Nothing Special   »   [go: up one dir, main page]

JP2013085534A - Method for culturing microalgae - Google Patents

Method for culturing microalgae Download PDF

Info

Publication number
JP2013085534A
JP2013085534A JP2011231065A JP2011231065A JP2013085534A JP 2013085534 A JP2013085534 A JP 2013085534A JP 2011231065 A JP2011231065 A JP 2011231065A JP 2011231065 A JP2011231065 A JP 2011231065A JP 2013085534 A JP2013085534 A JP 2013085534A
Authority
JP
Japan
Prior art keywords
culture
microalgae
temperature
layer
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011231065A
Other languages
Japanese (ja)
Inventor
Takeshige Hasegawa
武重 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO RENAISSANCE ENTEC KK
Original Assignee
ECO RENAISSANCE ENTEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO RENAISSANCE ENTEC KK filed Critical ECO RENAISSANCE ENTEC KK
Priority to JP2011231065A priority Critical patent/JP2013085534A/en
Publication of JP2013085534A publication Critical patent/JP2013085534A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an extensive large scale method for culturing microalgae, having stability and a high yield, to market by minimizing the effect of an outside environmental temperature to a culturing temperature, in addition avoiding the effects of rainfall to prevent the effluence of cultured material and also surely keeping the supply of nutrient salts in facing the problem of reduction of yield caused by the effects of culturing temperature and rainfall in the outdoor large scale culture of the microalgae under a climate condition in our country.SOLUTION: This stable and high yield extensive large scale culture of the microalgae implemented by using many long tubular containers having a multilayered structure consisting of film layers set by soft water-impermeable polymer film and space layers is provided by maintaining the lowest temperature in the culture as within 8°C from the optimum temperature of chlorophyll fluorescence yield of the microalgae.

Description

本発明は、微細藻類の培養方法に関する。特に、寒冷期が存在し且つ降雨に富む気候環境下において、簡便な構成と操作をもって屋外で実施する微細藻類の大規模培養方法に関する。   The present invention relates to a method for culturing microalgae. In particular, the present invention relates to a method for large-scale cultivation of microalgae that is carried out outdoors with a simple configuration and operation in a climatic environment where there is a cold season and abundant rainfall.

微細藻類は、これまでに代替食糧(微生物蛋白)、機能性食品、水産養殖餌料、水処理等への利用が図られ、用途に応じて、屋内バイオリアクタ方式から屋外大規模培養に用いるオープンポンド方式やレースウェイ方式に到るまで、様々な培養システムが開発されてきた。近年では、燃料作物という新たな微細藻類の用途も見出され、大規模且つ低コストである培養システムの開発が急務となっている。   Microalgae have been used for alternative foods (microbial proteins), functional foods, aquaculture feeds, water treatment, etc., and open pounds used for large-scale outdoor cultivation from indoor bioreactors depending on the application. Various culture systems have been developed up to the system and raceway system. In recent years, the use of a new microalgae called a fuel crop has been found, and the development of a large-scale and low-cost culture system has become an urgent task.

一般に燃料生産を目的とした微細藻類の培養は、生産コストを十分に抑えたヘクタール規模での大規模培養が必要とされる。これまでの大規模培養は、主に海外にて展開され、オープンポンド方式やレースウェイ方式等の開放的人工池を利用した粗放培養(非特許文献1)が主流であったが、我が国ではこれらの粗放的大規模培養方式を単純に採用しにくい状況にあった。   In general, the cultivation of microalgae for the purpose of fuel production requires large-scale cultivation on a hectare scale with a sufficiently low production cost. So far, large-scale culture has been developed mainly overseas, and rough release culture (Non-patent Document 1) using open artificial ponds such as the open pond system and raceway system has been the mainstream. However, it was difficult to simply adopt the large-scale culture method.

なぜなら、日本の風土のごとく、四季が存在し降雨に富む自然環境下における粗放的大規模培養は、寒冷期における環境温度の低下や日格温度差、また、台風や豪雨等の集中降雨による培養物/液の希釈や流出等、屋外での粗放培養におけるマイナス影響を十分に考慮したものでなければならなかった。
更に、燃料生産を目的として微細藻類を培養する場合は、安価な燃料単価を達成するために、オープンポンド方式やレースウェイ方式等よりも、更に設置コストを低減した粗放的大規模培養方法が望まれるところであった。
This is because, as in the Japanese climate, the large-scale cultivation in a natural environment rich in rainfall with four seasons is cultivated due to a decrease in the environmental temperature in the cold season, the temperature difference of the personality, and concentrated rain such as typhoons and heavy rains. It was necessary to fully consider the negative effects of rough outdoor culture, such as dilution and spilling of substances / liquids.
Furthermore, when cultivating microalgae for the purpose of fuel production, in order to achieve an inexpensive unit price of fuel, a broad-scale large-scale culture method with a lower installation cost than the open pound method or raceway method is desirable. It was where

しかしながら、従来の国内特許文献に見られる多くの微細藻類培養装置は、透明で堅固な受光容器を主体とし更に環境制御機器を付属させた、発酵生産等で多用される様なバイオリアクタ方式(特許文献1〜5)が主流であり、これら従来技術は、躯体構造の複雑さや装置製造コストの面から、大規模培養へのスケールアップが著しく困難であるという課題を有していた。   However, many microalgae culture devices found in conventional Japanese patent literature are bioreactor systems (patents) that are frequently used in fermentation production, etc., mainly consisting of a transparent and solid light-receiving container and an environmental control device. Documents 1 to 5) are the mainstream, and these conventional techniques have a problem that it is extremely difficult to scale up to large-scale culture from the viewpoint of the complexity of the structure of the enclosure and the cost of manufacturing the apparatus.

また、特許文献6〜9に示される従来技術のように、少数ではあるが屋外培養システムも提案されていた。例えば、小型レースウェイ方式の培養設備に透明なルーフシートを被せる技術(特許文献6、7)、水域に浮遊躯体と微細藻類培養容器を設置する技術(特許文献8)、棚田のごとく地形の傾斜を利用する培養技術(特許文献9)等があった。
しかしながら、前記バイオリアクタ方式と同様に、大規模培養へのスケールアップに関するコスト面で難があり、また、培養好適温度の設定と降雨影響の回避等が必ずしも十分では無いなどの課題を有していた。
Moreover, although it is a small number, the outdoor culture system was also proposed like the prior art shown by patent documents 6-9. For example, technology for placing transparent roof sheets on small raceway culture equipment (Patent Documents 6 and 7), technology for installing floating rods and microalgae culture vessels in water (Patent Document 8), slope of terrain like rice terraces There was a culture technique (Patent Document 9) using
However, as with the bioreactor method, there are problems in terms of cost related to scale-up to large-scale culture, and there are problems such as setting a suitable culture temperature and avoiding the effects of rainfall. It was.

一方、近年では、特許文献10及び11のようにチューブ構造を有する培養器具を用いて、広域水域での粗放的大規模培養を実施する発明が提案された。チューブ構造を有する培養器具を用いるこれらの従来技術は、従前の粗放的大規模培養手段であるオープンポンド方式等で用いられる遮水シート養生を施工する代わりに、高分子フィルムからなるチューブを培養容器として微細藻類を培養するものであった。   On the other hand, in recent years, an invention has been proposed in which a large-scale culturing in a wide area of water is performed using a culture instrument having a tube structure as in Patent Documents 10 and 11. These conventional techniques using a culture device having a tube structure are based on the fact that a tube made of a polymer film is used as a culture container instead of constructing a water shielding sheet curing used in an open pond system or the like that is a conventional large-scale culture means. As a culture of microalgae.

Figure 2013085534
Figure 2013085534

特許第2743316号公報Japanese Patent No. 2743316 特許第3035153号公報Japanese Patent No. 3035153 特許第3600250号公報Japanese Patent No. 3600250 特許第4389500号公報Japanese Patent No. 4389500 特開2007−319039号公報JP 2007-319039 A 特許第3061467号公報Japanese Patent No. 3061467 特開平5−184347号公報JP-A-5-184347 特開平5−236935号公報JP-A-5-236935 特開平5−284958号公報Japanese Patent Laid-Open No. 5-284958 特開2004−81157号公報JP 2004-81157 A 特開2007−330215号公報JP 2007-330215 A

Borowitzka, M.A.,“Chapter14: Culturing Microalgae in Outdoor Ponds”in Algal Culturing Techniques, R. Anderson, Editor, AcademicPress, Burlington, MA p.205-218 (2005).Borowitzka, M.A., “Chapter 14: Culturing Microalgae in Outdoor Ponds” in Algal Culturing Techniques, R. Anderson, Editor, AcademicPress, Burlington, MA p. 205-218 (2005).

しかしながら、前述したチューブ法を用いた従来技術(特許文献10及び11)は、水系環境中の窒素・リン等の水質汚濁物質の低減・除去を本旨とするものであり、該従来技術による微細藻類の生産は、その水処理における副次的なものに過ぎなかったため、微細藻類の大規模培養を主たる目的として実施する場合には、種々の不都合があった。   However, the conventional techniques (Patent Documents 10 and 11) using the tube method described above are intended to reduce and remove water pollutants such as nitrogen and phosphorus in an aqueous environment. Since the production of was only a secondary in the water treatment, there were various inconveniences when it was carried out mainly for large-scale cultivation of microalgae.

すなわち、特許文献10及び11の従来技術での培養温度は、周囲の環境温度と同様であり、寒冷期における大量培養が極めて困難であるという課題を有していた。
加えて栄養塩の供給が、設置水系からの機能膜を介したチューブ内への流入に依存するため、降雨等によって外界の栄養塩濃度が低下すれば、おのずと培養器具内への栄養塩の供給が低下して培養・増殖の律速となる必然的課題を有していた。
That is, the culture temperature in the prior arts of Patent Documents 10 and 11 is the same as the ambient temperature, and has a problem that mass culture in the cold season is extremely difficult.
In addition, the supply of nutrients depends on the inflow from the installed water system through the functional membrane into the tube. Therefore, if the nutrient concentration in the external environment decreases due to rainfall, etc., the nutrients are naturally supplied to the culture apparatus. However, there is an inevitable problem that becomes a rate-limiting factor for culture and proliferation.

総じて、特許文献10及び11の培養技術は、安価なチューブ法を用いた微細藻類の培養方法ではあるが、従来のオープンポンド法やレースウェイ法等の粗放的培養技術と同様に、培養温度や栄養塩等の降雨希釈の影響等に対し、十分な考慮がなされておらず、我が国での粗放的大規模培養における気候に由来する諸課題の解決を図る技術とは成り得なかった。   In general, the culture techniques of Patent Documents 10 and 11 are microalgae culture methods using an inexpensive tube method. However, as in the case of the conventional loose-pond culture techniques such as the open pond method and the raceway method, Sufficient consideration has not been given to the effects of rainfall dilution such as nutrient salts, and it has not been a technology to solve various problems derived from the climate in extensive large-scale culture in Japan.

