Nothing Special   »   [go: up one dir, main page]

JP2013077839A - Solid-state imaging apparatus - Google Patents

Solid-state imaging apparatus Download PDF

Info

Publication number
JP2013077839A
JP2013077839A JP2013003246A JP2013003246A JP2013077839A JP 2013077839 A JP2013077839 A JP 2013077839A JP 2013003246 A JP2013003246 A JP 2013003246A JP 2013003246 A JP2013003246 A JP 2013003246A JP 2013077839 A JP2013077839 A JP 2013077839A
Authority
JP
Japan
Prior art keywords
solid
state imaging
photoelectric conversion
imaging device
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013003246A
Other languages
Japanese (ja)
Inventor
Takumi Takeda
拓海 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2013003246A priority Critical patent/JP2013077839A/en
Publication of JP2013077839A publication Critical patent/JP2013077839A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state imaging apparatus having a uniform characteristic without particular requirement for flattening layer made by a complicated process for severely controlling flatness of a part except a micro-lens in the solid-state imaging apparatus utilizing the micro-lenses arranged in a shape of an array.SOLUTION: In a solid-state imaging apparatus for focusing light with micro-lenses arranged corresponding to photoelectric converting elements for each pixel in a light receiving part, the micro-lenses are arranged within an internal surface in a side of the photoelectric converting elements of a cap glass for a sealing package. This arrangement is particularly suitable for a linear sensor.

Description

本発明は、CCDやCMOSからなる光電変換素子を形成した固体撮像素子を有する固体撮像装置に関する。   The present invention relates to a solid-state imaging device having a solid-state imaging element in which a photoelectric conversion element composed of a CCD or a CMOS is formed.

近年、撮像装置は画像の記録、通信、放送の内容の拡大に伴って広く用いられるようになっている。撮像装置として種々の形式のものが提案されているが、小型、軽量で高性能のものが安定して製造されるようになってきている固体撮像素子を用いた撮像装置が、普及してきている。   In recent years, imaging devices have been widely used with the expansion of the contents of image recording, communication, and broadcasting. Although various types of imaging devices have been proposed, imaging devices using solid-state imaging devices that have been stably manufactured with small size, light weight, and high performance have become widespread. .

固体撮像素子は、撮影対象物からの光学像を受け、入射した光を電気信号に変換する複数の光電変換素子を有する。光電変換素子の種類はCCD(電荷結合素子)タイプとCMOS(相補型金属酸化物半導体)タイプとに大別される。また、光電変換素子の配列形態から、光電変換素子を1列に配置したリニアセンサー(ラインセンサー)と、光電変換素子を縦横に2次元的に配列させたエリアセンサー(面センサー)との2種類に大別される。
いずれのセンサにおいても光電変換素子の数(画素数)が多いほど撮影された画像は精密になる。また、光電変換素子に入射する光の経路に、特定の波長の光を透過する各種のカラーフィルタを設けることで対象物の色情報を得ることを可能としたカラーセンサーも普及している。カラーフィルタの色としては、赤色(R)、青色(B)、緑色(G)の3色からなる3原色系、あるいは、シアン色(C)、マゼンタ色(M)、イエロー色(Y)からなる補色系が一般的である。
The solid-state imaging device has a plurality of photoelectric conversion elements that receive an optical image from a subject and convert incident light into an electrical signal. The types of photoelectric conversion elements are roughly classified into CCD (charge coupled device) type and CMOS (complementary metal oxide semiconductor) type. In addition, there are two types of photoelectric conversion elements: linear sensors (line sensors) in which photoelectric conversion elements are arranged in a row, and area sensors (surface sensors) in which photoelectric conversion elements are two-dimensionally arranged vertically and horizontally. It is divided roughly into.
In any sensor, the larger the number of photoelectric conversion elements (number of pixels), the more accurate the captured image. In addition, a color sensor that can obtain color information of an object by providing various color filters that transmit light of a specific wavelength in the path of light incident on the photoelectric conversion element is also widespread. As the color of the color filter, three primary colors consisting of three colors of red (R), blue (B), and green (G), or cyan (C), magenta (M), and yellow (Y) are used. A complementary color system is generally used.

固体撮像素子に要求される性能で重要な課題の一つに、入射する光への感度を向上させることが挙げられる。撮影した画像の情報量を多くするためには受光部となる光電変換素子を微細化して高集積化する必要がある。しかし、光電変換素子を微細化した場合、各光電変換素子の面積が小さくなり、光を取り込む面積が小さくなるため、光電変換素子に取り込める光の量が少なくなる。また、カラーフィルタを設けた固体撮像素子では、カラーフィルタを光が通過する際に波長の分離、カラーフィルタによる光の吸収が生じるため、光電変換素子に入射する光量が低下する。そのため、固体撮像素子として光への感度の低下が生じるものである。   One of the important issues in performance required for a solid-state imaging device is to improve the sensitivity to incident light. In order to increase the amount of information of a photographed image, it is necessary to miniaturize and highly integrate a photoelectric conversion element serving as a light receiving unit. However, when the photoelectric conversion element is miniaturized, the area of each photoelectric conversion element is reduced, and the area for capturing light is reduced. Therefore, the amount of light that can be captured by the photoelectric conversion element is reduced. Further, in a solid-state imaging device provided with a color filter, wavelength separation and absorption of light by the color filter occur when light passes through the color filter, so that the amount of light incident on the photoelectric conversion element decreases. Therefore, the sensitivity to light decreases as a solid-state imaging device.

