core single mode optical fiber of the present invention, the ratio of the low refractive index region to the diameter of the core portion is set so that the reduction of the effective cross-sectional area of each core portion is less than 1%. Since the setting is made, there is an effect that it is possible to avoid a decrease in light intensity that can propagate through each core part and a deterioration in connection characteristics between optical fibers.
更に、本発明の4芯単一モード光ファイバにおけるクロストークの低減技術は、各コア中心に対する断面内の電界分布の非対称性を生じないように適用することが可能である。具体的には、各コア中心に対し、その同心円状の位置に3個または4個の低屈折率領域を等間隔に配置することにより、各コアの電界分布のコア中心に対する対称性を保持することが可能であるため、高速・長距離伝送で問題となる偏波モード分散の累積を低減するといった効果も奏する。 Furthermore, the technique for reducing crosstalk in the four-core single-mode optical fiber of the present invention can be applied so as not to cause asymmetry of the electric field distribution in the cross section with respect to the center of each core. Specifically, the symmetry of the electric field distribution of each core with respect to the core center is maintained by arranging three or four low refractive index regions at equal intervals with respect to each core center. Therefore, there is an effect of reducing the accumulation of polarization mode dispersion, which is a problem in high-speed and long-distance transmission.
加えて、本発明の4芯単一モード光ファイバによれば、コア間距離Λおよび最小クラッド厚rの構造条件を、コアの規格化周波数Vおよびモードフィールド径の関係から導出することにより、任意の屈折率分布を有するコアを用いた4芯単一モード光ファイバに対しても適用できるといった効果も奏する。 In addition, according to the four-core single mode optical fiber of the present invention, the structural conditions of the inter-core distance Λ and the minimum cladding thickness r are derived from the relationship between the normalized frequency V of the core and the mode field diameter. The present invention can also be applied to a four-core single-mode optical fiber using a core having a refractive index distribution.
以下、本発明の4芯単一モード光ファイバおよび光ケーブルの実施の形態について図面を用いて説明する。 Embodiments of a four-core single mode optical fiber and an optical cable according to the present invention will be described below with reference to the drawings.
図1は本発明の4芯単一モード光ファイバの断面構造を示す概念図である。本発明の4芯単一モード光ファイバは、屈折率がncladで直径がDであるクラッド部1と、前記屈折率ncladよりも大きな屈折率を有する4個のコア部2と、隣接するコア部2の中央に配置された屈折率がnpitで直径がdである3個または4個の低屈折率領域3とを有する。
FIG. 1 is a conceptual diagram showing a cross-sectional structure of a four-core single mode optical fiber of the present invention. The four-core single-mode optical fiber of the present invention is adjacent to a
ここで、前記各コア部2は前記クラッド部1断面内にコア中心間の距離がΛとなるよう等間隔に正方格子状(図1(a))または直線状(図1(b))に配置され、前記コア部2の中心から前記クラッド部1の外周までの最小距離を最小クラッド厚rとして定義する。また、前記クラッド部1の屈折率ncladは、前記低屈折率領域3の屈折率npitよりも大きい。
Here, each of the
尚、本発明の実施の形態では同一クラッド内のコア数を4個に限定して説明するが、同一クラッド内に包含するコアの数は、後述するコア間距離Λ、最小クラッド厚r、およびコア部の規格化周波数Vの3構造条件を満たしていれば、任意の数として設定することが可能である。 In the embodiment of the present invention, the number of cores in the same clad is limited to four. However, the number of cores included in the same clad includes the inter-core distance Λ, the minimum clad thickness r, and Any number can be set as long as the three structural conditions of the normalized frequency V of the core are satisfied.
また図1では、一例として前記低屈折率領域3が円形である場合を図示しているが、低屈折率領域3では後述する断面積条件が満たされていれば良く、楕円、正方形、長方形など、任意の形状を設定することが可能である。尚、以下の実施の形態では、本発明の4芯単一モード光ファイバのコア部2は、直径が2aで、前記クラッド部1に対する比屈折率差がΔのステップ型の屈折率分布を有するものと仮定する。
Further, FIG. 1 shows a case where the low refractive index region 3 is circular as an example, but the low refractive index region 3 only needs to satisfy the cross-sectional area condition described later, such as an ellipse, a square, a rectangle, etc. Any shape can be set. In the following embodiments, the
図2は本発明の4芯単一モード光ファイバにおいて、コア部2の半径aを4μm、コア部2のクラッド部1に対する比屈折率差Δを0.32%、コア間距離Λを30μm、低屈折率領域3の直径をd=aとしたときに、波長1550nmにおける規格化電力結合係数の低屈折率領域3の規格化屈折率npit/ncladに対する依存性について示した図面である。ここで、電力結合係数は隣接するコア間における電力結合の度合いを表す係数であり、図2の縦軸は低屈折率領域3が存在しない場合の係数で規格化した数値を示す。
FIG. 2 shows a four-core single-mode optical fiber according to the present invention, in which the radius a of the
図2から、規格化屈折率を0.995以下とすることにより、規格化電力結合係数を0.5以下に低減できることが分かる。また、低屈折率領域3が空気となる場合、規格化屈折率は約0.692となる。従って、図2から、規格化電力結合係数は約12%まで低減できることが分かる。 FIG. 2 shows that the normalized power coupling coefficient can be reduced to 0.5 or less by setting the normalized refractive index to 0.995 or less. When the low refractive index region 3 is air, the normalized refractive index is about 0.692. Therefore, it can be seen from FIG. 2 that the normalized power coupling coefficient can be reduced to about 12%.
図3は本発明の4芯単一モード光ファイバにおいて、規格化電力結合係数の低屈折率領域3の規格化直径d/2aに対する依存性を、規格化屈折率を関数として示した図面である。尚、縦軸の規格化電力結合係数は波長1550nmにおける計算結果を示し、コア部2の半径a、コア部2の比屈折率差Δ、およびコア間距離Λは、それぞれ図2と同様の4μm、0.32%、および30μmとした。図中の実線および一点鎖線は、それぞれ低屈折率領域3の規格化屈折率が0.995および0.692の場合の結果を示す。
FIG. 3 is a diagram showing the dependence of the normalized power coupling coefficient on the normalized diameter d / 2a of the low refractive index region 3 as a function of the normalized refractive index in the four-core single mode optical fiber of the present invention. . The normalized power coupling coefficient on the vertical axis indicates the calculation result at a wavelength of 1550 nm. The radius a of the
図3から、規格化屈折率が0.995である場合、規格化直径を0.60以上とすることにより規格化電力結合係数を0.5以下に低減できることが分かる。同様に、規格化屈折率が0.692の場合、規格化直径を0.12以上に設定することにより、規格化電力結合係数を0.5以下に低減でき、また、規格化直径を0.54以上に設定することにより、規格化電力結合係数を0.1以下に低減できることが分かる。 FIG. 3 shows that when the normalized refractive index is 0.995, the normalized power coupling coefficient can be reduced to 0.5 or less by setting the normalized diameter to 0.60 or more. Similarly, when the normalized refractive index is 0.692, the normalized power coupling coefficient can be reduced to 0.5 or less by setting the normalized diameter to 0.12 or more, and by setting the normalized diameter to 0.54 or more, It can be seen that the normalized power coupling coefficient can be reduced to 0.1 or less.