本発明の目的は、我が国の気候条件下における、微細藻類の屋外大規模培養での培養温度と降雨の影響による収率の減少に関する課題に対し、培養温度に対する外部環境温度の影響を最少とし、加えて降雨影響を回避して培養物の流出を防止すると共に栄養塩の供給を確実に果たす、安定且つ高収量な粗放的大規模培養方法を市場に提供することにある。   The purpose of the present invention is to minimize the influence of the external environment temperature on the culture temperature, in relation to the problems related to the decrease in yield due to the influence of the cultivation temperature and rainfall in outdoor large-scale cultivation of microalgae under the climatic conditions in Japan, In addition, it is to provide a stable and high-yield large-scale culturing method with a stable and high yield that avoids the influence of rainfall and prevents the outflow of the culture and reliably supplies nutrients.

すなわち、水分及び養分に対し不透過性のチューブ状フィルムからなる安価な培養容器と、その培養容器の温度制御を目的とする簡便な温度調節システムをもって、降雨希釈の回避と培養温度の適切な制御を特徴とする、安価な粗放的大規模培養方法を市場に提供することに加え、前記温度制御に関して微細藻類の培養温度と光合成の光エネルギー収率との関係の詳細を明らかにし、高い光エネルギー収率条件にて、目的生産物の高収量が期待できる、培養時の温度制御方法を市場に提供することにある。   That is, with an inexpensive culture vessel made of a tubular film that is impermeable to moisture and nutrients, and a simple temperature control system for the purpose of controlling the temperature of the culture vessel, avoiding rain dilution and appropriate control of the culture temperature In addition to providing a low-cost, large-scale, large-scale culturing method characterized by the above, the details of the relationship between the culture temperature of microalgae and the photoenergy yield of photosynthesis in relation to the temperature control are clarified, and high light energy The purpose is to provide the market with a temperature control method at the time of culturing in which a high yield of the target product can be expected under the yield conditions.

前述した目的を達成するための本発明の要旨とするところは、以下の各項の発明に存する。
先ず、請求項1に係る本発明は、柔軟な不透水性の高分子フィルムで設定される、フィルム層と空間層からなる、少なくとも3層以上の多層構造を有するチューブ状容器内の、一部の空間層に培養液を通じて実施する微細藻類の培養方法であって、前記微細藻類におけるクロロフィルの最大蛍光分析値(Fm)より最小蛍光分析値(Fo)を引いた変動蛍光値(Fv)から求められる、クロロフィル蛍光収率(Fv/Fm)が最大となる至適温度を求め、更に光合成時の培養制御温度として、制御時の最低温度を、該微細藻類のクロロフィル蛍光収率の至適温度に対して、摂氏8度以内に維持することを特徴とする微細藻類の培養方法である。
The gist of the present invention for achieving the object described above resides in the inventions of the following items.
First, the present invention according to claim 1 is a part of a tubular container having a multilayer structure composed of a film layer and a space layer, and having a multilayer structure of at least three layers, which is set with a flexible water-impermeable polymer film. A method for culturing microalgae through a culture solution in a space layer of the microalgae, which is obtained from a variable fluorescence value (Fv) obtained by subtracting a minimum fluorescence analysis value (Fo) from a maximum fluorescence analysis value (Fm) of chlorophyll in the microalgae. The optimum temperature at which the chlorophyll fluorescence yield (Fv / Fm) is maximized is obtained, and the minimum temperature at the time of control is set as the optimum temperature for the chlorophyll fluorescence yield of the microalgae as the culture control temperature during photosynthesis. On the other hand, it is a method for cultivating microalgae characterized by maintaining within 8 degrees Celsius.

また、請求項2に係る本発明は、前記培養液を通じる空間層を、薄い扁平状構造に保つことを特徴とする請求項1に記載の微細藻類の培養方法である。   Moreover, the present invention according to claim 2 is the method for culturing microalgae according to claim 1, wherein the space layer through which the culture solution passes is maintained in a thin flat structure.

更に、請求項3に係る本発明は、前記培養液を通じる空間層の周囲に温調流体を通じ、該培養液を通じる空間層の温度調整を実施することを特徴とする請求項1または2に記載の微細藻類の培養方法である。   Further, the present invention according to claim 3 is characterized in that the temperature adjustment fluid is passed around the space layer through which the culture solution passes, and the temperature of the space layer through the culture solution is adjusted. It is the culture method of the described microalgae.

加えて、請求項4に係る本発明は、前記微細藻類の培養が、光独立栄養性の培養のみならず、有機物を用いた従属栄養性の培養を組み合わせて実施することを特徴とする請求項1,2または3に記載の微細藻類の培養方法である。   In addition, the present invention according to claim 4 is characterized in that the culture of the microalgae is carried out by combining not only photoautotrophic culture but also heterotrophic culture using organic matter. The method for culturing microalgae according to 1, 2 or 3.

本発明のうち請求項1に係る微細藻類の培養方法によれば、柔軟な不透水性の高分子フィルムで設定される、フィルム層と空間層からなる多層構造を有するチューブ状容器を用いることで、屋外での粗放的培養時の降雨等による培養液や微細藻類濃度の不用意な希釈を防止することができる。   According to the method for culturing microalgae according to claim 1 of the present invention, by using a tubular container having a multilayer structure composed of a film layer and a space layer, which is set with a flexible water-impermeable polymer film. In addition, it is possible to prevent inadvertent dilution of the culture solution and the concentration of microalgae due to rainfall and the like during outdoor rough cultivation.

上述の降雨影響の回避は、不透水性の最外層フィルムの機能によるものであるが、その他の最外層フィルムの副次機能として、培養液を通じる空間層を仕切るチューブの不用意な破損等による培養液と微細藻類の流出防止とその保護等が挙げられ、これらの副次機能と相まって、より安定的な微細藻類の増殖を図ることができる。   The avoidance of the above-mentioned rainfall effect is due to the function of the water-impermeable outermost layer film, but as a secondary function of the other outermost layer film, it is due to inadvertent breakage of the tube that partitions the space layer through which the culture solution passes. Prevention of outflow of culture solution and microalgae, protection thereof, and the like can be mentioned, and in combination with these secondary functions, more stable growth of microalgae can be achieved.

特に、燃料作物として微細藻類を培養し、油脂や炭化水素等を生産する場合、これらの燃料成分や培地中の窒素・燐の環境への漏洩は、培養における経済的損失のみならず、公共水域汚染や土壌地下水汚染等の環境影響への考慮も必要である。
また、使用する微細藻類が遺伝子組換え体等である場合も同様に、この組換え体の漏洩に対し、環境影響への考慮が必要となる。更に、実際にしばしば問題となる、鳥獣や飛来物等による培養容器の突刺破損や構造破壊等に対し、本発明であるところの柔軟な不透水性の高分子フィルムで設定された多層構造は、内包する藻類培養物の保護を極めて効果的に図ることができる。
In particular, when microalgae are cultured as fuel crops to produce oils and fats, hydrocarbons, etc., leakage of these fuel components and nitrogen and phosphorus in the medium to the environment is not only an economic loss in culture, but also public water areas It is also necessary to consider environmental impacts such as contamination and soil / groundwater contamination.
Similarly, when the microalgae to be used is a gene recombinant, etc., it is necessary to consider the environmental impact against the leakage of the recombinant. Furthermore, the multilayer structure set by the flexible water-impermeable polymer film according to the present invention for puncture breakage or structural destruction of culture vessels due to birds and beasts or flying objects, which is often a problem in practice, It is possible to extremely effectively protect the encapsulated algal culture.

総じて、本発明たる、柔軟な不透水性の高分子フィルムで設定される、フィルム層と空間層からなる多層構造を有するチューブ状容器を用いることで、係る粗放的培養における環境影響を幾重にも防止し、安定した微細藻類培養と係る目的物質生産を担保することができる。   In general, by using a tube-shaped container having a multilayer structure composed of a film layer and a space layer, which is set by a flexible, water-impermeable polymer film according to the present invention, the environmental influences in such extensive culture can be multiplied. It is possible to prevent and ensure stable microalgae culture and production of the target substance.

また、上述のごとく、多層構造を有するチューブ状容器を用いる微細藻類の培養において、更に光合成時の培養温度として、最低温度をクロロフィル蛍光収率の至適温度に対して、摂氏8度以内に維持することによって、目的生産物の高収量を図ることができる。   In addition, as described above, in the cultivation of microalgae using a tube-shaped container having a multilayer structure, the minimum temperature is maintained within 8 degrees Celsius with respect to the optimum temperature for chlorophyll fluorescence yield as the culture temperature during photosynthesis. By doing so, a high yield of the target product can be achieved.

ここでクロロフィル蛍光収率を用いた培養管理についての考え方を示す。
例えば、微細藻類を燃料作物として培養する目的は、一義的には、脂質、炭化水素、炭水化物(を介した水素/エタノール)等の有機物を目的生産物として、その生産を図ることに他ならない。一般に該目的生産物は、微細藻類を窒素欠乏条件下に移行させ、微細藻類の生殖たる増殖を減じることで、該目的生産物細胞内含有量を格段に向上させることができる。
これは、光エネルギー収率はそのままに、生殖たる増殖に配向されていたエネルギーを、より目的生産物たる有機物生産に配向して細胞内含有量を高めるという転流調節操作に他ならない。つまり、一般に良く用いられる生殖たる増殖の指標(細胞数変化や増殖速度等)に着目するのではなく、光エネルギー収率(クロロフィル蛍光収率等)に着目した培養設定/管理を本旨とすることによって目的生産物の高収量を期待することができる。
Here, the idea about culture management using chlorophyll fluorescence yield is shown.
For example, the purpose of cultivating microalgae as a fuel crop is primarily to produce organic substances such as lipids, hydrocarbons, and carbohydrates (via hydrogen / ethanol) as target products. In general, the target product can significantly improve the intracellular content of the target product by transferring the microalgae under nitrogen-deficient conditions and reducing the reproduction of the microalgae.
This is nothing but a translocation control operation in which the energy that has been oriented to reproductive growth is more oriented to the production of organic matter as the target product and the intracellular content is increased while maintaining the light energy yield. In other words, rather than paying attention to commonly used reproductive growth indicators (cell number change, growth rate, etc.), culture setting / management focusing on light energy yield (chlorophyll fluorescence yield, etc.) is intended. Therefore, a high yield of the target product can be expected.

本発明では、光エネルギー収率と培養温度の関係に着目して、その詳細を明らかにすることにより、高い光エネルギー収率条件下にて目的生産物の高収量が期待できる培養時の温度設定および温度制御方法を提供するに到った。   In the present invention, focusing on the relationship between the light energy yield and the culture temperature, by clarifying the details, the temperature setting at the time of culture at which a high yield of the target product can be expected under high light energy yield conditions. And came to provide a temperature control method.

本発明のうち請求項2に係る微細藻類の培養方法によれば、前記培養液を通じる空間層を、薄い扁平状構造に保つことにより、光独立栄養条件下にて微細藻類を高密度に培養することができる。   According to the method for culturing microalgae according to claim 2 of the present invention, the microalgae are cultured at high density under light autotrophic conditions by keeping the space layer through which the culture solution passes in a thin flat structure. can do.