このような、固体撮像素子の感度の低下を防止するための手段として、光電変換素子(受光部)に効率良く光を取り込むために、対象物から入射される光を集光して光電変換素子(受光部)に導くマイクロレンズを形成する技術が提案されている(特許文献1参照)。
マイクロレンズで光を集光して光電変換素子(受光部)に導くことで、受光部の見かけ上の開口率(面積)を大きくすることが可能になり、固体撮像素子の感度を向上させることが可能になる。
As a means for preventing such a decrease in the sensitivity of the solid-state imaging device, in order to efficiently capture light into the photoelectric conversion element (light receiving unit), the light incident from the object is condensed and the photoelectric conversion element A technique for forming a microlens leading to a (light receiving unit) has been proposed (see Patent Document 1).
By condensing light with a microlens and guiding it to a photoelectric conversion element (light-receiving part), it becomes possible to increase the apparent aperture ratio (area) of the light-receiving part and improve the sensitivity of the solid-state image sensor. Is possible.

光電変換素子は入射した光を電気信号に変換するが、光が所定の光電変換素子に入射せず、異なった光電変換素子(例えば、隣接した光電変換素子)に入射した場合、得られる画像にノイズが生じる。特に、カラーフィルタを配設したカラーセンサの場合、カラーフィルタを通過した光が異なった光電変換素子に入射すると、得られる画像に混色の問題が生じる。このような、誤入射は、斜め方向から光電変換素子に入射する光に発生しやすい。そのため、斜め入射する光が、所望する光電変換素子とは異なった光電変換素子に入射するのを防止するため、遮光壁を固体撮像素子の側端部や個々のカラーフィルタ間に設ける技術が提案されている(特許文献2参照)。   The photoelectric conversion element converts the incident light into an electrical signal, but when the light does not enter the predetermined photoelectric conversion element and enters a different photoelectric conversion element (for example, an adjacent photoelectric conversion element), Noise is generated. In particular, in the case of a color sensor provided with a color filter, if light that has passed through the color filter enters a different photoelectric conversion element, a problem of color mixing occurs in the obtained image. Such erroneous incidence is likely to occur in light incident on the photoelectric conversion element from an oblique direction. For this reason, in order to prevent obliquely incident light from entering a photoelectric conversion element different from the desired photoelectric conversion element, a technique is proposed in which a light shielding wall is provided between the side edge of the solid-state image sensor and between individual color filters. (See Patent Document 2).

光電変換素子を形成した固体撮像素子に、ゴミなどの異物が付着すると、異物が光を遮るため撮影した画像に黒点などのノイズが発生することになる。そのため、固体撮像素子への異物の付着を防止した封止型(パッケージ型)の固体撮像装置とすることが行われている。図2に、封止型(パッケージ型)固体撮像装置の一例の断面図を模式的に示す。   When a foreign substance such as dust adheres to the solid-state imaging element on which the photoelectric conversion element is formed, the foreign substance blocks light and noise such as a black spot is generated in the photographed image. For this reason, a sealed (packaged) solid-state imaging device that prevents foreign matter from adhering to the solid-state imaging device is used. FIG. 2 schematically shows a cross-sectional view of an example of a sealed (packaged) solid-state imaging device.

図2の固体撮像装置12では、シリコン(Si)基板に複数の光電変換素子1が形成された固体撮像素子4が、電気配線部5を有する配線基板10上に載置されている。固体撮像素子4と電気配線部5とは電気的接続が行われ(図示せず)、固体撮像素子4からの電気信号が電気配線部5に伝えられる。   In the solid-state imaging device 12 of FIG. 2, a solid-state imaging device 4 in which a plurality of photoelectric conversion elements 1 are formed on a silicon (Si) substrate is placed on a wiring substrate 10 having an electrical wiring portion 5. The solid-state imaging device 4 and the electrical wiring unit 5 are electrically connected (not shown), and an electrical signal from the solid-state imaging device 4 is transmitted to the electrical wiring unit 5.

固体撮像素子4の周囲の配線基板10には樹脂などからなる封止部6が形成され、封止部6と配線基板10とで空間部を形成している。固体撮像装置12に入射する光が光電変換素子1に達するよう、空間部は固体撮像素子4の上方で開放された空間となっている。固体撮像素子4の上方には、光を透過する透明なキャップガラス3が設けられ、キャップガラス3、封止部6、配線基板10とで封止空間を形成し、封止空間内に固体撮像素子4が載置されている。これにより、固体撮像素子4に異物が付着するのを防止している。   A sealing portion 6 made of a resin or the like is formed on the wiring substrate 10 around the solid-state imaging device 4, and the sealing portion 6 and the wiring substrate 10 form a space portion. The space is an open space above the solid-state image sensor 4 so that light incident on the solid-state image sensor 12 reaches the photoelectric conversion element 1. A transparent cap glass 3 that transmits light is provided above the solid-state imaging device 4, and a sealing space is formed by the cap glass 3, the sealing portion 6, and the wiring substrate 10, and solid-state imaging is performed in the sealing space. Element 4 is placed. This prevents foreign matter from adhering to the solid-state imaging device 4.

