Nothing Special   »   [go: up one dir, main page]

JP2013069615A - Organic el display and manufacturing method therefor - Google Patents

Organic el display and manufacturing method therefor Download PDF

Info

Publication number
JP2013069615A
JP2013069615A JP2011208722A JP2011208722A JP2013069615A JP 2013069615 A JP2013069615 A JP 2013069615A JP 2011208722 A JP2011208722 A JP 2011208722A JP 2011208722 A JP2011208722 A JP 2011208722A JP 2013069615 A JP2013069615 A JP 2013069615A
Authority
JP
Japan
Prior art keywords
organic
layer
electrode
substrate
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011208722A
Other languages
Japanese (ja)
Inventor
Yoshiki Koshiyama
良樹 越山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011208722A priority Critical patent/JP2013069615A/en
Publication of JP2013069615A publication Critical patent/JP2013069615A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic EL display in which extraneous materials can be removed by laser repair method, even for an organic EL element where a protective film covers a cathod.SOLUTION: An organic EL element substrate consisting of a first patterned electrode on one surface of a first substrate, a barrier covering the peripheral end of the first electrode, an organic light-emitting medium layer provided on the first electrode in the barrier, and a second electrode provided on the organic light-emitting medium layer at a position facing the first electrode, and a counter substrate on which a sheet-like adhesive layer formed entirely on one surface of a second substrate, and a protective layer formed in a region on the inside thereof are laminated sequentially are stuck on one sides thereof thus obtaining an organic EL display, where (a) a gap layer is formed between the second electrode and the protective layer, and (b) the organic EL element substrate and the counter substrate are bonded via a sheet-like adhesive layer interposed therebetween. A manufacturing method of the organic EL display is also provided.

Description

本発明は、有機ELディスプレイ及びその製造方法に関し、特に有機EL層及びカソードなどの形成において発生する異物の付着を、レーザーリペアにより除去することができる有機ELディスプレイに関するものである。   The present invention relates to an organic EL display and a manufacturing method thereof, and more particularly to an organic EL display capable of removing adhesion of foreign matters generated in forming an organic EL layer and a cathode by laser repair.

近年、情報機器の多様化に伴い、一般に使用されているCRT(陰極線管)に比べて消費電力が少ない平面表示素子に対するニーズが高まってきている。このような平面表示素子の一つとして、高効率・薄型・軽量・低視野角依存性等の特徴を有する有機エレクトロルミネッセンス(以下、有機ELと略す)素子が注目され、この有機EL素子を用いたディスプレイの開発が進められている。   In recent years, with the diversification of information equipment, there has been an increasing need for flat display elements that consume less power than commonly used CRTs (cathode ray tubes). As one of such flat display elements, organic electroluminescence (hereinafter abbreviated as “organic EL”) elements having features such as high efficiency, thinness, light weight, and low viewing angle dependence have been attracting attention. The development of the existing display is underway.

有機EL素子は、薄膜トランジスタ(TFT)を設けた基板上に、第一電極(アノード)、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層などの有機層と第二電極(カソード)が順に積層されたものが知られている。アノードとカソードの間に電位差を加え、この有機EL素子に駆動電流を流すと、アノードから注入されたホールと、カソードから注入された電子とが発光層の内部で再結合し、発光層を形成する有機分子を励起して励起子が生じる。この励起子が放射失活する過程で発光層から光が放たれ、この光が透明なアノードから透明絶縁基板を介して外部へ放出されて発光する。   An organic EL element is formed on a substrate provided with a thin film transistor (TFT), an organic layer such as a first electrode (anode), a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a second electrode ( A cathode in which cathodes are stacked in order is known. When a potential difference is applied between the anode and the cathode, and a drive current is passed through the organic EL element, holes injected from the anode and electrons injected from the cathode are recombined inside the light emitting layer to form a light emitting layer. Excitons are generated by exciting organic molecules. Light is emitted from the light emitting layer in the process of radiation deactivation of the excitons, and the light is emitted from the transparent anode through the transparent insulating substrate to emit light.

上記の有機EL層及びカソードは、例えばメタルマスクを用いた真空蒸着法により形成される。この蒸着工程で異物が有機EL素子の形成領域に付着する問題がある。この付着により、アノードとカソードとの間がショートして電位差がなくなり、その結果、有機EL素子に駆動電流が流れなくなり、画素が非発光となる。そこで、特許文献1のように所定の波長(例えば、1056nm)を有するレーザー光をこの異物に照射し、異物を焼き切り吹き飛ばすことで画素を発光するようにしていた(以下、レーザーリペアと明記)。   The organic EL layer and the cathode are formed by, for example, a vacuum evaporation method using a metal mask. There is a problem that foreign matters adhere to the formation region of the organic EL element in this vapor deposition process. Due to this adhesion, the anode and the cathode are short-circuited to eliminate the potential difference. As a result, the drive current does not flow through the organic EL element, and the pixel does not emit light. Therefore, as in Patent Document 1, a laser beam having a predetermined wavelength (for example, 1056 nm) is irradiated on the foreign matter, and the foreign matter is burned off and blown off to emit light (hereinafter referred to as laser repair).

しかしながら、特許文献2、3のようにカソード上に保護層がある構造(図4参照)では、保護層がカソードを被覆しているので異物は飛散しにくくレーザーリペアが困難である。異物を飛散させるためにレーザー強度(エネルギー)を高くすると、異物は保護層を貫通し飛散させることができるが、保護層のバリア性が結果的に失われ、この貫通口から水分が浸入してダークスポット(非発光点)と呼ばれる表示欠陥を拡大させてしまう。また、レーザー強度を高くすると、異物周辺の有機EL層も劣化してしまい、初期からダークスポットの面積が大きくなってしまう。   However, in the structure having a protective layer on the cathode as in Patent Documents 2 and 3 (see FIG. 4), since the protective layer covers the cathode, foreign matter is hardly scattered and laser repair is difficult. If the laser intensity (energy) is increased in order to scatter foreign matter, the foreign matter can penetrate the protective layer and scatter, but the barrier property of the protective layer is eventually lost, and moisture penetrates from this through hole. Display defects called dark spots (non-light emitting points) are enlarged. Further, when the laser intensity is increased, the organic EL layer around the foreign matter is also deteriorated, and the area of the dark spot is increased from the beginning.

特開2000−195677号公報JP 2000-195567 A 特開2005−347204号公報JP 2005-347204 A 特開2007−184251号公報JP 2007-184251 A

本発明は、上記問題を鑑みてなされたもので、保護層がカソードを被覆している構成の有機EL素子に対しても、上記異物の除去としてレーザーリペアが行え、駆動時間の経過に伴う輝度の低下や、ダークスポットの拡大といったディスプレイの劣化現象を抑制できる有機ELディスプレイを提供することを目的とする。   The present invention has been made in view of the above problems, and even with an organic EL element having a structure in which a protective layer covers a cathode, laser repair can be performed as removal of the foreign matter, and luminance with the lapse of driving time. An object of the present invention is to provide an organic EL display capable of suppressing the deterioration phenomenon of the display, such as a decrease in brightness and an expansion of dark spots.

本発明の請求項1に係る発明は、第一の基板の一方の面上に、パターン状に設けた第一電極と、第一電極の周辺端部を被覆する隔壁と、該隔壁内の第一電極上に設けた有機発光媒体層と、該有機発光媒体層上に第一電極に対向する位置に設けた第二電極からなる有機EL素子基板と、第二の基板の一方の面の全面上にシート状接着剤層と、それより内側の領域に保護層を順次積層してなる対向基板とを、それぞれの一方の面側とを貼り合わせてなる有機ELLディスプレイであって、
(a)第二電極と保護層間に空隙層が形成され、
(b)有機EL素子基板と対向基板とが、シート状接着剤層を介して接着されている、ことを特徴とする有機ELディスプレイである。すなわち、第二電極と保護層間に空隙層を形成することにより、有機EL素子基板の形成の際に生じる異物起因によりショートしている画素を、レーザーリペアする場合、第二電極上は空間を介して保護層で覆われるので、リペアが容易かつ低エネルギーで出来る。また、シート状接着剤層の端部は有機EL素子基板と接着しているため、外部からの透湿成分を抑制できる。
According to a first aspect of the present invention, there is provided a first electrode provided in a pattern on one surface of a first substrate, a partition covering a peripheral edge of the first electrode, and a first electrode in the partition. An organic light emitting medium layer provided on one electrode, an organic EL element substrate comprising a second electrode provided on the organic light emitting medium layer at a position facing the first electrode, and an entire surface of one surface of the second substrate It is an organic EL display in which a sheet-like adhesive layer and a counter substrate formed by sequentially laminating a protective layer in an inner region of the sheet-like adhesive layer are bonded to one surface side,
(A) a void layer is formed between the second electrode and the protective layer;
(B) An organic EL display in which an organic EL element substrate and a counter substrate are bonded via a sheet-like adhesive layer. That is, by forming a gap layer between the second electrode and the protective layer, when repairing a pixel that has been short-circuited due to a foreign matter generated during the formation of the organic EL element substrate, the space on the second electrode is a space. Since it is covered with a protective layer, it can be repaired easily and with low energy. Moreover, since the edge part of a sheet-like adhesive bond has adhere | attached with the organic EL element substrate, the moisture-permeable component from the outside can be suppressed.