微細藻類は、光独立栄養条件下では光合成を行って増殖するが、一定の培養密度に達すると、増殖した藻体同士の相互光遮蔽により、それ以上の光独立栄養増殖が困難となる。つまり、一定の光照射面積において、増殖可能な微細藻類のバイオマス量の上限は自ずと限られるので、光路長が短い薄型の培養容器である程、実質的に高密度までの培養が可能となる。   Microalgae grow by photosynthesis under photoautotrophic conditions, but when reaching a certain culture density, further photoautotrophic growth becomes difficult due to mutual light shielding between the grown alga bodies. In other words, since the upper limit of the biomass amount of the microalgae that can be grown in a certain light irradiation area is naturally limited, the thinner the culture container with a shorter optical path length, the higher the culture density.

この高密度培養によって、藻体生産量を落とさずに培養液量を十分に低減することができるので、藻体回収の効率化、排水量の十分な低減等が図られ、コストパフォーマンスの良い藻体生産を実施することができる。   This high-density culture can sufficiently reduce the amount of culture solution without reducing the production volume of alga bodies, so that alga bodies can be collected more efficiently, the amount of drainage can be sufficiently reduced, etc., and alga bodies with good cost performance Production can be carried out.

加えて、上述の高密度培養は、微細藻類の捕食者たる原生動物等の増殖抑制操作を容易とする利点を有する。すなわち、前記原生動物の多くは好気性であり、その増殖や活動に酸素を必要とし、無酸素状態である嫌気条件下では死滅する。一方、多くの微細藻類は、原生動物同様に増殖や活動に酸素を必要とするが、嫌気条件下での耐性を示す。培養プロセスにおいて、一部に嫌気条件を設定することで、微細藻類の捕食者たる原生動物の増殖を有意に低減することができる。   In addition, the above-described high-density culture has an advantage of facilitating the operation of suppressing the growth of protozoa or the like as predators of microalgae. That is, many of the protozoa are aerobic, require oxygen for their growth and activity, and die under anaerobic conditions that are anoxic. On the other hand, many microalgae require oxygen for growth and activity like protozoa, but show resistance under anaerobic conditions. In the culturing process, by setting anaerobic conditions in part, the growth of protozoa that are predators of microalgae can be significantly reduced.

請求項2に係る微細藻類の培養方法によれば、微細藻類を高密度に培養することが可能であるが、この微細藻類の高密度培養物は、その培養プロセスにおいて、嫌気条件を容易に設定することができる。
すなわち、暗所条件下の微細藻類は、酸素を発生する光合成を行えず、酸素を消費する呼吸のみを行う。ここで微細藻類濃度が高密度であれば、その濃度に応じて培養液中の酸素が消費されるので、培養液中の微細藻類濃度が高い程、速やかなる嫌気状態への移行が容易となる。
また、培養液中の微細藻類濃度が高い程、培養物の集約が容易であり、暗所条件に移行する簡便な操作、すなわち、夜間或いは遮光集積容器等への回収等をもって、速やかに嫌気状態に移行し、原生動物の増殖を効果的に低減することができる。
According to the method for culturing microalgae according to claim 2, it is possible to culture the microalgae with high density, and this microalgae high-density culture easily sets anaerobic conditions in the culture process. can do.
That is, microalgae under dark conditions cannot perform photosynthesis that generates oxygen, but only breathe that consumes oxygen. If the microalgae concentration is high here, oxygen in the culture solution is consumed according to the concentration, so the higher the microalgae concentration in the culture solution, the easier the transition to the anaerobic state becomes easier. .
In addition, the higher the concentration of microalgae in the culture solution, the easier it is to consolidate the culture, and the simple operation of shifting to dark conditions, i.e. recovery at night or in a light-shading collection container, etc. And the proliferation of protozoa can be effectively reduced.

ところで、嫌気状態に保った微細藻類培養物は、培養種によっては、水素、エタノール等の燃料原料を発酵生産させることができる。これらの燃料原料を生産することを目的とする場合も、燃料原料の回収が容易で、且つ嫌気条件を容易に設定可能な、高密度培養が好ましい。
昼間は、光合成により、細胞内に多量の有機物を蓄積させ、昼間の培養を終了後に高密度培養物を特定容器に集積し、速やかに嫌気状態に移行させて、水素、エタノール等の燃料原料を発酵生産させることができる。
By the way, the microalgae culture maintained in an anaerobic state can fermentatively produce fuel raw materials such as hydrogen and ethanol depending on the culture species. Even when the purpose is to produce these fuel raw materials, high-density culture is preferable because the fuel raw materials can be easily recovered and anaerobic conditions can be easily set.
During the daytime, a large amount of organic matter is accumulated in the cells by photosynthesis, and after completion of the daytime culture, the high-density culture is accumulated in a specific container, and quickly transferred to an anaerobic state, so that fuel raw materials such as hydrogen and ethanol are used. It can be fermented.

また、本発明のうち請求項3に係る微細藻類の培養方法によれば、前記培養液を通じる空間層の周囲に温調流体を通じ、該培養液の温度調整を実施することができる。   According to the method for culturing microalgae according to claim 3 of the present invention, the temperature of the culture solution can be adjusted by passing a temperature-controlled fluid around the space layer through which the culture solution passes.

この温度調節機構によって、請求項1に記載のごとく、光合成時の最低培養温度をクロロフィル蛍光収率の至適温度に対して摂氏8度以内に維持することにより、高い光エネルギー収率条件下にて目的生産物の高収量が期待できる。加えて、寒冷季の気温低下による凍結等による培養装置の損害を最小とすることもできる。   By this temperature control mechanism, as described in claim 1, by maintaining the minimum culture temperature at the time of photosynthesis within 8 degrees Celsius with respect to the optimum temperature of the chlorophyll fluorescence yield, High yield of the target product can be expected. In addition, it is possible to minimize damage to the culture apparatus due to freezing due to a decrease in temperature during the cold season.

前記の温調流体は、気体と液体のどちらを用いても構わないが、特に気体であれば、排水とは異なりその排気にコストが掛からないので、その積極的な利用によって、更にコストパフォーマンスの良い藻体生産を実施することができる。
また、最外層フィルムに接する空間層に温調気体を通じる場合は、仮に該最外層フィルムの一部に軽微な亀裂損傷を生じた場合でも、該温調気体の供給圧をもって該最外層フィルムによるチューブ構造を維持することも可能であり、構造の耐久性とメンテナンス性を兼ね備えた培養物に対する温度調節が可能である。
The temperature control fluid may be either gas or liquid. However, in the case of gas, unlike the drainage, the exhaust is not costly. Good algal production can be carried out.
Further, when the temperature control gas is passed through the space layer in contact with the outermost layer film, even if a slight crack damage occurs in a part of the outermost layer film, the outermost layer film has the supply pressure of the temperature control gas. It is also possible to maintain the tube structure, and it is possible to adjust the temperature of the culture having both durability and maintainability of the structure.

また、本発明のうち請求項4に係る微細藻類の培養方法によれば、前記微細藻類の培養が、光独立栄養性の培養のみならず、有機物を用いた従属栄養性の培養を組み合わせたミクソトロフ培養を実施することにより、より効率的且つ高濃度に到る藻体生産が可能である。   According to the method for culturing microalgae according to claim 4 of the present invention, the culture of the microalgae is not limited to photoautotrophic culture but also mixotroph that combines heterotrophic culture using organic matter. By carrying out the culture, algal bodies can be produced more efficiently and at a high concentration.

特に、本発明の請求項2のごとく、培養液を通じる空間層を、薄い扁平状構造に保ち、光照射下にて微細藻類の高密度大規模培養を実施する場合、生産対象たる微細藻類の培養濃度は、コンタミネーションたる従属栄養微生物濃度に比して著しく高い濃度に保つことができる。
この様な前提にて有機物を用いた従属栄養性培養に移行すると、供給した有機物の大部分が微細藻類によって消費され、最終的にはその目的生産物たる藻体の増収に大きく寄与することができるので、総じて有機物の添加は特に有効となる。
In particular, as described in claim 2 of the present invention, when the space layer through which the culture solution passes is kept in a thin flat structure and high-density large-scale culture of microalgae is performed under light irradiation, the microalgae to be produced The culture concentration can be maintained at a significantly higher concentration than the heterotrophic microorganism concentration as a contamination.
If we shift to heterotrophic culture using organic matter on this assumption, most of the supplied organic matter will be consumed by microalgae and will ultimately contribute greatly to the increase in the yield of the target algal bodies. In general, the addition of organic matter is particularly effective.

従来の有機物を用いた微細藻類培養では、前段に従属栄養性の無菌タンク培養を実施し、その後段で光独立栄養培養を実施する順序が好んで用いられてきたが、特に大規模培養を目的とした培養では、イニシャル/ランニングコストの両面からも、従来技術たる煩雑な無菌操作を伴うシステムの運用が困難なことは自明である。   In the conventional microalgae culture using organic matter, the order of heterotrophic aseptic tank culture in the previous stage and photoautotrophic culture in the subsequent stage has been favored, especially for large-scale culture. In the culture described above, it is obvious that it is difficult to operate a system with a complicated aseptic operation as in the prior art from both the initial / running costs.

本発明のごとく、大規模培養を目的とした培養では、前段として光独立栄養下での高密度培養を実施し、その後段として従属栄養培養を実施することで、有機物供給の配向を、細菌等のコンタミネーション側にではなく、対象たる微細藻類側に十分に向けた高収率な大規模培養を図ることができる。   As in the present invention, in culture aimed at large-scale culture, high-density culture under photoautotrophic is performed as the previous stage, and heterotrophic culture is performed as the subsequent stage, so that the orientation of organic substance supply can be changed to bacteria, etc. Therefore, it is possible to achieve large-scale culture with a high yield that is sufficiently directed to the target microalgae side, not to the contamination side.

本発明であるところの培養システムの概念を示す図面である。It is drawing which shows the concept of the culture system which is this invention. 本発明であるところのチューブ状容器の実施形態の例を示す図面である。It is drawing which shows the example of embodiment of the tubular container which is this invention. 第1回目のパイロット実証試験結果を示すグラフである。It is a graph which shows the 1st pilot verification test result. 第2回目のパイロット実証試験結果を示すグラフである。It is a graph which shows the 2nd pilot verification test result.

以下、本発明を代表する実施の形態を説明する。   Hereinafter, embodiments representative of the present invention will be described.

本実施の形態に係る微細藻類の培養方法は、柔軟な不透水性の高分子フィルムで設定される、フィルム層と空間層からなる多層構造を有するチューブ状容器を用いることを特徴とする。   The method for culturing microalgae according to the present embodiment is characterized by using a tubular container having a multilayer structure composed of a film layer and a space layer, which is set with a flexible water-impermeable polymer film.

