Nothing Special   »   [go: up one dir, main page]

JP2013068489A - Surface profiling method using multiple wavelengths and apparatus using the same - Google Patents

Surface profiling method using multiple wavelengths and apparatus using the same Download PDF

Info

Publication number
JP2013068489A
JP2013068489A JP2011206653A JP2011206653A JP2013068489A JP 2013068489 A JP2013068489 A JP 2013068489A JP 2011206653 A JP2011206653 A JP 2011206653A JP 2011206653 A JP2011206653 A JP 2011206653A JP 2013068489 A JP2013068489 A JP 2013068489A
Authority
JP
Japan
Prior art keywords
monochromatic light
light
measurement target
monochromatic
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011206653A
Other languages
Japanese (ja)
Inventor
Katsuichi Kitagawa
克一 北川
Masafumi Otsuki
真左文 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2011206653A priority Critical patent/JP2013068489A/en
Publication of JP2013068489A publication Critical patent/JP2013068489A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To overcome the wavelength constraint on height differences between adjacent pixels in a phase shift method using an optical interference method, which irradiates a target object surface with monochromatic light of a single wavelength, acquires at least three images at different distances to the target object surface, performs phase computation from a brightness value of each pixel, and profiles a three-dimensional shape using the phase values of adjacent pixels.SOLUTION: A surface profiling method comprises steps of; extracting a plurality of monochromatic light of different wavelengths from irradiation light having broadband wavelength characteristics; mixing the monochromatic light together; simultaneously irradiating a target object surface and a reference surface with the mixed monochromatic light via splitting means; acquiring a plurality of images of interference fringes, generated by the reflection from the target object surface and the reference surface returning on a same optical path, while varying the difference between the reflection path length from the target object surface and from the reference surface; decomposing the acquired plurality of images per monochromatic light; determining a plurality of surface height candidate groups from phase of each pixel obtained for each monochromatic light; and determining a height common to each group as a real height.

Description

光干渉法を用いた位相シフト法において、複数波長を同時照射し、一台のカラーカメラで撮像する表面形状測定方法および装置に関する。 The present invention relates to a surface shape measuring method and apparatus for simultaneously irradiating a plurality of wavelengths and picking up an image with one color camera in a phase shift method using an optical interference method.

従来、光干渉法を用いて、1波長の単色光を測定対象面に照射し、測定対象面までの距離を変更して、少なくとも3枚以上の画像を撮像して、各画素の輝度値から位相計算をおこない、隣接画素の位相値を用いて三次元形状を測定する位相シフト法が用いられて来た。しかし、当該測定方法では、隣接画素間の段差に波長による制約があった。   Conventionally, using a light interferometry, monochromatic light of one wavelength is irradiated onto a measurement target surface, the distance to the measurement target surface is changed, and at least three images are captured, and the luminance value of each pixel is calculated. A phase shift method has been used in which phase calculation is performed and a three-dimensional shape is measured using the phase value of adjacent pixels. However, in this measurement method, the step between adjacent pixels is limited by the wavelength.

また、上記1波長の単色光に対し、単色光の波長を順次切り換えて、各波長の輝度信号を取得し、高さ計算の際に等価波長を利用する方法も用いられていた。   In addition, a method of sequentially switching the wavelength of the monochromatic light with respect to the monochromatic light of the one wavelength to acquire a luminance signal of each wavelength and using the equivalent wavelength when calculating the height has been used.

さらには、3波長のレーザー光の単色光を同時照射し、カラーカメラで撮像し、R波長、B波長さらにG波長の各波長の画像に分解し、各波長の輝度値から位相計算をおこない、高さ計算時に合致法を用いた表面形状測定方法あるいはそれを用いた装置が開発されて来た。[非特許文献1]等参照。   Furthermore, monochromatic light of three wavelengths of laser light is simultaneously irradiated, imaged with a color camera, decomposed into images of each wavelength of R wavelength, B wavelength and G wavelength, and phase calculation is performed from the luminance value of each wavelength, A surface shape measuring method using a coincidence method for height calculation or an apparatus using the surface shape measuring method have been developed. See [Non-Patent Document 1] and the like.

特開2004−053307JP 2004-053307 A 特開2008−209404JP 2008-209404 A

A.Pfortner and J.Schwider:Red−green−blue interferometer for the metrology of discontinuos structures,Appl.Opt.42,667−673(2003)A. Pfortner and J.M. Schwider: Red-green-blue interferometer for the metrology of discontinuos structures, Appl. Opt. 42,667-673 (2003)

前記背景技術に記載の1波長の単色光での光干渉法を用いた位相シフト法では、隣接画素との位相接続のため、隣接画素との高さの差が照射光の波長の1/4以下に限定されるという問題があった。   In the phase shift method using the optical interference method with monochromatic light of one wavelength described in the background art, because of the phase connection with the adjacent pixel, the height difference with the adjacent pixel is ¼ of the wavelength of the irradiation light. There was a problem that it was limited to the following.

また、その他の従来技術の表面形状測定方法またはそれを用いた装置、例えば、複数の単色光の光源を順次切り替える測定方法では、複数回の測定となり測定時間が冗長になってしまう。また、複数回の測定の測定時間を経過している間の測定対象物の環境変化により測定精度が劣化する可能性があった。   In addition, in other conventional surface shape measurement methods or apparatuses using the same, for example, measurement methods that sequentially switch a plurality of monochromatic light sources, the measurement time becomes redundant and the measurement time becomes redundant. In addition, there is a possibility that the measurement accuracy is deteriorated due to the environmental change of the measurement object while the measurement time of a plurality of measurements is passed.

さらには、複数波長のレーザ光を同時照射する方法では、レーザ光の特性からスペックルノイズが生じ、鮮明な画像を得ることができないという問題があった。   Furthermore, in the method of simultaneously irradiating laser beams with a plurality of wavelengths, there is a problem that speckle noise occurs due to the characteristics of the laser beams and a clear image cannot be obtained.

本願の第1の発明は、分岐手段を介して測定対象面と参照面に波長の異なる複数の単色光を照射し、測定対象面と参照面の両方から反射して同一光路を戻る反射光によって生じる干渉縞の強度値を、測定対象面と参照面とからの反射光路長の差を変化させて検出する複数波長位相シフト法による表面形状測定方法において、
広帯域な波長特性を有する照射光から波長の異なる複数の単色光を抽出し、それらを混在させて、分岐手段を介して測定対象面と参照面に同時に照射する第1過程と、
測定対象面と参照面とから反射して同一光路を戻る反射光によって生じる干渉縞の画像を、測定対象面と参照面とからの反射光路長の差を変化させて、1台のカラーカメラで複数枚取得する第2過程と、
取得した前記複数枚の画像を単色光ごとに分解する第3過程と、
分解した単色光ごとの複数枚の画像から、光学系機器の分光特性により各単色光に含まれる他の単色光からの混入信号を除去する第4過程と、
単色光ごとに、複数枚画像の同一位置の画素の干渉縞強度値より干渉縞波形を求める表現式を利用して、各画素の位相を求める第5過程と、
単色光ごとに求めた各画素の位相から、複数個の表面高さの候補群を求め、各候補群から共通する高さを実高さとして求める第6過程と、
を備えたことを特徴とする。
The first invention of the present application irradiates the measurement target surface and the reference surface with a plurality of monochromatic lights having different wavelengths through the branching means, and reflects the reflected light from both the measurement target surface and the reference surface and returns on the same optical path. In the surface shape measurement method by the multiple wavelength phase shift method for detecting the intensity value of the generated interference fringes by changing the difference in the reflected optical path length from the measurement target surface and the reference surface,
A first step of extracting a plurality of monochromatic lights having different wavelengths from irradiation light having broadband wavelength characteristics, mixing them together, and simultaneously irradiating the measurement target surface and the reference surface via a branching unit;
The interference fringe image generated by the reflected light reflected from the measurement target surface and the reference surface and returning from the same optical path can be changed with a single color camera by changing the difference in the reflected light path length between the measurement target surface and the reference surface. A second process of acquiring multiple sheets,
A third step of decomposing the acquired plurality of images for each monochromatic light;
A fourth step of removing a mixed signal from other monochromatic light contained in each monochromatic light from a plurality of images of each monochromatic light separated by the spectral characteristics of the optical system device;
For each monochromatic light, a fifth process for obtaining the phase of each pixel using an expression for obtaining an interference fringe waveform from the interference fringe intensity values of the pixels at the same position in the plurality of images,
A sixth step of obtaining a plurality of surface height candidate groups from the phase of each pixel obtained for each monochromatic light, and obtaining a common height as an actual height from each candidate group;
It is provided with.