また、本発明の請求項2に係る発明は、前記対向基板が、前記第二の基板の一方の全面上に第二の接着剤層、それより内側の領域に前記シート状接着剤層、さらに内側の領域に前記保護層が順次積層されてなることを特徴とする請求項1に記載の有機ELディスプレイである。すなわち、シート状接着剤層を覆うように第二の接着剤層が形成されている為に、さらに外部からの透湿成分を抑制できる。   In the invention according to claim 2 of the present invention, the counter substrate includes a second adhesive layer on one whole surface of the second substrate, the sheet-like adhesive layer on an inner region, and The organic EL display according to claim 1, wherein the protective layer is sequentially laminated in an inner region. That is, since the second adhesive layer is formed so as to cover the sheet-like adhesive layer, moisture-permeable components from the outside can be further suppressed.

また、本発明の請求項3に係る発明は、前記対向基板が、前記第二の基板の一方の全面上に前記第二の接着剤層、それより内側の領域に第二の保護層、さらに内側の領域に前記シート状接着剤層、さらにその内側の領域に前記保護層が順次積層されてなることを特徴とする請求項1または2に記載の有機ELディスプレイである。すなわち、シート状接着剤層を覆うように第二の接着剤層が形成され、さらにそれより内側の領域に第二の保護層を形成することにより、外部からの透湿成分を極めて高いレベルで抑制できる。   In the invention according to claim 3 of the present invention, the counter substrate includes the second adhesive layer on one whole surface of the second substrate, a second protective layer in an inner region, and 3. The organic EL display according to claim 1, wherein the sheet-like adhesive layer is laminated in an inner region, and the protective layer is laminated in an inner region. That is, the second adhesive layer is formed so as to cover the sheet-like adhesive layer, and further, the second protective layer is formed in the inner region, so that moisture permeation components from the outside can be at a very high level. Can be suppressed.

また、本発明の請求項4に係る発明は、第一電極を形成する工程と、隔壁を形成する工程と、有機発光媒体層を形成する工程からなる有機EL素子基板の形成工程と、少なくともシート状接着剤層を形成する工程と、保護層を形成する工程からなる対向基板の形成工程と、前記有機EL素子基板と前記対向基板とを貼り合わる工程からなることを特徴とする請求項1〜3のいずれかに記載の有機ELディスプレイの製造方法である。   According to a fourth aspect of the present invention, there is provided an organic EL element substrate forming step comprising a step of forming a first electrode, a step of forming a partition, and a step of forming an organic light emitting medium layer, and at least a sheet 2. The method according to claim 1, further comprising a step of forming a counter substrate comprising a step of forming an adhesive layer, a step of forming a protective layer, and a step of bonding the organic EL element substrate and the counter substrate. It is a manufacturing method of the organic EL display in any one of -3.

本発明は、隔壁で区画化された第二電極と保護層との間に空隙層(空間)が形成されている為、有機EL素子基板の形成の際に生じる異物起因によりショートしている画素を、レーザーリペアする場合、第二電極上は空間を介して保護層で覆われるので、リペアが容易かつ低エネルギーで出来る。それゆえ、レーザーリペアで生じるダークスポットを必要最低限のサイズに抑えこむことが出来る。また、保護層を傷付けることなくリペアすることが可能なので、保護層から水分が浸入し、ダークスポットが拡大してしまうことはない。また、保護層はシート状接着剤層側に形成するので、保護層の形成によってEL素子がダメージを受けることもない。シート状接着剤層の端部は有機EL素子基板と接着し、更にはシート状接着剤層を覆うように第二の接着剤層、第二の保護層及び第二の接着剤層を設けることで外部からの透湿成分を抑制できる。よって、レーザーリペアで生じたダークスポットが拡大していくことを抑制できる。   In the present invention, since a void layer (space) is formed between the second electrode partitioned by the partition and the protective layer, the pixel is short-circuited due to a foreign matter generated when the organic EL element substrate is formed. When the laser is repaired, since the second electrode is covered with a protective layer through a space, the repair can be easily performed with low energy. Therefore, the dark spot generated by laser repair can be suppressed to the minimum necessary size. In addition, since it is possible to repair without damaging the protective layer, moisture does not enter from the protective layer and the dark spot does not expand. Moreover, since the protective layer is formed on the sheet-like adhesive layer side, the EL element is not damaged by the formation of the protective layer. The edge of the sheet-like adhesive layer is bonded to the organic EL element substrate, and further, a second adhesive layer, a second protective layer, and a second adhesive layer are provided so as to cover the sheet-like adhesive layer. The moisture-permeable component from the outside can be suppressed. Therefore, it is possible to suppress the expansion of dark spots generated by laser repair.

本発明によれば、レーザーリペアを行なっても駆動時間の経過に伴う輝度の低下、ダークスポットの拡大といったディスプレイの劣化現象を抑制できる有機ELディスプレイを提
供することが出来る。
ADVANTAGE OF THE INVENTION According to this invention, even if it performs laser repair, the organic EL display which can suppress the deterioration phenomenon of a display, such as the fall of the brightness | luminance accompanying progress of drive time and the expansion of a dark spot, can be provided.

本発明の一実施形態に係る有機ELディスプレイを示す断面模式図である。It is a cross-sectional schematic diagram which shows the organic electroluminescent display which concerns on one Embodiment of this invention. 本発明の一実施形態に係る有機ELディスプレイを示す断面模式図である。It is a cross-sectional schematic diagram which shows the organic electroluminescent display which concerns on one Embodiment of this invention. 本発明の一実施形態に係る有機ELディスプレイを示す断面模式図である。It is a cross-sectional schematic diagram which shows the organic electroluminescent display which concerns on one Embodiment of this invention. 従来技術の一実施形態に係る有機ELディスプレイを示す断面模式図である。It is a cross-sectional schematic diagram which shows the organic electroluminescent display which concerns on one Embodiment of a prior art.

以下、本発明に係る実施の形態について図面を参照して説明する。なお、以下の実施の形態の説明において参照する図面は、本発明の構成を説明するためのものであり、図示される各部の大きさや厚さ、寸法等は、実際のものとは異なる。また、本発明はこれらに限定されるものではない。   Hereinafter, embodiments according to the present invention will be described with reference to the drawings. Note that the drawings referred to in the following description of the embodiments are for explaining the configuration of the present invention, and the size, thickness, dimensions, and the like of each part shown in the drawings are different from the actual ones. The present invention is not limited to these.

本発明の有機ELディスプレイを、図1〜図3を参照して説明する。   The organic EL display of the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態に係る有機ELディスプレイの断面図であり、基板1、薄膜トランジスタ(TFT)2、平坦化膜層3、第一電極4、隔壁5、有機発光媒体層6、第二電極7、封止基板10、シート状接着剤層11、及び保護層12を含む。   FIG. 1 is a cross-sectional view of an organic EL display according to an embodiment of the present invention, in which a substrate 1, a thin film transistor (TFT) 2, a planarizing film layer 3, a first electrode 4, a partition wall 5, an organic light emitting medium layer 6, A second electrode 7, a sealing substrate 10, a sheet-like adhesive layer 11, and a protective layer 12 are included.

図2は、本発明の一実施形態に係る有機ELディスプレイの断面図であり、図1で示す基材の他に第二の接着剤層13を含む。   FIG. 2 is a cross-sectional view of an organic EL display according to an embodiment of the present invention, which includes a second adhesive layer 13 in addition to the substrate shown in FIG.

図3は、本発明の一実施形態に係る有機ELディスプレイの断面図であり、図2で示す基材の他に第二の保護層14を含む。   FIG. 3 is a cross-sectional view of an organic EL display according to an embodiment of the present invention, and includes a second protective layer 14 in addition to the substrate shown in FIG.

図1〜3に示すように、本発明の特徴は保護層12と第二電極7との間に空隙層20を設けることであり、この空隙層20の存在により、保護層があってもレーザーリペアが可能となる。すなわち、レーザーリペアで有機発光媒体層6に存在する異物を、低エネルギーにより保護層12を損傷することなく、空隙層に飛散させることができる。   As shown in FIGS. 1 to 3, the feature of the present invention is that a gap layer 20 is provided between the protective layer 12 and the second electrode 7. Repair is possible. That is, foreign matters existing in the organic light emitting medium layer 6 by laser repair can be scattered in the gap layer without damaging the protective layer 12 due to low energy.