また、固体撮像素子4には、特定の波長の光を透過するための所定色のカラーフィルタ7が、各光電変換素子1に対応して複数配設している。さらに、上述したように斜め入射光を遮蔽するために、固体撮像素子4の側端部及び個々のカラーフィルタ7間に遮光壁8が設けられている。カラーフィルタの形成には、着色された感光性樹脂を塗布し、塗布膜へのパターン露光、現像を行い、残存した塗膜をカラーフィルタとするフォトリソ法が広く用いられている。カラーフィルタ形成時に色の異なる樹脂を積層して遮光壁8とする技術も提案されている。   The solid-state image sensor 4 is provided with a plurality of color filters 7 of a predetermined color for transmitting light of a specific wavelength corresponding to each photoelectric conversion element 1. Further, as described above, the light shielding wall 8 is provided between the side end portion of the solid-state imaging device 4 and the individual color filters 7 in order to shield obliquely incident light. For the formation of the color filter, a photolithographic method is widely used in which a colored photosensitive resin is applied, pattern exposure is performed on the coating film, development is performed, and the remaining coating film is used as a color filter. There has also been proposed a technique in which resins having different colors are laminated to form the light shielding wall 8 when forming a color filter.

固体撮像素子4には、入射光を集光して光電変換素子1に導くためのマイクロレンズ2が、個々の光電変換素子1に対応して形成されている。マイクロレンズを形成するにあたり、マイクロレンズを形成する下地面に凹凸があると、マイクロレンズを所望する形状に形成することが困難になる。そのため、カラーフィルタ7上に平坦化層9を設け、平坦とした面にマイクロレンズ2を形成している。図2の例においては、平坦化層9は、カラーフィルタ7上だけでなく、遮光壁8も含めて凹凸の平坦化を行っている。   In the solid-state imaging device 4, microlenses 2 for condensing incident light and guiding them to the photoelectric conversion device 1 are formed corresponding to the individual photoelectric conversion devices 1. When forming the microlens, if the base surface on which the microlens is formed has irregularities, it becomes difficult to form the microlens into a desired shape. Therefore, the planarizing layer 9 is provided on the color filter 7 and the microlens 2 is formed on the flat surface. In the example of FIG. 2, the flattening layer 9 flattens unevenness not only on the color filter 7 but also on the light shielding wall 8.

特開2004−207461号公報JP 2004-207461 A 特開2005−353799号公報JP 2005-353799 A

個々のカラーフィルタの高さ(厚み)は均一とは限らず、所望する分光特性を得るため色毎に高さ(厚み)を異ならせたり、カラーフィルタの形成時に高さ(厚み)がバラツクことがあり、また、カラーフィルタ上に遮光壁を設ける場合もあり、カラーフィルタの表面の平坦性は大きく損なわれているといえる。上述したように、カラーフィルタ7上に形成する平坦化層9は、マイクロレンズを形成する下地面の平坦化を行うために設けられるが、カラーフィルタ表面の平坦性が大きく損なわれている場合、平坦化層9表面に平坦性を持たせるためには、平坦化層9の厚みを厚くする必要がある。   The height (thickness) of each color filter is not necessarily uniform, and the height (thickness) varies for each color to obtain the desired spectral characteristics, or the height (thickness) varies when forming the color filter. In some cases, a light shielding wall may be provided on the color filter, and the flatness of the surface of the color filter is greatly impaired. As described above, the flattening layer 9 formed on the color filter 7 is provided for flattening the base surface on which the microlens is formed. However, when the flatness of the color filter surface is greatly impaired, In order to give flatness to the surface of the planarizing layer 9, it is necessary to increase the thickness of the planarizing layer 9.

平坦化層9の形成にあたっては、透明な樹脂を塗布する技術を用いることが多い。透明
な樹脂の塗布で平坦化層9を形成する際、1回の塗布で平坦化層9を形成する場合もあるが、透明樹脂の粘度が低い場合は複数回に分けて透明樹脂を塗布し、透明樹脂を積層した平坦化層9とすることが行われる。
In forming the planarizing layer 9, a technique of applying a transparent resin is often used. When the flattening layer 9 is formed by application of a transparent resin, the flattening layer 9 may be formed by a single application, but when the viscosity of the transparent resin is low, the transparent resin is applied in several steps. Then, the planarizing layer 9 in which a transparent resin is laminated is performed.

マイクロレンズ2の形状、高さは、マイクロレンズ下面から光電変換素子(受光部)までの距離によって、予め設定されている。そのため、マイクロレンズ2の形状、高さが設定された後、固体撮像装置を複数個製造する際に、固体撮像装置毎に平坦化層9の厚みがバラツクことは、マイクロレンズによる集光性にバラツキが生じ、個々の固体撮像装置の性能にバラツキをもたらすことになる。   The shape and height of the microlens 2 are set in advance depending on the distance from the bottom surface of the microlens to the photoelectric conversion element (light receiving unit). Therefore, when a plurality of solid-state imaging devices are manufactured after the shape and height of the microlens 2 are set, the thickness of the planarization layer 9 varies for each solid-state imaging device. Variations occur, resulting in variations in the performance of individual solid-state imaging devices.

そのため、平坦化層の形成工程は厳しく制御しなければならず、固体撮像装置の製造工程上の負担は大きい。また、透明樹脂を積層して平坦化層を形成する場合、その分だけ工程が増えるため、製造工程が繁雑になり製造工程の負担はより大きくなるといえる。平坦化層の形成工程を厳しく制御するためには各種の制御装置、駆動装置を必要とするため設備費が掛かり、また、工程数が増えるため、固体撮像装置の製造コストを上げる結果にもなりかねない。   Therefore, the flattening layer forming process must be strictly controlled, and the burden on the manufacturing process of the solid-state imaging device is large. In addition, when a planarization layer is formed by laminating a transparent resin, the number of processes increases by that amount, so that the manufacturing process becomes complicated and the burden of the manufacturing process becomes larger. In order to strictly control the formation process of the planarization layer, various control devices and drive devices are required, which requires equipment costs. In addition, the number of steps increases, resulting in an increase in the manufacturing cost of the solid-state imaging device. It might be.