ここで、電力結合係数の低下は、低屈折率領域3が各コア部2の電界分布の広がりを抑制し、隣接するコア部間における電界分布の重なり量が低減されたことに起因する。この、電界分布広がりの抑制効果は、低屈折率領域3のクラッド部1に対する屈折率の変化量を低屈折率領域3の全体に対して積分した係数に概ね比例する。従って、図2および図3に示した電力結合係数の低減効果を得るためには、同等の屈折率変化を同等の面積に亘って付与すれば良い。このため、本発明の4芯単一モード光ファイバにおける低屈折率領域3は、円形以外の任意の形状をとることが可能となる。
Here, the reduction of the power coupling coefficient is caused by the low refractive index region 3 suppressing the spread of the electric field distribution of each
図4に本発明の4芯単一モード光ファイバにおいて、波長1625nmにおける閉じ込め損失を0.001dB/km以下とする最小クラッド厚rを、波長1310nmにおけるモードフィールド径および規格化周波数Vの関数として示す。図中の4本の一点鎖線は、最小クラッド厚rが36〜48μmとなる時の結果を示す。 FIG. 4 shows, as a function of the mode field diameter and the normalized frequency V, at a wavelength of 1310 nm, the minimum cladding thickness r for which the confinement loss at a wavelength of 1625 nm is 0.001 dB / km or less in the four-core single mode optical fiber of the present invention. The four dash-dot lines in the figure show the results when the minimum cladding thickness r is 36 to 48 μm.
尚、波長λにおける規格化周波数Vは、コアの半径aおよび比屈折率差Δを用いて、
V≡(2πa/λ)ncore(2Δ)1/2 (1)
で定義される。ここで、ncoreはコア部2の屈折率である。また、0.001dB/kmの閉じ込め損失は、100km伝送後の閉じ込め損失の累積量が0.1dB以下となることに相当する。
The normalized frequency V at the wavelength λ is obtained by using the core radius a and the relative refractive index difference Δ,
V≡ (2πa / λ) n core (2Δ) 1/2 (1)
Defined by Here, n core is the refractive index of the
図4中の実線は波長1625nm、曲げ半径30mmにおける曲げ損失が0.1dB/100巻きとなる条件を示し、実線より右側の領域で0.1dB/100巻き以下の曲げ損失特性が実現できる。また、図4中の破線は実効遮断波長が1260nmとなる条件を示し、破線よりも左側の領域で1260nm以下の実効遮断波長が実現できる。尚、これらの曲げ損失特性および実効遮断波長特性は、従来の汎用単一モード光ファイバの規格値として、非特許文献3に推奨された値に等しい。 The solid line in FIG. 4 shows the condition that the bending loss at a wavelength of 1625 nm and a bending radius of 30 mm is 0.1 dB / 100 turns, and a bending loss characteristic of 0.1 dB / 100 turns or less can be realized in the region on the right side of the solid line. Also, the broken line in FIG. 4 shows the condition that the effective cutoff wavelength is 1260 nm, and an effective cutoff wavelength of 1260 nm or less can be realized in the region on the left side of the broken line. These bending loss characteristics and effective cut-off wavelength characteristics are equal to the values recommended in Non-Patent Document 3 as standard values for conventional general-purpose single-mode optical fibers.
また、非特許文献3によれば、従来の汎用単一モード光ファイバの波長1310nmにおけるモードフィールド径の最小値は8μmとして推奨されている。図4から波長1310nmにおける規格化周波数Vを2.00〜2.73の範囲に、最小クラッド厚rを36〜44μmの範囲に設定することにより、従来の汎用単一モード光ファイバと同等の曲げ損失特性および実効遮断波長特性を実現し、かつ波長1310nmで8.0〜11.0μmとなるモードフィールド径を実現できることが分かる。 According to Non-Patent Document 3, the minimum value of the mode field diameter at a wavelength of 1310 nm of a conventional general-purpose single mode optical fiber is recommended as 8 μm. As shown in FIG. 4, by setting the normalized frequency V at a wavelength of 1310 nm in the range of 2.00 to 2.73 and the minimum cladding thickness r in the range of 36 to 44 μm, the bending loss characteristics and effectiveness equivalent to those of a conventional general-purpose single mode optical fiber are obtained. It can be seen that a cut-off wavelength characteristic can be realized and a mode field diameter of 8.0 to 11.0 μm at a wavelength of 1310 nm can be realized.
図5に本発明の4芯単一モード光ファイバにおいて、波長1625nmにおける閉じ込め損失を0.001dB/km以下とする最小クラッド厚rを、波長1550nmにおけるモードフィールド径および規格化周波数Vの関数として示す。図中の3本の一点鎖線が、最小クラッド厚rが32〜40μmとなる時の結果を示す。また、図中の実線および破線は、図4と同様にそれぞれ曲げ損失および実効遮断波長の条件を示す。但し、図5では実効遮断波長を1500nmとして検討した。 FIG. 5 shows the minimum cladding thickness r with a confinement loss at a wavelength of 1625 nm of 0.001 dB / km or less as a function of the mode field diameter and the normalized frequency V at a wavelength of 1550 nm in the four-core single mode optical fiber of the present invention. Three dash-dot lines in the figure show the results when the minimum cladding thickness r is 32 to 40 μm. In addition, the solid line and the broken line in the figure indicate the conditions of the bending loss and the effective cutoff wavelength, respectively, as in FIG. However, in FIG. 5, the effective cut-off wavelength was considered as 1500 nm.
図5から、波長1550nmにおける規格化周波数Vを2.00〜2.66の範囲に、最小クラッド厚rを33〜40μmの範囲に設定することにより、従来の汎用単一モード光ファイバと同等の曲げ損失特性を実現し、かつ1500nm以下の実効遮断波長特性と、波長1550nmで9.0〜11.0μmとなるモードフィールド径とを実現できることが分かる。 From FIG. 5, by setting the normalized frequency V at a wavelength of 1550 nm in the range of 2.00 to 2.66 and the minimum cladding thickness r in the range of 33 to 40 μm, the bending loss characteristic equivalent to that of the conventional general-purpose single mode optical fiber can be obtained. It can be seen that an effective cutoff wavelength characteristic of 1500 nm or less and a mode field diameter of 9.0 to 11.0 μm at a wavelength of 1550 nm can be realized.