上記の様に、本願発明では、光干渉法を用いた表面形状測定方法として、公知である位相シフト法を用いて測定する場合に、他の報告にはなかった白色光源を用いて、複数の単色光を同時に照射し、カラーカメラで撮像し、各単色光ごとに複数の画像に分解し、さらに、クロストーク現象の補正を保有のソフトウエアで処理することができる方法、さらには、当該方法を用いて表面形状測定をおこなうことができる装置を提供する。   As described above, in the present invention, when measuring using a known phase shift method as a surface shape measurement method using optical interferometry, a plurality of white light sources not found in other reports are used. A method capable of simultaneously irradiating monochromatic light, taking an image with a color camera, decomposing it into a plurality of images for each monochromatic light, and further processing the correction of the crosstalk phenomenon with the own software, and the method An apparatus capable of measuring a surface shape using a slab is provided.

白色光源を用いることにより、他の公知文献にあるレーザ光を用いた場合に、その特有の欠点として生じるスペックルノイズの影響を回避することができる。また、複数の単色光を同時に照射する場合には、白色光源と、多帯域通過型フィルタあるいは、音響光学フィルタを用いることで、最適な波長を自由に設定し、それらの複数の単色光からなる照射光を照射することができる。   By using a white light source, it is possible to avoid the influence of speckle noise that occurs as a specific defect when laser light in other known documents is used. In addition, when irradiating a plurality of monochromatic lights at the same time, an optimum wavelength can be freely set by using a white light source and a multi-band pass filter or an acousto-optic filter. Irradiation light can be irradiated.

上記の様に、1台のカラーカメラで撮像するため、各波長、例えばR波長、G波長またはB波長などの各波長ごとの画像に分解する場合に、どうしても、画像間にクロストーク現象が生じるので、クロストーク補正をおこなって、撮像画像の精度を確保する。   As described above, in order to capture an image with one color camera, when the image is decomposed into each wavelength, for example, each wavelength such as R wavelength, G wavelength, or B wavelength, a crosstalk phenomenon occurs between the images. Therefore, crosstalk correction is performed to ensure the accuracy of the captured image.

ところで、一般に公知である1波長の位相シフト法では、画像撮像時のZ方向走査ピッチは、位相計算を容易にするために、一般に照射波長の1/4を用いる。本発明では、複数の波長の照射光を用いるので、必ずしも1/4波長にはならない。その為の随意の複数の単色光ごとの位相計算は、Z方向走査のピッチごとに得られた輝度値列より最小二乗法により近似正弦波を求め、当該近似正弦波の位相により求める複数波長の[特許文献2]に記載の最小二乗適合の技術が適用できる。   By the way, in the generally known one-wavelength phase shift method, the Z-direction scanning pitch at the time of image capturing generally uses ¼ of the irradiation wavelength in order to facilitate phase calculation. In the present invention, irradiation light having a plurality of wavelengths is used, so that the wavelength is not necessarily ¼. For this purpose, the phase calculation for each of a plurality of monochromatic lights is performed by obtaining an approximate sine wave by the least square method from the luminance value sequence obtained for each pitch in the Z-direction scan, and calculating a plurality of wavelengths obtained by the phase of the approximate sine wave. The least square fitting technique described in [Patent Document 2] can be applied.

また、位相シフト法において、複数波長による高さ計算は、一般に各波長の最小公倍数で求まる等価波長を用いて高さ計算をおこなうことで、測定範囲の高さレンジを拡大できる。本発明では、任意画素の高さ計算は、各波長の高さ候補群より合致法を用いて求める。[特許文献2]参照。   Further, in the phase shift method, the height calculation using a plurality of wavelengths can be performed by expanding the height range of the measurement range by performing the height calculation using an equivalent wavelength generally obtained by the least common multiple of each wavelength. In the present invention, the height calculation of an arbitrary pixel is obtained from the height candidate group of each wavelength using a matching method. See [Patent Document 2].

また、本願の第2の発明は、上記第1の発明に記載の複数波長による表面形状測定方法において、測定対象面の所定画素に対応する前記単色光ごとの位相を干渉縞波形の表現式である式、

g=a+bcos{2πfx+φ}

に最小二乗適合させて求めることを特徴とする。
ここで、gは前期複数枚の画素の同一画素の強度値、aは干渉縞波形に含まれる直流成分、bは干渉縞波形に含まれる交流成分の振幅、fは照射する単色光の周波数、xはx方向の座標およびφは求める測定対象面の所定画素に対応する前記単色光ごとの位相をを意味する。
According to a second aspect of the present invention, in the surface shape measurement method using a plurality of wavelengths according to the first aspect, the phase of each monochromatic light corresponding to a predetermined pixel on the measurement target surface is expressed by an expression for an interference fringe waveform. An expression,

g = a + bcos {2πfx + φ}

It is characterized in that it is obtained by fitting to the least squares.
Here, g is an intensity value of the same pixel of a plurality of pixels in the previous period, a is a DC component included in the interference fringe waveform, b is an amplitude of an AC component included in the interference fringe waveform, f is a frequency of monochromatic light to be irradiated, x represents the coordinate in the x direction, and φ represents the phase of each monochromatic light corresponding to a predetermined pixel on the measurement target surface to be obtained.

さらに、本願の第3の発明は、上記第1の発明ないし上記第2の発明のいずれかで用いる前記照射手段が、広帯域な波長特性を有する照射光から、多帯域通過型フィルタあるいは音響光学フィルタを用いて異なる波長の単色光を複数抽出し、同時に混在して照射する照射手段からなることを特徴とする。   Further, according to a third invention of the present application, the irradiating means used in any one of the first invention to the second invention uses a multiband pass filter or an acoustooptic filter from irradiating light having a broadband wavelength characteristic. A plurality of monochromatic lights having different wavelengths are used to irradiate and irradiate them at the same time.

本願発明の第1の効果として、光干渉法を用いた表面形状測定方法として、公知である位相シフト法を用いて測定する場合に、他の報告にはなかった白色光源を用いて、複数の単色光を同時に照射し、カラーカメラで撮像し、複数の単色光ごとに複数の画像に分解し、さらに、クロストーク現象の補正を保有のソフトウエアで処理することができる方法、さらには、当該方法を用いて表面形状測定をおこなうことができる。また、複数波長で撮像することで、高さ測定レンジの拡大が図れる。   As a first effect of the present invention, when measuring using a known phase shift method as a surface shape measurement method using an optical interferometry, a plurality of white light sources that have not been reported in other reports are used. A method capable of simultaneously irradiating monochromatic light, taking an image with a color camera, decomposing it into a plurality of images for each monochromatic light, and processing correction of crosstalk phenomenon with owned software, Surface shape measurement can be performed using the method. Moreover, the height measurement range can be expanded by imaging with a plurality of wavelengths.