また、マイクロレンズ2と光電変換素子1(受光部)との距離が短いほうが、マイクロレンズで集光され光電変換素子(受光部)に入射する光の量が増えることになる(所謂、光の取り込み角度が増大することになる)。しかし、平坦化層9表面に平坦性を持たせるために平坦化層9の厚みを厚くすると、その分だけマイクロレンズ2と光電変換素子1(受光部)との距離が長くなり、マイクロレンズで集光され光電変換素子(受光部)に入射する光の量が減ることになる。   In addition, the shorter the distance between the microlens 2 and the photoelectric conversion element 1 (light receiving unit), the more light is collected by the microlens and incident on the photoelectric conversion element (light receiving unit) (so-called light transmission). The capture angle will increase). However, if the thickness of the flattening layer 9 is increased in order to give flatness to the surface of the flattening layer 9, the distance between the microlens 2 and the photoelectric conversion element 1 (light receiving portion) is increased by that amount. The amount of light that is collected and incident on the photoelectric conversion element (light receiving unit) is reduced.

本発明は、上記の問題点に鑑みて成されたもので、その課題とするところは、平坦化層の形成という繁雑な製造工程を不要にし、マイクロレンズによる集光性にバラツキがない均一な特性を有し、また、集光性能を向上させた固体撮像装置を得ることにある。   The present invention has been made in view of the above problems, and the problem is that a complicated manufacturing process of forming a flattening layer is unnecessary, and there is no variation in the light collecting property of the microlens. An object of the present invention is to obtain a solid-state imaging device having characteristics and improved light collecting performance.

上記課題を解決するため、請求項1記載の発明は、
複数の光電変換素子が形成された固体撮像素子が載置され、入射する光が前記光電変換素子に入射するよう固体撮像素子の上方に開放された空間部と、前記空間部の上方に設けられ入射光を透過するキャップガラスとを有する固体撮像装置において、前記キャップガラスの光電変換素子側の面に、光電変換素子に対応したマイクロレンズを配置したことを特徴とする固体撮像装置としたものである。
また、請求項2の発明は、請求項1記載の固体撮像素子がリニアセンサーであることを特徴とする固体撮像装置としたものである。
In order to solve the above problem, the invention according to claim 1
A solid-state imaging device on which a plurality of photoelectric conversion elements are formed is placed, and a space part opened above the solid-state imaging element so that incident light enters the photoelectric conversion element, and provided above the space part. A solid-state imaging device having a cap glass that transmits incident light, wherein the micro-lens corresponding to the photoelectric conversion element is arranged on the surface of the cap glass on the photoelectric conversion element side. is there.
According to a second aspect of the present invention, there is provided a solid-state imaging device characterized in that the solid-state imaging element according to the first aspect is a linear sensor.

本発明の固体撮像装置によれば、入射光を光電変換素子(受像部)に集光し見かけ上の開口率を向上させるためのマイクロレンズを、表面平坦なキャップガラスに配置したことで、平坦化層を不要にしている。そのため、個々の固体撮像装置を製造する際に、表面平坦で均一な厚みとした平坦化層を得るための繁雑な工程が不要になり、製造工程を短縮できる。また、マイクロレンズを支持する平面が平坦性の良いキャップガラスであって、マイクロレンズと光電変換素子(受像部)との距離を不均一にする要因の一つとなる平坦化層の平坦性の悪さに影響されないため、個々の固体撮像装置でマイクロレンズと光電変換素子(受像部)との距離を均一に形成しやすい。そのため、製造コストが低く性能の均一な固体撮像装置を容易に得ることが可能になる。   According to the solid-state imaging device of the present invention, the microlens for condensing incident light on the photoelectric conversion element (image receiving portion) and improving the apparent aperture ratio is disposed on the cap glass with a flat surface. The formation layer is unnecessary. Therefore, when manufacturing individual solid-state imaging devices, a complicated process for obtaining a planarized layer having a flat surface and a uniform thickness is not necessary, and the manufacturing process can be shortened. In addition, the flat surface that supports the microlens is a cap glass with good flatness, and the flatness of the flattening layer is one of the factors that make the distance between the microlens and the photoelectric conversion element (image receiving portion) non-uniform. Therefore, it is easy to form a uniform distance between the microlens and the photoelectric conversion element (image receiving unit) in each solid-state imaging device. Therefore, it is possible to easily obtain a solid-state imaging device with low manufacturing cost and uniform performance.

また、平坦化層を形成しない分、マイクロレンズと光電変換素子(受像部)との距離を
短く出来るため、光の取り込み角度が大きくなりマイクロレンズによる光電変換素子(受像部)への集光性を向上させることが可能になり、感度の良い固体撮像装置を得ることが可能になる。
In addition, since the distance between the microlens and the photoelectric conversion element (image receiving portion) can be shortened by the amount of not forming the planarizing layer, the light capturing angle is increased, and the light condensing property to the photoelectric conversion element (image receiving portion) is increased. Can be improved, and a solid-state imaging device with high sensitivity can be obtained.