本発明の有機ELディスプレイの製造プロセスは、基板1に薄膜トランジスタ(TFT)2及び平坦化膜層3を形成し、その上に第一電極4と隔壁5を形成する。次に、隔壁5に囲まれた区画内の第一電極4上に、有機発光媒体層6と第二電極7を順次形成する。なお、隔壁5の高さは第二電極7の最上面よりも高くする必要がある。   In the manufacturing process of the organic EL display of the present invention, a thin film transistor (TFT) 2 and a planarizing film layer 3 are formed on a substrate 1, and a first electrode 4 and a partition wall 5 are formed thereon. Next, the organic light emitting medium layer 6 and the second electrode 7 are sequentially formed on the first electrode 4 in the section surrounded by the partition walls 5. The height of the partition wall 5 needs to be higher than the uppermost surface of the second electrode 7.

一方、別途、封止基板10上に、少なくともシート状接着剤層11と保護層12を順次形成する。その後、前者の基板1上に形成した最上層の第二電極7側の面と、後者の封止基板10上の保護層12側の面とを貼り合わせて有機ELディスプレイを得る。上記で説明した、隔壁5の高さを第二電極7の最上面よりも高くすることにより、前記貼り合わせ時に、本発明の特徴である空隙層20を形成することができる。   On the other hand, at least a sheet-like adhesive layer 11 and a protective layer 12 are sequentially formed on the sealing substrate 10. Thereafter, the surface on the second electrode 7 side of the uppermost layer formed on the former substrate 1 and the surface on the protective layer 12 side on the latter sealing substrate 10 are bonded together to obtain an organic EL display. By making the height of the partition wall 5 higher than the uppermost surface of the second electrode 7 as described above, the void layer 20 that is a feature of the present invention can be formed at the time of bonding.

以下、有機ELディスプレイを構成する各部の材料について説明する。   Hereinafter, the material of each part constituting the organic EL display will be described.

(1)基板1
基板1としては絶縁性を有し寸法安定性に優れた基板であれば如何なる基板も使用することができる。例えば、ガラスや石英、ポリプロピレン、ポリエーテルサルフォン、ポリカーボネート、シクロオレフィンポリマー、ポリアリレート、ポリアミド、ポリメチルメタクリレート、ポリエチレンテレフタレート、ポリエチレンナフタレート等のプラスチックフィルムやシート、または、これらプラスチックフィルムやシートに酸化珪素、酸化ア
ルミニウム等の金属酸化物や、弗化アルミニウム、弗化マグネシウム等の金属弗化物、窒化珪素、窒化アルミニウムなどの金属窒化物、酸窒化珪素などの金属酸窒化物、アクリル樹脂やエポキシ樹脂、シリコーン樹脂、ポリエステル樹脂などの高分子樹脂膜を単層もしくは積層させた透光性基材や、アルミニウムやステンレスなどの金属箔、シート、板や、前記プラスチックフィルムやシートにアルミニウム、銅、ニッケル、ステンレスなどの金属膜を積層させた非透光性基材などを用いることができる。光取出しをどちらの面から行うかに応じて基材の透光性を選択すればよい。これらの材料からなる基板は、有機EL素子内への水分の侵入を避けるために、無機膜を形成したり、フッ素樹脂を塗布したりして、防湿処理や疎水性処理を施してあることが好ましい。特に、有機発光媒体への水分の侵入を避けるために、基板における含水率およびガス透過係数を小さくすることが好ましい。
(1) Substrate 1
Any substrate can be used as the substrate 1 as long as it has insulating properties and excellent dimensional stability. For example, plastic films and sheets such as glass, quartz, polypropylene, polyethersulfone, polycarbonate, cycloolefin polymer, polyarylate, polyamide, polymethyl methacrylate, polyethylene terephthalate, polyethylene naphthalate, etc., or oxidation to these plastic films and sheets Metal oxides such as silicon and aluminum oxide, metal fluorides such as aluminum fluoride and magnesium fluoride, metal nitrides such as silicon nitride and aluminum nitride, metal oxynitrides such as silicon oxynitride, acrylic resins and epoxy resins Translucent base material with a single layer or laminated polymer resin film such as silicone resin or polyester resin, metal foil such as aluminum or stainless steel, sheet, plate, aluminum on the plastic film or sheet It can be used um, copper, nickel, stainless steel and metal film non-translucent substrate as a laminate of such. What is necessary is just to select the translucency of a base material according to which surface light extraction is performed from. The substrate made of these materials may have been subjected to moisture-proofing treatment or hydrophobic treatment by forming an inorganic film or applying a fluororesin in order to avoid moisture intrusion into the organic EL element. preferable. In particular, in order to avoid intrusion of moisture into the organic light emitting medium, it is preferable to reduce the moisture content and gas permeability coefficient in the substrate.

(2)薄膜トランジスタ2(TFT)
また、基板1として、必要に応じて、薄膜トランジスタ(TFT)を形成した駆動用基板を用いても良い。アクティブ駆動型有機EL素子とする場合には、TFT上に、平坦化膜層3が形成してあるとともに、平坦化膜層上に有機EL素子の第一電極4が設けられており、かつ、TFTと第一電極とが平坦化膜層に設けたコンタクトホールを介して電気接続してあることが好ましい。このように構成することにより、TFTと、有機EL素子との間で、優れた電気導電性を得ることができる。基板上に設ける薄膜トランジスタは、公知の薄膜トランジスタを用いることができる。具体的には、主として、ソース/ドレイン領域及びチャネル領域が形成される活性層、ゲート絶縁膜及びゲート電極から構成される薄膜トランジスタが挙げられる。薄膜トランジスタの構造としては、特に限定されるものではなく、例えば、スタガ型、逆スタガ型、トップゲート型、コプレーナ型等が挙げられる。
(2) Thin film transistor 2 (TFT)
Further, as the substrate 1, a driving substrate on which a thin film transistor (TFT) is formed may be used as necessary. In the case of an active drive organic EL element, the planarization film layer 3 is formed on the TFT, the first electrode 4 of the organic EL element is provided on the planarization film layer, and The TFT and the first electrode are preferably electrically connected via a contact hole provided in the planarizing film layer. By comprising in this way, the outstanding electroconductivity can be obtained between TFT and an organic EL element. As the thin film transistor provided over the substrate, a known thin film transistor can be used. Specifically, a thin film transistor mainly including an active layer in which a source / drain region and a channel region are formed, a gate insulating film, and a gate electrode can be given. The structure of the thin film transistor is not particularly limited, and examples thereof include a staggered type, an inverted staggered type, a top gate type, and a coplanar type.

(3)平坦化膜層3
平坦化膜層3の材料についてはSiO、スピンオンガラス、SiN(Si)、TaO(Ta)等の無機材料、ポリイミド樹脂、アクリル樹脂、フォトレジスト材料、ブラックマトリックス材料等の有機材料等を用いることができる。これらの材料に合わせてスピンコーティング、CVD、蒸着法等を選択できる。必要に応じて、平坦化膜層として感光性樹脂を用いフォトリソグラフィーの手法により、あるいは一旦全面に平坦化層を形成後、下層の薄膜トランジスタ120に対応した位置にドライエッチング、ウェットエッチング等でコンタクトホールを形成する。コンタクトホールはその後導電性材料で埋めて平坦化層上層に形成される画素電極との導通を図る。平坦化層の厚みは下層のTFT、コンデンサ、配線等を覆うことができればよく、厚みは数μm、例えば3μm程度あればよい。
(3) Planarization film layer 3
As for the material of the planarizing film layer 3, inorganic materials such as SiO 2 , spin-on glass, SiN (Si 3 N 4 ), TaO (Ta 2 O 5 ), polyimide resin, acrylic resin, photoresist material, black matrix material, etc. An organic material or the like can be used. Spin coating, CVD, vapor deposition, etc. can be selected according to these materials. If necessary, contact holes can be formed by dry etching, wet etching, or the like at a position corresponding to the lower layer thin film transistor 120 by photolithography using a photosensitive resin as a planarizing film layer, or once a planarizing layer is formed on the entire surface. Form. The contact hole is then filled with a conductive material to establish conduction with the pixel electrode formed in the upper layer of the planarization layer. The thickness of the planarizing layer is not limited as long as it can cover the lower TFT, capacitor, wiring, etc., and the thickness may be several μm, for example, about 3 μm.