図6に本発明の4芯単一モード光ファイバにおいて、低屈折率領域3の規格化屈折率を0.995とした場合の最小コア間距離Λを、波長1310nmにおけるモードフィールド径および規格化周波数Vの関数として示す。図中の6本の一点鎖線は、最小コア間距離Λが42〜62μmとなる時の結果を示す。尚、低屈折率領域3の規格化直径は0.6とし、本実施の形態では100km伝送後のクロストークが−30dBとなる条件として最小コア間距離Λを導出した。図中の実線および破線は、それぞれ曲げ損失特性および実効遮断波長特性であり、図4と同様の特性条件を示している。 In FIG. 6, in the four-core single-mode optical fiber of the present invention, the minimum inter-core distance Λ when the normalized refractive index of the low refractive index region 3 is 0.995 is the mode field diameter and the normalized frequency V at a wavelength of 1310 nm. Shown as a function. The six dot-dash lines in the figure show the results when the minimum inter-core distance Λ is 42 to 62 μm. The standardized diameter of the low refractive index region 3 is 0.6, and in this embodiment, the minimum inter-core distance Λ is derived as a condition that the crosstalk after transmission of 100 km is −30 dB. The solid line and the broken line in the figure are the bending loss characteristic and the effective cutoff wavelength characteristic, respectively, and indicate the same characteristic conditions as in FIG.
図6から、波長1310nmにおける規格化周波数Vを2.00〜2.73の範囲に、最小コア間距離Λを43〜58μmの範囲に設定することにより、従来の汎用単一モード光ファイバと同等の曲げ損失特性および実効遮断波長特性を実現し、かつ波長1310nmで8.0〜11.0μmとなるモードフィールド径を実現できることが分かる。 From FIG. 6, by setting the normalized frequency V at a wavelength of 1310 nm in the range of 2.00 to 2.73 and the minimum inter-core distance Λ in the range of 43 to 58 μm, the bending loss characteristics equivalent to those of conventional general-purpose single-mode optical fibers are obtained. It can also be seen that an effective cut-off wavelength characteristic can be realized and a mode field diameter of 8.0 to 11.0 μm can be realized at a wavelength of 1310 nm.
従って、図4および図6より、波長1310nmにおける規格化周波数Vを2.00〜2.73、最小クラッド厚rを36〜44μm、最小コア間距離Λを43〜58μm、低屈折率領域3の規格化屈折率を0.995以下、低屈折率領域3の規格化直径を0.6以上の範囲に設定することにより、従来の汎用単一モード光ファイバと同等の曲げ損失特性および実効遮断波長特性を実現し、かつ波長1310nmのモードフィールド径が8.0〜11.0μmとなる4芯単一モード光ファイバを実現できることが分かる。また、この時のクラッド外径Dは、正方格子状の配列を用いる場合は133〜170μmに、直線状の配列を用いる場合は201〜262μmになる。 Therefore, from FIG. 4 and FIG. 6, the normalized frequency V at 2.00 to 2.73, the minimum cladding thickness r is 36 to 44 μm, the minimum inter-core distance Λ is 43 to 58 μm, and the normalized refractive index of the low refractive index region 3 is Is set to 0.995 or less, and the standardized diameter of the low refractive index region 3 is set to a range of 0.6 or more, so that the bending loss characteristic and the effective cutoff wavelength characteristic equivalent to those of the conventional general-purpose single mode optical fiber are realized, and the wavelength is 1310 nm. It can be seen that a four-core single-mode optical fiber with a mode field diameter of 8.0 to 11.0 μm can be realized. Further, the cladding outer diameter D at this time is 133 to 170 μm when a square lattice arrangement is used, and 201 to 262 μm when a linear arrangement is used.
図7に本発明の4芯単一モード光ファイバにおいて、低屈折率領域3の規格化屈折率を0.995とした場合の最小コア間距離Λを、波長1550nmにおけるモードフィールド径および規格化周波数Vの関数として示す。図中の5本の一点鎖線は、最小コア間距離Λが36〜52μmとなる時の結果を示す。尚、低屈折率領域3の規格化直径は0.6とし、本実施の形態では100km伝送後のクロストークが−30dBとなる条件として最小コア間距離Λを導出した。図中の実線および破線は、それぞれ曲げ損失特性および実効遮断波長特性であり、図5と同様の特性条件を示している。 In the four-core single-mode optical fiber of the present invention shown in FIG. 7, the minimum inter-core distance Λ when the normalized refractive index of the low refractive index region 3 is 0.995 is the mode field diameter and the normalized frequency V at a wavelength of 1550 nm. Shown as a function. The five dash-dot lines in the figure show the results when the minimum inter-core distance Λ is 36 to 52 μm. The standardized diameter of the low refractive index region 3 is 0.6, and in this embodiment, the minimum inter-core distance Λ is derived as a condition that the crosstalk after transmission of 100 km is −30 dB. The solid line and the broken line in the figure are the bending loss characteristic and the effective cutoff wavelength characteristic, respectively, and indicate the same characteristic conditions as in FIG.
図7から、波長1550nmにおける規格化周波数Vを2.00〜2.66の範囲に、最小コア間距離Λを38〜52μmの範囲に設定することにより、従来の汎用単一モード光ファイバと同等の曲げ損失特性を実現し、かつ波長1500nm以下の実効遮断波長特性と、波長1550nmで9.0〜11.0μmとなるモードフィールド径とを実現できることが分かる。 From Fig. 7, the bending loss characteristics equivalent to those of conventional general-purpose single-mode optical fibers are obtained by setting the normalized frequency V at a wavelength of 1550 nm to a range of 2.00 to 2.66 and the minimum inter-core distance Λ to a range of 38 to 52 μm. And an effective cutoff wavelength characteristic of a wavelength of 1500 nm or less and a mode field diameter of 9.0 to 11.0 μm at a wavelength of 1550 nm.