さらに、キャップガラスと光電変換素子(受像部)との距離を統一(規格化)する、または、キャップガラスの封止部6の高さを随時変更することで、同一形状のマイクロレンズを形成したキャップガラスを、他の品種の個体撮像装置に適用することも可能になり、製造コストの低い固体撮像装置を得ることが可能になる。その場合、製造工程における膜厚の管理は、カラーフィルタの膜厚管理を優先的に行えば良いことになる。   Furthermore, the microlens of the same shape was formed by unifying (standardizing) the distance between the cap glass and the photoelectric conversion element (image receiving portion) or by changing the height of the sealing portion 6 of the cap glass as needed. Cap glass can be applied to other types of individual imaging devices, and a solid-state imaging device with low manufacturing cost can be obtained. In that case, the thickness control in the manufacturing process may be performed preferentially in the thickness control of the color filter.

なお、光電変換素子を1列に配置したリニアセンサー(ラインセンサー)では、斜め入射光による混色などのノイズを防止するため、カラーフィルタ上に遮光壁を形成することが多いため、カラーフィルタ表面の凹凸は大きくなる。そのため、固体撮像素子がリニアセンサーである固体撮像装置に本発明を適用することは特に有効といえる。   In linear sensors (line sensors) in which photoelectric conversion elements are arranged in a row, a light shielding wall is often formed on the color filter to prevent noise such as color mixing due to obliquely incident light. The unevenness becomes larger. Therefore, it can be said that it is particularly effective to apply the present invention to a solid-state imaging device in which the solid-state imaging element is a linear sensor.

本発明の固体撮像装置の一例を模式的に示す断面説明図。Cross-sectional explanatory drawing which shows typically an example of the solid-state imaging device of this invention. 従来の固体撮像装置の一例を模式的に示す断面説明図。Cross-sectional explanatory drawing which shows an example of the conventional solid-state imaging device typically.

本発明の実施形態の一例を、図面に従って説明する。   An example of an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の固体撮像装置の一例を模式的に示す断面図である。
図1に示す固体撮像素子4は、Si(シリコン)からなる基板に、CCDまたはCMOS構造の光電変換素子1(受光部)を1列に配置したリニアセンサーとした。固体撮像素子4は、電気配線部5を有する配線基板10上に載置されている。固体撮像素子4と電気配線部5とは電気的接続が行われており(図示せず)、光電変換素子1で得られた電気信号が電気配線部5に伝えられる。電気配線部5は、外部機器との電気的接続を行うための端子部に連なる。
FIG. 1 is a cross-sectional view schematically showing an example of the solid-state imaging device of the present invention.
The solid-state imaging device 4 shown in FIG. 1 is a linear sensor in which a photoelectric conversion device 1 (light receiving unit) having a CCD or CMOS structure is arranged in a row on a substrate made of Si (silicon). The solid-state imaging device 4 is placed on a wiring board 10 having an electrical wiring portion 5. The solid-state imaging device 4 and the electrical wiring unit 5 are electrically connected (not shown), and an electrical signal obtained by the photoelectric conversion element 1 is transmitted to the electrical wiring unit 5. The electrical wiring unit 5 is connected to a terminal unit for electrical connection with an external device.

次いで、各光電変換素子1の上方に、入射光の色分離を行うために、赤色(R)、青色(B)、緑色(G)の3色からなる3原色系のカラーフィルタ7を所定の色配列にて形成している。各カラーフィルタ7は、赤色(R)、青色(B)、緑色(G)の着色感光性樹脂を各々用い、パターン露光、現像を行い残存した着色感光性樹脂膜をカラーフィルタとするフォトリソ法で形成した。また、斜め入射光を遮蔽するために、固体撮像素子4の側端部及び個々のカラーフィルタ7間に遮光壁8を設けている。カラーフィルタ7間の遮光壁8は、カラーフィルタの形成時に、色の異なる樹脂を残存して積層させて形成した。また、固体撮像素子4の側端部の遮光壁8は、カラーフィルタの形成時に各色の着色樹脂を残存、積層して形成した。   Next, in order to perform color separation of incident light above each photoelectric conversion element 1, a three-primary color filter 7 composed of three colors of red (R), blue (B), and green (G) is provided in a predetermined manner. It is formed by color arrangement. Each color filter 7 is a photolithographic method in which red (R), blue (B), and green (G) colored photosensitive resins are used, and pattern exposure and development are performed and the remaining colored photosensitive resin film is a color filter. Formed. In addition, a light shielding wall 8 is provided between the side end of the solid-state imaging device 4 and each color filter 7 in order to shield obliquely incident light. The light shielding walls 8 between the color filters 7 were formed by laminating the resins having different colors while forming the color filters. The light shielding wall 8 at the side end of the solid-state imaging device 4 is formed by remaining and laminating colored resins of respective colors when forming the color filters.