(4)第一電極4
基板1の上に第一電極4を成膜し、必要に応じてパターニングをおこなう。本発明では第一電極は隔壁によって区画され、各画素に対応した画素電極となる。第一電極の材料としては、ITO(インジウムスズ複合酸化物)やインジウム亜鉛複合酸化物、亜鉛アルミニウム複合酸化物などの金属複合酸化物や、金、白金などの金属材料や、これら金属酸化物や金属材料の微粒子をエポキシ樹脂やアクリル樹脂などに分散した微粒子分散膜を、単層もしくは積層したものをいずれも使用することができる。第一電極を陽極とする場合にはITOなど仕事関数の高い材料を選択することが好ましい。下方から光を取り出す、いわゆるボトムエミッション構造の場合は透光性のある材料を選択する必要がある。必要に応じて、第一電極の配線抵抗を低くするために、銅やアルミニウムなどの金属材料を補助電極として併設してもよい。第一電極の形成方法としては、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法などの乾式成膜法や、グラビア印刷法、スクリーン印刷法などの湿式成膜法などを用いること
ができる。第一電極のパターニング方法としては、材料や成膜方法に応じて、マスク蒸着法、フォトリソグラフィー法、ウェットエッチング法、ドライエッチング法などの既存のパターニング法を用いることができる。基板としてTFTを形成した物を用いる場合は下層の画素に対応して導通を図ることができるように形成する。
(4) First electrode 4
The first electrode 4 is formed on the substrate 1 and patterned as necessary. In the present invention, the first electrode is partitioned by a partition wall and becomes a pixel electrode corresponding to each pixel. As materials for the first electrode, metal composite oxides such as ITO (indium tin composite oxide), indium zinc composite oxide and zinc aluminum composite oxide, metal materials such as gold and platinum, these metal oxides, Either a single layer or a laminate of fine particle dispersion films in which fine particles of a metal material are dispersed in an epoxy resin or an acrylic resin can be used. When the first electrode is used as an anode, it is preferable to select a material having a high work function such as ITO. In the case of a so-called bottom emission structure in which light is extracted from below, it is necessary to select a light-transmitting material. If necessary, a metal material such as copper or aluminum may be provided as an auxiliary electrode in order to reduce the wiring resistance of the first electrode. Depending on the material, the first electrode can be formed by a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, a sputtering method, a dry film forming method, a gravure printing method, or a screen printing method. A wet film forming method such as a method can be used. As a patterning method for the first electrode, an existing patterning method such as a mask vapor deposition method, a photolithography method, a wet etching method, or a dry etching method can be used depending on the material and the film forming method. In the case of using a substrate on which a TFT is formed as a substrate, it is formed so that conduction can be achieved corresponding to a lower pixel.

(5)隔壁5
次に、隔壁5は画素に対応した発光領域を区画するように格子状に形成される。また、隔壁は画素電極である第一電極4の端部を覆うように形成されるのが好ましい。一般的にアクティブマトリクス駆動型の表示装置は各画素(サブピクセル)に対して画素電極が形成され、それぞれの画素ができるだけ広い面積を占有しようとするため、画素電極の端部を覆うように形成される隔壁5の最も好ましい形状は各画素電極を最短距離で区切る格子状を基本とする。隔壁5の形成方法としては、従来と同様、基板上に無機膜を一様に形成し、レジストでマスキングした後、ドライエッチングを行う方法や、基板上に感光性樹脂を積層し、フォトリソ法により所定のパターンとする方法が挙げられる。必要に応じて撥水剤を添加したり、プラズマやUVを照射して形成後にインクに対する撥液性を付与することもできる。隔壁5の好ましい高さは0.1μm〜10μmであり、より好ましくは0.5μm〜2μmである。
(5) Bulkhead 5
Next, the partition walls 5 are formed in a lattice shape so as to partition the light emitting regions corresponding to the pixels. Further, the partition wall is preferably formed so as to cover the end portion of the first electrode 4 which is a pixel electrode. In general, in an active matrix drive type display device, a pixel electrode is formed for each pixel (sub-pixel), and each pixel tries to occupy as large an area as possible so that it covers the end of the pixel electrode. The most preferable shape of the partition wall 5 is basically a lattice shape that divides each pixel electrode by the shortest distance. As a method for forming the partition walls 5, as in the past, an inorganic film is uniformly formed on a substrate, masked with a resist, and then dry etching is performed, or a photosensitive resin is laminated on the substrate, and a photolithographic method is used. There is a method of making a predetermined pattern. If necessary, a water repellent can be added, or plasma or UV can be irradiated to impart liquid repellency to the ink after formation. The preferable height of the partition wall 5 is 0.1 μm to 10 μm, and more preferably 0.5 μm to 2 μm.

(6)有機発光媒体層6
次に、有機発光媒体層6を形成する。本発明における有機発光媒体層6としては、発光物質を含む単層膜、あるいは多層膜で形成することができる。多層膜で形成する場合の構成例としては、正孔輸送層、電子輸送性発光層または正孔輸送性発光層、電子輸送層からなる2層構成や正孔輸送層、発光層、電子輸送層からなる3層構成、さらには、必要に応じて正孔(電子)注入機能と正孔(電子)輸送機能を分けたり、正孔(電子)の輸送をプロックする層などを挿入することにより、さらに多層形成することがより好ましい。なお、本発明中の有機発光層とは有機発光材料を含む層を指し、電荷輸送層とは正孔輸送層等それ以外の発光効率を上げるために形成されている層を指す。
(6) Organic light emitting medium layer 6
Next, the organic light emitting medium layer 6 is formed. The organic light emitting medium layer 6 in the present invention can be formed of a single layer film or a multilayer film containing a light emitting substance. Examples of the configuration in the case of forming a multilayer film include a hole transport layer, an electron transporting light emitting layer or a hole transporting light emitting layer, a two-layer structure comprising an electron transport layer, a hole transport layer, a light emitting layer, and an electron transport layer. By further separating the hole (electron) injection function and the hole (electron) transport function as necessary, or by inserting a layer that blocks the transport of holes (electrons), if necessary, It is more preferable to form a multilayer. In addition, the organic light emitting layer in the present invention refers to a layer containing an organic light emitting material, and the charge transport layer refers to a layer formed to increase other light emission efficiency such as a hole transport layer.

有機発光媒体層6に用いる正孔輸送材料の例としては、銅フタロシアニン、テトラ(t−ブチル)銅フタロシアニン等の金属フタロシアニン類及び無金属フタロシアニン類、キナクリドン化合物、1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン、N,N’−ジ(1−ナフチル)−N,N’−ジフェニル−1,1’−ビフェニル−4,4’−ジアミン等の芳香族アミン系低分子正孔注入輸送材料や、ポリアニリン、ポリチオフェン、ポリビニルカルバゾール、ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸との混合物などの高分子正孔輸送材料、ポリチオフェンオリゴマー材料、CuO,Cr,Mn,FeOx,NiO,CoO,Pr,AgO,MoO,Bi,ZnO,TiO,SnO,ThO,V,Nb,Ta,MoO,WO,MnOなどの無機材料、その他既存の正孔輸送材料の中から選ぶことができる。 Examples of the hole transport material used for the organic light emitting medium layer 6 include metal phthalocyanines and metal-free phthalocyanines such as copper phthalocyanine and tetra (t-butyl) copper phthalocyanine, quinacridone compounds, 1,1-bis (4-di -P-tolylaminophenyl) cyclohexane, N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1'-biphenyl-4,4'-diamine, N, N'-di ( 1-naphthyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine and other aromatic amine-based low-molecular hole injection / transport materials, polyaniline, polythiophene, polyvinylcarbazole, poly (3 , 4-ethylenedioxythiophene) and a mixture of polystyrene sulfonic acid and other polymer hole transport materials, polythiophene oligomer materials, Cu 2 O, C r 2 O 3, Mn 2 O 3, FeOx, NiO, CoO, Pr 2 O 3, Ag 2 O, MoO 2, Bi 2 O 3, ZnO, TiO 2, SnO 2, ThO 2, V 2 O 5, Nb It can be selected from inorganic materials such as 2 O 5 , Ta 2 O 5 , MoO 3 , WO 3 and MnO 2 and other existing hole transport materials.

有機発光媒体層6の発光材料が高分子材料の場合には、発光層と正孔輸送層の間又は正孔輸送層と電子輸送層の間に、正孔の輸送性を高め、陰極からの電子をブロックする機能を持つインターレイヤ層を形成することが好ましい。インターレイヤ層に用いる材料として、ポリビニルカルバゾール若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリアリーレン誘導体、アリールアミン誘導体、トリフェニルジアミン誘導体などの、芳香族アミンを含むポリマーなどが挙げられる。これらの材料は溶媒に溶解または分散させ、スピンコート法等を用いた各種塗布方法や凸版印刷方法を用いて形成することができる。   When the light emitting material of the organic light emitting medium layer 6 is a polymer material, the hole transport property is increased between the light emitting layer and the hole transport layer or between the hole transport layer and the electron transport layer, It is preferable to form an interlayer layer having a function of blocking electrons. Examples of materials used for the interlayer layer include polymers containing aromatic amines such as polyvinyl carbazole or derivatives thereof, polyarylene derivatives having aromatic amines in the side chain or main chain, arylamine derivatives, and triphenyldiamine derivatives. . These materials can be dissolved or dispersed in a solvent and formed using various coating methods such as spin coating or letterpress printing.