従って、図5および図7より、波長1550nmにおける規格化周波数Vを2.00〜2.66、最小クラッド厚rを33〜40μm、最小コア間距離Λを38〜52μm、低屈折率領域3の規格化屈折率を0.995以下、低屈折率領域3の規格化直径を0.6以上の範囲に設定することにより、従来の汎用単一モード光ファイバと同等の曲げ損失特性を実現し、かつ波長1500nm以下の実効遮断波長特性と、波長1550nmで9.0〜11.0μmとなるモードフィールド径とを実現できることが分かる。また、この時のクラッド外径Dは、正方格子状の配列を用いる場合は120〜154μmに、直線状の配列を用いる場合は180〜236μmになる。 Therefore, from FIG. 5 and FIG. 7, the normalized frequency V at a wavelength of 1550 nm is 2.00 to 2.66, the minimum cladding thickness r is 33 to 40 μm, the minimum inter-core distance Λ is 38 to 52 μm, and the normalized refractive index of the low refractive index region 3 Is set to 0.995 or less, and the standardized diameter of the low refractive index region 3 is set to a range of 0.6 or more. This realizes bending loss characteristics equivalent to conventional general-purpose single-mode optical fibers and an effective cutoff wavelength of 1500 nm or less. It can be seen that characteristics and a mode field diameter of 9.0 to 11.0 μm at a wavelength of 1550 nm can be realized. The cladding outer diameter D at this time is 120 to 154 μm when a square lattice arrangement is used, and 180 to 236 μm when a linear arrangement is used.
図8に本発明の4芯単一モード光ファイバにおいて、低屈折率領域3の規格化屈折率を0.692とした場合の最小コア間距離Λを、波長1310nmにおけるモードフィールド径および規格化周波数Vの関数として示す。図中の5本の一点鎖線は、最小コア間距離Λが40〜56μmとなる時の結果を示す。尚、低屈折率領域3の規格化直径は0.55とし、本実施の形態では100km伝送後のクロストークが−30dBとなる条件として最小コア間距離Λを導出した。図中の実線および破線は、それぞれ曲げ損失特性および実効遮断波長特性であり、図4と同様の特性条件を示している。 In the four-core single-mode optical fiber of the present invention shown in FIG. 8, the minimum inter-core distance Λ when the normalized refractive index of the low refractive index region 3 is 0.692 is expressed as the mode field diameter and the normalized frequency V at a wavelength of 1310 nm. Shown as a function. The five dash-dot lines in the figure show the results when the minimum inter-core distance Λ is 40 to 56 μm. The standardized diameter of the low refractive index region 3 is 0.55, and in this embodiment, the minimum inter-core distance Λ is derived as a condition that the crosstalk after transmission of 100 km is −30 dB. The solid line and the broken line in the figure are the bending loss characteristic and the effective cutoff wavelength characteristic, respectively, and indicate the same characteristic conditions as in FIG.
図8から、波長1310nmにおける規格化周波数Vを2.00〜2.73の範囲に、最小コア間距離Λを41〜56μmの範囲に設定することにより、従来の汎用単一モード光ファイバと同等の曲げ損失特性および実効遮断波長特性を実現し、かつ波長1310nmで8.0〜11.0μmとなるモードフィールド径を実現できることが分かる。 From Fig. 8, the bending loss characteristics equivalent to those of conventional general-purpose single-mode optical fibers can be obtained by setting the normalized frequency V at a wavelength of 1310 nm in the range of 2.00 to 2.73 and the minimum inter-core distance Λ in the range of 41 to 56 µm. It can also be seen that an effective cut-off wavelength characteristic can be realized and a mode field diameter of 8.0 to 11.0 μm can be realized at a wavelength of 1310 nm.
従って、図4および図8より、波長1310nmにおける規格化周波数Vを2.00〜2.73、最小クラッド厚rを36〜44μm、最小コア間距離Λを41〜56μm、低屈折率領域3の規格化屈折率を0.692以下、低屈折率領域3の規格化直径を0.55以上の範囲に設定することにより、従来の汎用単一モード光ファイバと同等の曲げ損失特性および実効遮断波長特性を実現し、かつ波長1310nmのモードフィールド径が8.0〜11.0μmとなる4芯単一モード光ファイバを実現できることが分かる。また、この時のクラッド外径Dは、正方格子状の配列を用いる場合は130〜168μmに、直線状の配列を用いる場合は195〜256μmになる。 Therefore, from FIG. 4 and FIG. 8, the normalized frequency V at 2.00 to 2.73, the minimum cladding thickness r is 36 to 44 μm, the minimum inter-core distance Λ is 41 to 56 μm, and the normalized refractive index of the low refractive index region 3 is Is set to 0.692 or less, and the standardized diameter of the low refractive index region 3 is set to a range of 0.55 or more. This realizes bending loss characteristics and effective cutoff wavelength characteristics equivalent to those of conventional general-purpose single-mode optical fibers, and a wavelength of 1310 nm. It can be seen that a four-core single-mode optical fiber with a mode field diameter of 8.0 to 11.0 μm can be realized. Further, the cladding outer diameter D at this time is 130 to 168 μm when a square lattice arrangement is used, and 195 to 256 μm when a linear arrangement is used.
図9に本発明の4芯単一モード光ファイバにおいて、低屈折率領域3の規格化屈折率を0.692とした場合の最小コア間距離Λを、波長1550nmにおけるモードフィールド径および規格化周波数Vの関数として示す。図中の4本の一点鎖線は、最小コア間距離Λが36〜48μmとなる時の結果を示す。尚、低屈折率領域3の規格化直径は0.55とし、本実施の形態では100km伝送後のクロストークが−30dBとなる条件として最小コア間距離Λを導出した。図中の実線および破線は、それぞれ曲げ損失特性および実効遮断波長特性であり、図5と同様の特性条件を示している。 In FIG. 9, in the four-core single-mode optical fiber of the present invention, the minimum inter-core distance Λ when the normalized refractive index of the low refractive index region 3 is 0.692 is expressed as the mode field diameter and the normalized frequency V at a wavelength of 1550 nm. Shown as a function. The four dash-dot lines in the figure show the results when the minimum inter-core distance Λ is 36 to 48 μm. The standardized diameter of the low refractive index region 3 is 0.55, and in this embodiment, the minimum inter-core distance Λ is derived as a condition that the crosstalk after transmission of 100 km is −30 dB. The solid line and the broken line in the figure are the bending loss characteristic and the effective cutoff wavelength characteristic, respectively, and indicate the same characteristic conditions as in FIG.
図9から、波長1550nmにおける規格化周波数Vを2.00〜2.66の範囲に、最小コア間距離を36〜48μmの範囲に設定することにより、従来の汎用単一モード光ファイバと同等の曲げ損失特性を実現し、かつ1500nm以下の実効遮断波長特性と、波長1550nmで9.0〜11.0μmとなるモードフィールド径とを実現できることが分かる。 From Fig. 9, by setting the normalized frequency V at a wavelength of 1550 nm in the range of 2.00 to 2.66 and the minimum inter-core distance in the range of 36 to 48 μm, the bending loss characteristics equivalent to those of conventional general-purpose single mode optical fibers can be obtained. It can be seen that an effective cutoff wavelength characteristic of 1500 nm or less and a mode field diameter of 9.0 to 11.0 μm at a wavelength of 1550 nm can be realized.