固体撮像素子4の周囲の配線基板10には樹脂などからなる封止部6を形成している。封止部6と配線基板10とで空間部を形成している。固体撮像装置12に入射する光が光電変換素子1に達するよう、空間部は固体撮像素子4の上方で開放された空間としている。次いで、封止部6を介し、固体撮像素子4の上方に光を透過する透明なキャップガラス3を設けている。封止部6とキャップガラス3との貼り合わせにシール剤を用いる場合、シール剤は、封止部6側に設けても、キャップガラス3側に設けても、あるいは、封止部6側とキャップガラス3側の両方に設けても構わない。キャップガラス3、封止部6、配線基板10とで封止空間を形成し、封止空間内に固体撮像素子4を載置している。   A sealing portion 6 made of resin or the like is formed on the wiring substrate 10 around the solid-state imaging device 4. A space portion is formed by the sealing portion 6 and the wiring substrate 10. The space portion is a space opened above the solid-state imaging device 4 so that light incident on the solid-state imaging device 12 reaches the photoelectric conversion element 1. Next, a transparent cap glass 3 that transmits light is provided above the solid-state imaging device 4 through the sealing portion 6. When a sealing agent is used for bonding the sealing portion 6 and the cap glass 3, the sealing agent may be provided on the sealing portion 6 side, the cap glass 3 side, or the sealing portion 6 side. You may provide in both the cap glass 3 side. The cap glass 3, the sealing part 6, and the wiring substrate 10 form a sealing space, and the solid-state imaging device 4 is placed in the sealing space.

本発明では、カラーフィルタ上に平坦化層を介してマイクロレンズを設けず、図1に示すようにキャップガラス3の固体撮像素子4側の面に、各固体撮像素子4に対応させてマイクロレンズ2を形成している。マイクロレンズの形成は、フォトリソグラフィ法でガラス上に形成した樹脂パターンを加熱し、溶けた樹脂の表面張力によりレンズ形状とする熱リフロー法を用いて構わない。または、熱リフロー法でガラス上に形成した樹脂からなるレンズ母型をマスクにしてガラスにドライエッチングを行うドライエッチング法により、ガラス表面をレンズ状に形成しても構わず、形成方法は適宜選択することができる。   In the present invention, the microlens is not provided on the color filter via the planarizing layer, and the microlens is provided on the surface of the cap glass 3 on the solid-state image sensor 4 side as shown in FIG. 2 is formed. The microlens can be formed by using a thermal reflow method in which a resin pattern formed on glass by photolithography is heated to form a lens shape by the surface tension of the melted resin. Alternatively, the glass surface may be formed in a lens shape by a dry etching method in which dry etching is performed on the glass using a lens matrix made of a resin formed on the glass by a thermal reflow method as a mask. can do.

キャップガラスの表面は平坦であり、また仮に平坦でないとしても、マイクロレンズの形成前にガラス表面を研磨する、あるいは、湾曲したガラスを加圧することで平坦とすることは容易であるので、形状精度の良いマイクロレンズを形成するのは容易になる。   The surface of the cap glass is flat, and even if it is not flat, it is easy to polish the glass surface before forming the microlens or press the curved glass to make it flat. It becomes easy to form a good microlens.

本発明では、マイクロレンズを形成したキャップガラス3を、各マイクロレンズと各光電変換素子とが対応するよう貼り合わせる必要があり、貼り合わせの位置精度が要求される。しかし、リニアセンサーの場合、画素の配列ピッチ(光電変換素子の配列ピッチ)は25μm〜75μm程度であるので、貼り合わせは容易といえる。   In the present invention, it is necessary to bond the cap glass 3 on which the microlenses are formed so that each microlens and each photoelectric conversion element correspond to each other, and the positional accuracy of the bonding is required. However, in the case of a linear sensor, since the pixel arrangement pitch (photoelectric conversion element arrangement pitch) is about 25 μm to 75 μm, it can be said that bonding is easy.

以上、本発明の実施の形態につき説明したが、本発明はこれに限定されるものではなく、本発明の趣旨に基づき種々の変形を行っても構わない。例えば、本実施例では、配線基板10と封止部6とで、固体撮像素子4を載置する空間を形成した。しかし、セラミックやプラスチックなどからなる凹部を有するパッケージ内に固体撮像素子4を載置して固体撮像装置としても構わない。この場合、パッケージの凹部が本願で言う空間部に相当する。すなわち、セラミックなどからなるパッケージの凹部の底部に固体撮像素子4を載置し、凹部の開口部をマイクロレンズを形成したキャップガラス3にて、マイクロレンズが固体撮像素子4側に向くように封止しても構わない。   Although the embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications may be made based on the spirit of the present invention. For example, in this embodiment, a space for mounting the solid-state imaging device 4 is formed by the wiring board 10 and the sealing portion 6. However, the solid-state imaging device 4 may be mounted in a package having a recess made of ceramic, plastic, or the like to form a solid-state imaging device. In this case, the concave portion of the package corresponds to the space portion referred to in the present application. That is, the solid-state imaging device 4 is placed on the bottom of a concave portion of a package made of ceramic or the like, and the opening of the concave portion is sealed with a cap glass 3 having a microlens formed so that the microlens faces the solid-state imaging device 4 side. You can stop it.

また、封止部6の高さ、または、パッケージの凹部の深さは、光電変換素子1とマイクロレンズ2とのギャップ調整を兼ねるため、入射光が光電変換素子1に集光するよう適宜設定して構わない。さらに、封止部の材質は、所定の高さにての形成が容易で、かつ、形成後の高さの変動が少ないものを、適宜選択して構わない。また、カラーフィルタは、シアン色(C)、マゼンタ色(M)、イエロー色(Y)からなる補色系であっても構わず、固体撮像素子は、光電変換素子を縦横に2次元的に配列させたエリアセンサー(面センサー)としても構わない。
Further, the height of the sealing portion 6 or the depth of the concave portion of the package is also set as appropriate so that incident light is condensed on the photoelectric conversion element 1 in order to double the gap between the photoelectric conversion element 1 and the microlens 2. It doesn't matter. Furthermore, as the material of the sealing portion, a material that can be easily formed at a predetermined height and has little fluctuation in height after formation may be selected as appropriate. Further, the color filter may be a complementary color system composed of cyan (C), magenta (M), and yellow (Y), and the solid-state imaging device has photoelectric conversion elements arranged two-dimensionally vertically and horizontally. It is also possible to use an area sensor (surface sensor).