有機発光媒体層6に用いる発光材料としては、9,10−ジアリールアントラセン誘導体、ピレン、コロネン、ペリレン、ルブレン、1,1,4,4−テトラフェニルブタジエン、トリス(8−キノリノラート)アルミニウム錯体、トリス(4−メチル−8−キノリノラート)アルミニウム錯体、ビス(8−キノリノラート)亜鉛錯体、トリス(4−メチル−5−トリフルオロメチル−8−キノリノラート)アルミニウム錯体、トリス(4−メチル−5−シアノ−8−キノリノラート)アルミニウム錯体、ビス(2−メチル−5−トリフルオロメチル−8−キノリノラート)[4−(4−シアノフェニル)フェノラート]アルミニウム錯体、ビス(2−メチル−5−シアノ−8−キノリノラート)[4−(4−シアノフェニル)フェノラート]アルミニウム錯体、トリス(8−キノリノラート)スカンジウム錯体、ビス〔8−(パラ−トシル)アミノキノリン〕亜鉛錯体及びカドミウム錯体、1,2,3,4−テトラフェニルシクロペンタジエン、ペンタフェニルシクロペンタジエン、ポリ−2,5−ジヘプチルオキシ−パラ−フェニレンビニレン、クマリン系蛍光体、ペリレン系蛍光体、ピラン系蛍光体、アンスロン系蛍光体、ポルフィリン系蛍光体、キナクリドン系蛍光体、N,N’−ジアルキル置換キナクリドン系蛍光体、ナフタルイミド系蛍光体、N,N’−ジアリール置換ピロロピロール系蛍光体等、Ir錯体等の燐光性発光体などの低分子系発光材料や、ポリフルオレン、ポリパラフェニレンビニレン、ポリチオフェン、ポリスピロなどの高分子材料や、これら高分子材料に前記低分子材料の分散または共重合した材料や、その他既存の蛍光発光材料や燐光発光材料を用いることができる。   The light emitting material used for the organic light emitting medium layer 6 includes 9,10-diarylanthracene derivatives, pyrene, coronene, perylene, rubrene, 1,1,4,4-tetraphenylbutadiene, tris (8-quinolinolato) aluminum complex, tris. (4-methyl-8-quinolinolato) aluminum complex, bis (8-quinolinolato) zinc complex, tris (4-methyl-5-trifluoromethyl-8-quinolinolato) aluminum complex, tris (4-methyl-5-cyano-) 8-quinolinolato) aluminum complex, bis (2-methyl-5-trifluoromethyl-8-quinolinolato) [4- (4-cyanophenyl) phenolate] aluminum complex, bis (2-methyl-5-cyano-8-quinolinolato) ) [4- (4-Cyanophenyl) phenolate Aluminum complex, tris (8-quinolinolato) scandium complex, bis [8- (para-tosyl) aminoquinoline] zinc complex and cadmium complex, 1,2,3,4-tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, poly- 2,5-diheptyloxy-para-phenylene vinylene, coumarin phosphor, perylene phosphor, pyran phosphor, anthrone phosphor, porphyrin phosphor, quinacridone phosphor, N, N′-dialkyl substitution Low molecular weight light emitting materials such as quinacridone phosphors, naphthalimide phosphors, N, N′-diaryl-substituted pyrrolopyrrole phosphors, phosphorescent phosphors such as Ir complexes, polyfluorenes, polyparaphenylene vinylenes, Polymer materials such as polythiophene and polyspiro, and these polymers The materials and dispersed or copolymerization of low molecular weight material, it is possible to use other conventional fluorescent light emitting material or phosphorescent material cost.

有機発光媒体層6に用いる電子輸送材料の例としては、2−(4−ビフェニルイル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール、オキサジアゾール誘導体やビス(10−ヒドロキシベンゾ[h]キノリノラート)ベリリウム錯体、トリアゾール化合物等を用いることができる。また、これらの電子輸送材料に、ナトリウムやバリウム、リチウムといった仕事関数が低いアルカリ金属、アルカリ土類金属を少量ドープすることにより、電子注入層としてもよい。   Examples of the electron transport material used for the organic light emitting medium layer 6 include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, 2,5-bis. (1-naphthyl) -1,3,4-oxadiazole, an oxadiazole derivative, a bis (10-hydroxybenzo [h] quinolinolato) beryllium complex, a triazole compound, or the like can be used. Alternatively, these electron transport materials may be used as an electron injection layer by doping a small amount of alkali metal or alkaline earth metal having a low work function such as sodium, barium, or lithium.

有機発光媒体層6の厚さは、単層または積層により形成する場合においても、1μm以下であり、好ましくは0.05〜0.2μm程度である。有機発光媒体層の形成方法としては、材料に応じて、真空蒸着法や、スリットコート、スピンコート、スプレーコート、ノズルコート、フレキソ、グラビア、マイクログラビア、凹版オフセットなどのコーティング法や印刷法、インクジェット法などを用いることができる。   The thickness of the organic light emitting medium layer 6 is 1 μm or less, preferably about 0.05 to 0.2 μm, even when formed by a single layer or a stacked layer. Depending on the material, the organic luminescent medium layer can be formed by vacuum deposition, coating, printing such as slit coating, spin coating, spray coating, nozzle coating, flexo, gravure, micro gravure, intaglio offset, inkjet, etc. The method etc. can be used.

(7)第二電極7
次に、第二電極7を形成する。第二電極を陰極とする場合には有機発光媒体層6への電子注入効率の高い、仕事関数の低い物質を用いる。具体的にはMg,Al,Yb等の金属単体を用いたり、発光媒体と接する界面にLiや酸化Li,LiF等の化合物を1nm程度挟んで、安定性・導電性の高いAlやCuを積層して用いてもよい。または電子注入効率と安定性を両立させるため、仕事関数が低いLi,Mg,Ca,Sr,La,Ce,Er,Eu,Sc,Y,Yb等の金属1種以上と、安定なAg,Al,Cu等の金属元素との合金系を用いてもよい。具体的にはMgAg,AlLi,CuLi等の合金が使用できる。第二電極側から光を取り出す、いわゆるトップエミッション構造とする場合には透光性を有する材料を選択することが好ましい。第二電極7の形成方法は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法を用いることができる。第二電極の厚さに特に制限はないが、50nm〜1000nm程度が望ましい。
(7) Second electrode 7
Next, the second electrode 7 is formed. When the second electrode is used as a cathode, a substance having a high work efficiency of electron injection into the organic light emitting medium layer 6 and a low work function is used. Specifically, a single metal such as Mg, Al, or Yb is used, or a compound such as Li, oxidized Li, or LiF is sandwiched by about 1 nm at the interface contacting the light emitting medium, and Al or Cu having high stability and conductivity is laminated. May be used. Alternatively, in order to achieve both electron injection efficiency and stability, one or more metals such as Li, Mg, Ca, Sr, La, Ce, Er, Eu, Sc, Y, and Yb having a low work function and stable Ag, Al An alloy system with a metal element such as Cu or Cu may be used. Specifically, alloys such as MgAg, AlLi, and CuLi can be used. In the case of a so-called top emission structure in which light is extracted from the second electrode side, it is preferable to select a light-transmitting material. As a method for forming the second electrode 7, a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or a sputtering method can be used depending on the material. Although there is no restriction | limiting in particular in the thickness of a 2nd electrode, About 50 nm-1000 nm are desirable.

(10)封止基板10
封止基板10としては、水分や酸素の透過性が低い基材である必要がある。材料の一例
として、アルミナ、窒化珪素、窒化ホウ素等のセラミックス、無アルカリガラス、アルカリガラス等のガラス、石英、アルミニウムやステンレスなどの金属箔、耐湿性フィルムを挙げることができる。耐湿性フィルムの例として、プラスチック基材の両面にSiOxをCVD法で形成したフィルムや、透過性の小さいフィルムと吸水性のあるフィルムまたは吸水剤を塗布した重合体フィルムなどがあり、耐湿性フィルムの水蒸気透過率は、10−6g/m/day以下であることが好ましい。
(10) Sealing substrate 10
The sealing substrate 10 needs to be a base material having low moisture and oxygen permeability. Examples of the material include ceramics such as alumina, silicon nitride, and boron nitride, glass such as alkali-free glass and alkali glass, metal foil such as quartz, aluminum, and stainless steel, and moisture-resistant film. Examples of moisture-resistant films include films formed by CVD of SiOx on both sides of plastic substrates, films with low permeability and water-absorbing films, or polymer films coated with a water-absorbing agent. The water vapor transmission rate is preferably 10 −6 g / m 2 / day or less.