各画素の高さ計算が、1波長位相シフト法でおこなう隣接画素との位相接続と異なり、各波長(RGBなど)毎の位相による高さ候補より合致法で高さを求める各画素毎の独立計算のため、隣接画素間の段差の波長による制約がなくなる。   The height calculation of each pixel is different from the phase connection with adjacent pixels performed by the one-wavelength phase shift method, and the height is calculated by the matching method from the height candidates based on the phase for each wavelength (RGB, etc.). Due to the calculation, there is no restriction due to the wavelength of the step between adjacent pixels.

また、第2の効果として、測定時間の高速化が図れることである。すなわち、複数波長を同時に照射し、同時に撮像することにより、一回の測定で結果が得られるので、1波長での測定時間と同等な時間で測定できる。また、バンドパスフィルタの切り替えが不要となる。   The second effect is that the measurement time can be increased. That is, by irradiating a plurality of wavelengths at the same time and simultaneously capturing images, a result can be obtained by a single measurement. Further, it is not necessary to switch the band pass filter.

第3の効果として、多帯域通過型フィルタあるいは音響光学フィルタを用いることで、レーザ光を用いる場合と異なり、最適な波長を自由に設定することができる。   As a third effect, an optimum wavelength can be freely set by using a multiband pass filter or an acoustooptic filter, unlike the case of using laser light.

本実施例に係る表面形状測定装置の概略構成を示す図。The figure which shows schematic structure of the surface shape measuring apparatus which concerns on a present Example. 表面形状測定装置における処理を示すフローチャート。The flowchart which shows the process in a surface shape measuring apparatus. 取得画像7枚の同一画素のB,GおよびRの輝度値を示す図。The figure which shows the luminance value of B, G, and R of the same pixel of seven acquisition images. X方向各画素のB,GおよびRの位相演算結果を示す図。The figure which shows the phase calculation result of B, G, and R of each pixel of a X direction. X方向各画素の高さ演算結果を示す図。The figure which shows the height calculation result of each pixel of a X direction. XY方向各画素の高さ演算結果(1ミクロン段差の表面形状)を示す図。The figure which shows the height calculation result (surface shape of a 1 micron level | step difference) of each pixel of XY direction. 図6の測定結果を3次元で描いた測定結果を示す図。The figure which shows the measurement result which drawn the measurement result of FIG. 6 in three dimensions.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

なお、本実施例としては、測定対象物の表面高さおよび表面形状を干渉縞を利用して測定した事例を含めて、本願明細書に引用した先行技術文献[特許文献2]に記載の表面形状測定装置を例に採って説明する。   In addition, as a present Example, the surface as described in the prior art document [patent document 2] cited in this-application specification including the example which measured the surface height and surface shape of the measuring object using the interference fringe. The shape measuring device will be described as an example.

図1は、本発明の実施例に係る表面形状測定装置の概略構成を示す図である。この表面
形状測定装置は、半導体ウエハ、液晶パネル、プラズマディスプレイパネル、磁性体フィ
ルム、ガラス基板または金属膜などの表面に微細な凹凸段差を有する測定対象物30に特定波長帯域の単色光を複数照射する光学系ユニット1と、光学系ユニット1を
制御する制御系ユニット2と、測定対象物30を載置保持する保持テーブル40を備えている。
FIG. 1 is a diagram showing a schematic configuration of a surface shape measuring apparatus according to an embodiment of the present invention. This surface shape measuring apparatus irradiates a plurality of monochromatic lights in a specific wavelength band onto a measuring object 30 having a fine uneven step on the surface of a semiconductor wafer, liquid crystal panel, plasma display panel, magnetic film, glass substrate or metal film. An optical system unit 1, a control system unit 2 for controlling the optical system unit 1, and a holding table 40 for mounting and holding the measurement object 30.

光学系ユニット1は、測定対象面30Aおよび参照面15に向けて波長の異なる複数の
単色光を出力する照明装置10と、各単色光を平行光にするコリメートレンズ11と、各
単色光を測定対象物30の方向に反射する一方測定対象物30の方向からの光を通過させ
るハーフミラー13と、ハーフミラー13で反射されてきた各単色光を集光する干渉対物レンズ14と、干渉対物レンズ14を通過してきた単色光を参照面15へ反射させる参照光と測定対象面30Aへ通過させる測定光とに分けるとともに、参照面15で反射してきた参照光と測定対象面30Aで反射してきた測定光とを再びまとめて干渉縞を発生させるビームスプリッタ17と、参照光と測定光とがまとめられた各単色光を結像する結像レンズ18と、干渉縞とともに測定対象面30Aを撮像する撮像装置19とを備える。
The optical system unit 1 measures the illumination device 10 that outputs a plurality of monochromatic lights having different wavelengths toward the measurement target surface 30A and the reference surface 15, the collimator lens 11 that converts the monochromatic lights into parallel light, and the monochromatic lights. The half mirror 13 that reflects light from the direction of the measurement object 30 while reflecting in the direction of the object 30, the interference objective lens 14 that collects each monochromatic light reflected by the half mirror 13, and the interference objective lens The monochromatic light that has passed through 14 is divided into reference light that reflects to the reference surface 15 and measurement light that passes to the measurement target surface 30A, and the reference light reflected by the reference surface 15 and the measurement light reflected by the measurement target surface 30A. The beam splitter 17 that combines the light again to generate interference fringes, the imaging lens 18 that forms each monochromatic light in which the reference light and the measurement light are combined, and the interference fringes are measured. And an imaging device 19 that captures an image plane 30A.

照明装置10は、広帯域な波長を有する照射光を照射する光源10Aおよび多帯域通過型フィルタあるいは音響光学フィルタ10Bから構成されている。本実施例の光源10Aとしては、例えばハロゲンランプからなる白色光源が利用される。多帯域通過型フィルタあるいは音響光学フィルタ10Bを透過することで、任意の波長の異なる複数の単色光を同時混在した状態で波長の異なる複数の単色光を選択的に抽出する。任意の波長の異なる複数の単色光の波長は、例えば、第1波長は波長λ=470nm、第2波長は波長λ=560nm、第3波長は波長λ=600nmである。なお、当該照明装置10が本願発明の照射手段に相当する。 The illuminating device 10 includes a light source 10A that irradiates irradiation light having a broadband wavelength and a multiband pass filter or an acoustooptic filter 10B. As the light source 10A of the present embodiment, for example, a white light source composed of a halogen lamp is used. By passing through the multi-band pass filter or acousto-optic filter 10B, a plurality of monochromatic lights having different wavelengths are selectively extracted in a state where a plurality of monochromatic lights having different wavelengths are mixed at the same time. As for the wavelengths of a plurality of monochromatic lights having different arbitrary wavelengths, for example, the first wavelength is the wavelength λ 1 = 470 nm, the second wavelength is the wavelength λ 2 = 560 nm, and the third wavelength is the wavelength λ 3 = 600 nm. The illumination device 10 corresponds to the irradiation means of the present invention.

ハーフミラー13は、コリメートレンズ11からの波長の異なる複数の単色光からなる
平行光を測定対象物30に向けて反射する一方、測定対象物30から戻ってきた反射光を
通過させるものである。
The half mirror 13 reflects parallel light composed of a plurality of monochromatic lights having different wavelengths from the collimating lens 11 toward the measurement object 30, while allowing reflected light returned from the measurement object 30 to pass therethrough.

干渉対物レンズ14は、入射してきた、波長の異なる複数の単色光を焦点とする測定対象面30Aに集光するレンズである。   The interference objective lens 14 is a lens that focuses on the measurement target surface 30A that focuses a plurality of monochromatic light beams having different wavelengths.