1・・・・光電変換素子
2・・・・マイクロレンズ
3・・・・キャップガラス
4・・・・固体撮像素子
5・・・・電気配線部
6・・・・封止部
7・・・・カラーフィルタ
8・・・・遮光壁
9・・・・平坦化層
10・・・配線基板
12・・・固体撮像装置
DESCRIPTION OF SYMBOLS 1 ... photoelectric conversion element 2 ... micro lens 3 ... cap glass 4 ... solid-state image sensor 5 ... electric wiring part 6 ... sealing part 7 ... · Color filter 8 ··· Shading wall 9 ··· Flattening layer 10 · · · Wiring substrate 12 · · · Solid-state imaging device

本発明は、上記の問題点に鑑みて成されたもので、その課題とするところは、
キャップガラスと光電変換素子(受像部)との距離を統一(規格化)する、または、キャップガラスの封止部の高さを随時変更することで、同一形状のマイクロレンズを形成したキャップガラスを、他の品種の個体撮像装置に適用することも可能とし、マイクロレンズによる集光性にバラツキがない均一な特性を有し、また、集光性能を向上させた固体撮像装置を得ることにある。
The present invention has been made in view of the above-mentioned problems.
Cap glass with microlenses of the same shape by unifying (standardizing) the distance between the cap glass and the photoelectric conversion element (image receiving part) or by changing the height of the sealing part of the cap glass as needed. It is also possible to obtain a solid-state imaging device that can be applied to other types of individual imaging devices, has uniform characteristics with no variation in light condensing performance by the microlens, and has improved light collecting performance. .

上記課題を解決するため、本発明による固体撮像装置は、
複数の光電変換素子が縦横に2次元的に配列形成されたエリアセンサーからなる固体撮像素子が載置され、入射する光が前記光電変換素子に入射するよう固体撮像素子の上方に開放された空間部と、前記空間部の上方に設けられ入射光を透過するキャップガラスとを有する固体撮像装置において、
固体撮像素子の周囲に樹脂製の封止部を形成し、前記封止部を介して固体撮像素子の上方に光を透過する透明なキャップガラスをシールして、固体撮像素子の上方で開放された空間部を形成してなることを特徴とする。
樹脂製の封止部は、前記空間部のギャップ調整のための高さを適宜設定することが容易で、かつ、形成後の高さの変動が少ない材質が選択されることが好適である。
In order to solve the above-described problem, a solid-state imaging device according to the present invention provides:
A space in which a solid-state image sensor composed of an area sensor in which a plurality of photoelectric conversion elements are two-dimensionally arranged vertically and horizontally is placed, and is open above the solid-state image sensor so that incident light enters the photoelectric conversion element In a solid-state imaging device having a portion and a cap glass provided above the space portion and transmitting incident light,
A sealing part made of resin is formed around the solid-state imaging element, and a transparent cap glass that transmits light is sealed above the solid-state imaging element through the sealing part, and is opened above the solid-state imaging element. It is characterized by forming an open space.
For the resin-made sealing portion, it is preferable to select a material that can easily set the height for adjusting the gap of the space portion as appropriate and has a small variation in height after formation.

本発明の固体撮像装置によれば、キャップガラスと光電変換素子(受像部)との距離を統一(規格化)する上で有効であり、キャップガラスの封止部6の高さを随時変更することで、同一形状のマイクロレンズを形成したキャップガラスを、他の品種の個体撮像装置に適用することも可能になり、製造コストの低い固体撮像装置を得ることが可能になる。
その場合、製造工程における膜厚の管理は、カラーフィルタの膜厚管理を優先的に行えば良いことになる。
According to the solid-state imaging device of the present invention, it is effective in unifying (standardizing) the distance between the cap glass and the photoelectric conversion element (image receiving portion), and the height of the cap glass sealing portion 6 is changed as needed. Thus, it becomes possible to apply the cap glass on which microlenses having the same shape are formed to other types of individual imaging devices, and to obtain a solid-state imaging device with low manufacturing cost.
In that case, the thickness control in the manufacturing process may be performed preferentially in the thickness control of the color filter.

Claims (2)

複数の光電変換素子が形成された固体撮像素子が載置され、入射する光が前記光電変換素子に入射するよう固体撮像素子の上方に開放された空間部と、前記空間部の上方に設けられ入射光を透過するキャップガラスとを有する固体撮像装置において、前記キャップガラスの光電変換素子側の面に、光電変換素子に対応したマイクロレンズを配置したことを特徴とする固体撮像装置。   A solid-state imaging device on which a plurality of photoelectric conversion elements are formed is placed, and a space part opened above the solid-state imaging element so that incident light enters the photoelectric conversion element, and provided above the space part. A solid-state imaging device having a cap glass that transmits incident light, wherein a microlens corresponding to the photoelectric conversion element is disposed on a surface of the cap glass on a photoelectric conversion element side. 請求項1記載の固体撮像素子がリニアセンサーであることを特徴とする固体撮像装置。   The solid-state imaging device according to claim 1, wherein the solid-state imaging device is a linear sensor.
JP2013003246A 2013-01-11 2013-01-11 Solid-state imaging apparatus Pending JP2013077839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013003246A JP2013077839A (en) 2013-01-11 2013-01-11 Solid-state imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013003246A JP2013077839A (en) 2013-01-11 2013-01-11 Solid-state imaging apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008005553A Division JP2009170585A (en) 2008-01-15 2008-01-15 Solid-state imaging apparatus