(11)シート状接着剤層11
シート状接着剤層11とは、常温(25℃程度)では非流動性を示し、且つ、加熱すると50℃〜100℃の範囲で軟化点・流動性を発現し、シート状に成形された接着性封入組成物を指す。シート接着剤層11として例えばエポキシ樹脂にジシアンジアミド、ジアミノジフェニルスルホン、多価フェノール、イミダゾール等の潜在性硬化剤を配合した接着性封入組成物、水素添加環状オレフィン系ポリマー、ポリイソブチレン樹脂、光硬化型樹脂、及び光重合開始剤を配合した接着性封入用組成物などが挙げられる。シート状接着剤層は例えばフィルムとして適切な基板にコーティングすることが可能である。基材を成形のために一時的に使用してもよく、又は基材は接着性封入用組成物を使用するまで一体化されてもよい。いずれの場合も、基板の表面を、例えばシリコーン樹脂で放出処理することが可能である。コーティングプロセスは既知の技術、例えば、ダイコーティング、スピンコーティング、ドクターブレードコーティング、カレンダー工法、押出成形等を用いて実施することができる。シート状接着剤層は、有機EL素子基板上の第二電極と対向配置する領域に後で説明する保護層12を形成し、有機EL素子基板と接着する端部には保護層12を形成しない。保護層をパターン形成したシート状接着剤層は、保護層が第二電極と向かい合うように有機EL素子基板上にラミネート転写される。或いはピック&プレースして真空ラミネートしても良い。
(11) Sheet adhesive layer 11
The sheet-like adhesive layer 11 is non-flowable at room temperature (about 25 ° C.) and exhibits a softening point and fluidity in the range of 50 ° C. to 100 ° C. when heated, and is formed into a sheet shape. Refers to an encapsulating composition. As the sheet adhesive layer 11, for example, an adhesive encapsulating composition in which a latent curing agent such as dicyandiamide, diaminodiphenylsulfone, polyhydric phenol, and imidazole is mixed with an epoxy resin, a hydrogenated cyclic olefin-based polymer, a polyisobutylene resin, a photocurable type Examples thereof include an adhesive encapsulating composition containing a resin and a photopolymerization initiator. The sheet-like adhesive layer can be coated on a suitable substrate as a film, for example. The substrate may be temporarily used for molding, or the substrate may be integrated until the adhesive encapsulating composition is used. In either case, it is possible to release the surface of the substrate with, for example, a silicone resin. The coating process can be performed using known techniques such as die coating, spin coating, doctor blade coating, calendering, extrusion and the like. The sheet-like adhesive layer forms a protective layer 12 which will be described later in a region facing the second electrode on the organic EL element substrate, and does not form the protective layer 12 at the end bonded to the organic EL element substrate. . The sheet-like adhesive layer on which the protective layer is patterned is laminated and transferred onto the organic EL element substrate so that the protective layer faces the second electrode. Alternatively, vacuum lamination may be performed by picking and placing.

(12)保護層12
保護層12は電気絶縁性を有し、水分、酸素および低分子成分に対するバリア性を有する材料で形成される。例えば、酸化ケイ素、酸化アルミ、酸化マグネシウム、酸化亜鉛、酸化錫、インジウム錫オキサイド(ITO)及びチッ化ケイ素からなる群から選ばれる少なくとも1種以上の無機材料を使用できる。保護層の形成方法としては、スパッタ、CVD、及び蒸着などを用いることができる。本発明では、保護層(無機膜)をシート状接着剤層上に形成することから、保護層は、低温、かつ短時間で形成可能であること、またガスバリア性能を確実にするために、1μm以上の十分な膜厚を得ることが必要である。したがって、本発明では低温CVDにより形成された酸化ケイ素あるいは窒化ケイ素を含む保護層が好ましい。
(12) Protective layer 12
The protective layer 12 has an electrical insulating property and is formed of a material having a barrier property against moisture, oxygen, and low molecular components. For example, at least one inorganic material selected from the group consisting of silicon oxide, aluminum oxide, magnesium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), and silicon nitride can be used. As a method for forming the protective layer, sputtering, CVD, vapor deposition, or the like can be used. In the present invention, since the protective layer (inorganic film) is formed on the sheet-like adhesive layer, the protective layer can be formed at a low temperature in a short time, and in order to ensure gas barrier performance, 1 μm It is necessary to obtain a sufficient film thickness as described above. Therefore, in the present invention, a protective layer containing silicon oxide or silicon nitride formed by low-temperature CVD is preferable.

(13)第二の接着剤層13
第二の接着剤層13はシート状接着剤層を覆うように形成し、第二の接着剤層を介して前記有機EL素子基板と前記対向基板とを貼り合わせる。第二の接着剤層は例えば、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型シール剤、2−シアノアクリル酸エステルなどの湿気硬化型等の接着剤層、エポキシ系などの熱及び化学硬化型(二液混合)等の接着剤層、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤層等を挙げることが出来る。第二の接着剤層を使用して封止基板と有機EL素子基板とを接着する場合、貼合安定性、貼合部内への気泡混入防止、可撓性封止基板の平面性保持等を考慮し、10〜1×10−5Paの減圧条件で行うことが好ましい。
(13) Second adhesive layer 13
The second adhesive layer 13 is formed so as to cover the sheet-like adhesive layer, and the organic EL element substrate and the counter substrate are bonded to each other through the second adhesive layer. The second adhesive layer may be, for example, an acrylic acid oligomer, a photocuring and thermosetting sealant having a reactive vinyl group of a methacrylic acid oligomer, or a moisture curable adhesive layer such as 2-cyanoacrylate. An epoxy-based heat- and chemical-curing type (two-component mixture) adhesive layer, a cationic curing type ultraviolet-curing epoxy resin adhesive layer, and the like. When bonding the sealing substrate and the organic EL element substrate using the second adhesive layer, the bonding stability, the prevention of air bubbles from being mixed into the bonding portion, the flatness of the flexible sealing substrate, etc. Considering this, it is preferable to carry out under reduced pressure conditions of 10 to 1 × 10 −5 Pa.

(14)第二の保護層14
第二の保護層はシート状接着剤層11を覆うように形成し、第二の接着剤層13を介して前記有機EL素子基板と前記対向基板とを貼り合わせる。第二の保護層14は第一の保
護層と同様な材料を使用することが出来る。また、膜厚も第一の保護層同様、ガスバリア性能を確実にするために1μm以上が望ましい。
(14) Second protective layer 14
The second protective layer is formed so as to cover the sheet-like adhesive layer 11, and the organic EL element substrate and the counter substrate are bonded together via the second adhesive layer 13. The second protective layer 14 can use the same material as the first protective layer. Also, the film thickness is desirably 1 μm or more in order to ensure the gas barrier performance as in the first protective layer.

以下、実施例にて本発明の詳細な説明とする。   Hereinafter, the present invention will be described in detail by way of examples.

<実施例1>
基板1上に設けられた薄膜トランジスタと、画素電極(第一電極4)とを備えた厚さ0.7mmのアクティブマトリクス基板を用いた。基板サイズは対角5インチ、画素数は320×240である。画素電極の端部を被覆し画素を区画するような形状で隔壁5を形成した。隔壁5は、日本ゼオン社製、商品名「ZWD6216−6」で表示されるポジレジストをスピンコータ法を用いて基板全面に高さ(厚み)2μmで形成した。その後、フォトリソグラフィ法を用いて、幅40μmの隔壁5を形成した。これによりサブピクセル数960×240ドット、0.12mm×0.36mmピッチの画素領域が区画された。
<Example 1>
An active matrix substrate having a thickness of 0.7 mm provided with a thin film transistor provided on the substrate 1 and a pixel electrode (first electrode 4) was used. The substrate size is 5 inches diagonal and the number of pixels is 320 × 240. A partition wall 5 was formed so as to cover the end of the pixel electrode and partition the pixel. The partition wall 5 was formed by forming a positive resist represented by a trade name “ZWD 6216-6” manufactured by Nippon Zeon Co., Ltd. with a height (thickness) of 2 μm on the entire surface of the substrate using a spin coater method. Thereafter, a partition wall 5 having a width of 40 μm was formed by photolithography. As a result, a pixel region having a sub-pixel number of 960 × 240 dots and a pitch of 0.12 mm × 0.36 mm was defined.

次に、画素電極上に正孔輸送層を成膜した。正孔輸送層には、厚さ50nmの酸化モリブデンを用いて、真空蒸着法のシャドーマスク法でパターン成膜した。   Next, a hole transport layer was formed on the pixel electrode. For the hole transport layer, a 50 nm thick molybdenum oxide film was used to form a pattern by a shadow mask method using a vacuum deposition method.

次に、隔壁に挟まれた画素電極の真上に、ラインパターンに合わせてインターレイヤ層を凸版印刷法で印刷を行った。インターレイヤ層の材料であるポリビニルカルバゾール誘導体を濃度0.5%になるようにトルエンに溶解させたインキを用いて、印刷を行った。印刷、乾燥後のインターレイヤ層の膜厚は10nmとなった。   Next, the interlayer layer was printed by a relief printing method in line with the line pattern, directly above the pixel electrode sandwiched between the partition walls. Printing was performed using an ink in which a polyvinyl carbazole derivative, which is a material of the interlayer layer, was dissolved in toluene so as to have a concentration of 0.5%. The film thickness of the interlayer layer after printing and drying was 10 nm.

次に、隔壁に挟まれた画素電極の真上に、ラインパターンに合わせて有機発光層を凸版印刷法で印刷を行った。有機発光層の材料であるポリフェニレンビニレン誘導体を濃度1%になるようにトルエンに溶解させた有機発光インキを用いて、印刷を行った。印刷、乾燥後の有機発光層の膜厚は80nmとなった。   Next, an organic light emitting layer was printed by a relief printing method in accordance with the line pattern directly above the pixel electrode sandwiched between the partition walls. Printing was performed using an organic light-emitting ink in which a polyphenylene vinylene derivative, which is a material of the organic light-emitting layer, was dissolved in toluene to a concentration of 1%. The thickness of the organic light emitting layer after printing and drying was 80 nm.