従って、図5および図9より、波長1550nmにおける規格化周波数Vを2.00〜2.66、最小クラッド厚rを33〜40μm、最小コア間距離Λを36〜48μm、低屈折率領域3の規格化屈折率を0.692以下、低屈折率領域3の規格化直径を0.55以上の範囲に設定することにより、従来の汎用単一モード光ファイバと同等の曲げ損失特性を実現し、かつ1500nm以下の実効遮断波長特性と、波長1550nmで9.0〜11.0μmとなるモードフィールド径とを実現できることが分かる。また、この時のクラッド外径Dは、正方格子状の配列を用いる場合は117〜148μmに、直線状の配列を用いる場合は174〜224μmになる。 Therefore, from FIG. 5 and FIG. 9, the normalized frequency V at a wavelength of 1550 nm is 2.00 to 2.66, the minimum cladding thickness r is 33 to 40 μm, the minimum inter-core distance Λ is 36 to 48 μm, and the normalized refractive index of the low refractive index region 3 Is set to 0.692 or less, and the standardized diameter of the low refractive index region 3 is set to a range of 0.55 or more. This realizes bending loss characteristics equivalent to those of conventional general-purpose single-mode optical fibers and effective cutoff wavelength characteristics of 1500 nm or less. And a mode field diameter of 9.0 to 11.0 μm at a wavelength of 1550 nm can be realized. Further, the cladding outer diameter D at this time is 117 to 148 μm when a square lattice array is used, and 174 to 224 μm when a linear array is used.
図10に本発明の4芯単一モード光ファイバにおける、実効断面積の相対変化の規格化屈折率に対する依存性を、低屈折率領域3の規格化直径を関数として示す。尚、計算波長は1550nmで、縦軸の相対変化は低屈折率領域3が存在しない場合の実効断面積を基準として算出した。 FIG. 10 shows the dependence of the relative change of the effective area on the normalized refractive index in the four-core single mode optical fiber of the present invention as a function of the normalized diameter of the low refractive index region 3. The calculated wavelength was 1550 nm, and the relative change in the vertical axis was calculated based on the effective area when the low refractive index region 3 did not exist.
図10から、低屈折率領域3の付与に伴う実効断面積の縮小量は1%未満であり、十分小さな値であることが分かる。一般に、光ファイバ中を伝搬可能な光強度は当該光ファイバの実効断面積に比例して増加すると考えられる。また、光ファイバの接続損失は主に、光ファイバ中心軸の軸ずれ量と、モードフィールド径の不整合とによって生じることが知られている。本発明の4芯単一モード光ファイバでは、低屈折率領域3の付与に伴う実効断面積およびモードフィールド径の縮小はほとんど無視できるので、本発明の、4芯単一モード光ファイバにおける伝搬可能光強度の低下、および接続損失の劣化もほとんど無視できると考えられる。 From FIG. 10, it can be seen that the amount of reduction in the effective area due to the provision of the low refractive index region 3 is less than 1%, which is a sufficiently small value. In general, it is considered that the light intensity capable of propagating in an optical fiber increases in proportion to the effective area of the optical fiber. Further, it is known that the connection loss of the optical fiber is mainly caused by the amount of axial deviation of the central axis of the optical fiber and the mismatch of the mode field diameter. In the four-core single mode optical fiber of the present invention, the reduction in effective area and mode field diameter accompanying the provision of the low refractive index region 3 is almost negligible. It is considered that the decrease in light intensity and the deterioration in connection loss are almost negligible.
図11は本発明の4芯単一モード光ファイバにおいて、各コア部2の外周に配置される低屈折率領域3を3個とした場合の断面構造の概念図を示し、また、図12および図13は本発明の4芯単一モード光ファイバにおいて、各コア部2の外周に配置される低屈折率領域3を4個とした場合の断面構造を示すものである。
FIG. 11 shows a conceptual diagram of a cross-sectional structure when the number of low refractive index regions 3 arranged on the outer periphery of each
長距離・高速光伝送では、偏波モード分散の累積による伝送特性の劣化が問題となる。一般に、中心軸に対して対称性を有する光ファイバでは、光ファイバ断面内の応力歪みの増大による偏波モード分散の増加を低減することができる。従って、図11乃至図13に示したように、本発明の4芯単一モード光ファイバにおいて、各コア部2の外周に配置される低屈折率領域3を、コア中心から同心円状に等間隔に3個または4個配置することにより、偏波モード分散の増加を抑圧した4芯単一モード光ファイバを実現することが可能となる。
In long-distance / high-speed optical transmission, degradation of transmission characteristics due to accumulation of polarization mode dispersion becomes a problem. In general, in an optical fiber having symmetry with respect to the central axis, an increase in polarization mode dispersion due to an increase in stress strain in the cross section of the optical fiber can be reduced. Therefore, as shown in FIGS. 11 to 13, in the four-core single mode optical fiber of the present invention, the low refractive index regions 3 arranged on the outer periphery of each
図14は本発明の4芯単一モード光ファイバにおいて、クラッド構造を非円の長方形構造とした場合の断面構造を示すものである。これまでの実施の形態ではクラッド部1が直径Dの円形を有することとしたが、本実施の形態の4芯単一モード光ファイバは、上述のコア部2の規格化周波数V、コア間距離Λ、および最小クラッド厚rの全ての構造条件を満たしていれば実現することが可能である。
FIG. 14 shows a cross-sectional structure of the four-core single-mode optical fiber of the present invention when the cladding structure is a non-circular rectangular structure. In the above-described embodiments, the clad
従って、図14に示すように、例えば長方形のクラッド部1において、4個のコア部2をクラッド部1に直線状に配置し、前記長方形の長径がクラッド直径Dとなるように、前記長方形の短径が最小クラッド厚rの2倍以上となるようにすれば、これまでの実施の形の場合と同様の作用効果を得ることができる。
Therefore, as shown in FIG. 14, for example, in the rectangular
また、非特許文献4によれば、コア直径が2aでコアの比屈折率差がΔであるステップ型コアの規格化周波数Vとモードフィールド径2Wは、
W/a=0.65+1.619V-1.5+2.879V-6 (2)
により記述できることが開示されている。
Further, according to Non-Patent Document 4, the normalized frequency V and the mode field diameter 2W of the step-type core whose core diameter is 2a and whose core relative refractive index difference is Δ are:
W / a = 0.65 + 1.619V -1.5 + 2.879V -6 (2)
It is disclosed that it can be described by.