前記多層構造を有したチューブ状容器を、例えば水平方向に整列させ、効率の良い太陽光受光条件下において微細藻類の培養を行うことが望ましい。この場合のチューブ状容器の径、長さ等は任意であり、所望の培養容積となるように連続した長尺体を、所定の場所に整列設置する。   It is desirable that the tubular containers having the multilayer structure are aligned in the horizontal direction, for example, and microalgae are cultured under efficient sunlight receiving conditions. In this case, the diameter, length, and the like of the tube-like container are arbitrary, and a continuous long body is aligned and installed at a predetermined place so as to obtain a desired culture volume.

本発明における培養システムの概念を図1に、また、チューブ状容器の詳細を図2に示す。
本培養システムは、柔軟な不透水性の高分子フィルムから成る多層構造を有したチューブ状容器(群)1の一端が供給器2に、また、もう一端が回収器3に連通したユニット構造を有し、更にポンプ等の移送動力4を介して、該チューブ状容器1内で微細藻類の培養が実施できる構成を基本とする。
なお、培養に応じて、移送動力4を介して複数のユニットを連結して、多段システムとしても良い。初段ユニットの供給器2と最終ユニットの回収器3を、移送動力4を介して連結し、システムをループ構造として、循環(/混合)式培養を実施することも出来るし、全て或いは一部を循環ループ構造とはせずにプラグフロー式培養としても良い。
すなわち、多層構造を有したチューブ状容器(群)1の一端が供給器2に、また、もう一端が回収器3に連通されるユニット構造を有し、更にポンプ等の移送動力4を介して、該チューブ状容器1内での微細藻類の大規模培養が可能な様に構成されたシステムを基本とすれば、その形状や組合せを問うものではない。
The concept of the culture system in the present invention is shown in FIG. 1, and the details of the tubular container are shown in FIG.
This culture system has a unit structure in which one end of a tube-shaped container (group) 1 having a multilayer structure made of a flexible impermeable polymer film is connected to the supply device 2 and the other end is connected to the recovery device 3. Furthermore, it is based on the structure which can culture | cultivate a micro algae in this tubular container 1 via the transfer power 4, such as a pump.
In addition, according to culture | cultivation, it is good also as a multistage system by connecting several units via the transfer power 4. FIG. The supply unit 2 of the first stage unit and the recovery unit 3 of the final unit can be connected via a transfer power 4, and the system can be implemented as a loop (/ mixed) culture with a loop structure. It is good also as a plug flow type culture, without making it a circulation loop structure.
That is, the tubular container (group) 1 having a multi-layer structure has a unit structure in which one end communicates with the feeder 2 and the other end communicates with the recovery device 3, and further via transfer power 4 such as a pump. As long as the system is configured so as to enable large-scale cultivation of microalgae in the tubular container 1, the shape and combination thereof are not questioned.

また、本発明において、特に重要である培養の温度調節は、請求項3に記載の培養液を通じる空間層の周囲に温調流体を通じ、該培養液の温度調整を実施しても良いし(図2のAとB)、後述の実施例にて用いた簡易水槽等を介した温度調節を実施しても良い。より簡便には水田跡地等の閉鎖系水域を、温調水槽のごとく用いることもできる。
また更に、廃熱を潤沢に用いることが可能なサイトであれば、培養液を通じる空間層の周囲に十分な温調流体を通じることができるので、該培養システムを海域、河川域、湖沼域等の一般に温度調節が困難な開放系水域に設置することもできる。
Further, in the present invention, the temperature control of the culture, which is particularly important, may be performed by adjusting the temperature of the culture solution through a temperature control fluid around the space layer through which the culture solution according to claim 3 passes ( You may implement temperature control via the simple water tank etc. which were used in the below-mentioned Example of A and B) of FIG. More simply, a closed water area such as a paddy field can be used like a temperature-controlled water tank.
Furthermore, if the site can use waste heat abundantly, a sufficient temperature-controlled fluid can be passed around the space layer through which the culture solution passes, so the culture system can be used in sea areas, river areas, lake areas. It can also be installed in open waters where temperature control is generally difficult.

なお、前述した水田跡地等の閉鎖系水域に設置する場合は、多層構造を有したチューブ状容器1における培養液を通じる空間層、或いは別の空間層に送気することで、チューブ状容器1は、浮輪のごとくに水面11で浮上状態に保持されるので、該培養液を通じる空間層に存在する微細藻類培養液を太陽光受光に適した光合成収率の良き位置に保持することができる(図2のC)。   In addition, when installing in closed system waters, such as the above-mentioned paddy field, the tubular container 1 is sent by supplying air to the space layer through which the culture solution in the tubular container 1 having a multilayer structure passes or to another space layer. Is kept floating on the water surface 11 like a float, so that the microalgae culture solution present in the space layer through which the culture solution passes can be held at a position with good photosynthesis yield suitable for sunlight reception. (C in FIG. 2).

また更に、チューブ状容器1周囲の温度調節水が清澄である場合は、特に太陽光受光の最適化を目的とした浮上を考慮することなく、浮上に要する一部の空間層の機能を廃する代わりに、水棲生物等の表面付着防止機能を有する高分子フィルムを最外層として用いることで、清澄な水中に適した多層構造とすることもできる。この際、最外層の高分子フィルムと培養液を通じる空間層の仕切りとして用いる高分子フィルムの両者を、ラミネートフィルムのごとく密着し積層させた3層構造(最外層のフィルム層、及び空間層を仕切るフィルム層、並びに培養液を通じる空間層の3層構造)のチューブ状容器を用いても良い(図2のD)。   Furthermore, when the temperature-controlled water around the tube-shaped container 1 is clear, the function of a part of the space layer required for ascent is abolished without particularly considering ascent for the purpose of optimizing sunlight reception. Instead, a multilayer film suitable for clear water can be obtained by using a polymer film having a surface adhesion preventing function such as aquatic organisms as the outermost layer. At this time, the outermost layer polymer film and the polymer film used as a partition of the space layer through which the culture solution is passed are adhered and laminated like a laminate film (a three-layer structure (the outermost layer film layer and the space layer). A tube-shaped container having a three-layer structure of a partition layer and a space layer through which a culture solution passes may be used (D in FIG. 2).

ところで、その他、本発明における培養システムの付帯操作として、チューブ状容器(群)1内はもとより、供給器2或いは回収器3でも、通気を実施し、培養液中の溶存酸素ガスの脱気と二酸化炭素ガスの溶解を実施できる。また、培養液を通じる空間層の仕切りとして用いる高分子フィルムとして、ガス交換機能を有するものを用いることで、該通気の代用としても良い。また更に、必要であれば栄養塩の消費に応じた補給を該培養システムの一部を通じて実施できる。   By the way, as an incidental operation of the culture system according to the present invention, ventilation is performed not only in the tube-shaped container (group) 1 but also in the supply device 2 or the recovery device 3 to degas the dissolved oxygen gas in the culture solution. Carbon dioxide gas can be dissolved. Moreover, it is good also as a substitute of this ventilation | gas_flowing by using what has a gas exchange function as a polymer film used as a partition of the space layer which lets a culture solution pass. Furthermore, if necessary, supplementation according to the consumption of nutrients can be carried out through a part of the culture system.

なお、本発明の微細藻類の培養システムの設置場所は、地上であれば、平地でも良いし傾斜地でも良い。傾斜地であれば、その傾斜によって培養液流の緩やかな薄層を容易に形成できるので、微細藻類の高密度培養を容易に達成できる。   In addition, if the installation place of the culture system of the micro algae of this invention is on the ground, a flat ground may be sufficient and an inclined ground may be sufficient. In the case of an inclined land, a gentle thin layer of the culture fluid flow can be easily formed by the inclination, so that high-density culture of microalgae can be easily achieved.

また、本発明であるところの、柔軟な不透水性のチューブ状容器1は、有機高分子を必要に応じ、長手方向、および、または、幅方向に延伸、冷却、熱固定を施したフィルム状のものであり、溶融押出成型法などによって製造される。
前記有機高分子としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタート、ポリエチレン−2、6−ナフタレート、ナイロン6、ナイロン4、ナイロン66、ナイロン12、ポリ塩化ビニール、ポリ塩化ビニリデン、ポリビニールアルコール、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルフォン、ポリフェニレンスルフィド、ポリフェニレンオキサイド、ナイロン、フッ素樹脂類などが挙げられる。また、該有機高分子を、他の有機高分子と少量共重合したり、ブレンドしたり、共押出法やラミネート法などにより積層させた有機高分子フィルムを用いてもよい。
Moreover, the flexible water-impermeable tube-like container 1 according to the present invention is a film-like material in which an organic polymer is stretched, cooled, and heat-set in the longitudinal direction and / or the width direction as necessary. It is manufactured by a melt extrusion molding method or the like.
Examples of the organic polymer include polyethylene, polypropylene, polyethylene terephthalate, polyethylene-2, 6-naphthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, all Aromatic polyamide, polyamideimide, polyimide, polyetherimide, polysulfone, polyphenylene sulfide, polyphenylene oxide, nylon, fluororesins and the like can be mentioned. Alternatively, an organic polymer film obtained by copolymerizing or blending the organic polymer with another organic polymer in a small amount, or laminating by a co-extrusion method or a laminating method may be used.

ところで、前記有機高分子は、公知の添加剤、例えば、紫外線吸収剤、帯電防止、可塑剤、滑剤、着色剤、波長変換機能を有する色素などが添加されていても良いが、最終製品として、少なくとも60%以上の透過率を有するものが好ましい。   By the way, the organic polymer may be added with known additives such as ultraviolet absorbers, antistatic agents, plasticizers, lubricants, colorants, pigments having a wavelength conversion function, etc. Those having a transmittance of at least 60% or more are preferred.

また、本発明で用いるチューブ状フィルムは、本発明の目的を損なわない限りにおいて、薄膜層の積層に先行して、該チューブをコロナ放電処理、グロー放電処理、その他の表面粗面化処理を施してもよく、また、アンカーコート処理、印刷、装飾が施されていてもよい。
特に、入射光を微細藻類培養に有効に活用する場合は、チューブ状フィルムの一部に光の反射を促す鏡面フィルムの貼付装飾や白色印刷等が好ましい。また、培養時の保温性と光反射を高めることを目的とした、発泡性ポリエチレン等の白色保温資材の貼付装飾等は更に好ましい。
In addition, the tube-shaped film used in the present invention is subjected to corona discharge treatment, glow discharge treatment, and other surface roughening treatment prior to the lamination of the thin film layer, unless the object of the present invention is impaired. Moreover, anchor coating treatment, printing, and decoration may be performed.
In particular, when the incident light is effectively used for culturing microalgae, it is preferable to use a mirror film sticking decoration or white printing that promotes light reflection on a part of the tubular film. In addition, a sticking decoration of a white heat insulating material such as expandable polyethylene for the purpose of enhancing heat retention and light reflection during culture is more preferable.

加えて、本発明で用いるチューブ状フィルムは、その厚さとして50〜500μmの範囲が好ましく、さらに好ましくは50〜200μmの範囲であり、これをもって高い光透過率を保ちつつも、一定の耐水性や衝撃・引裂・突刺強度を有するフィルムであることが好ましい。   In addition, the tube-like film used in the present invention preferably has a thickness in the range of 50 to 500 μm, more preferably in the range of 50 to 200 μm. And a film having impact, tear, and puncture strength.