次に、対向電極(第二電極7)として真空蒸着法でカルシウム膜をメタルマスクを用いて厚み20nmで成膜し、アルミニウム膜をメタルマスクを用いて厚み150nmで成膜した。   Next, as a counter electrode (second electrode 7), a calcium film was formed with a thickness of 20 nm using a metal mask by a vacuum deposition method, and an aluminum film was formed with a thickness of 150 nm using a metal mask.

次に、シート状接着剤層11として厚さ20μmの紫外線硬化型シート状接着剤層(スリーボンド社製、TB1630)を使用した。シート状接着剤層は基材フィルム/接着層/セパレートフィルムの3層構成からなり、セパレートフィルムを剥離した後、CVD装置に仕込み、メタルマスクを接着層表面から2mm浮かした状態でSiNxを1μm成膜した。メタルマスクの開口部は、第二電極の開口部より上下左右1mm大きいものを使用した。SiNx膜は全圧:300Pa、電力:1.2kW、SiHガス:100sccm、NHガス:0.02sLm、Nガス:0.8sLmの条件で行った。 Next, as the sheet-like adhesive layer 11, an ultraviolet curable sheet-like adhesive layer (TB1630, manufactured by Three Bond Co., Ltd.) having a thickness of 20 μm was used. The sheet-like adhesive layer consists of three layers: base film / adhesive layer / separate film. After the separation film is peeled off, it is loaded into a CVD device and SiNx is formed to 1 μm with the metal mask floating 2 mm above the adhesive layer surface. Filmed. The opening of the metal mask was 1 mm larger than the opening of the second electrode. The SiNx film was formed under the conditions of total pressure: 300 Pa, power: 1.2 kW, SiH 4 gas: 100 sccm, NH 3 gas: 0.02 sLm, N 2 gas: 0.8 sLm.

次に第二電極まで形成した有機EL素子基板と、SiNx膜をパターン成膜したシート状接着剤層をN雰囲気下で貼り合せ、熱ローラーを用いて温度85℃、圧力0.1MPa、速度5mm/secの条件で熱圧着した。 Next, the organic EL element substrate formed up to the second electrode and the sheet-like adhesive layer formed by patterning the SiNx film are bonded together in an N 2 atmosphere, and the temperature is 85 ° C., the pressure is 0.1 MPa, the speed is set using a heat roller. Thermocompression bonding was performed under the condition of 5 mm / sec.

次にシート状接着剤層の基材フィルムを剥離した後、封止基板として用いた厚さ0.7mmの無アルカリガラス(日本電気硝子社製、OA10G)と貼り合せた。貼り合せにはダイヤフラム式真空ラミネート装置を用い、温度:90℃、加圧5分の条件で行った。   Next, after peeling off the base film of the sheet-like adhesive layer, it was bonded to a non-alkali glass (OA10G, manufactured by Nippon Electric Glass Co., Ltd.) having a thickness of 0.7 mm used as a sealing substrate. For the bonding, a diaphragm type vacuum laminator was used, and the temperature was 90 ° C. and the pressure was 5 minutes.

最後に封止基板側から紫外線(365nm波長測定)を30kJ/mを照射した。 Finally, 30 kJ / m 2 was irradiated with ultraviolet rays (365 nm wavelength measurement) from the sealing substrate side.

<実施例2>
実施例1で第二電極まで形成した有機EL素子基板と、SiNx膜をパターン成膜したシート状接着剤層をN雰囲気下で貼り合せ、基材フィルムを剥離した後、紫外線(365nm波長測定)30kJ/mを照射した。その後、封止基板(無アルカリガラス、0.7mm厚)に厚さ30μmの紫外線硬化型接着剤層(長瀬産業社製、XNR5516Z)をスクリーン印刷で形成したものと真空貼り合せを行った。その後、紫外線6000mJ/cm(365nm波長測定)を照射した。
<Example 2>
The organic EL element substrate formed up to the second electrode in Example 1 and the sheet-like adhesive layer formed by patterning the SiNx film were bonded together in an N 2 atmosphere, and the base film was peeled off, followed by ultraviolet light (365 nm wavelength measurement). ) 30 kJ / m 2 was irradiated. Thereafter, vacuum sealing was performed on a sealing substrate (non-alkali glass, 0.7 mm thick) with a 30 μm-thick UV curable adhesive layer (XNR5516Z, manufactured by Nagase Sangyo Co., Ltd.) formed by screen printing. Then, ultraviolet rays 6000 mJ / cm 2 (365 nm wavelength measurement) was irradiated.

<実施例3>
実施例1で第二電極まで形成した有機EL素子基板と、SiNx膜をパターン成膜したシート状接着剤層をN雰囲気下で貼り合せ、基材フィルムを剥離した後、紫外線(365nm波長測定)30kJ/mを照射した。その後、CVD装置にてSiNx膜を2μm成膜した。SiNx膜は全圧:300Pa、電力:1.2kW、SiHガス:100sccm、NHガス:0.02sLm、Nガス:0.8sLmの条件で行った。次に封止基板(無アルカリガラス、0.7mm厚)に厚さ30μmの紫外線硬化型接着剤層(長瀬産業社製、XNR5516Z)をスクリーン印刷で形成したものと真空貼り合せを行った。その後、紫外線6000mJ/cm(365nm波長測定)を照射した。
<Example 3>
The organic EL element substrate formed up to the second electrode in Example 1 and the sheet-like adhesive layer formed by patterning the SiNx film were bonded together in an N 2 atmosphere, and the base film was peeled off, followed by ultraviolet light (365 nm wavelength measurement). ) 30 kJ / m 2 was irradiated. Thereafter, a SiNx film having a thickness of 2 μm was formed using a CVD apparatus. The SiNx film was formed under the conditions of total pressure: 300 Pa, power: 1.2 kW, SiH 4 gas: 100 sccm, NH 3 gas: 0.02 sLm, N 2 gas: 0.8 sLm. Next, vacuum sealing was performed on a sealing substrate (non-alkali glass, 0.7 mm thick) having a 30 μm-thick UV-curable adhesive layer (XNR5516Z, manufactured by Nagase Sangyo Co., Ltd.) formed by screen printing. Then, ultraviolet rays 6000 mJ / cm 2 (365 nm wavelength measurement) was irradiated.

<比較例1>
実施例1で第二電極まで形成した後、第二電極を覆うようにCVD装置にてSiNx膜を2μm成膜した。SiNx膜は全圧:300Pa、電力:1.2kW、SiHガス:100sccm、NHガス:0.02sLm、Nガス:0.8sLmの条件で行った。次に封止基板(無アルカリガラス、0.7mm厚)に厚さ30μmの紫外線硬化型接着剤層(長瀬産業社製、XNR5516Z)をスクリーン印刷で形成したものと真空貼り合せを行った。その後、紫外線6000mJ/cm(365nm波長測定)を照射した。
<Comparative Example 1>
After forming up to the second electrode in Example 1, a SiNx film having a thickness of 2 μm was formed by a CVD apparatus so as to cover the second electrode. The SiNx film was formed under the conditions of total pressure: 300 Pa, power: 1.2 kW, SiH 4 gas: 100 sccm, NH 3 gas: 0.02 sLm, N 2 gas: 0.8 sLm. Next, vacuum sealing was performed on a sealing substrate (non-alkali glass, 0.7 mm thick) having a 30 μm-thick UV-curable adhesive layer (XNR5516Z, manufactured by Nagase Sangyo Co., Ltd.) formed by screen printing. Then, ultraviolet rays 6000 mJ / cm 2 (365 nm wavelength measurement) was irradiated.

<評価>
実施例1〜3及び比較例1で得られた有機ELディスプレイのレーザーリペアを行なった。滅点画素で5μm以下の異物があるものに対してレーザーリペアを行なった。リペアできるまで強度をあげたレーザー照射した結果、ダークスポット(非発光部)サイズは表1のようになった。また、レーザーリペア実施後、60℃、90%RHの恒温恒湿槽に1500h放置し、ダークスポットの拡大の度合いを調べた。その結果も表1に示す。
<Evaluation>
Laser repair of the organic EL displays obtained in Examples 1 to 3 and Comparative Example 1 was performed. Laser repair was performed on the dark spot pixels having foreign matters of 5 μm or less. As a result of laser irradiation with increased intensity until repair was possible, the dark spot (non-light emitting portion) size was as shown in Table 1. Further, after laser repair, the sample was left in a constant temperature and humidity chamber at 60 ° C. and 90% RH for 1500 hours, and the degree of expansion of dark spots was examined. The results are also shown in Table 1.