Publications (1)

Publication Number Publication Date
JP2013077839A true JP2013077839A (en) 2013-04-25

Family

ID=48481051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013003246A Pending JP2013077839A (en) 2013-01-11 2013-01-11 Solid-state imaging apparatus

Country Status (1)

Country Link
JP (1) JP2013077839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115134500A (en) * 2022-06-29 2022-09-30 电子科技大学 Protective glass, detector, light field sensor, light field camera and coupling method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202152A (en) * 1993-12-28 1995-08-04 Olympus Optical Co Ltd Solid-state image pickup device
JP2003031782A (en) * 2001-07-11 2003-01-31 Fuji Film Microdevices Co Ltd Solid state image device
JP2005252391A (en) * 2004-03-01 2005-09-15 Canon Inc Imaging apparatus
JP2005353799A (en) * 2004-06-10 2005-12-22 Toppan Printing Co Ltd Linear sensor
JP2007528120A (en) * 2003-07-03 2007-10-04 テッセラ テクノロジーズ ハンガリー コルラートルト フェレロェセーギュー タールシャシャーグ Method and apparatus for packaging integrated circuit devices
JP2007288025A (en) * 2006-04-19 2007-11-01 Dainippon Printing Co Ltd Solid-state imaging apparatus, and manufacturing method thereof
JP2008042122A (en) * 2006-08-10 2008-02-21 Matsushita Electric Ind Co Ltd Information reading sensor
JP2008288449A (en) * 2007-05-18 2008-11-27 Nippon Hoso Kyokai <Nhk> Imaging apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202152A (en) * 1993-12-28 1995-08-04 Olympus Optical Co Ltd Solid-state image pickup device
JP2003031782A (en) * 2001-07-11 2003-01-31 Fuji Film Microdevices Co Ltd Solid state image device
JP2007528120A (en) * 2003-07-03 2007-10-04 テッセラ テクノロジーズ ハンガリー コルラートルト フェレロェセーギュー タールシャシャーグ Method and apparatus for packaging integrated circuit devices
JP2005252391A (en) * 2004-03-01 2005-09-15 Canon Inc Imaging apparatus
JP2005353799A (en) * 2004-06-10 2005-12-22 Toppan Printing Co Ltd Linear sensor
JP2007288025A (en) * 2006-04-19 2007-11-01 Dainippon Printing Co Ltd Solid-state imaging apparatus, and manufacturing method thereof
JP2008042122A (en) * 2006-08-10 2008-02-21 Matsushita Electric Ind Co Ltd Information reading sensor
JP2008288449A (en) * 2007-05-18 2008-11-27 Nippon Hoso Kyokai <Nhk> Imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115134500A (en) * 2022-06-29 2022-09-30 电子科技大学 Protective glass, detector, light field sensor, light field camera and coupling method
CN115134500B (en) * 2022-06-29 2023-10-24 电子科技大学 Protective glass, detector, light field sensor, light field camera and coupling method

Similar Documents

Publication Publication Date Title
JP4576412B2 (en) Manufacturing method of colored microlens array, color solid-state imaging device and manufacturing method thereof, manufacturing method of color display device, manufacturing method of electronic information device
JP4623641B2 (en) Method for manufacturing solid-state imaging device
US8743265B2 (en) Solid-state imaging device with lens, method of manufacturing solid-state imaging device with lens, and electronic apparatus
US7535509B2 (en) Transparent member in a solid-state image pick-up apparatus supported through use of micro-lenses larger in size than pixel micro-lenses and a method for producing the micro-lenses and transparent member
JP5489543B2 (en) Solid-state imaging device
KR100654143B1 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, camera
TWI416715B (en) A solid-state imaging device, a manufacturing method of a solid-state imaging device, and an electronic device
US20080290435A1 (en) Wafer level lens arrays for image sensor packages and the like, image sensor packages, and related methods
US10986293B2 (en) Solid-state imaging device including microlenses on a substrate and method of manufacturing the same
JP2007053324A (en) Solid-state imaging device and method of manufacturing same
JP2012003009A (en) Solid imaging element, method for manufacturing the same, and photographing device
JP2007184322A (en) Solid state imaging device, its fabrication process, and camera
JP2009170585A (en) Solid-state imaging apparatus
KR102492102B1 (en) Image pickup device
WO2012090417A1 (en) Solid-state image capturing element, manufacturing method therefor, and electronic information device
JP2009170562A (en) Solid-state imaging apparatus, and manufacturing method of solid-state imaging apparatus
JP2007047569A (en) Microlens device, solid state image pickup element, display device, and electronic information equipment
JP2013077839A (en) Solid-state imaging apparatus
US20080068476A1 (en) Image device and method of manufacturing the same
TW200530957A (en) Solid-state image sensor for improving sensing quality and manufacturing method thereof
JP6520400B2 (en) Microlens for solid-state imaging device and method of forming microlens for solid-state imaging device
JP2008016559A (en) Solid-state imaging apparatus
JP2014179446A (en) Semiconductor imaging device and manufacturing method therefor
JP2000156485A (en) Solid-state image sensing device and manufacture thereof
JP5353356B2 (en) Solid-state imaging device and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150310