ところで、上述の多層を構成する夫々のチューブ状フィルムの相対的位置関係は、ラミネート構造のごとく全てが一重膜のごとくに密接された状態であっても良いし、空間層を伴って夫々の一部が接する状態であっても良い。柔軟な不透水性の高分子フィルムで設定される、フィルム層と空間層からなる少なくとも3層以上の多層構造を有するものであれば、その形状や位置関係を問うものではない。   By the way, the relative positional relationship between the respective tube-like films constituting the above-mentioned multilayer may be in a state where all of them are in close contact like a single layer as in a laminate structure, or each of them is accompanied by a space layer. The part may be in contact. As long as it has a multilayer structure of at least three layers consisting of a film layer and a space layer set by a flexible water-impermeable polymer film, its shape and positional relationship are not questioned.

ここで、本発明にて用いることが可能な微細藻類として、千原光雄編「藻類多様性の生物学」/裳華房/(1999)に規定される藻類の定義である「酸素を発生する光合成を行う生物の中からコケ植物、シダ植物、および種子植物を除いた残りの全て」の内、特にその大きさが0.数μm〜200μm程度の微生物を挙げることができる。例えば、クロレラ、スピルリナ等は、一般にも知られる微細藻類であるが、この微細藻類は、クロレラに代表される真核生物の一部やスピルリナに代表される原核生物の一部を内包する様に、分類学的には広範囲に広がったカテゴリーに存する。   Here, as the microalgae that can be used in the present invention, “photosynthesis that generates oxygen”, which is the definition of algae prescribed in Mitsuo Chihara “Biology of Algal Diversity” / Yuhuabo / (1999). Among all the remaining organisms excluding moss plants, fern plants, and seed plants from among the organisms that perform " Examples include microorganisms having a size of several μm to 200 μm. For example, chlorella, spirulina, etc. are microalgae that are generally known, but these microalgae contain part of eukaryotes represented by chlorella and part of prokaryotes represented by spirulina. Taxonomically, it is a broadly spread category.

また、前記廃熱源として、製鉄工場、非鉄金属工場、化学工場、製紙工場、自動車工場、食品工場、製薬工場、製油所、発電所、硝子工場、セメント工場、紡績工場、温泉施設等に存在する、ボイラ廃熱、工業炉廃熱、廃棄物焼却炉廃熱、エンジン/タービン廃熱、燃焼排ガス廃熱、地熱発電廃熱、温泉廃熱等が挙げられる。
これらの廃熱源をそのまま利用しても良いし、熱交換器等を通じて別流体を加熱して熱源の二次的利用を図っても良い。なお、上記に掲げる廃熱源でなくても、安価に利用可能な熱源があれば、本発明にて活用できることはいうまでもない。
In addition, the waste heat source is present in steel mills, non-ferrous metal factories, chemical factories, paper mills, automobile factories, food factories, pharmaceutical factories, refineries, power plants, glass factories, cement factories, spinning factories, hot spring facilities, etc. Boiler waste heat, industrial furnace waste heat, waste incinerator waste heat, engine / turbine waste heat, combustion exhaust gas waste heat, geothermal power generation waste heat, hot spring waste heat, and the like.
These waste heat sources may be used as they are, or another fluid may be heated through a heat exchanger or the like to secondary use of the heat source. Needless to say, even if it is not the waste heat source listed above, it can be utilized in the present invention if there is a heat source that can be used at low cost.

ところで、微細藻類の従属栄養増殖に用いる有機物源として、有機性廃液や未利用バイオマス由来の糖類等を利用することができる。   By the way, as an organic substance source used for heterotrophic growth of microalgae, organic waste liquid, saccharides derived from unused biomass, and the like can be used.

この有機性廃液は、通常の好気性生物処理法により処理される有機物を含有する廃液であるが、難生物分解性の有機物、或いは無機物が含有されていてもよい。このような有機性廃液としては、下水、し尿、食品工場排水その他の産業廃液などが挙げられる。
また、酸加水分解技術等を通じて生産される糖類の原料たる未利用バイオマスとして、具体的には例えば、植物発生材(雑草、作物草本、バーク、間伐チップ、籾殻、オガクズ等)、食品製造由来の植物性油粕(油粕、米糠、ふすまおよびコーンスティープリカー、大豆油粕、コーン油粕、ごま油粕、豆類油粕、米糠油粕、廃糖蜜等)、発酵残渣(醤油粕、酒粕、ビール粕、焼酎粕等)、有機地質(泥炭、亜炭、褐炭、ピート等)等を挙げることができる。
This organic waste liquid is a waste liquid containing an organic substance treated by a normal aerobic biological treatment method, but may contain a non-biodegradable organic substance or an inorganic substance. Examples of such organic waste liquid include sewage, human waste, food factory wastewater, and other industrial waste liquids.
Moreover, as an unused biomass as a raw material of saccharides produced through acid hydrolysis technology, specifically, for example, plant-generated materials (weeds, crop herbs, bark, thinned chips, rice husks, sawdust, etc.), derived from food production Vegetable oil lees (oil lees, rice lees, bran and corn steep liquor, soybean oil lees, corn oil lees, sesame oil lees, legume oil lees, rice lees oil lees, waste molasses, etc.), fermentation residues (soy sauce lees, sake lees, beer lees, shochu lees etc.), Organic geology (peat, lignite, lignite, peat, etc.) can be mentioned.

なお、上述の有機物源は、有機性廃液や未利用バイオマス由来の糖類に限られるものではない。その供給コストと微細藻類の目的生産物収率が適正であれば、本発明にて利用可能であることはいうまでもない。   In addition, the above-mentioned organic substance source is not restricted to organic waste liquid or saccharides derived from unused biomass. Needless to say, if the supply cost and the target product yield of microalgae are appropriate, the present invention can be used.

以下の実施例により、本発明について具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   The present invention will be specifically described with reference to the following examples, but the present invention is not limited to the following examples.

本実験では、微細藻類の培養温度と光合成の光エネルギー収率の関係の詳細を明らかにし、高い光エネルギー収率条件下にて目的生産物の高収量が期待できる培養時の設定温度を検討した。
また、供試の微細藻類群は、いずれもクロロフィルaを光合成の反応中心として含むが、アンテナ色素に関する多様性を持たせ、微細藻類の広い分類体系下における、培養温度と光合成の光エネルギー収率(実験ではクロロフィル蛍光収率を測定し、光合成の光エネルギー収率の指標とした)の関係について、その分類間分布に関する評価を併せて実施した。
In this experiment, we clarified the details of the relationship between the culture temperature of microalgae and the photoenergy yield of photosynthesis, and examined the preset temperature during the culture where high yields of the target product can be expected under high photoenergy yield conditions. .
In addition, all the microalgae groups of the test contain chlorophyll a as a reaction center for photosynthesis, but the diversity of antenna pigments is given, and the culture temperature and the photoenergy yield of photosynthesis under a wide classification system of microalgae. In relation to the relationship (in the experiment, the chlorophyll fluorescence yield was measured and used as an index of the photoenergy yield of photosynthesis), the evaluation on the interclass distribution was also performed.

試験手順を以下に示す。
(a)供試微細藻類として、珪藻(キートセラス)、ハプト藻(イソクリシス)、プラシノ藻(テトラセルミス)、真正眼点藻(ナンノクロロプシス)、紅藻(ポルフィリディウム)、緑藻(ナンノクロリス)、車軸藻(スティココッカス)、藍藻(シネコキスティス)の8種類を用いた。
The test procedure is shown below.
(A) As test microalgae, diatom (Ketoceras), haptoalgae (Isolysis), prasinoalgae (Tetracermis), true eye spot algae (Nannochloropsis), red algae (Porphyridium), green algae (Nanochloris), Eight kinds of axle algae (Sticococcus) and cyanobacteria (Cinecocystis) were used.

(b)予備培養は、0.5L容の扁平フラスコを用いた通気培養にて、メタルハライドランプ照射下、光量子束密度1.2ミリモル・m-2・s-1で培養を行った。培地は、IMK培地(和光純薬製)を使用し、海産性藻類の場合は、ダイゴ人工海水SP(和光純薬製)を培地のベースとした。予備培養温度は、それぞれの微細藻類のクロロフィル蛍光収率の至適温度とした。 (B) Preliminary culture was performed by aeration culture using a 0.5 L flat flask at a photon flux density of 1.2 mmol · m −2 · s −1 under irradiation with a metal halide lamp. As the medium, IMK medium (manufactured by Wako Pure Chemical Industries) was used, and in the case of marine algae, Daigo artificial seawater SP (manufactured by Wako Pure Chemical Industries) was used as the base of the medium. The pre-culture temperature was the optimum temperature for the chlorophyll fluorescence yield of each microalgae.

(c)続いて予備培養の微細藻類培養液をそれぞれ対数増殖期後期にて回収し、回収培養液を5分割し、それぞれの微細藻類の至適温度から、摂氏0度、5度、8度、10度、15度を減じた温度に設定した恒温培養槽にて、メタルハライドランプ照射下、光量子束密度1.2ミリモル・m-2・s-1で馴養を行った。馴養2時間後、更にそれぞれのクロロフィル蛍光収率の至適温度/暗条件下で30分以上馴化したものを、クロロフィル蛍光収率測定の供試試料とした。 (C) Subsequently, the precultured microalgae broth is collected at the later stage of the logarithmic growth phase, and the collected culture broth is divided into 5 parts. From the optimum temperature of each microalgae, 0 degrees Celsius, 5 degrees, 8 degrees In a constant temperature culture tank set to a temperature reduced by 10 degrees and 15 degrees, the light quantum flux density was adjusted to 1.2 mmol · m -2 · s -1 under irradiation with a metal halide lamp. After 2 hours of acclimatization, samples acclimated for 30 minutes or more under the optimum temperature / dark conditions for each chlorophyll fluorescence yield were used as test samples for chlorophyll fluorescence yield measurement.

(d)なお、クロロフィル蛍光収率(Fv/Fm=(Fm−Fo)/Fm)を、PAM−2000(Waltz社製)と懸濁液用プローブKS−101(Waltz社製)を用いて、FoとFmを測定し、算出した。   (D) The chlorophyll fluorescence yield (Fv / Fm = (Fm-Fo) / Fm) was measured using PAM-2000 (manufactured by Waltz) and suspension probe KS-101 (manufactured by Waltz). Fo and Fm were measured and calculated.

上記の実験結果を表2に示す。

Figure 2013085534
The experimental results are shown in Table 2.
Figure 2013085534

表2より明らかなように、いずれの微細藻類も、晒された低温程度が大きい程、蛍光収率の低下が顕著になる傾向が示された。クロロフィル蛍光収率の至適温度から摂氏5度低下した低温環境では、クロロフィル蛍光収率比が当初の9割程度に残存し、摂氏8度を超えて低下した低温環境では、クロロフィル蛍光収率比が当初の7割程度以下にまで低下する障害を生じることが分かった。   As is clear from Table 2, all the microalgae showed a tendency that the decrease in the fluorescence yield became more remarkable as the exposed low temperature level was larger. In a low-temperature environment where the chlorophyll fluorescence yield is reduced by 5 degrees Celsius from the optimum temperature, the chlorophyll fluorescence yield ratio remains at about 90% of the original, and in a low-temperature environment where the chlorophyll fluorescence yield is reduced beyond 8 degrees Celsius, However, it has been found that there is an obstacle that drops to about 70% or less of the initial value.