<比較結果>
実施例1〜3の本発明品である有機ELディスプレイでは、初期ダークスポットサイズが小さく、恒温恒湿層に放置してもダークスポットサイズの拡大幅が小さい結果が得られ、レーザーリペアを効果的に行なうことが出来た。一方、比較例1で得られた比較例品は、初期ダークスポットサイズが大きく、実用レベルのレーザーリペアを行うことができなかった。
<Comparison result>
In the organic EL displays that are the products of the present invention of Examples 1 to 3, the initial dark spot size is small, and even when left in a constant temperature and humidity layer, the result that the width of the dark spot size is small is obtained, and laser repair is effective. I was able to do it. On the other hand, the comparative product obtained in Comparative Example 1 had a large initial dark spot size and was unable to perform practical laser repair.

1…基板
2…薄膜トランジスタ
3…平坦化膜層
4…第一電極
5…隔壁
6…有機発光媒体層
7…第二電極
10…封止基板
11…シート状接着剤層
12…保護層
13…第二の接着剤層
14…第二の保護層
20…空隙層
DESCRIPTION OF SYMBOLS 1 ... Board | substrate 2 ... Thin-film transistor 3 ... Planarization film layer 4 ... 1st electrode 5 ... Partition 6 ... Organic light emission medium layer 7 ... 2nd electrode 10 ... Sealing substrate 11 ... Sheet-like adhesive layer 12 ... Protective layer 13 ... 1st Second adhesive layer 14 ... second protective layer 20 ... void layer

Claims (4)

第一の基板の一方の面上に、パターン状に設けた第一電極と、第一電極の周辺端部を被覆する隔壁と、該隔壁内の第一電極上に設けた有機発光媒体層と、該有機発光媒体層上に第一電極に対向する位置に設けた第二電極からなる有機EL素子基板と、第二の基板の一方の面の全面上にシート状接着剤層と、それより内側の領域に保護層を順次積層してなる対向基板とを、それぞれの一方の面側とを貼り合わせてなる有機ELディスプレイであって、
(a)第二電極と保護層間に空隙層が形成され、
(b)有機EL素子基板と対向基板とが、シート状接着剤層を介して接着されている、
ことを特徴とする有機ELディスプレイ。
A first electrode provided in a pattern on one surface of the first substrate, a partition covering the peripheral edge of the first electrode, and an organic light emitting medium layer provided on the first electrode in the partition An organic EL element substrate comprising a second electrode provided at a position facing the first electrode on the organic light emitting medium layer, a sheet-like adhesive layer on the entire surface of one surface of the second substrate, and An organic EL display in which a counter substrate formed by sequentially laminating a protective layer in an inner region is bonded to one of the surfaces,
(A) a void layer is formed between the second electrode and the protective layer;
(B) The organic EL element substrate and the counter substrate are bonded via a sheet-like adhesive layer.
This is an organic EL display.
前記対向基板が、前記第二の基板の一方の全面上に第二の接着剤層、それより内側の領域に前記シート状接着剤層、さらに内側の領域に前記保護層が順次積層されてなることを特徴とする請求項1に記載の有機ELディスプレイ。   The counter substrate is formed by sequentially laminating a second adhesive layer on one whole surface of the second substrate, the sheet-like adhesive layer in an inner area, and the protective layer in an inner area. The organic EL display according to claim 1. 前記対向基板が、前記第二の基板の一方の全面上に前記第二の接着剤層、それより内側の領域に第二の保護層、さらに内側の領域に前記シート状接着剤層、さらにその内側の領域に前記保護層が順次積層されてなることを特徴とする請求項1または2に記載の有機ELディスプレイ。   The counter substrate includes the second adhesive layer on one whole surface of the second substrate, a second protective layer in an inner region, the sheet-like adhesive layer in an inner region, The organic EL display according to claim 1, wherein the protective layer is sequentially laminated in an inner region. 第一電極を形成する工程と、隔壁を形成する工程と、有機発光媒体層を形成する工程からなる有機EL素子基板の形成工程と、少なくともシート状接着剤層を形成する工程と、保護層を形成する工程からなる対向基板の形成工程と、前記有機EL素子基板と前記対向基板とを貼り合わる工程からなることを特徴とする請求項1〜3のいずれかに記載の有機ELディスプレイの製造方法。   Forming a first electrode; forming a partition; forming an organic light emitting medium layer; forming an organic EL element substrate; forming at least a sheet-like adhesive layer; and a protective layer. The manufacturing process of the organic EL display according to claim 1, comprising: a counter substrate forming step including a forming step; and a step of bonding the organic EL element substrate and the counter substrate. Method.
JP2011208722A 2011-09-26 2011-09-26 Organic el display and manufacturing method therefor Withdrawn JP2013069615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011208722A JP2013069615A (en) 2011-09-26 2011-09-26 Organic el display and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011208722A JP2013069615A (en) 2011-09-26 2011-09-26 Organic el display and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2013069615A true JP2013069615A (en) 2013-04-18

Family

ID=48475059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011208722A Withdrawn JP2013069615A (en) 2011-09-26 2011-09-26 Organic el display and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2013069615A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168660A1 (en) * 2012-05-09 2013-11-14 三菱化学株式会社 Organic el light emitting device
WO2016013656A1 (en) * 2014-07-24 2016-01-28 凸版印刷株式会社 Multilayer film, laminate, wavelength conversion sheet, backlight unit, and electroluminescent light emitting unit
EP3399567A4 (en) * 2015-12-31 2019-07-24 Dongjin Semichem Co., Ltd Organic electronic device using adhesive film encapsulation technology, and method of manufacturing same
WO2020066496A1 (en) * 2018-09-27 2020-04-02 富士フイルム株式会社 Method for producing electronic device laminate, and electronic device laminate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168660A1 (en) * 2012-05-09 2013-11-14 三菱化学株式会社 Organic el light emitting device
WO2016013656A1 (en) * 2014-07-24 2016-01-28 凸版印刷株式会社 Multilayer film, laminate, wavelength conversion sheet, backlight unit, and electroluminescent light emitting unit
US20170157906A1 (en) * 2014-07-24 2017-06-08 Toppan Printing Co., Ltd. Laminate film and laminate, and wavelength conversion sheet, backlight unit and electroluminescent light-emitting unit
EP3399567A4 (en) * 2015-12-31 2019-07-24 Dongjin Semichem Co., Ltd Organic electronic device using adhesive film encapsulation technology, and method of manufacturing same
US11005066B2 (en) 2015-12-31 2021-05-11 Dongjin Semichem Co., Ltd. Organic electronic device using adhesive film encapsulation technology, and method of manufacturing same
WO2020066496A1 (en) * 2018-09-27 2020-04-02 富士フイルム株式会社 Method for producing electronic device laminate, and electronic device laminate
JPWO2020066496A1 (en) * 2018-09-27 2021-08-30 富士フイルム株式会社 Manufacturing method of electronic device laminate and electronic device laminate
JP7112505B2 (en) 2018-09-27 2022-08-03 富士フイルム株式会社 Electronic device laminate manufacturing method and electronic device laminate

Similar Documents

Publication Publication Date Title
JP6098091B2 (en) Method for manufacturing organic electroluminescence panel
JP5526610B2 (en) Structure of organic EL display and manufacturing method thereof
JP2014203707A (en) Method of manufacturing organic el display and organic el display
JP2007066775A (en) Manufacturing method of organic el element and organic el element
JP2012209209A (en) Organic electroluminescent panel manufacturing method
JP2013077460A (en) Manufacturing method of organic el panel, organic el panel, and organic el display
JP2013069615A (en) Organic el display and manufacturing method therefor
JP2011076759A (en) Manufacturing method of organic electroluminescent panel, and passivation layer film forming mask
JP2012199207A (en) Organic electroluminescent display and method for manufacturing the same
JP2012059553A (en) Organic electroluminescence element and method for manufacturing the same
JP6064351B2 (en) Organic EL device and manufacturing method thereof
JP4736676B2 (en) Active matrix driving type organic electroluminescence display device
JP5987407B2 (en) Organic electroluminescence panel
JP2014067599A (en) Organic el display, and method of manufacturing the same
JP2007287613A (en) Organic electroluminescence element and its manufacturing method
JP2012038616A (en) Organic el element and method for manufacturing the same
JP4609135B2 (en) Method for manufacturing organic electroluminescence element
JP2011210614A (en) Organic el element and method of manufacturing the same
JP5292863B2 (en) Organic electroluminescent display device and manufacturing method thereof
JP2007095518A (en) Organic electroluminescent display
JP2001351779A (en) Manufacturing method of organic el element, and the organic el element
JP2014165261A (en) Organic light-emitting display device and manufacturing method therefor
JP6171713B2 (en) Method for manufacturing organic electroluminescence panel
JP6107200B2 (en) Sheet-like encapsulant, organic electroluminescence panel, method for producing sheet-like encapsulant, and method for producing organic electroluminescence panel
JP5678455B2 (en) Method for manufacturing organic EL element and method for manufacturing organic EL panel

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202