また、非特許文献5によれば、上述のステップ型屈折率分布における規格化周波数Vは、任意の屈折率分布に対する拡張規格化周波数Tとして、
T2=2(2π/λ)2∫{n2(r)−n2(∞)}rdr (3)
に書き直せることが開示されている。
Further, according to Non-Patent Document 5, the standardized frequency V in the above-described step-type refractive index distribution is the extended standardized frequency T for an arbitrary refractive index distribution,
T 2 = 2 (2π / λ) 2 ∫ {n 2 (r) −n 2 (∞)} rdr (3)
It is disclosed that it can be rewritten.
ここで、n(r)は半径rの点における屈折率、n(∞)はクラッドの屈折率を表す。従って、本発明の実施の形態に示した、モードフィールド径と規格化周波数Vに対する最小コア間距離Λの関係、およびモードフィールド径と規格化周波数Vに対する最小クラッド厚rの関係は、任意の屈折率分布を有するコア部2に対しても適用することが可能である。
Here, n (r) represents the refractive index at the point of radius r, and n (∞) represents the refractive index of the cladding. Accordingly, the relationship between the mode field diameter and the minimum core distance Λ with respect to the normalized frequency V and the relationship between the mode field diameter and the normalized frequency V with respect to the minimum cladding thickness r shown in the embodiment of the present invention are arbitrary refraction. The present invention can also be applied to the
以上に説明したように、本発明の4芯単一モード光ファイバによれば、隣接するコア間に適切な断面積および屈折率を有する低屈折率領域を配置したことにより、長距離・高速光伝送に好適な伝送特性および接続特性を保持したまま、隣接するコア間のクロストーク特性を5割〜1割以下にまで低減することが可能となる。 As described above, according to the four-core single-mode optical fiber of the present invention, a long-distance / high-speed light can be obtained by arranging a low refractive index region having an appropriate cross-sectional area and refractive index between adjacent cores. It is possible to reduce the crosstalk characteristics between adjacent cores to 50% to 10% or less while maintaining transmission characteristics and connection characteristics suitable for transmission.
1:クラッド部、2:コア部、3:低屈折率領域。 1: Clad portion, 2: Core portion, 3: Low refractive index region.
Claims (7)
前記クラッド部断面内の隣接する各コア部間の中央に、各コア部の実効断面積の低減が1%未満となる断面積およびクラッド部の屈折率よりも小さい屈折率を有する低屈折率領域を配置した
ことを特徴とする4芯単一モード光ファイバ。 Four core parts are arranged in a square lattice pattern or a straight line in the cross section of the cladding part,
A low refractive index region having a cross-sectional area in which the reduction of the effective cross-sectional area of each core part is less than 1% and a refractive index smaller than the refractive index of the clad part at the center between adjacent core parts in the cross-section of the clad part A four-core single-mode optical fiber characterized by comprising:
前記各コア部を前記クラッド部断面内にコア間距離Λが等間隔となるように正方格子状または直線状に配置し、かつ前記低屈折率領域を前記クラッド部断面内の隣接する前記各コア部間の中央に配置し、
波長1310nmにおける前記規格化周波数Vを2.00〜2.73の範囲、前記コア部の中心から前記クラッド部の外周までの最小クラッド厚rを36〜44μmの範囲、前記コア間距離Λを43〜58μmの範囲、前記屈折率npitの前記屈折率ncladに対する比率npit/ncladを0.995以下の範囲、前記直径dの前記直径2aに対する比率d/2aを0.6以上の範囲、前記直径Dを133〜262μmの範囲にそれぞれ設定した
ことを特徴とする4芯単一モード光ファイバ。 A clad portion having a refractive index of n clad and a diameter of D, four core portions having a normalized frequency of V and a diameter of 2a, and a low refractive index region having a refractive index of n pit and a diameter of d. Have
The core portions are arranged in a square lattice shape or a straight line shape so that the inter-core distances Λ are equally spaced in the cross section of the clad portion, and the low refractive index regions are adjacent to the cores in the cross section of the clad portion. Place in the center between the parts,
The normalized frequency V at a wavelength of 1310 nm is in the range of 2.00 to 2.73, the minimum cladding thickness r from the center of the core to the outer periphery of the cladding is in the range of 36 to 44 μm, and the inter-core distance Λ is in the range of 43 to 58 μm. The ratio n pit / n clad of the refractive index n pit to the refractive index n clad is in the range of 0.995 or less, the ratio d / 2a of the diameter d to the diameter 2a is in the range of 0.6 or more, and the diameter D is 133 to 262 μm. A four-core single-mode optical fiber characterized by being set in the range of
前記各コア部を前記クラッド部断面内にコア間距離Λが等間隔となるように正方格子状または直線状に配置し、かつ前記低屈折率領域を前記クラッド部断面内の隣接する前記各コア部間の中央に配置し、
波長1550nmにおける前記規格化周波数Vを2.00〜2.66の範囲、前記コア部の中心から前記クラッド部の外周までの最小クラッド厚rを33〜40μmの範囲、前記コア間距離Λを38〜52μmの範囲、前記屈折率npitの前記屈折率ncladに対する比率npit/ncladを0.995以下の範囲、前記直径dの前記直径2aに対する比率d/2aを0.6以上の範囲、前記直径Dを120〜236μmの範囲にそれぞれ設定した
ことを特徴とする4芯単一モード光ファイバ。 A clad portion having a refractive index of n clad and a diameter of D, four core portions having a normalized frequency of V and a diameter of 2a, and a low refractive index region having a refractive index of n pit and a diameter of d. Have
The core portions are arranged in a square lattice shape or a straight line shape so that the inter-core distances Λ are equally spaced in the cross section of the clad portion, and the low refractive index regions are adjacent to the cores in the cross section of the clad portion. Place in the center between the parts,
The normalized frequency V at a wavelength of 1550 nm is in the range of 2.00 to 2.66, the minimum cladding thickness r from the center of the core to the outer periphery of the cladding is in the range of 33 to 40 μm, and the inter-core distance Λ is in the range of 38 to 52 μm. The ratio n pit / n clad of the refractive index n pit to the refractive index n clad is in the range of 0.995 or less, the ratio d / 2a of the diameter d to the diameter 2a is in the range of 0.6 or more, and the diameter D is 120 to 236 μm. A four-core single-mode optical fiber characterized by being set in the range of
前記各コア部を前記クラッド部断面内にコア間距離Λが等間隔となるように正方格子状または直線状に配置し、かつ前記低屈折率領域を前記クラッド部断面内の隣接する前記各コア部間の中央に配置し、
波長1310nmにおける前記規格化周波数Vを2.00〜2.73の範囲、前記コア部の中心から前記クラッド部の外周までの最小クラッド厚rを36〜44μmの範囲、前記コア間距離Λを41〜56μmの範囲、前記屈折率npitの前記屈折率ncladに対する比率npit/ncladを0.692以下の範囲、前記直径dの前記直径2aに対する比率d/2aを0.55以上の範囲、前記直径Dを130〜256μmの範囲にそれぞれ設定した