我が国における晴天での環境温度の日較差は、摂氏10度を超える日も少なくない(尚、この場合の環境温度は、単なる気温ではなく、地温、水温、日光の直射温度等を含めて考慮した培養環境温度を指す)。この様な気温日格差を有する環境下での屋外の粗放的大規模培養において、培養温度を精密に調節することは、藻体生産への寄与度が極めて高いことが分かった。また、この温度調整範囲を、低温側に対し摂氏8度程度以内、好ましくは摂氏5度以内とすることで、光エネルギー収率的に優れた培養が可能であることが分かった。
なお、この現象は、特定の微細藻類分類群に限られたものでは無く、少なくともクロロフィルaを反応中心として含むいずれの供試微細藻類にて、全て一様の傾向が示された普遍性を有することを特記する。
The daily temperature difference in clear weather in Japan often exceeds 10 degrees Celsius (Note that the environmental temperature in this case is not just mere temperature, but also includes ground temperature, water temperature, direct sunlight temperature, etc.) Refers to the culture environment temperature). It was found that, in such a large-scale outdoor large-scale culture under an environment having such a temperature difference, precise control of the culture temperature contributes significantly to algal body production. In addition, it was found that culture with excellent light energy yield is possible by setting the temperature adjustment range within about 8 degrees Celsius, preferably within 5 degrees Celsius with respect to the low temperature side.
This phenomenon is not limited to a specific microalgal taxonomic group, but has universality in which all the test microalgae including at least chlorophyll a as a reaction center have a uniform tendency. Special mention.

続いて、パイロット規模での本培養方法の有効性を2回の実験に分けて検証した。第1回目の試験概要を実施例2として、また、第2回目の試験概要を実施例3として以下に示す。   Subsequently, the effectiveness of this culture method on a pilot scale was verified by dividing it into two experiments. The outline of the first test is shown as Example 2, and the outline of the second test is shown as Example 3 below.

本実験では、温度調節と薄層傾斜培養の有効性について検証した。
(a)10m×15mの屋外敷地に、市販のU型側溝と白色防水シートを用いて、幅60cm、深さ60cm、長さ約11m、加えて両サイドに集水マスを配した側溝様容器を4系統作成した。尚、該側溝様容器は、実験区の条件によって水張りし、恒温槽として利用する場合や、水張りを実施しない場合等、各試験区の条件に応じて用いた。また、培養装置は、10mのチューブ状容器の両端にそれぞれ供給器と回収器を設置し、各供給/回収器間をポンプ配管で連通し、系統毎に循環培養系を構築した。
In this experiment, we verified the effectiveness of temperature control and thin layer gradient culture.
(A) A gutter-like container with a width of 60 cm, a depth of 60 cm, a length of about 11 m, and a water collecting mass on both sides using a commercially available U-shaped side gutter and a white waterproof sheet on a 10 m x 15 m outdoor site Four lines were created. The side groove-like container was water-filled according to the conditions of the experimental section and used according to the conditions of each test section, such as when used as a thermostatic bath or when water filling was not performed. Moreover, the culture apparatus installed the supply device and the collection | recovery device at the both ends of a 10-m tube-shaped container, respectively, connected each supply / collection device with the pump piping, and built the circulation culture system for every system | strain.

(b)供試のチューブ状容器は、50cmφの円筒状ポリエチレンチューブに30cmφの円筒状ポリエチレンチューブを内包させ、2つのフィルム層と2つの空間層を有する4層構造とした。また、該チューブを用いて温調を実施する場合は、両チューブ間で形成される空間層を温調ジャケットのごとく用いて温調水或いは温調空気を通じ、30cmφチューブ内の培養液を摂氏26±4度に保つ設定とした。各水槽を用いた試験区の詳細条件は以下のとおり。   (B) The test tube-shaped container has a four-layer structure in which a cylindrical polyethylene tube of 30 cmφ is encapsulated in a cylindrical polyethylene tube of 50 cmφ and has two film layers and two space layers. When temperature control is performed using the tube, the culture medium in the 30 cmφ tube is passed through the temperature control water or temperature control air using the space layer formed between the tubes as a temperature control jacket. The setting was kept at ± 4 degrees. The detailed conditions of the test section using each water tank are as follows.

(試験区1):水槽底面の傾斜無し/水槽水張無し/空間層温調
(試験区2):水槽底面の傾斜2%/水槽水張無し/空間層温調
(試験区3):水槽底面の傾斜4%/水槽水張無し/空間層温調
(試験区4):水槽底面の傾斜無し/水槽水張無し/温調無し
(Test Zone 1): No tilting of the bottom of the water tank / no water tank water tension / space layer temperature control (Test Zone 2): 2% of the bottom of the water tank / no water tank water tension / space layer temperature control (Test Zone 3): Water tank Bottom slope 4% / No water tank water tension / Spatial temperature control (Test area 4): No water tank bottom tilt / Water tank water tension / No temperature control

(c)供試の微細藻類として、クロロフィル蛍光収率の至適温度を摂氏30度付近に持つ温泉産の緑藻(クロレラsp.)を、培地は、MC培地を用いた。また、培養経過に応じて、陽/陰イオンクロマトを用いて培養液中の硝酸/リン酸/カリ濃度を確認し、それぞれの成分が減少した際は、硝酸カリウム塩及びリン酸塩等を培養に追加した。   (C) As a microalgae to be tested, green algae (chlorella sp.) From hot springs having an optimum temperature of chlorophyll fluorescence yield around 30 degrees Celsius was used, and MC medium was used as the medium. In addition, as the culture progresses, the concentration of nitric acid / phosphoric acid / potassium in the culture solution is confirmed using positive / anion chromatography, and when each component is reduced, potassium nitrate and phosphate are added to the culture. Added.

(d)上記、屋外培養試験に供する微細藻類の予備培養を、室内にて実施した。予備培養は、長さ1.5m、30cmφの吊下げ式の円筒状ポリエチレンチューブを用いた通気培養にて、メタルハライドランプ照射下、光量子束密度0.8ミリモル・m-2・s-1で培養を行った。予備培養温度は、実験室内を摂氏25度に設定し、恒温を保った。 (D) The above-mentioned pre-culture of microalgae used for the outdoor culture test was performed indoors. Pre-culture is aeration culture using a suspended cylindrical polyethylene tube with a length of 1.5 m and 30 cmφ under irradiation with a metal halide lamp at a photon flux density of 0.8 mmol · m −2 · s −1 . Went. The pre-culture temperature was set to 25 degrees Celsius in the laboratory and kept constant.

(e)概ね直線期後期に到った予備培養を用いて、各試験区に対し培養液1リットル当り乾燥重量で0.1g濃度となるように微細藻類を接種し、屋外培養試験を実施した。なお、傾斜を有する試験区2及び3での培養総量は150Lとし、他の培養では総量を700Lとした。通気は、二酸化炭素濃度を5%(v/v)程度含む空気を、供給/回収器内の培養液量に対し1vvmで実施した。   (E) Using a pre-culture that reached the latter half of the linear phase, each test section was inoculated with microalgae to a dry weight of 0.1 g per liter of culture solution, and an outdoor culture test was conducted. . In addition, the total amount of culture in the test sections 2 and 3 having an inclination was 150 L, and the total amount was 700 L in other cultures. The aeration was performed at 1 vvm with respect to the amount of culture solution in the supply / collector with air containing about 5% (v / v) carbon dioxide concentration.

(f)培養は、フェドバッチ培養で行った。すなわち、夜間に各試験区から培養液を5日毎に5割量を抜き取り、藻体を遠心回収し、また、抜き取った培養液と同量の新鮮な培地を培養に供給した。総じて90日間の屋外培養試験を実施した。   (F) The culture was performed by fed-batch culture. That is, at night, 50% of the culture solution was extracted from each test section every 5 days, the algal bodies were collected by centrifugation, and the same amount of fresh medium as the extracted culture solution was supplied to the culture. A 90-day outdoor culture test was conducted.

(特記事項)
供試した多層構造を有するチューブ状容器は、円筒状ポリエチレンチューブからなり、両チューブ間で形成される空間層に温調水を通じて培養液の温度調節を実施していたが、開始後1週間以内に、最外層のポリエチレンチューブの数箇所に損傷を生じて温調水の水漏れが起こった。なお、いずれの損傷箇所も、最外層までであり、培養液が満たされている内側のチューブに損傷は見られなかった。損傷状態や損傷時の現場の様子から、カラス等による穿刺損傷である可能性が高いと判断された。
結果、両チューブ間で形成される空間層を用いた培養液の温度調節では、温調水よりも温調空気のほうがその取扱が容易と判断し、以後、温調空気による培養液の温度調節を実施することとした。
温調空気に変えた後も、カラス或いは小動物等によると思われる穿刺/引掻損傷は、時折、観察されたが、温調空気による培養液の温度調節に支障をきたす程にはならず、第1回と第2回の計180日間の屋外培養試験を本法にて完遂することができた(他、強風時の飛来物に起因すると思われる穿刺事故が1件あったが、こちらも最外層のポリエチレンチューブのみの損傷に留まった。)。
(Notices)
The tube-shaped container having a multi-layer structure was a cylindrical polyethylene tube, and the temperature of the culture solution was controlled through temperature-controlled water in the space layer formed between both tubes, but within one week after the start. In addition, several portions of the outermost polyethylene tube were damaged, and water of temperature-controlled water leaked. In addition, any damage location was to the outermost layer, and damage was not seen by the inner tube filled with the culture solution. Judging from the state of injury and the situation at the time of the injury, it was judged that there was a high possibility of puncture damage due to crows or the like.
As a result, it was judged that temperature-controlled air was easier to handle than temperature-controlled water in temperature control of the culture solution using the space layer formed between both tubes. We decided to carry out.
Even after changing to temperature-controlled air, puncture / scratch damage, which seems to be caused by crows or small animals, was occasionally observed, but it did not hinder the temperature control of the culture solution by temperature-controlled air, We were able to complete the first and second outdoor culture tests for a total of 180 days using this method. (In addition, there was one puncture accident that could be attributed to a flying object in a strong wind. Only the outermost polyethylene tube was damaged.)

上記の実験結果を図3に示す。図3より明らかな様に、試験区1と4の比較から、試験区1の温度調節を図った試験系に、安定した藻体生産が見られた。試験区4は、試験開始直後から培養液の微細藻類濃度が低下し、試験期間を通じて安定した生産は観察されなかった。   The experimental results are shown in FIG. As is clear from FIG. 3, from the comparison of test groups 1 and 4, stable algal body production was observed in the test system in which the temperature of test group 1 was controlled. In test group 4, the concentration of microalgae in the culture solution decreased immediately after the start of the test, and stable production was not observed throughout the test period.