ビームスプリッタ17は、干渉対物レンズ14で集光される波長の異なる複数の単色光を参照面15で反射させる参照光と、測定対象面30Aで反射させる測定光とに分離する。ま
た、各面で反射して同一光路を戻る参照光と測定光とを再びまとめることによって、波長
の異なる複数の単色光の波長ごとに干渉を発生させる。なお、ビームスプリッタ17は、
本発明の分岐手段に相当する。
The beam splitter 17 separates a plurality of monochromatic lights with different wavelengths collected by the interference objective lens 14 into reference light that is reflected by the reference surface 15 and measurement light that is reflected by the measurement target surface 30A. Further, the reference light and the measurement light that are reflected on each surface and return on the same optical path are combined again, thereby generating interference for each wavelength of the plurality of monochromatic lights having different wavelengths. The beam splitter 17 is
This corresponds to the branching means of the present invention.

参照面15は、表面が鏡面加工されており、この参照面15によって反
射された波長の異なる複数の単色光からなる参照光は、ビームスプリッタ17に達し、さ
らに、ビームスプリッタ17によって反射されるようになっている。
The reference surface 15 has a mirror-finished surface, and the reference light composed of a plurality of monochromatic lights having different wavelengths reflected by the reference surface 15 reaches the beam splitter 17 and is reflected by the beam splitter 17. It has become.

また、ビームスプリッタ17を通過した波長の異なる複数の単色光からなる測定光は、
焦点に向けて集光され、測定対象面30Aで反射する。この反射した測定光は、ビームスプリッタ17に達して、そのビームスプリッタ17を通過する。
Further, the measurement light composed of a plurality of monochromatic lights having different wavelengths that have passed through the beam splitter 17 is:
The light is condensed toward the focal point and reflected by the measurement target surface 30A. The reflected measurement light reaches the beam splitter 17 and passes through the beam splitter 17.

ビームスプリッタ17で、参照光と測定光とが再びまとまる。このとき、参照面15とビームスプリッタ17との間の距離L1と、ビームスプリッタ17と測定対象面30Aとの間の距離L2との距離の差によって光路差が生じる。その光路差に応じて、参照光と測定光とは波長の異なる複数の単色光ごとに干渉する。 The reference beam and the measurement beam are combined again by the beam splitter 17. In this case, the distance L 1 between the reference surface 15 and the beam splitter 17, the optical path difference by the difference in distance between the distance L 2 between the object surface 30A and the beam splitter 17 is caused. Depending on the optical path difference, the reference light and the measurement light interfere with each other for a plurality of monochromatic lights having different wavelengths.

撮像装置19は、波長の異なる複数の単色光からなる測定光によって映し出される測定
対象面30Aの画像を撮像する。この撮像した画像データは、制御系ユニット2のメモリ21によって収集される。また、撮像装置19によって所定のサンプリングタイミングで測定対象面30Aおよび測定対象面の凸部(凹部)30Bの画像が撮像され、その画像データが制御系ユニット2によって収集される。なお、撮像装置19は、本発明の撮像手段に相当し、制御系ユニット2は、本発明のサンプリング手段として機能する。
The imaging device 19 captures an image of the measurement target surface 30A that is projected by measurement light including a plurality of monochromatic lights having different wavelengths. The captured image data is collected by the memory 21 of the control system unit 2. Further, the imaging device 19 captures images of the measurement target surface 30 </ b> A and the convex portion (concave portion) 30 </ b> B of the measurement target surface at a predetermined sampling timing, and the image data is collected by the control system unit 2. The imaging device 19 corresponds to the imaging means of the present invention, and the control system unit 2 functions as the sampling means of the present invention.

本実施例における撮像装置19としては、波長の異なる複数の単色光を検出できる構成であればよく、例えば、CCD固体撮像素子、CMOSイメージセンサなどを用いる。   The imaging device 19 in the present embodiment may be configured to detect a plurality of monochromatic lights having different wavelengths. For example, a CCD solid-state imaging device, a CMOS image sensor, or the like is used.

制御系ユニット2は、表面形状測定装置の全体の統括的な制御や、所定の演算処理を行
うためのCPU20と、CPU20によって逐次収集された画像データや演算結果などの
各種のデータおよびプログラムなどを記憶するメモリ21と、サンプリングタイミングや
撮像エリアなどその他の設定情報を入力するマウスやキーボードなどの入力部22と、測
定対象面30Aの画像などを表示するモニタ23とを備える。また、CPU20の指示に
応じて光学系ユニット1をZ方向に移動するように駆動させる、例えば、図示していないピエゾアクチュエータなどの駆動機構で構成される駆動部24を備えるコンピュータシステムで構成されている。なお、CPU20は、本発明における演算手段に相当し、メモリ21は、本発明の記憶手段として機能する。
The control system unit 2 performs overall control of the entire surface shape measuring apparatus and CPU 20 for performing predetermined arithmetic processing, and various data and programs such as image data and arithmetic results sequentially collected by the CPU 20. A memory 21 to be stored, an input unit 22 such as a mouse or a keyboard for inputting other setting information such as a sampling timing and an imaging area, and a monitor 23 for displaying an image of the measurement target surface 30A and the like. Further, the optical system unit 1 is driven to move in the Z direction in accordance with an instruction from the CPU 20. For example, the computer system includes a drive unit 24 including a drive mechanism such as a piezo actuator (not shown). Yes. The CPU 20 corresponds to the calculation means in the present invention, and the memory 21 functions as the storage means in the present invention.

CPU20は、いわゆる中央演算処理装置であって、撮像装置19、メモリ21および
駆動部24を制御するとともに、撮像装置19で撮像した波長の異なる複数の単色光ごと
の干渉縞を含む測定対象面30Aの画像データに基づいて、当該測定対象物30の表面形状を求める演算処理を行うさらに、CPU20には、モニタ23とキーボードやマウスなどの入力部22とが接続されており、操作者は、モニタ23に表示される操作画面を参照しながら、入力部22から各種の設定情報の入力を行う。また、モニタ23には、測定対象面30Aの表面画像や凹凸形状などが数値や画像として表示される。
The CPU 20 is a so-called central processing unit, and controls the imaging device 19, the memory 21, and the driving unit 24, and includes a measurement target surface 30 </ b> A including interference fringes for a plurality of monochromatic lights having different wavelengths captured by the imaging device 19. In addition, the CPU 20 is connected to a monitor 23 and an input unit 22 such as a keyboard or a mouse, so that the operator can monitor the surface shape of the measurement object 30 based on the image data. Various setting information is input from the input unit 22 while referring to the operation screen displayed on the screen 23. Further, the monitor 23 displays a surface image of the measurement target surface 30A, a concavo-convex shape, and the like as numerical values and images.

駆動部24は、参照面15とビームスプリッタ17との間の固定された距離L1と、ビームスプリッタ17と測定対象面30Aとの間の可変の距離L2との距離の差を変化させるために光学ユニット1をZ軸方向に変化させる装置であり、CPU20からの指示によって光学系ユニット1を図1中に記載のz軸方向に駆動する例えばピエゾアクチュエータを備える駆動機構で構成されている。なお、本実施例では、光学系ユニット1を動作させるが、あるいは測定対象物30が載置される保持テーブル40をZ方向に駆動させるようにしてもよい。 The drive unit 24 changes the distance difference between the fixed distance L 1 between the reference surface 15 and the beam splitter 17 and the variable distance L 2 between the beam splitter 17 and the measurement target surface 30A. 1 is a device that changes the optical unit 1 in the Z-axis direction, and includes a drive mechanism including, for example, a piezo actuator that drives the optical system unit 1 in the z-axis direction illustrated in FIG. In this embodiment, the optical system unit 1 is operated. Alternatively, the holding table 40 on which the measurement object 30 is placed may be driven in the Z direction.

以下、本実施例の特徴部分である表面形状測定装置全体でおこなわれる処理を図2に示すフローチャートに従って説明する。   Hereinafter, processing performed by the entire surface shape measuring apparatus, which is a characteristic part of the present embodiment, will be described with reference to the flowchart shown in FIG.

〈ステップS1〉測定データの取得
光学系ユニット1は、照明装置10から異なる波長の単色光を同時に出力し、測定対象物30および参照面15に照射する。なお、この過程が本発明の第1過程に相当する。
<Step S <b>1> Acquisition of Measurement Data The optical system unit 1 simultaneously outputs monochromatic light having different wavelengths from the illumination device 10 and irradiates the measurement object 30 and the reference surface 15. This process corresponds to the first process of the present invention.

CPU20は、光学ユニット1が、例えば照射する任意の単色光の波長λの1/8のサンプリング間隔だけZ方向に移動するたびに、撮像装置19のカラーカメラで撮像される干渉縞を含む測定対象面物30の画像データを収集してメモリ21に順次記憶する。なお、この過程が本発明の第2過程に相当する。   The CPU 20 measures the measurement target including interference fringes imaged by the color camera of the imaging device 19 every time the optical unit 1 moves in the Z direction by a sampling interval of 1/8 of the wavelength λ of arbitrary monochromatic light to be irradiated, for example. The image data of the plane object 30 is collected and stored in the memory 21 sequentially. This process corresponds to the second process of the present invention.

〈ステップS2〉各単色光ごとに画像分解
CPU20は、ステップS1にて、撮像装置19を作動して撮像した少なくとも3枚以上の複数枚の画像データを、それぞれR波長G波長およびB波長の画像に分ける。これは、すべてコンピュータ内部で処理される。例えば、7枚の画像データをR波長G波長およびB波長の画像に分けた場合の、ある1画素の輝度値のデータを図3に示す。なお、この過程が本発明の第3過程に相当する。
<Step S2> Image Decomposition for Each Monochromatic Light In step S1, the CPU 20 operates at least three or more pieces of image data picked up by operating the image pickup device 19, and images of R wavelength, G wavelength, and B wavelength, respectively. Divide into This is all handled inside the computer. For example, FIG. 3 shows data of luminance values of a certain pixel when seven pieces of image data are divided into R wavelength G wavelength and B wavelength images. This process corresponds to the third process of the present invention.

〈ステップS3〉分解した画像の各単色間のクロストーク補正
上述で得られた画像の輝度信号には、各光源照射による加成性があるので、当該ステップでは、3波長の単色光照明によるクロストークを補正する。方法としては、各画素の観測輝度B’、G’、R’から真の輝度R、G、Bを求め補正する。このとき、補正に必要な係数は、予め実験により求めておく。
<Step S3> Crosstalk Correction Between Monochromatic Colors of Decomposed Image Since the luminance signal of the image obtained above has additivity by irradiation with each light source, in this step, crosstalk by monochromatic light illumination of three wavelengths is performed. Correct talk. As a method, the true luminances R, G, B are obtained and corrected from the observed luminances B ′, G ′, R ′ of each pixel. At this time, the coefficient necessary for correction is obtained in advance by experiments.

すなわち、クロストーク現象の影響を受けて観測輝度値は、観測輝度値が入力光量に比例する限り、クロストークモデルとして、次式(1)の線形モデルで表すことができる。
In other words, as long as the observed luminance value is proportional to the input light quantity, the observed luminance value under the influence of the crosstalk phenomenon can be represented by a linear model of the following equation (1) as a crosstalk model.

B’= B+αG+βR
G’=γB+ G+δR ・・・(1)
R’=εB+ξG+ R

ここで、B’、G’およびR’は観測輝度値、B、GおよびRは真の輝度値、α、β、γ、δ、εおよびζは、クロストーク現象の強度をあらわす係数、すなわちクロストーク補正係数である。ここでは、クロストーク補正係数の算出方法については省略するが、該クロストーク補正係数が算出されれば、式(1)を利用して、観測輝度値から真値を求めることができる。この場合は、連立一次方程式になるが、通常、クロストーク補正係数のほとんどが、数%と小さいので、該クロストーク補正係数の積の項を無視して、以下に示す単純な式(2)により真の輝度値を算出することができる。
B ′ = B + αG + βR
G ′ = γB + G + δR (1)
R ′ = εB + ξG + R

Here, B ′, G ′, and R ′ are observed luminance values, B, G, and R are true luminance values, and α, β, γ, δ, ε, and ζ are coefficients representing the strength of the crosstalk phenomenon, that is, Crosstalk correction coefficient. Here, although the method for calculating the crosstalk correction coefficient is omitted, if the crosstalk correction coefficient is calculated, the true value can be obtained from the observed luminance value by using Equation (1). In this case, simultaneous linear equations are obtained. However, since most of the crosstalk correction coefficients are usually as small as several%, the product term of the crosstalk correction coefficients is ignored and the following simple expression (2) Thus, the true luminance value can be calculated.

B= B’−αG’−βR’
G=−γB’+ G’−δR’ ・・・(2)
R=−εB’−ξG’+ R’

なお、この真の輝度値を求める過程が、本発明の第4過程に相当する。
B = B′−αG′−βR ′
G = −γB ′ + G′−δR ′ (2)
R = −εB′−ξG ′ + R ′

The process of obtaining the true luminance value corresponds to the fourth process of the present invention.

〈ステップS4〉各画素の位相計算
次に、B、GおよびR別の各波長ごとの複数枚の画像データの輝度値より、最小二乗法により近似正弦波を求め、当該正弦波より、各画素の位相を求める。CPU20によって選択した画素における位相を、撮像した複数枚の同じ位置の画素のそれぞれの干渉縞の光強度値を用いて予め決定した計算アルゴリズムを利用して求めてゆく。具体的には、各波長ごとの複数枚の撮像画像において、選択した画素の複数枚の干渉縞の光の強度値を干渉縞波形を求める表現式である次式(3)を変形した式(4)にあてはめて(フィッティングして)位相を求める。

g=a+bcos{2πfx+φ} ・・・(3)

まず、ある波長の算出対象の画素における位相φは、n点(nは少なくとも3以上)の干渉縞の光の強度値g(iは、1,...,n)に次式(4)のモデル関数を最小二乗適合することにより求められる。

Figure 2013068489

ここで、aは干渉縞波形に含まれる直流成分、bは干渉縞波形に含まれる交流成分の振幅(以下、交流振幅という)、Δは光学ユニット1のZ方向の移動間隔、λは各単色光の波長である。 <Step S4> Phase calculation of each pixel Next, an approximate sine wave is obtained by the least square method from the luminance values of a plurality of image data for each wavelength of B, G, and R, and each pixel is obtained from the sine wave. Find the phase of. The phase at the pixel selected by the CPU 20 is obtained using a calculation algorithm determined in advance using the light intensity values of the interference fringes of the plurality of pixels at the same position that have been imaged. Specifically, in a plurality of picked-up images for each wavelength, an expression obtained by modifying the following expression (3), which is an expression for obtaining an interference fringe waveform from the light intensity values of a plurality of interference fringes of a selected pixel ( 4) Apply (fitting) to obtain the phase.

g = a + bcos {2πfx + φ} (3)

First, the phase φ in a pixel for which a certain wavelength is to be calculated is expressed by the following equation (4) in the light intensity value g i (i is 1,..., N) of interference fringes at n points (n is at least 3 or more). ) To fit the least squares model function.

Figure 2013068489

Here, a is the DC component included in the interference fringe waveform, b is the amplitude of the AC component included in the interference fringe waveform (hereinafter referred to as AC amplitude), Δ is the movement interval in the Z direction of the optical unit 1, and λ is each single color. It is the wavelength of light.

次式(5)を仮定することにより、式(4)は以下の式(6)のように置き直すことができる。

Figure 2013068489
By assuming the following equation (5), equation (4) can be rewritten as the following equation (6).

Figure 2013068489

未知パラメータaとbとφとを最小二乗法で推定すると、次式(7)で表すことができる。ただしφに関しては非線形である。

Figure 2013068489
When the unknown parameters a, b, and φ are estimated by the least square method, they can be expressed by the following equation (7). However, φ is non-linear.

Figure 2013068489

そこで以下の式(8)〜(9)を仮定することにより、式(6)は以下の式(10)のように変形し、以下の式(11)で表すことができる。それにより式(7)は、以下の式(12)で表すことができ、aとξとξとに関して線形な最小二乗問題にすることができる。

ζc=bcosφ ...(8)

ζs=−bsinφ ・・・(9)


Figure 2013068489

Figure 2013068489

Figure 2013068489
Therefore, assuming the following formulas (8) to (9), the formula (6) can be transformed into the following formula (10) and represented by the following formula (11). Thereby, the equation (7) can be expressed by the following equation (12), and can be a linear least square problem with respect to a, ξ c, and ξ s .

ζc = bcosφ. . . (8)

ζs = −bsinφ (9)


Figure 2013068489

Figure 2013068489

Figure 2013068489

そこで、aとξcとξとの3元連立方程式を、次式(13)の行列で表す。

Figure 2013068489
Therefore, the ternary simultaneous equations of a and ξc and xi] s, represented by a matrix of the following equation (13).

Figure 2013068489

式(13)の3元連立方程式を解いて、ξとξとを求めることで、以下の式(14)のように位相φを求めることができる。

Figure 2013068489

例えば、R波長G波長およびB波長のそれぞれについて、X方向に1376画素の位相値を演算した結果を図4に示す。
なお、この過程が本発明における第5の過程に相当する。 By solving the ternary simultaneous equations of the equation (13) and obtaining ξ c and ξ s , the phase φ can be obtained as in the following equation (14).

Figure 2013068489

For example, FIG. 4 shows the result of calculating the phase value of 1376 pixels in the X direction for each of the R wavelength, G wavelength, and B wavelength.
This process corresponds to the fifth process in the present invention.

〈ステップS5〉各画素の実高さ計算
つぎに得られた位相から各波長ごとに高さの候補値を算出し、各波長間で最も良く合致する高さ候補を、予想される高さ範囲内で選択する。具体的には、次式(15)により高さの候補値h(n)を求め、各波長間で最も近接した高さ候補の組み合わせを選択する。すなわち各波長間の高さ候補の組み合わせのレンジ(最大値と最小値の差)が最小になる高さの組み合わせを求める。求まった高さの組み合わせのうち、ある波長の高さ候補値を実高さとして求める。または、求まった高さの組み合わせの平均値を実高さとして求めても良い。

(n)=(φ/2π)*(λ/2)+n(λ/2) ・・・(15)

ここで、jは波長番号(j=1,..3)、nは高さ候補の次数、φは位相、λは各単色光の波長である。
例えば、図4の位相演算結果から求めた、実高さ結果を図5に示す。
なお、この過程が本発明における第6の過程に相当する。
<Step S5> Calculation of actual height of each pixel From the obtained phase, a height candidate value is calculated for each wavelength, and a height candidate that best matches each wavelength is determined as an expected height range. Select within. Specifically, the height candidate value h j (n) is obtained by the following equation (15), and the combination of the height candidates closest to each wavelength is selected. That is, a combination of heights that minimizes the range of combinations of height candidates between wavelengths (the difference between the maximum value and the minimum value) is obtained. Among the obtained height combinations, a height candidate value for a certain wavelength is obtained as an actual height. Alternatively, an average value of the obtained combinations of heights may be obtained as the actual height.

h j (n) = (φ j / 2π) * (λ j / 2) + n (λ j / 2) (15)

Here, j is the wavelength number (j = 1,...), N is the height candidate order, φ is the phase, and λ is the wavelength of each monochromatic light.
For example, the actual height result obtained from the phase calculation result of FIG. 4 is shown in FIG.
This process corresponds to the sixth process of the present invention.

<ステップS6> 全ての選択画素の演算処理終了?
CPU20は、全ての画素について位相と高さの算出が終了するまで、ステップS5〜S6の処理を繰り返し行う。
<Step S6> Completion of calculation processing for all selected pixels?
CPU20 repeats the process of step S5-S6 until calculation of a phase and height is complete | finished about all the pixels.

<ステップS8> 演算結果の表面形状の表示
CPU20は、算出された表面高さの情報から測定対象面30Aの表示画像を作成し、それをモニタ23に測定対象面30Aの表面高さの2次元または3次元の画像などの情報を、例えば図6や図7のように表示する。オペレータは、これらの表示を観察することで、測定対象面30Aの表面にある凹凸形状を把握することができる。以上で一連の処理が終了する。
<Step S8> Display of Surface Shape as Result of Calculation CPU 20 creates a display image of measurement target surface 30A from the calculated surface height information, and uses it to monitor 23 the two-dimensional surface height of measurement target surface 30A. Alternatively, information such as a three-dimensional image is displayed as shown in FIGS. The operator can grasp the concavo-convex shape on the surface of the measurement target surface 30A by observing these displays. Thus, a series of processing ends.

半導体ウエハ、液晶パネル、プラズマディスプレイパネル、磁性体フィルム、ガラス基板、金属膜などの表面形状の測定方法において、
一般に知られている1波長の単色光を用いた位相シフト法では、隣接画素との位相接続のため、隣接画素との高さの差が照射光の波長の1/4以下に限定されるという問題があった。
In the method of measuring the surface shape of a semiconductor wafer, liquid crystal panel, plasma display panel, magnetic film, glass substrate, metal film, etc.
In the generally known phase shift method using monochromatic light of one wavelength, the height difference with the adjacent pixel is limited to 1/4 or less of the wavelength of the irradiation light because of phase connection with the adjacent pixel. There was a problem.

本願発明では、各画素の高さ計算が、1波長位相シフト法でおこなう隣接画素との位相接続と異なり、各波長(R、GおよびBなど)毎の位相による高さ候補より合致法で求める各画素毎の独立計算のため、隣接画素間の段差の波長による制約がなくなり、広い高さレンジの測定を行うことができる。   In the present invention, the height calculation of each pixel is obtained by the matching method from the height candidates based on the phase for each wavelength (R, G, B, etc.), unlike the phase connection with the adjacent pixels performed by the one-wavelength phase shift method. Because of independent calculation for each pixel, there is no restriction due to the wavelength of the step between adjacent pixels, and a wide height range can be measured.

1・・・光学系ユニット
2・・・制御系ユニット
10・・照明装置
10A・光源
10B・多帯域通過型フィルタあるいは音響光学フィルタ
11・・コリメートレンズ
13・・ハーフミラー
14・・干渉対物レンズ
15・・参照面
17・・ビームスプリッタ
18・・結像レンズ
19・・撮像装置
20・・CPU
21・・メモリ
22・・入力部
23・・モニタ
24・・駆動部
30・・測定対象物
30A・測定対象面
30B・測定対象面の凸部(凹部)
40・・保持テーブル
DESCRIPTION OF SYMBOLS 1 ... Optical system unit 2 ... Control system unit 10 ... Illuminating device 10A / Light source 10B / Multi-band pass filter or acousto-optic filter 11 / Collimating lens 13 / Half mirror 14 / Interference objective lens 15 · · Reference surface 17 · · Beam splitter 18 · Imaging lens 19 · Imaging device 20 · · CPU
21..Memory 22..Input unit 23..Monitor 24..Driver 30..Measurement object 30 A.Measurement target surface 30B.
40 ・ ・ Holding table

Claims (6)

分岐手段を介して測定対象面と参照面に波長の異なる複数の単色光を照射し、測定対象面と参照面の両方から反射して同一光路を戻る反射光によって生じる干渉縞の強度値を、測定対象面と参照面とからの反射光路長の差を変化させて検出する複数波長位相シフト法による表面形状測定方法において、
広帯域な波長特性を有する照射光から波長の異なる複数の単色光を抽出し、それらを混在させて、分岐手段を介して測定対象面と参照面に同時に照射する第1過程と、
測定対象面と参照面とから反射して同一光路を戻る反射光によって生じる干渉縞の画像を測定対象面と参照面とからの反射光路長の差を変化させて、1台のカラーカメラで複数枚取得する第2過程と、
取得した前記複数枚の画像を単色光ごとに分解する第3過程と、
分解した単色光ごとの複数枚の画像から、光学系の分光特性により各単色光に含まれる他の単色光からの混入信号を除去する第4過程と、
単色光ごとに、複数枚画像の同一位置の画素の干渉縞強度値より干渉縞波形を求める表現式を利用して、各画素の位相を求める第5過程と、
単色光ごとに求めた各画素の位相から、複数個の表面高さの候補群を求め、各候補群から共通する高さを実高さとして求める第6過程と、
を備えたことを特徴とする複数波長による表面形状測定方法。
By irradiating the measurement target surface and the reference surface with a plurality of monochromatic lights having different wavelengths through the branching means, the intensity value of the interference fringes generated by the reflected light reflected from both the measurement target surface and the reference surface and returning on the same optical path, In the surface shape measurement method by the multiple wavelength phase shift method to detect by changing the difference of the reflected optical path length from the measurement target surface and the reference surface,
A first step of extracting a plurality of monochromatic lights having different wavelengths from irradiation light having broadband wavelength characteristics, mixing them together, and simultaneously irradiating the measurement target surface and the reference surface via a branching unit;
Interference fringe images generated by reflected light reflected from the measurement target surface and the reference surface and returning from the same optical path are changed by a single color camera by changing the difference in the reflected light path length from the measurement target surface and the reference surface. A second process of acquiring the sheets,
A third step of decomposing the acquired plurality of images for each monochromatic light;
A fourth step of removing a mixed signal from other monochromatic light contained in each monochromatic light from a plurality of images of each monochromatic light separated by the spectral characteristics of the optical system;
For each monochromatic light, a fifth process for obtaining the phase of each pixel using an expression for obtaining an interference fringe waveform from the interference fringe intensity values of the pixels at the same position in the plurality of images,
A sixth step of obtaining a plurality of surface height candidate groups from the phase of each pixel obtained for each monochromatic light, and obtaining a common height as an actual height from each candidate group;
A surface shape measuring method using a plurality of wavelengths.
請求項1に記載の複数波長による表面形状測定方法において、
gを前期複数枚の画素の同一画素の強度値、aは干渉縞波形nigふくまれる直流成分、bは干渉縞波形に含まれる交流成分の振幅、fは照射する単色光の周波数、xはx方向の座標およびφは求める測定対象面の所定画素に対応する前記単色光ごとの位相をとしたとき、

g=a+bcos{2πfx+φ}

に最小二乗適合させて求めることを特徴とする、複数波長による表面形状測定方法。
In the surface shape measuring method by multiple wavelengths according to claim 1,
g is an intensity value of the same pixel of a plurality of pixels in the previous period, a is a direct current component included in the interference fringe waveform nig, b is an amplitude of an alternating current component included in the interference fringe waveform, f is a frequency of monochromatic light to be irradiated, and x is x When the coordinates of the direction and φ are the phase for each monochromatic light corresponding to the predetermined pixel of the measurement target surface to be obtained,

g = a + bcos {2πfx + φ}

A surface shape measuring method using a plurality of wavelengths, which is obtained by least square fitting.
請求項1ないし請求項2のいずれかで用いる前記照射手段が、広帯域な波長特性を有する照射光から、多帯域通過型フィルタもしくは音響光学フィルタを用いて異なる波長の単色光を複数抽出し、同時に混在して照射する照射手段からなることを特徴とする複数波長による表面形状測定方法。 The irradiation means used in any one of claims 1 to 2 extracts a plurality of monochromatic lights having different wavelengths from the irradiation light having a broadband wavelength characteristic by using a multi-band pass filter or an acoustooptic filter, and simultaneously A surface shape measuring method using a plurality of wavelengths, comprising irradiation means for irradiating in a mixed manner. 分岐手段を介して測定対象面と参照面に波長の異なる複数の単色光を照射し、測定対象面と参照面の両方から反射して同一光路を戻る反射光によって生じる干渉縞の強度値を、測定対象面と参照面とからの反射光路長の差を変化させて検出する複数波長位相シフト法による表面形状測定装置において、
広帯域な波長特性を有する照射光から波長の異なる複数の単色光を抽出し、それらを混在させて、分岐手段を介して測定対象面と参照面に同時に照射する照明手段と、
測定対象面と参照面とから反射して同一光路を戻る反射光によって生じる干渉縞の画像を、測定対象面と参照面とからの反射光路長の差を変化させて、1台のカラーカメラで複数枚撮像する撮像手段と、
撮像された複数枚の前記画像を画素ごとに干渉縞の強度値として取り込むサンプリング手段と、
前記サンプリング手段によって取り込まれた複数枚の前記強度値である干渉縞強度値群を記憶する記憶手段と、
前記記憶手段に記憶された複数枚の強度値群を単色光ごとに分解する演算を行い、
分解した単色光ごとの複数枚の強度値群から、光学系の分光特性により各単色光に含まれる他の単色光からの混入信号を除去する演算を行い、
単色光ごとに、複数枚画像の同一位置の画素の干渉縞強度値より干渉縞波形を求める表現式を利用して、各画素の位相を求め、
単色光ごとに求めた各画素の位相から、複数個の表面高さの候補群を求め、各候補群から共通する高さを実高さとして求める演算手段と、
を備えたことを特徴とする複数波長による表面形状測定装置。
By irradiating the measurement target surface and the reference surface with a plurality of monochromatic lights having different wavelengths through the branching means, the intensity value of the interference fringes generated by the reflected light reflected from both the measurement target surface and the reference surface and returning on the same optical path, In the surface shape measuring device by the multiple wavelength phase shift method that detects by changing the difference in the reflected optical path length from the measurement target surface and the reference surface,
A plurality of monochromatic lights having different wavelengths are extracted from the irradiation light having a broadband wavelength characteristic, and they are mixed to illuminate the measurement target surface and the reference surface simultaneously via the branching unit;
The interference fringe image generated by the reflected light reflected from the measurement target surface and the reference surface and returning from the same optical path can be changed with a single color camera by changing the difference in the reflected light path length between the measurement target surface and the reference surface. Imaging means for imaging a plurality of images;
Sampling means for capturing a plurality of captured images as an interference fringe intensity value for each pixel;
Storage means for storing interference fringe intensity value groups which are a plurality of the intensity values captured by the sampling means;
Performing an operation for decomposing a plurality of intensity value groups stored in the storage means for each monochromatic light;
From the multiple intensity value groups for each decomposed monochromatic light, perform an operation to remove the mixed signal from other monochromatic light contained in each monochromatic light by the spectral characteristics of the optical system,
For each monochromatic light, using the expression for obtaining the interference fringe waveform from the interference fringe intensity value of the pixel at the same position of the multiple images, obtain the phase of each pixel,
An arithmetic means for obtaining a plurality of surface height candidate groups from the phase of each pixel obtained for each monochromatic light and obtaining a common height as an actual height from each candidate group;
A surface shape measuring apparatus using a plurality of wavelengths.
請求項4に記載の複数波長による表面形状測定装置において、
gを前記複数枚の画素、aを干渉縞波形に含まれる直流成分、bを干渉縞波形に含まれる交流成分の振幅、fを干渉縞gの空間周波数成分、xをx方向の座標およびφを測定対象面の所定画素に対応する位相として、
測定対象面の測定画素に対応する単色光ごとの位相を、干渉縞波形の表現式である式、

g=a+bcos{2πfx+φ}

に最小二乗適合させて求めることを特徴とする複数波長による表面形状測定装置。
In the surface shape measuring apparatus with multiple wavelengths according to claim 4,
g is the plurality of pixels, a is the DC component included in the interference fringe waveform, b is the amplitude of the AC component included in the interference fringe waveform, f is the spatial frequency component of the interference fringe g, x is the coordinate in the x direction, and φ As a phase corresponding to a predetermined pixel of the measurement target surface,
The phase of each monochromatic light corresponding to the measurement pixel on the measurement target surface is an expression that is an expression of the interference fringe waveform,

g = a + bcos {2πfx + φ}

A surface shape measuring device using a plurality of wavelengths, which is obtained by least square fitting.
請求項4ないし請求項5のいずれかで用いる前記照射手段が、広帯域な波長特性を有する照射光から、多帯域通過型フィルタもしくは音響光学フィルタを用いて異なる波長の単色光を複数抽出し、同時に混在して照射する照射手段からなることを特徴とする複数波長による表面形状測定装置。 The irradiation means used in any one of claims 4 to 5 extracts a plurality of monochromatic lights having different wavelengths from the irradiation light having a broadband wavelength characteristic by using a multi-band pass filter or an acousto-optic filter. A surface shape measuring apparatus using a plurality of wavelengths, characterized by comprising irradiation means for irradiating mixedly.
JP2011206653A 2011-09-21 2011-09-21 Surface profiling method using multiple wavelengths and apparatus using the same Pending JP2013068489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011206653A JP2013068489A (en) 2011-09-21 2011-09-21 Surface profiling method using multiple wavelengths and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011206653A JP2013068489A (en) 2011-09-21 2011-09-21 Surface profiling method using multiple wavelengths and apparatus using the same

Publications (1)

Publication Number Publication Date
JP2013068489A true JP2013068489A (en) 2013-04-18

Family

ID=48474351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011206653A Pending JP2013068489A (en) 2011-09-21 2011-09-21 Surface profiling method using multiple wavelengths and apparatus using the same

Country Status (1)

Country Link
JP (1) JP2013068489A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106456292A (en) * 2014-05-02 2017-02-22 阿吉斯成像公司 Systems, methods, apparatuses, and computer-readable storage media for collecting color information about an object undergoing a 3D scan
WO2017168469A1 (en) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 Visual inspection apparatus and visual inspection method
CN108122797A (en) * 2016-11-29 2018-06-05 上海微电子装备(集团)股份有限公司 A kind of 3D detection devices
CN112179268A (en) * 2019-07-03 2021-01-05 株式会社三丰 Measuring device, measuring system, and storage medium
WO2024048120A1 (en) * 2022-08-29 2024-03-07 株式会社Sumco Device and method for measuring thickness of workpiece and workpiece polishing system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218411A (en) * 1998-02-02 1999-08-10 Fuji Xerox Co Ltd Measurement method for interference and measurement device of interference
JP2004053307A (en) * 2002-07-17 2004-02-19 Fujitsu Ltd Microstructure measuring method and its measuring apparatus
JP2008209404A (en) * 2007-01-31 2008-09-11 Tokyo Institute Of Technology Measuring method of surface profile by a plurality of wavelengths and device using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218411A (en) * 1998-02-02 1999-08-10 Fuji Xerox Co Ltd Measurement method for interference and measurement device of interference
JP2004053307A (en) * 2002-07-17 2004-02-19 Fujitsu Ltd Microstructure measuring method and its measuring apparatus
JP2008209404A (en) * 2007-01-31 2008-09-11 Tokyo Institute Of Technology Measuring method of surface profile by a plurality of wavelengths and device using it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106456292A (en) * 2014-05-02 2017-02-22 阿吉斯成像公司 Systems, methods, apparatuses, and computer-readable storage media for collecting color information about an object undergoing a 3D scan
US11122180B2 (en) 2014-05-02 2021-09-14 Dentsply Sirona Inc. Systems, methods, apparatuses, and computer-readable storage media for collecting color information about an object undergoing a 3D scan
WO2017168469A1 (en) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 Visual inspection apparatus and visual inspection method
JPWO2017168469A1 (en) * 2016-03-28 2019-03-22 パナソニックIpマネジメント株式会社 Appearance inspection device and appearance inspection method
US10379035B2 (en) 2016-03-28 2019-08-13 Panasonic Intellectual Property Management Co., Ltd. Appearance inspection apparatus and appearance inspection method
CN108122797A (en) * 2016-11-29 2018-06-05 上海微电子装备(集团)股份有限公司 A kind of 3D detection devices
CN112179268A (en) * 2019-07-03 2021-01-05 株式会社三丰 Measuring device, measuring system, and storage medium
WO2024048120A1 (en) * 2022-08-29 2024-03-07 株式会社Sumco Device and method for measuring thickness of workpiece and workpiece polishing system

Similar Documents

Publication Publication Date Title
JP4885154B2 (en) Method for measuring surface shape by multiple wavelengths and apparatus using the same
TWI405949B (en) Method for measuring surface shapes and apparatus using the same
US8514389B2 (en) Inspecting apparatus, three-dimensional profile measuring apparatus, and manufacturing method of structure
JP2006329751A (en) Surface shape measuring method and surface shape measuring instrument
EP2905575B1 (en) Image sequence and evaluation method, system and computer program for structured illumination microscopy for measuring a 3D height map
TWI567364B (en) Structured light generating apparatus, measuring system and method thereof
JP2013068489A (en) Surface profiling method using multiple wavelengths and apparatus using the same
JP2016507752A5 (en)
JP4939304B2 (en) Method and apparatus for measuring film thickness of transparent film
WO2013088871A1 (en) Film thickness measurement method and device by interference color model conformity
JP6025411B2 (en) Shape measuring apparatus and shape measuring method
JP2012117858A (en) Crosstalk correction coefficient calculation method, crosstalk correction coefficient calculation device, and three-dimensional surface shape measuring device using the same
JP5701159B2 (en) Method and apparatus for measuring surface shape by fitting interference fringe model
JP2020128928A (en) Inspection device
JP5997578B2 (en) Crosstalk correction coefficient calculation method and transparent film thickness measurement apparatus having crosstalk correction coefficient calculation function
JP6750813B2 (en) Shape measuring method and shape measuring device for transparent plate
KR101436745B1 (en) Spectrometer to measure the spectral shape measurement device to implement
JP2014001966A (en) Shape measuring apparatus and shape measuring method
JP2010060420A (en) Surface shape and/or film thickness measuring method and its system
WO2021149307A1 (en) Defect inspection device and defect inspection method
JP2006329807A (en) Image processing method and device using it
JP6047427B2 (en) Method for measuring film shape of thin film
JP6457846B2 (en) Method and apparatus for measuring shape of transparent plate
JP6511263B2 (en) Planar spectrometer
JP2010185844A (en) Surface profile measuring method, and apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151002