ことを特徴とする4芯単一モード光ファイバ。 A clad portion having a refractive index of n clad and a diameter of D, four core portions having a normalized frequency of V and a diameter of 2a, and a low refractive index region having a refractive index of n pit and a diameter of d. Have
The core portions are arranged in a square lattice shape or a straight line shape so that the inter-core distances Λ are equally spaced in the cross section of the clad portion, and the low refractive index regions are adjacent to the cores in the cross section of the clad portion. Place in the center between the parts,
The normalized frequency V at a wavelength of 1310 nm is in the range of 2.00 to 2.73, the minimum cladding thickness r from the center of the core to the outer periphery of the cladding is in the range of 36 to 44 μm, and the inter-core distance Λ is in the range of 41 to 56 μm. The ratio n pit / n clad of the refractive index n pit to the refractive index n clad is in the range of 0.692 or less, the ratio d / 2a of the diameter d to the diameter 2a is in the range of 0.55 or more, and the diameter D is 130 to 256 μm. A four-core single-mode optical fiber characterized by being set in the range of
前記各コア部を前記クラッド部断面内にコア間距離Λが等間隔となるように正方格子状または直線状に配置し、かつ前記低屈折率領域を前記クラッド部断面内の隣接する前記各コア部間の中央に配置し、
波長1550nmにおける前記規格化周波数Vを2.00〜2.66の範囲、前記コア部の中心から前記クラッド部の外周までの最小クラッド厚rを33〜40μmの範囲、前記コア間距離Λを36〜48μmの範囲、前記屈折率npitの前記屈折率ncladに対する比率npit/ncladを0.692以下の範囲、前記直径dの前記直径2aに対する比率d/2aを0.55以上の範囲、前記直径Dを117〜224μmの範囲にそれぞれ設定した
ことを特徴とする4芯単一モード光ファイバ。 A clad portion having a refractive index of n clad and a diameter of D, four core portions having a normalized frequency of V and a diameter of 2a, and a low refractive index region having a refractive index of n pit and a diameter of d. Have
The core portions are arranged in a square lattice shape or a straight line shape so that the inter-core distances Λ are equally spaced in the cross section of the clad portion, and the low refractive index regions are adjacent to the cores in the cross section of the clad portion. Place in the center between the parts,
The normalized frequency V at a wavelength of 1550 nm is in the range of 2.00 to 2.66, the minimum cladding thickness r from the center of the core to the outer periphery of the cladding is in the range of 33 to 40 μm, and the inter-core distance Λ is in the range of 36 to 48 μm. The ratio n pit / n clad of the refractive index n pit to the refractive index n clad is in the range of 0.692 or less, the ratio d / 2a of the diameter d to the diameter 2a is in the range of 0.55 or more, and the diameter D is 117 to 224 μm. A four-core single-mode optical fiber characterized by being set in the range of
ことを特徴とする請求項1乃至5のいずれかに記載の4芯単一モード光ファイバ。 6. The four-core single mode light according to claim 1, wherein three or four of the low refractive index regions are arranged at equal intervals at concentric positions of the core portions. fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011225743A JP5522696B2 (en) | 2011-10-13 | 2011-10-13 | 4-core single-mode optical fiber and optical cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011225743A JP5522696B2 (en) | 2011-10-13 | 2011-10-13 | 4-core single-mode optical fiber and optical cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013088457A true JP2013088457A (en) | 2013-05-13 |
JP5522696B2 JP5522696B2 (en) | 2014-06-18 |
Family
ID=48532462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011225743A Active JP5522696B2 (en) | 2011-10-13 | 2011-10-13 | 4-core single-mode optical fiber and optical cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5522696B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014132793A1 (en) * | 2013-02-27 | 2014-09-04 | 株式会社フジクラ | Multi-core fiber |
JP2015045705A (en) * | 2013-08-27 | 2015-03-12 | 日本電信電話株式会社 | Multicore optical fiber |
JP2015099210A (en) * | 2013-11-18 | 2015-05-28 | 株式会社フジクラ | Multi-core fiber and manufacturing method therefor |
US20160216442A1 (en) * | 2013-04-15 | 2016-07-28 | Corning Incorporated | Low diameter optical fiber |
US20170176674A1 (en) * | 2014-11-12 | 2017-06-22 | Yangtze Optical Fibre And Cable Joint Stock Limited Company | Single-mode fiber with ultralow attenuation and large effective area |
WO2020149158A1 (en) * | 2019-01-18 | 2020-07-23 | 日本電信電話株式会社 | Multicore optical fiber and design method |
WO2020217939A1 (en) * | 2019-04-25 | 2020-10-29 | 日本電信電話株式会社 | Multicore optical fiber and design method |
WO2022097639A1 (en) * | 2020-11-04 | 2022-05-12 | 住友電気工業株式会社 | Multicore optical fiber |
US20230341618A1 (en) * | 2020-08-12 | 2023-10-26 | Nippon Telegraph And Telephone Corporation | Multi-core optical fiber and design method |
WO2024224614A1 (en) * | 2023-04-28 | 2024-10-31 | 日本電信電話株式会社 | Optical fiber, optical amplifier, and transmission system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05341147A (en) * | 1992-06-12 | 1993-12-24 | Asahi Chem Ind Co Ltd | Multi-core type single mode optical fiber and transmission using it |
JP2007086536A (en) * | 2005-09-22 | 2007-04-05 | Nagase Chemtex Corp | Filler composition and method for manufacturing hole-assisted fiber using the same |
JP2010520499A (en) * | 2007-02-28 | 2010-06-10 | コーニング インコーポレイテッド | Optical fiber light source based on third harmonic |
WO2010082656A1 (en) * | 2009-01-19 | 2010-07-22 | 住友電気工業株式会社 | Multi-core optical fiber |
JP2010197730A (en) * | 2009-02-25 | 2010-09-09 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber, method of designing the same, and optical wavelength multiplex communication system |
JP2011027945A (en) * | 2009-07-24 | 2011-02-10 | Nippon Telegr & Teleph Corp <Ntt> | Single-mode optical fiber with mode diameter expansion hole |