また、試験区1と2と3の比較では、試験区2と3の水槽底面に傾斜を付けた薄層培養系にいずれも試験区1と比較し、より高密度に到る藻体生産が観察された。   Moreover, in the comparison between the test groups 1 and 2 and 3, the thin layer culture system in which the bottoms of the water tanks of the test groups 2 and 3 are inclined has a higher density of algal body production than the test group 1. Observed.

なお、良好な生産能が観察された試験区2と3であるが、2%の傾斜を有する試験区2よりも、4%の傾斜を有する試験区3に、より高濃度に到る藻体生産が観察された。傾斜角度によって高密度培養での到達濃度が変化することが分かった。   In addition, in test plots 2 and 3 in which good productivity was observed, algal cells reaching a higher concentration in test plot 3 having a slope of 4% than test plot 2 having a slope of 2% Production was observed. It was found that the concentration reached in high-density culture changes with the inclination angle.

続いて、第2回目のパイロット実証試験手順を以下に示す。本試験では、外部温度調節方法の検証及び、本発明とチューブ構造を有する培養器具を用いた従来技術との比較を実施した。なお、予備培養、使用藻類、培地種類、栄養塩の追添方法、接種方法、培養液の抜き取り方法、藻体回収方法、温調方法等は、第1回目の試験に準じて実施した。
なお、第1回目の試験と異なる詳細を各試験区条件と共に以下に示す。
Next, the second pilot demonstration test procedure is shown below. In this test, verification of the external temperature control method and comparison between the present invention and the prior art using a culture instrument having a tube structure were performed. The preliminary culture, algae used, medium type, nutrient salt addition method, inoculation method, culture solution extraction method, alga body collection method, temperature control method, and the like were carried out according to the first test.
Details different from the first test are shown below together with the conditions of each test section.

(試験区5):水槽底面の傾斜無し/水槽水張無し/空間層温調
(試験区6):水槽水張/ポリエチ二重チューブを使用/浮上式/水槽温調有
(試験区7):水槽水張/ポリエチ一重チューブを使用/温調無
(Test section 5): No tilting of water tank bottom / No water tank water tension / Space layer temperature control (Test section 6): Water tank water tension / Polyethylene double tube used / Floating type / Water tank temperature control (Test area 7) : Aquarium water tension / Polyethylene single tube / No temperature control

上記の試験区5の試験条件は、第1回目の試験区1と同様とした。また、試験区6は、側溝様水槽に温度調節用の水を張り、また、チューブ状容器の空間層に通気して浮輪のごとく水面にチューブ状容器を浮上させた。なお、試験区7は、特許文献10や11の従来技術を模したものであるが、不透水性のチューブを用いて、栄養塩の供給を過不足無き条件を設定し、本来の従来技術よりも更に良好な培養条件とした。   The test conditions for the test group 5 were the same as those for the first test group 1. In the test group 6, water for temperature adjustment was filled in the side groove-like water tank, and the tube-shaped container was floated on the water surface like a floating ring by ventilating the space layer of the tube-shaped container. In addition, although the test group 7 imitates the prior arts of Patent Documents 10 and 11, it sets the conditions for supplying nutrients without excess or deficiency using an impermeable tube, and more than the original prior art. Also, more favorable culture conditions were set.

上記の実験結果を図4に示す。図4より明らかな様に、試験区5〜7の比較から、本発明たる試験区5と6の試験系で安定した藻体生産が見られた一方で、試験区7は第1回目の試験での試験区4と同様に、試験開始直後から培養液濃度が低下し、試験期間を通じて安定した生産は観察されなかった。   The experimental results are shown in FIG. As is clear from FIG. 4, from the comparison of test groups 5 to 7, stable algal body production was observed in the test systems of test groups 5 and 6 according to the present invention, while test group 7 was the first test. As in test group 4 in FIG. 4, the culture solution concentration decreased immediately after the start of the test, and stable production was not observed throughout the test period.

また、良好な生産性を示した試験区5と6の結果から、これらの温度調節方法において、チューブ状容器の空間層に温調風等を通じる方法でも、チューブ状容器の周囲から温調水を用いて調節する方法でも良いことが示唆された。   In addition, based on the results of the test sections 5 and 6 that showed good productivity, in these temperature control methods, even if the temperature control air is passed through the space layer of the tube-shaped container, the temperature-controlled water is generated from the periphery of the tube-shaped container. It was suggested that the method of adjustment using the

本実験では、微細藻類の培養において、光独立栄養性の培養のみならず、有機物を用いる従属栄養性の培養を組み合わせた生産性向上効果を検証した。   In this experiment, we examined the productivity improvement effect by combining not only photoautotrophic culture but also heterotrophic culture using organic matter in microalgae culture.

試験手順を以下に示す。
(a)微細藻類源として、光独立栄養で継代を続けている海産性の集積培養体を用いた。本集積培養体は、微細藻類としては緑藻のクロレラ種を主体とする単一藻培養物であるが、無菌化は施されておらず、細菌の他にも原生動物種が存在していた。
The test procedure is shown below.
(A) As a source of microalgae, a marine integrated culture that has been subcultured by photoautotrophic was used. This enriched culture is a single algae culture mainly composed of green algae chlorella species as microalgae, but has not been sterilized, and protozoan species existed in addition to bacteria.

(b)予備培養は、0.5L容の扁平フラスコを用いた通気培養にて、メタルハライドランプ照射下、光量子束密度1.2ミリモル・m-2・s-1で培養を行った。培地は、IMK培地(和光純薬製)とダイゴ人工海水SP(和光純薬製)を使用し、5%の二酸化炭素を含む空気を1vvmで通気し、摂氏25℃の恒温水槽内にて培養を行った。 (B) Preliminary culture was performed by aeration culture using a 0.5 L flat flask at a photon flux density of 1.2 mmol · m −2 · s −1 under irradiation with a metal halide lamp. The medium used is IMK medium (manufactured by Wako Pure Chemical Industries) and Daigo artificial seawater SP (manufactured by Wako Pure Chemical Industries), air aerated with 5% carbon dioxide at 1 vvm, and cultured in a constant temperature water bath at 25 ° C. Went.

(c)続いて、予備培養の微細藻類を直線期前期にて収穫し、遠心回収後、以下所定の培養器に1リットルあたり1ml濃度程度(PCV濃度)となる様に接種した。培養容器として、アクリル板2枚を5mm或いは35mmの間隔を持たせ張り合わせて作成する、薄層の扁平フラスコ様培養容器(以下、薄層培養容器と略す)を2種用意した。   (C) Subsequently, the pre-cultured microalgae were harvested in the first half of the linear phase, centrifuged and then inoculated into a predetermined incubator so that the concentration was about 1 ml per liter (PCV concentration). Two types of thin-layered flat flask-like culture containers (hereinafter abbreviated as thin-layer culture containers) prepared by laminating two acrylic plates with an interval of 5 mm or 35 mm were prepared as culture containers.

(d)上記、2種の薄層培養容器を用いて、以下の試験区を設定した。   (D) The following test sections were set using the two types of thin-layer culture vessels.

(試験区8):5mm薄層培養容器(有機物を後に添加)
(試験区9):35mm薄層培養容器
(Test section 8): 5 mm thin layer culture vessel (added organic matter later)
(Test section 9): 35 mm thin layer culture vessel

上記の有機物の後添加は、前段の光独立栄養性の培養にて試験区8での微細藻類の増殖が停止したことを確認後、廃糖蜜を1リットルあたり5gとなる様に培地に添加した。
また、培養経過に応じて、陽/陰イオンクロマトを用いて培養液中の硝酸/リン酸/カリ濃度を確認し、それぞれの成分が減少した際は、硝酸カリウム塩及びリン酸塩等を培養に追加した。また更に、培地中の糖類の消費を、フェノール硫酸法を用いて確認し、その消費に応じて廃糖蜜を添加した。
In the post-addition of the organic substance, after confirming that the growth of microalgae in the test section 8 was stopped in the preceding photoautotrophic culture, the molasses was added to the medium so as to be 5 g per liter. .
In addition, as the culture progresses, the concentration of nitric acid / phosphoric acid / potassium in the culture solution is confirmed using positive / anion chromatography, and when each component is reduced, potassium nitrate and phosphate are added to the culture. Added. Furthermore, the consumption of saccharides in the medium was confirmed using the phenol sulfuric acid method, and waste molasses was added according to the consumption.

上記の培養における微細藻類他の増殖指標として、光独立栄養条件下での培養では、乾燥重量濃度を、従属栄養条件下での培養では、蛍光顕微鏡観察にて、クロロフィルの蛍光と核酸染色試薬DAPIを用いた直接検鏡によって、微細藻類とそれ以外のコンタミ微生物を区別し、それぞれを計数した。   As a growth index of microalgae and the like in the above culture, the dry weight concentration is measured in the culture under the photoautotrophic condition, and the fluorescence of the chlorophyll and the nucleic acid staining reagent DAPI is observed in the fluorescence under the heterotrophic condition. The microalgae and other contaminating microorganisms were distinguished by direct microscopic observation using, and each was counted.

上記の実験結果を表3に示す。   The experimental results are shown in Table 3.

Figure 2013085534
Figure 2013085534

表3より明らかな様に、試験区8と9の比較から、光路長の短い5mm薄層培養容器を用いた試験区8に、高密度までの微細藻類の増殖が観察された。但し、藻体生産量は、両試験区ともほぼ同レベルであった。結果光独立栄養条件下にて照射光量が等しければ、最終的な藻体生産量は、両試験区ともほぼ同レベルであることが分かった。
なお、一定の照射光量下では、係る藻体生産量がほぼ同じであるのであれば、培養液の循環や遠心分離に要する電気エネルギー、また、排水量は、培養容積に応じて生じるものであり、この培養容積が少ない程、効率的な大規模培養を実施できることが示唆された。
As is clear from Table 3, from the comparison of test groups 8 and 9, growth of microalgae up to high density was observed in test group 8 using a 5 mm thin-layer culture vessel with a short optical path length. However, the algal body production was almost the same in both test sections. Results It was found that the final algal body production was almost the same in both test groups if the irradiation light intensity was the same under the photoautotrophic condition.
It should be noted that, under a certain amount of irradiation light, if the algal body production is substantially the same, the electrical energy required for circulation and centrifugation of the culture solution, and the amount of drainage is generated according to the culture volume, It was suggested that the smaller the culture volume, the more efficient large-scale culture can be performed.

また、試験区8の有機物添加後の微細藻類数とそれ以外のコンタミ微生物数(細菌や原生動物等)を表4に示す。有機物添加後、2日目までは、微細藻類数及びコンタミ微生物数はそれぞれ増加傾向を示したが、以後、コンタミ微生物数の増加は鈍化し、増減を繰り返した。一方、微細藻類数のみが堅調な増加傾向を示し、最終濃度として1リットルあたり183ml(PCV濃度)まで到達した。   In addition, Table 4 shows the number of microalgae after addition of the organic matter in Test Zone 8 and the number of other contaminating microorganisms (bacteria, protozoa, etc.). Until the second day after the addition of organic matter, the number of microalgae and the number of contaminating microorganisms showed an increasing tendency, but thereafter, the increase in the number of contaminating microorganisms slowed down and was repeated. On the other hand, only the number of microalgae showed a steady increase, reaching a final concentration of 183 ml (PCV concentration) per liter.

Figure 2013085534
Figure 2013085534

なお、上記の実施例4に類似した、種々の微細藻類を用いた検証、増殖ステージ別の有機物の添加効果の検証等を鋭意進めたが、その都度のコンタミ微生物の挙動に関しては一定の傾向が見られず、微生物群全体の挙動を考察する上で、再現性に問題があることが分かった(データ不載)。
但し、検証した関連の全ての試験にて共通する傾向として、有機物を添加すると、光独立栄養条件での培養と較べて、微細藻類の収量が格段に向上する結果を得たことを特記する。
In addition, although the verification using various microalgae similar to the above Example 4 and the verification of the effect of adding organic substances for each growth stage have been eagerly advanced, there is a certain tendency with respect to the behavior of contamination microorganisms in each case. It was found that there was a problem in reproducibility when considering the behavior of the entire microbial community (data not shown).
However, it should be noted that, as a tendency common to all the related tests that have been verified, when organic substances are added, the yield of microalgae is significantly improved compared to culture under photoautotrophic conditions.

以上、本発明の実施例を説明してきたが、具体的な構成は前述した実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれることはいうまでもない。   The embodiments of the present invention have been described above, but the specific configuration is not limited to the above-described embodiments, and modifications and additions within the scope of the present invention are included in the present invention. Needless to say.

本発明は、微細藻類の屋外での大規模培養において、培養温度に対する外部環境温度の影響を最少とし、加えて降雨影響を回避して培養物の流出を防止すると共に栄養塩の供給を確実に果たす、安定且つ高収量な粗放的大規模培養方法を実施する際に、特に適用することができる。   In the large-scale cultivation of microalgae outdoors, the present invention minimizes the influence of the external environment temperature on the cultivation temperature, and additionally prevents the influence of rainfall to prevent the outflow of the culture and ensures the supply of nutrient salts. It is particularly applicable when carrying out a stable and high-yield crude large-scale culture method.

1…チューブ状容器(群)
2…供給器
3…回収器
4…移送動力
5…フィルム層(最外層のフィルム層)
6…空間層(温調流体を通じる空間層)
7…フィルム層(空間層を仕切るフィルム層)
8…空間層(培養液を通じる空間層)
9…保温シート
10…地面
11…水面
12…空間層(気体を満たし水面浮上を図る空間層)
13…フィルム2重層(ラミネートフィルム様2重層)
14…水底
1 ... Tube-shaped container (group)
2 ... Supplyer 3 ... Recovery device 4 ... Transfer power 5 ... Film layer (outermost film layer)
6 ... Spatial layer (space layer through temperature control fluid)
7 ... Film layer (film layer that partitions the space layer)
8 ... Spatial layer (spatial layer through the culture medium)
9 ... Thermal insulation sheet 10 ... Ground 11 ... Water surface 12 ... Spatial layer (space layer that fills the gas and aims to float on the water surface)
13 ... film double layer (laminate film-like double layer)
14 ... Water bottom

Claims (4)

柔軟な不透水性の高分子フィルムで設定される、フィルム層と空間層からなる、少なくとも3層以上の多層構造を有するチューブ状容器内の、一部の空間層に培養液を通じて実施する微細藻類の培養方法であって、
前記微細藻類におけるクロロフィルの最大蛍光分析値(Fm)より最小蛍光分析値(Fo)を引いた変動蛍光値(Fv)から求められる、クロロフィル蛍光収率(Fv/Fm)が最大となる至適温度を求め、
更に光合成時の培養制御温度として、制御時の最低温度を、該微細藻類のクロロフィル蛍光収率の至適温度に対して、摂氏8度以内に維持することを特徴とする微細藻類の培養方法。
A microalgae to be implemented through a culture solution in a part of a spatial layer in a tube-shaped container having a multilayer structure of at least three layers, which is composed of a film layer and a spatial layer, which is set with a flexible impermeable polymer film A culture method of
The optimum temperature at which the chlorophyll fluorescence yield (Fv / Fm) is maximized, which is obtained from the fluctuation fluorescence value (Fv) obtained by subtracting the minimum fluorescence analysis value (Fo) from the maximum fluorescence analysis value (Fm) of chlorophyll in the microalgae. Seeking
Furthermore, a method for cultivating microalgae, characterized in that, as a culture control temperature during photosynthesis, the minimum temperature during control is maintained within 8 degrees Celsius with respect to the optimum temperature for the chlorophyll fluorescence yield of the microalgae.
前記培養液を通じる空間層を、薄い扁平状構造に保つことを特徴とする請求項1に記載の微細藻類の培養方法。   The method for culturing microalgae according to claim 1, wherein the space layer through which the culture solution passes is maintained in a thin flat structure. 前記培養液を通じる空間層の周囲に温調流体を通じ、該培養液を通じる空間層の温度調整を実施することを特徴とする請求項1または2に記載の微細藻類の培養方法。   The method for cultivating microalgae according to claim 1 or 2, wherein the temperature of the space layer through which the culture solution is passed is adjusted by passing a temperature-controlled fluid around the space layer through which the culture solution is passed. 前記微細藻類の培養が、光独立栄養性の培養のみならず、有機物を用いた従属栄養性の培養を組み合わせて実施することを特徴とする請求項1,2または3に記載の微細藻類の培養方法。   The culture of microalgae according to claim 1, 2 or 3, wherein the culture of microalgae is carried out in combination with not only photoautotrophic culture but also heterotrophic culture using organic matter. Method.
JP2011231065A 2011-10-20 2011-10-20 Method for culturing microalgae Pending JP2013085534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011231065A JP2013085534A (en) 2011-10-20 2011-10-20 Method for culturing microalgae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011231065A JP2013085534A (en) 2011-10-20 2011-10-20 Method for culturing microalgae

Publications (1)

Publication Number Publication Date
JP2013085534A true JP2013085534A (en) 2013-05-13

Family

ID=48530125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011231065A Pending JP2013085534A (en) 2011-10-20 2011-10-20 Method for culturing microalgae

Country Status (1)

Country Link
JP (1) JP2013085534A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087858A1 (en) * 2013-12-09 2015-06-18 電源開発株式会社 Algae culturing apparatus and algae culturing system
JP2015192649A (en) * 2013-09-20 2015-11-05 富士フイルム株式会社 Culture method of microalgae with improved oil content ratio, manufacturing method of algal biomass, and novel microalgae
JP2016202033A (en) * 2015-04-17 2016-12-08 寿和 池田 Algae cultivation facility and algae cultivation method
JP2017000124A (en) * 2015-06-16 2017-01-05 国立研究開発法人農業・食品産業技術総合研究機構 Method for culturing algae
JP2017079602A (en) * 2015-10-23 2017-05-18 株式会社デンソー Culture apparatus and culture method of photosynthetic microorganism
JP2019033678A (en) * 2017-08-10 2019-03-07 日本曹達株式会社 Continuous culture method of microbes
WO2020012845A1 (en) * 2018-07-13 2020-01-16 富士フイルム株式会社 Cell culture device and cell culture method
JPWO2019198238A1 (en) * 2018-04-13 2020-04-30 学校法人 創価大学 Method of culturing microalgae

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015192649A (en) * 2013-09-20 2015-11-05 富士フイルム株式会社 Culture method of microalgae with improved oil content ratio, manufacturing method of algal biomass, and novel microalgae
WO2015087858A1 (en) * 2013-12-09 2015-06-18 電源開発株式会社 Algae culturing apparatus and algae culturing system
AU2014362516B2 (en) * 2013-12-09 2017-02-16 Electric Power Development Co., Ltd. Algae culturing apparatus and algae culturing system
JPWO2015087858A1 (en) * 2013-12-09 2017-03-16 電源開発株式会社 Algae culture apparatus and algae culture system
JP2016202033A (en) * 2015-04-17 2016-12-08 寿和 池田 Algae cultivation facility and algae cultivation method
JP2017000124A (en) * 2015-06-16 2017-01-05 国立研究開発法人農業・食品産業技術総合研究機構 Method for culturing algae
JP2017079602A (en) * 2015-10-23 2017-05-18 株式会社デンソー Culture apparatus and culture method of photosynthetic microorganism
JP2019033678A (en) * 2017-08-10 2019-03-07 日本曹達株式会社 Continuous culture method of microbes
JPWO2019198238A1 (en) * 2018-04-13 2020-04-30 学校法人 創価大学 Method of culturing microalgae
WO2020012845A1 (en) * 2018-07-13 2020-01-16 富士フイルム株式会社 Cell culture device and cell culture method
JPWO2020012845A1 (en) * 2018-07-13 2021-06-24 富士フイルム株式会社 Cell culture device and cell culture method

Similar Documents

Publication Publication Date Title
Ting et al. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: A review
JP5305532B2 (en) Excellent diffused light large surface area water-supported photobioreactor
JP2013085534A (en) Method for culturing microalgae
US8198076B2 (en) Photobioreactor and uses therefor
Shen et al. Microalgae mass production methods
CN1316004C (en) Multi-layered photobioreactor and method of culturing photosynthetic microorganisms using the same
US9260685B2 (en) System and plant for cultivation of aquatic organisms
CN102245754A (en) Solar biofactory, photobioreactors, passive thermal regulation systems and methods for producing products
US20120329147A1 (en) Aquatic-based microalgae production apparatus
WO2009037683A1 (en) A system and apparatus for growing cultures
Toyoshima et al. A pilot-scale floating closed culture system for the multicellular cyanobacterium Arthrospira platensis NIES-39
Burns Photobioreactor design for improved energy efficiency of microalgae production
Lee et al. Microalgae isolation and cultivation technology for mass production
AU2014201960A1 (en) Improved diffuse light extended surface area water-supported photobioreactor
KR101360795B1 (en) Surface floating type photobioreactor for mass culturing of microalgae, and microalgae cultivation system
AU2012203478B2 (en) Photobioreactor and method for algae growth
CN102586078A (en) Microalgae cultivation system and method
CN202465661U (en) Microalgae breeding tubular membrane device
KR101394216B1 (en) The culture method of microalgae using sea water
KR101798460B1 (en) A method for enhancing lipid productivity by preventing contamination in photosynthetic microorganism culture
Burns Photobioreactor design for improved energy
CZ2010637A3 (en) Photobioreactor for large-volume autotrophic culturing of algae
Yen et al. Biofuels from Algae: Chapter 2. Design of Photobioreactors for Algal Cultivation
CZ2010474A3 (en) Photobioreactor for large-volume autotrophic cultivation of blue green algae and unicellular algae with desorption zones
WO2011055229A2 (en) Apparatus and method for cultivating protosythetic microorganisms and cells