WO2011024808A1 (en) * | 2009-08-28 | 2011-03-03 | 株式会社フジクラ | Multi-core fiber |
JP2011170062A (en) * | 2010-02-18 | 2011-09-01 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber and method of manufacturing the same, and optical fiber preform and method of manufacturing the same |
-
2011
- 2011-10-13 JP JP2011225743A patent/JP5522696B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05341147A (en) * | 1992-06-12 | 1993-12-24 | Asahi Chem Ind Co Ltd | Multi-core type single mode optical fiber and transmission using it |
JP2007086536A (en) * | 2005-09-22 | 2007-04-05 | Nagase Chemtex Corp | Filler composition and method for manufacturing hole-assisted fiber using the same |
JP2010520499A (en) * | 2007-02-28 | 2010-06-10 | コーニング インコーポレイテッド | Optical fiber light source based on third harmonic |
WO2010082656A1 (en) * | 2009-01-19 | 2010-07-22 | 住友電気工業株式会社 | Multi-core optical fiber |
JP2010197730A (en) * | 2009-02-25 | 2010-09-09 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber, method of designing the same, and optical wavelength multiplex communication system |
JP2011027945A (en) * | 2009-07-24 | 2011-02-10 | Nippon Telegr & Teleph Corp <Ntt> | Single-mode optical fiber with mode diameter expansion hole |
WO2011024808A1 (en) * | 2009-08-28 | 2011-03-03 | 株式会社フジクラ | Multi-core fiber |
JP2011170062A (en) * | 2010-02-18 | 2011-09-01 | Nippon Telegr & Teleph Corp <Ntt> | Optical fiber and method of manufacturing the same, and optical fiber preform and method of manufacturing the same |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014132793A1 (en) * | 2013-02-27 | 2014-09-04 | 株式会社フジクラ | Multi-core fiber |
US11009656B2 (en) | 2013-04-15 | 2021-05-18 | Corning Incorporated | Low diameter optical fiber |
US20160216442A1 (en) * | 2013-04-15 | 2016-07-28 | Corning Incorporated | Low diameter optical fiber |
US11150403B2 (en) | 2013-04-15 | 2021-10-19 | Corning Incorporated | Low diameter optical fiber |
US9995874B2 (en) * | 2013-04-15 | 2018-06-12 | Corning Incorporated | Low diameter optical fiber |
US11009655B2 (en) | 2013-04-15 | 2021-05-18 | Corning Incorporated | Low diameter optical fiber |
JP2015045705A (en) * | 2013-08-27 | 2015-03-12 | 日本電信電話株式会社 | Multicore optical fiber |
JP2015099210A (en) * | 2013-11-18 | 2015-05-28 | 株式会社フジクラ | Multi-core fiber and manufacturing method therefor |
US9529146B2 (en) | 2013-11-18 | 2016-12-27 | Fujikura Ltd. | Multicore fiber and method of manufacture of the same |
US20170176674A1 (en) * | 2014-11-12 | 2017-06-22 | Yangtze Optical Fibre And Cable Joint Stock Limited Company | Single-mode fiber with ultralow attenuation and large effective area |
US9874687B2 (en) * | 2014-11-12 | 2018-01-23 | Yangtze Optical Fibre And Cable Joint Stock Limited Company | Single-mode fiber with ultralow attenuation and large effective area |
JP2020115191A (en) * | 2019-01-18 | 2020-07-30 | 日本電信電話株式会社 | Multi-core optical fiber and design method |
WO2020149158A1 (en) * | 2019-01-18 | 2020-07-23 | 日本電信電話株式会社 | Multicore optical fiber and design method |
CN113272691A (en) * | 2019-01-18 | 2021-08-17 | 日本电信电话株式会社 | Multi-core optical fiber and design method |
JP7172634B2 (en) | 2019-01-18 | 2022-11-16 | 日本電信電話株式会社 | Multi-core optical fiber and design method |
CN113272691B (en) * | 2019-01-18 | 2024-01-05 | 日本电信电话株式会社 | Multi-core optical fiber and design method |
WO2020217939A1 (en) * | 2019-04-25 | 2020-10-29 | 日本電信電話株式会社 | Multicore optical fiber and design method |
JP2020181106A (en) * | 2019-04-25 | 2020-11-05 | 日本電信電話株式会社 | Multi-core optical fiber, and design method |
US20230341618A1 (en) * | 2020-08-12 | 2023-10-26 | Nippon Telegraph And Telephone Corporation | Multi-core optical fiber and design method |
WO2022097639A1 (en) * | 2020-11-04 | 2022-05-12 | 住友電気工業株式会社 | Multicore optical fiber |
WO2024224614A1 (en) * | 2023-04-28 | 2024-10-31 | 日本電信電話株式会社 | Optical fiber, optical amplifier, and transmission system |
Also Published As
Publication number | Publication date |
---|---|
JP5522696B2 (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522696B2 (en) | 4-core single-mode optical fiber and optical cable | |
JP6177994B2 (en) | Multi-core fiber | |
Takenaga et al. | Reduction of crosstalk by trench-assisted multi-core fiber | |
US9081129B2 (en) | Multi-core fiber | |
JP5660627B2 (en) | Multi-core single-mode optical fiber and optical cable | |
US9529144B2 (en) | Multicore fiber | |
WO2011102191A1 (en) | Multi-core optical fibre | |
JP2012118495A (en) | Multi-core fiber | |
JP6138481B2 (en) | Multi-core fiber | |
US9400352B2 (en) | Polarization-maintaining optical fiber | |
JP5468711B2 (en) | Multi-core fiber | |
US20100150507A1 (en) | Holey fiber | |
JP6340342B2 (en) | Multi-core fiber | |
JP5808767B2 (en) | Multi-core fiber | |
US9541704B2 (en) | Multi-core optical fiber and multi-core optical fiber cable | |
JP2013228548A (en) | Multicore optical fiber | |
JPWO2014133057A1 (en) | Multi-core fiber | |
US20190033512A1 (en) | Optical device | |
JP2018155972A (en) | Multicore fiber | |
JP2013097172A (en) | Passive optical transmission system and optical fiber for high-intensity transmission for use in the same | |
JP5697157B2 (en) | Core expansion single mode optical fiber and optical transmission system | |
JP5356466B2 (en) | Holey fiber | |
JP6096268B2 (en) | Multi-core fiber | |
JP5771569B2 (en) | Optical fiber | |
JP2013195800A (en) | Multi-core fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130918 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20131113 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20140207 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140402 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5522696 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |