Nothing Special   »   [go: up one dir, main page]

JP2013042983A - Tomosynthesis imaging device and imaging method of tomosynthesis image - Google Patents

Tomosynthesis imaging device and imaging method of tomosynthesis image Download PDF

Info

Publication number
JP2013042983A
JP2013042983A JP2011183406A JP2011183406A JP2013042983A JP 2013042983 A JP2013042983 A JP 2013042983A JP 2011183406 A JP2011183406 A JP 2011183406A JP 2011183406 A JP2011183406 A JP 2011183406A JP 2013042983 A JP2013042983 A JP 2013042983A
Authority
JP
Japan
Prior art keywords
shielding
electromagnetic wave
grating
wave source
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011183406A
Other languages
Japanese (ja)
Inventor
Einosuke Ito
英之助 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011183406A priority Critical patent/JP2013042983A/en
Publication of JP2013042983A publication Critical patent/JP2013042983A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tomosynthesis imaging device and an imaging method of tomosynthesis image, capable of acquiring a high-quality phase image or differential phase image while suppressing deterioration in visibility of moire.SOLUTION: The tomosynthesis imaging device for acquiring internal depth information of an inspection object includes: a shield grid which is constituted by laminating at least two partial shield grids each having a transmissive portion and a shielding portion periodically aligned with a differed pitch of these portions; and a control means which moves the two partial shield grids in the direction of the pitch to control the overlapping state of each shielding portion between the partial shield grids by the lamination. The control means controls the overlapping state of each shielding portion according to the incident direction of an electromagnetic wave source by rotation of the electromagnetic wave source, and electromagnetic wave which is emitted from the electromagnetic wave source and transmitted by the transmissive portion of the shield grid suppresses the shielding by each shielding portion.

Description

本発明は、トモシンセシス撮像装置及びトモシンセシス画像の撮像方法に関し、特にトールボット干渉計を用いたトモシンセシス撮像装置に関する。   The present invention relates to a tomosynthesis imaging apparatus and a tomosynthesis image imaging method, and more particularly to a tomosynthesis imaging apparatus using a Talbot interferometer.

トールボット干渉法は光やX線を含む様々な波長の電磁波の干渉を用いて被検体の形状や組成を計測する方法であり、一般に、電磁波源、回折格子、検出器を備える撮像装置が用いられる。
ここで、トールボット干渉法の原理について簡単に説明する。
まず、電磁波源から位相波面の揃った、つまりコヒーレントな入射波を被検体に対し照射する。
被検体を透過した電磁波は被検体の形状や組成によって波面が変化する。
この波面変化が起きた電磁波が回折格子によって回折されると、回折格子からトールボット距離と呼ばれる特定の距離はなれた位置に干渉パターンが形成される。
この干渉パターンを検出器によって検出し、解析することによって被検体によって変化した位相波面(以下、位相像と呼ぶ。)またはその位相波面の微分像(以下、微分位相像と呼ぶ。)を得ることができる。
Talbot interferometry is a method for measuring the shape and composition of a subject using interference of electromagnetic waves of various wavelengths including light and X-rays. In general, an imaging apparatus including an electromagnetic wave source, a diffraction grating, and a detector is used. It is done.
Here, the principle of the Talbot interferometry will be briefly described.
First, a subject is irradiated with a coherent incident wave having a uniform phase wavefront from an electromagnetic wave source.
The wavefront of the electromagnetic wave transmitted through the subject changes depending on the shape and composition of the subject.
When the electromagnetic wave having this wavefront change is diffracted by the diffraction grating, an interference pattern is formed at a position away from the diffraction grating by a specific distance called a Talbot distance.
By detecting and analyzing the interference pattern with a detector, a phase wavefront (hereinafter referred to as a phase image) changed by the subject or a differential image of the phase wavefront (hereinafter referred to as a differential phase image) is obtained. Can do.

また、特許文献1に記載されているように、電磁波を透過させる透過部と遮蔽する遮蔽部が周期的に配置された遮蔽格子を、干渉パターンが生じる位置に配置することでモアレを形成し、該モアレを検出し、解析して被検体の位相像や微分位相像を得る方法もある。
この方法を用いると、干渉パターンの周期よりも空間分解能が大きい検出器を用いることができるため、電磁波としてX線を用いるトールボット干渉法(以下、X線トールボット干渉法と呼ぶ。)を用いた撮像装置に良く用いられる。
また、電磁波を複数の光源に分割する光源格子を備えた干渉計を、トールボット・ラウ干渉計という。
Moreover, as described in Patent Document 1, a moire is formed by arranging a shielding grid in which a transmission part that transmits an electromagnetic wave and a shielding part that shields it are periodically arranged at a position where an interference pattern occurs, There is also a method in which the moire is detected and analyzed to obtain a phase image or a differential phase image of the subject.
When this method is used, a detector having a spatial resolution larger than the period of the interference pattern can be used, so the Talbot interferometry using X-rays as electromagnetic waves (hereinafter referred to as X-ray Talbot interferometry) is used. It is often used in image pickup devices.
An interferometer provided with a light source grating that divides electromagnetic waves into a plurality of light sources is called a Talbot-Lau interferometer.

X線撮像診断装置には、被検体内部の奥行き情報を取得する方法の一つとして、トモシンセシスがあり、近年マンモグラフィ装置等で実用化されている。
特許文献2に記載されるように、トモシンセシスは、CT(コンピューター断層撮影)法とは異なり、X線管だけを、またはX線管と検出器を、最大50度程度回転すればよく、装置の大型化の必要がなく被検体内部の奥行き情報を取得することができる。
An X-ray imaging diagnostic apparatus has tomosynthesis as one of methods for acquiring depth information inside a subject, and has recently been put into practical use in a mammography apparatus or the like.
As described in Patent Document 2, tomosynthesis is different from CT (computer tomography) method in that only an X-ray tube or an X-ray tube and a detector need to be rotated about 50 degrees at maximum. Depth information inside the subject can be acquired without the need for an increase in size.

特開2010−164373号公報JP 2010-164373 A 国際公開93/22893号パンフレットInternational Publication No. 93/22893 Pamphlet

トールボット干渉計を用いたトモシンセシス撮像装置を構成する際に、電磁波源の回転角度がある回転角以上に達すると、遮蔽格子に入射する電磁波はそのほとんどが遮蔽格子の電磁波吸収体によって遮蔽されてしまう。
これによって、回折格子と遮蔽格子によって形成されるモアレの強度分布から計算されるビジビリティが低下し、得られる被検体の位相像や微分位相像の画質が低下する可能性がある。
When configuring a tomosynthesis imaging device using a Talbot interferometer, when the rotation angle of the electromagnetic wave source reaches a certain rotation angle or more, most of the electromagnetic waves incident on the shielding grid are shielded by the electromagnetic wave absorber of the shielding grid. End up.
As a result, the visibility calculated from the intensity distribution of the moire formed by the diffraction grating and the shielding grating is lowered, and the image quality of the obtained phase image and differential phase image may be lowered.

本発明は、上記課題に鑑み、モアレのビジビリティ低下を抑制することができ、高画質な位相像や微分位相像を取得することが可能となるトモシンセシス撮像装置及びトモシンセシス画像の撮像方法の提供を目的とする。   The present invention has been made in view of the above problems, and provides a tomosynthesis imaging apparatus and a tomosynthesis image imaging method that can suppress a reduction in moire visibility and obtain a high-quality phase image or differential phase image. And

本発明のトモシンセシス撮像装置は、
回転可能に構成された電磁波源と、
前記電磁波源から出射された電磁波を回折する回折格子と、
前記回折格子によって回折された前記電磁波の一部を遮る遮蔽格子と、
前記遮蔽格子を経た前記電磁波の強度分布を検出する検出手段と、
を備え、前記検出手段で検出された情報に基づき被検査物内部の奥行き情報を取得するトモシンセシス撮像装置であって、
前記遮蔽格子は、透過部と遮蔽部とが周期的に配列され、これらの周期が互いに異なる周期を有する、少なくとも2つの部分遮蔽格子の積層によって構成され、
前記2つの部分遮蔽格子を前記周期の方向に移動させ、前記積層による部分遮蔽格子間の各遮蔽部の重なり状態を制御する制御手段を備え、
前記電磁波源の回転による電磁波源の入射方向に応じて、前記制御手段により前記各遮蔽部の重なり状態を制御し、
前記電磁波源から出射され前記遮蔽格子の透過部を透過する電磁波が、前記各遮蔽部による遮蔽を抑制することを特徴とする。
また、本発明のトモシンセシス画像の撮像方法は、
回転可能に構成された電磁波源と、
前記電磁波源から出射された電磁波を回折する回折格子と、
前記回折格子によって回折された前記電磁波の一部を遮る遮蔽格子と、
前記遮蔽格子を経た前記電磁波の強度分布を検出する検出手段と、
を備え、前記検出手段で検出された情報に基づき被検査物内部の奥行き情報を取得するトモシンセシス画像の撮像方法であって、
前記遮蔽格子として、透過部と遮蔽部とが周期的に配列され、これらの周期が互いに異なる周期を有する、少なくとも2つの部分遮蔽格子の積層によって構成された遮蔽格子を用いて前記トモシンセシス画像を撮像するに際し、
前記電磁波源を回転させる工程と、
前記電磁波源の回転に応じて、前記回折格子の姿勢を制御する工程と、
前記電磁波源の入射方向に応じて、前記各遮蔽部の重なり状態を制御し、
前記電磁波源から出射され前記遮蔽格子の透過部を透過する電磁波が、前記各遮蔽部により遮蔽されることを抑制する工程と、
前記電磁波源の回転に応じて、前記検出手段の姿勢を制御する工程と、
を有することを特徴とする。
Tomosynthesis imaging apparatus of the present invention,
An electromagnetic wave source configured to be rotatable;
A diffraction grating for diffracting electromagnetic waves emitted from the electromagnetic wave source;
A shielding grating that blocks a part of the electromagnetic wave diffracted by the diffraction grating;
Detecting means for detecting an intensity distribution of the electromagnetic wave that has passed through the shielding grid;
A tomosynthesis imaging device for obtaining depth information inside the object to be inspected based on information detected by the detection means,
The shielding grating is composed of a stack of at least two partially shielding gratings in which a transmission part and a shielding part are periodically arranged, and these periods have different periods.
Control means for controlling the overlapping state of the shielding portions between the partial shielding gratings by the stack by moving the two partial shielding gratings in the direction of the period;
According to the incident direction of the electromagnetic wave source due to the rotation of the electromagnetic wave source, to control the overlapping state of the shielding portions by the control means,
The electromagnetic wave emitted from the electromagnetic wave source and transmitted through the transmission part of the shielding grid suppresses shielding by the shielding parts.
The tomosynthesis image capturing method of the present invention includes:
An electromagnetic wave source configured to be rotatable;
A diffraction grating for diffracting electromagnetic waves emitted from the electromagnetic wave source;
A shielding grating that blocks a part of the electromagnetic wave diffracted by the diffraction grating;
Detecting means for detecting an intensity distribution of the electromagnetic wave that has passed through the shielding grid;
A tomosynthesis image capturing method for obtaining depth information inside an object based on information detected by the detection means,
The tomosynthesis image is picked up by using a shielding grating composed of a stack of at least two partial shielding gratings, in which a transmission part and a shielding part are periodically arranged, and these periods have different periods. When doing
Rotating the electromagnetic wave source;
Controlling the attitude of the diffraction grating according to the rotation of the electromagnetic wave source;
According to the incident direction of the electromagnetic wave source, to control the overlapping state of the shielding portions,
Suppressing the electromagnetic wave emitted from the electromagnetic wave source and transmitted through the transmission part of the shielding grid from being shielded by the shielding parts;
Controlling the attitude of the detection means according to the rotation of the electromagnetic wave source;
It is characterized by having.

本発明によれば、モアレのビジビリティ低下を抑制することができ、高画質な位相像や微分位相像を取得することが可能となるトモシンセシス撮像装置及びトモシンセシス画像の撮像方法を実現することができる。   According to the present invention, it is possible to realize a tomosynthesis imaging apparatus and a tomosynthesis image imaging method that can suppress a decrease in moire visibility and acquire a high-quality phase image and differential phase image.

本発明の実施形態に係るX線トモシンセシス撮像装置の構成例を説明する図である。It is a figure explaining the structural example of the X-ray tomosynthesis imaging device which concerns on embodiment of this invention. 本発明の実施形態に係る2次元回折格子を説明する図である。It is a figure explaining the two-dimensional diffraction grating which concerns on embodiment of this invention. 本発明の実施形態に係る部分遮蔽格子の積層状態を説明する図である。It is a figure explaining the lamination | stacking state of the partial shielding grating which concerns on embodiment of this invention. 本発明の実施形態に係る2次元遮蔽格子を説明する図である。It is a figure explaining the two-dimensional shielding grating which concerns on embodiment of this invention. 本発明の実施形態に係る代表的な回転角度におけるX線トモシンセシス撮像装置を説明する図である。It is a figure explaining the X-ray tomosynthesis imaging device in the typical rotation angle which concerns on embodiment of this invention.

以下に、本発明の実施形態のトモシンセシス撮像装置の構成例について説明する。
本実施形態のトモシンセシス撮像装置は、回転可能に構成された電磁波源と、前記電磁波源から出射された電磁波を回折する回折格子と、前記回折格子によって回折された前記電磁波の一部を遮る遮蔽格子と、を備える。
そして、この遮蔽格子を経た前記電磁波の強度分布を検出手段で検出し、この検出された情報に基づき被検査物内部の奥行き情報を取得するように構成されている。
これらを図を用いて説明するが、以下に説明する各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。
本実施形態では、本発明を、X線トールボット干渉法を用いたX線トモシンセシス撮像装置に適用した場合について説明する。
図1は本実施形態におけるX線トモシンセシス撮像装置の構成例を説明する図である。
図1に示したX線トモシンセシス撮像装置は、X線源110と、X線源からのX線を回折する回折格子130と、回折格子130によって回折されたX線の一部を遮蔽する遮蔽格子150と、遮蔽格子を経たX線を検出する検出器(検出手段)170を備えている。
遮蔽格子150は、少なくとも2つの部分遮蔽格子301(図3参照)から構成される。
更に、検出器の検出結果に基づいて演算を行う演算装置180と、X線源110と回折格子130と遮蔽格子150と部分遮蔽格子301の姿勢を制御する制御部(制御手段)190を備えている。
この制御部によって、例えば、電磁波源の回転に応じて、遮蔽格子の格子面と前記回折格子の格子面を平行に姿勢を制御し、かつ電磁波の入射方向に対して回折格子の格子面方向に姿勢を制御することができる。
また、電磁波源の回転に応じて、電磁波入射方向に対して回折格子の格子面が垂直になるように回折格子の姿勢を制御することができる。
そして、本実施形態の撮像装置は、被検体(被検査物)120の位相情報をモアレとして撮像する。
The configuration example of the tomosynthesis imaging apparatus according to the embodiment of the present invention will be described below.
The tomosynthesis imaging apparatus of the present embodiment includes an electromagnetic wave source configured to be rotatable, a diffraction grating that diffracts an electromagnetic wave emitted from the electromagnetic wave source, and a shielding grating that blocks a part of the electromagnetic wave diffracted by the diffraction grating. And comprising.
And the intensity distribution of the said electromagnetic wave which passed this shielding grid is detected by a detection means, and it is comprised so that the depth information inside a to-be-inspected object may be acquired based on this detected information.
These will be described with reference to the drawings. In each of the drawings described below, the same members are denoted by the same reference numerals, and redundant descriptions are omitted.
In this embodiment, a case where the present invention is applied to an X-ray tomosynthesis imaging apparatus using the X-ray Talbot interferometry will be described.
FIG. 1 is a diagram illustrating a configuration example of an X-ray tomosynthesis imaging apparatus according to the present embodiment.
The X-ray tomosynthesis imaging apparatus shown in FIG. 1 includes an X-ray source 110, a diffraction grating 130 that diffracts X-rays from the X-ray source, and a shielding grating that shields part of the X-rays diffracted by the diffraction grating 130. 150 and a detector (detection means) 170 for detecting X-rays that have passed through the shielding grid.
The shielding grating 150 is composed of at least two partial shielding gratings 301 (see FIG. 3).
Furthermore, a calculation device 180 that performs calculation based on the detection result of the detector, and a control unit (control means) 190 that controls the posture of the X-ray source 110, the diffraction grating 130, the shielding grating 150, and the partial shielding grating 301 are provided. Yes.
For example, according to the rotation of the electromagnetic wave source, the control unit controls the posture of the grating surface of the shielding grating and the grating surface of the diffraction grating in parallel, and in the grating surface direction of the diffraction grating with respect to the incident direction of the electromagnetic wave. The attitude can be controlled.
Further, the attitude of the diffraction grating can be controlled so that the grating surface of the diffraction grating is perpendicular to the electromagnetic wave incident direction according to the rotation of the electromagnetic wave source.
Then, the imaging apparatus of the present embodiment images the phase information of the subject (inspected object) 120 as moire.

以下に、上記各構成について更に具体的に説明する。
本実施形態の撮像装置は、電磁波源としてX線源110を備えている。
X線源110から発生したX線111が被検体120を透過すると、被検体120の組成や形状に応じてX線111に位相の変化及び吸収が生じる。
X線源としては、連続X線を発生させるX線源を用いても、特性X線を発生させるX線源を用いても良い。
また、波長としては、0.1Å以上5Å以下のものから適宜選択される。
また、X線源110から出射したX線の経路上に、波長選択フィルタやX線を細いビームに分割するための線源用の光源格子を適宜設けても良い。
Hereinafter, each of the above-described configurations will be described more specifically.
The imaging apparatus of this embodiment includes an X-ray source 110 as an electromagnetic wave source.
When the X-ray 111 generated from the X-ray source 110 passes through the subject 120, a change in phase and absorption occur in the X-ray 111 according to the composition and shape of the subject 120.
As the X-ray source, an X-ray source that generates continuous X-rays or an X-ray source that generates characteristic X-rays may be used.
The wavelength is appropriately selected from those having a wavelength of 0.1 to 5 mm.
Further, on the path of the X-rays emitted from the X-ray source 110, a wavelength selection filter and a light source grating for the source for dividing the X-rays into thin beams may be provided as appropriate.

また、回折格子130は、位相進行部131と位相遅延部132が周期的に配置されており、X線111を回折することで、明部と暗部を有する干渉パターン140を形成する。
図1では回折格子130は、被検体120と遮蔽格子150の間に配置されているが、X線源と被検体の間に配置しても良い。
回折格子130を被検体120と遮蔽格子150の間に配置すると、被検体により位相波面が変化したX線が回折されることで被検体の位相情報を持った干渉パターンが形成される。
一方、X線源と被検体の間に回折格子を配置すると、回折格子によって回折されたX線の位相波面が被検体により変化することで被検体の位相情報を持った干渉パターンが形成される。
In addition, the diffraction grating 130 has a phase advancer 131 and a phase delayer 132 periodically arranged, and diffracts the X-ray 111 to form an interference pattern 140 having a bright part and a dark part.
In FIG. 1, the diffraction grating 130 is disposed between the subject 120 and the shielding grating 150, but may be disposed between the X-ray source and the subject.
When the diffraction grating 130 is disposed between the subject 120 and the shielding grating 150, an X-ray whose phase wavefront has changed by the subject is diffracted, thereby forming an interference pattern having the phase information of the subject.
On the other hand, when a diffraction grating is disposed between the X-ray source and the subject, an X-ray phase wavefront diffracted by the diffraction grating changes depending on the subject, thereby forming an interference pattern having the phase information of the subject. .

位相進行部131と位相遅延部132は、透過したX線に対して位相差がつくように形成されていれば良い。
一般的には、位相遅延部132を透過したX線と、位相進行部131を透過したX線の位相差がπ、またはπ/2である。前者をπ回折格子、後者をπ/2回折格子と称する場合もある。
但し、位相遅延部132を透過したX線と、位相進行部131を透過したX線の位相差は、πやπ/2でなくても、X線を回折する領域内で一定であれば良く、例えば、透過したX線の位相差がπ/3でも良い。
The phase advancer 131 and the phase delay unit 132 may be formed so as to have a phase difference with respect to the transmitted X-ray.
Generally, the phase difference between the X-ray transmitted through the phase delay unit 132 and the X-ray transmitted through the phase advance unit 131 is π or π / 2. The former is sometimes called a π diffraction grating and the latter is called a π / 2 diffraction grating.
However, the phase difference between the X-rays transmitted through the phase delay unit 132 and the X-rays transmitted through the phase advancer 131 may be constant within the region where X-rays are diffracted, even if it is not π or π / 2. For example, the phase difference of transmitted X-rays may be π / 3.

位相進行部131と位相遅延部132は1次元周期を持つように配置されていても良いし、2次元周期を持つように配置されていても良い。
位相進行部131と位相遅延部132が2次元周期を持つように配置されている例として、図2(a)に示すように位相進行部220と位相遅延部210が市松格子状に配置されている回折格子201が挙げられる。
他にも、図2(b)に示すような位相進行部220と位相遅延部210が井桁格子状に配置されている回折格子201挙げられる。
しかし、位相進行部131と位相遅延部132の配置方法や形状はこれらに限定されるものではなく、例えば位相進行部や位相遅延部の外縁が円形状であっても回折格子として利用することが可能である。
The phase advancing unit 131 and the phase delay unit 132 may be arranged so as to have a one-dimensional period, or may be arranged so as to have a two-dimensional period.
As an example in which the phase advancer 131 and the phase delay unit 132 are arranged so as to have a two-dimensional period, the phase advancer 220 and the phase delay unit 210 are arranged in a checkered pattern as shown in FIG. The diffraction grating 201 is mentioned.
In addition, there is a diffraction grating 201 in which a phase advancement unit 220 and a phase delay unit 210 as shown in FIG.
However, the arrangement method and shape of the phase advancer 131 and the phase delay unit 132 are not limited to these. For example, the phase advancer 131 and the phase delay unit 132 can be used as a diffraction grating even if the outer edge of the phase advancer or the phase delay unit is circular. Is possible.

回折格子130が1次元の周期を有する場合には、被検体120の1次元方向の位相勾配情報しか取得できない。
しかし、回折格子130が2次元の周期を有する場合には、2次元方向の位相勾配情報を取得することができるため、より正確に被検体の位相情報を得ることができる。
なお、回折格子130を構成する材料はX線を透過する物質であることが好ましく、例えば、シリコン等を用いることができる。
When the diffraction grating 130 has a one-dimensional period, only the phase gradient information of the subject 120 in the one-dimensional direction can be acquired.
However, when the diffraction grating 130 has a two-dimensional period, the phase gradient information in the two-dimensional direction can be acquired, so that the phase information of the subject can be obtained more accurately.
Note that the material constituting the diffraction grating 130 is preferably a substance that transmits X-rays, and for example, silicon or the like can be used.

X線が回折格子130に回折されることで形成される干渉パターンは、X線源110と回折格子130との距離をZ0とすると、回折格子130からの距離Z1が下記の式(1)を満たしている位置に最も明瞭に現れる。
式(1)において、λはX線の波長、dは回折格子130の格子周期である。

Figure 2013042983
The interference pattern formed by diffracting the X-rays onto the diffraction grating 130 has a distance Z 1 from the diffraction grating 130 of the following formula (1), where Z 0 is the distance between the X-ray source 110 and the diffraction grating 130. ) Appears most clearly at the position where
In Equation (1), λ is the wavelength of X-rays, and d is the grating period of the diffraction grating 130.
Figure 2013042983

Nは回折格子の形態により異なる値であり、以下のように表現できる実数である。なお、nは自然数である。
1次元配列のπ回折格子:N=n/4−1/8
1次元配列のπ/2回折格子:N=n−1/2
2次元配列の市松模様π回折格子:N=n/4−1/8
2次元で市松模様π/2回折格子:N=n/2−1/4
本実施形態の遮蔽格子は、透過部と遮蔽部とが周期的に配列され、これらの周期が互いに異なる周期を有する、少なくとも2つの部分遮蔽格子の積層によって構成される。
具体的には、遮蔽格子150は、透過部151と遮蔽部152を備え、少なくとも2つの部分遮蔽格子301から構成される。この部分遮蔽格子301は周期的に配置された透過部350と遮蔽部360を有し、干渉パターン140の明部の一部を遮光することでモアレを形成する。
そのため、回折格子130から距離Z1だけ離れた位置に設けられることが好ましいが、製造誤差程度であれば遮蔽格子の配置位置がずれていてもモアレを形成することができる。
なお、図1では説明の都合上、干渉パターン140と遮蔽格子150を離して記載している。
N is a different value depending on the form of the diffraction grating, and is a real number that can be expressed as follows. Note that n is a natural number.
One-dimensional array of π diffraction gratings: N = n / 4−1 / 8
One-dimensional array of π / 2 diffraction grating: N = n−1 / 2
Two-dimensional checkered pattern π diffraction grating: N = n / 4−1 / 8
Two-dimensional checkered pattern π / 2 diffraction grating: N = n / 2−1 / 4
The shielding grating of this embodiment is configured by a stack of at least two partial shielding gratings in which a transmission part and a shielding part are periodically arranged, and these periods have different periods.
Specifically, the shielding grating 150 includes a transmission part 151 and a shielding part 152, and includes at least two partial shielding gratings 301. The partial shielding grating 301 includes a transmission part 350 and a shielding part 360 that are periodically arranged, and forms a moire by shielding a part of a bright part of the interference pattern 140.
Therefore, it is preferably provided at a position away from the diffraction grating 130 by the distance Z 1, but a moire can be formed even if the arrangement position of the shielding grating is deviated as long as the manufacturing error is about.
In FIG. 1, for convenience of explanation, the interference pattern 140 and the shielding grating 150 are illustrated separately.

部分遮蔽格子は、図3に示すように、格子の周期が互いに異なることによって、X線源から出る球面波に対応することができる。
部分遮蔽格子の格子面の1辺をLとし、1番目の部分遮蔽格子301の周期をp1、2番目の部分遮蔽格子310の周期をp2とすると、以下の条件式(2)を満たす必要がある。

Figure 2013042983
As shown in FIG. 3, the partially shielded grating can correspond to a spherical wave emitted from the X-ray source by having different grating periods.
When one side of the lattice plane of the partial shielding grating is L, the period of the first partial shielding grating 301 is p1, and the period of the second partial shielding grating 310 is p2, the following conditional expression (2) needs to be satisfied. is there.
Figure 2013042983

但し、X線吸収体部分の面積がX線透過部分の面積に比べて小さくする場合は、この限りではない。
なお、遮蔽格子の透過部151はX線の一部が透過可能に構成されていればよく、開口が貫通している必要はない。
また、遮蔽格子の遮蔽部152は干渉パターン140が形成される位置に遮蔽格子が配置された時にモアレが生じる程度にX線を遮蔽すれば良く、X線を完全に遮蔽しなくても良い。この遮蔽部152を構成する材料として、例えば、金を用いることができる。
However, this is not the case when the area of the X-ray absorber portion is smaller than the area of the X-ray transmission portion.
Note that the transmission part 151 of the shielding grid is not limited as long as a part of the X-rays can be transmitted, and the opening does not need to pass therethrough.
Further, the shielding part 152 of the shielding grid may shield X-rays to such an extent that moire is generated when the shielding grating is arranged at the position where the interference pattern 140 is formed, and may not completely shield the X-rays. For example, gold can be used as a material constituting the shielding portion 152.

遮蔽格子150の周期は、干渉パターンと同一、または僅かに異なる。
干渉パターンと同一の周期を持つ遮蔽格子を用いた場合、干渉パターンに対して遮蔽格子を面内回転させることによってモアレが発生する。
干渉パターンの周期をD、干渉パターンの明暗の周期方向と遮蔽格子の周期方向のなす角をθ(但し、θ<<1ラジアン)とすれば、モアレの周期Dmは、D/θとなる。
一方、干渉パターンと僅かに異なる周期を持つ遮蔽格子を用いた場合、遮蔽格子の面内回転を行なうことなくモアレが発生する。
遮蔽格子の周期をDa=D+δ(但し、δ<<D)とすれば、モアレの周期Dmは、D2/δとなる。
The period of the shielding grating 150 is the same as or slightly different from the interference pattern.
When a shielding grid having the same period as the interference pattern is used, moire is generated by in-plane rotation of the shielding grid with respect to the interference pattern.
Assuming that the period of the interference pattern is D and the angle between the light and dark period directions of the interference pattern and the period direction of the shielding grating is θ (where θ << 1 radians), the moire period Dm is D / θ.
On the other hand, when a shield grating having a slightly different period from the interference pattern is used, moire occurs without in-plane rotation of the shield grating.
If the period of the shielding grating is Da = D + δ (where δ << D), the moire period Dm is D 2 / δ.

部分遮蔽格子は、X線トモシンセシス撮像装置におけるX線源の回転角度に応じて、互いに1周期以内の範囲で周期方向に移動することができる。
部分遮蔽格子が移動することによって、部分遮蔽格子の遮蔽部が積層した遮蔽部は、X線の入射方向に向かって一直線上に配列する。
遮蔽格子150において、透過部151と遮蔽部152は、1次元周期的に配列されていてもよいし、また2次元周期的に配列されていてもよい。
例えば、図2(a)に示した市松格子状の回折格子であって、π回折格子を用いた場合には、図4(a)のように透過部420と遮蔽部410が2次元的に配列されている井桁格子状の遮蔽格子401を用いることができる。
また、図2(b)に示した井桁格子状のπ/2回折格子を用いた場合には、図4(b)のように透過部420と遮蔽部410が2次元的に配列されている市松格子状の遮蔽格子401を用いることができる。
なお、上記の組合せは一例であり、回折格子と遮蔽格子は種々の組合せが可能である。
The partially shielded gratings can move in the periodic direction within a period of one cycle according to the rotation angle of the X-ray source in the X-ray tomosynthesis imaging apparatus.
As the partial shielding grating moves, the shielding portions in which the shielding portions of the partial shielding grating are stacked are arranged on a straight line in the X-ray incident direction.
In the shielding grid 150, the transmission part 151 and the shielding part 152 may be arranged periodically in a one-dimensional manner, or may be arranged in a two-dimensional manner.
For example, in the case of the checkered grating-like diffraction grating shown in FIG. 2A and using a π diffraction grating, the transmission part 420 and the shielding part 410 are two-dimensionally shown in FIG. The arrayed grid-like shielding grid 401 can be used.
Further, in the case of using the sigma lattice π / 2 diffraction grating shown in FIG. 2B, the transmission part 420 and the shielding part 410 are two-dimensionally arranged as shown in FIG. 4B. A checkered grid 401 can be used.
The above combination is an example, and various combinations of the diffraction grating and the shielding grating are possible.

前記遮蔽格子150を透過したX線の干渉パターンの情報はモアレの強度分布として、X線検出器170によって検出される。
X線検出器170は、X線のモアレを撮像することのできる撮像素子である。
検出器として、例えば、デジタル信号への変換が可能なFPD(Flat Panel Detector)等を用いることができる。
The X-ray interference pattern information transmitted through the shielding grating 150 is detected by the X-ray detector 170 as a moire intensity distribution.
The X-ray detector 170 is an image sensor that can image X-ray moire.
As the detector, for example, an FPD (Flat Panel Detector) that can be converted into a digital signal can be used.

本実施形態の制御部は、上記2つの部分遮蔽格子を周期方向に移動させ、部分遮蔽格子間の各遮蔽部の重なり状態を制御する。
その際、電磁波源の回転による電磁波源の入射方向に応じて、この制御手段により各遮蔽部の重なり状態を制御し、電磁波源から出射され遮蔽格子の透過部を透過する電磁波が、各遮蔽部による遮蔽を抑制するように構成されている。
具体的には、本実施形態の制御部は、被検体(被検査物)を中心として回転するX線源の回転に応じて、回折格子、遮蔽格子及び検出器の姿勢を制御する。
X線源の被検体を中心とした回転角は最大で左右に20度ずつで、この範囲内で2度ずつ姿勢を制御して撮像を行ない、合計11回の撮像を行なう。
X線源の被検体を中心とした回転角をθ、正位置(検収器面からの垂線状にX線源があるとき)でのX線源から被検体の中心までの距離をa、被検体の中心から回折格子面までの距離をb、回折格子面から遮蔽格子面までの距離をcとするとき、
X線源の回転による回折格子、遮蔽格子、検出器の姿勢の制御量は、次のようになる。
回折格子の格子面上に沿った平行移動量はbtanθであり、遮蔽格子および検出器の検出器面上に沿った平行移動量は(b+c)tanθである。
但し、遮蔽格子と検出器同士は、極めて近い位置に配置するものとする。
例えば、図5に示すように、X線源から被検体の中心までの距離を1350mm、被検体の中心から回折格子面までの距離を10mm、回折格子面から遮蔽格子面までの距離を125mmとする。
そして、正位置から正方向に15度、負方向に15度回転した場合のX線源の回転による回折格子、遮蔽格子、検出器の姿勢の制御量を計算する。
回折格子は格子面上に沿った平行移動量は2.7mm、遮蔽格子および検出器の検出器面上に沿った平行移動量は36mmとなる。
The control unit of the present embodiment controls the overlapping state of the shielding units between the partial shielding gratings by moving the two partial shielding gratings in the periodic direction.
At that time, according to the incident direction of the electromagnetic wave source due to the rotation of the electromagnetic wave source, the control means controls the overlapping state of the shielding parts, and the electromagnetic waves emitted from the electromagnetic wave source and transmitted through the transmission part of the shielding grid are transmitted to the shielding parts. It is comprised so that shielding by may be suppressed.
Specifically, the control unit of the present embodiment controls the postures of the diffraction grating, the shielding grating, and the detector according to the rotation of the X-ray source that rotates about the subject (inspection object).
The maximum rotation angle about the subject of the X-ray source is 20 degrees to the left and right, and imaging is performed by controlling the posture by 2 degrees within this range, for a total of 11 times.
The rotation angle around the subject of the X-ray source is θ, the distance from the X-ray source to the center of the subject at the normal position (when the X-ray source is perpendicular to the detector surface) is a, the subject When the distance from the center of the specimen to the diffraction grating surface is b, and the distance from the diffraction grating surface to the shielding grating surface is c,
The amount of control of the attitude of the diffraction grating, shielding grating, and detector by the rotation of the X-ray source is as follows.
The amount of translation along the grating plane of the diffraction grating is b tan θ, and the amount of translation along the detector plane of the shielding grating and detector is (b + c) tan θ.
However, the shielding grid and the detector are arranged at extremely close positions.
For example, as shown in FIG. 5, the distance from the X-ray source to the subject center is 1350 mm, the distance from the subject center to the diffraction grating surface is 10 mm, and the distance from the diffraction grating surface to the shielding grating surface is 125 mm. To do.
Then, control amounts of the attitudes of the diffraction grating, the shielding grating, and the detector due to the rotation of the X-ray source when the positive position is rotated 15 degrees in the positive direction and 15 degrees in the negative direction are calculated.
The diffraction grating has a translation amount of 2.7 mm along the grating surface, and a translation amount of 36 mm along the shielding grating and the detector surface of the detector.

演算装置180は、検出器170で検出されたモアレの強度分布をフーリエ変換することで空間周波数スペクトルを算出する。
次に、基本周期成分の周波数(以後、キャリア周波数と呼ぶ)に対応するスペクトルを用いて位相回復処理を行い、微分位相像や位相像を得る。演算装置180は例えばCPUを有する。
本実施形態のX線撮像装置は演算部を有しているが、検出器で検出した情報を基にフーリエ変換と位相回復処理が行えれば、演算装置とX線撮像装置が別に設けられていても良い。
また、位相回復方法は、特許文献1に記載の縞走査回復法を用いてもよい。
The arithmetic device 180 calculates a spatial frequency spectrum by Fourier transforming the intensity distribution of the moire detected by the detector 170.
Next, phase recovery processing is performed using a spectrum corresponding to the frequency of the fundamental period component (hereinafter referred to as carrier frequency), and a differential phase image and a phase image are obtained. The arithmetic device 180 has, for example, a CPU.
Although the X-ray imaging apparatus of this embodiment has a calculation unit, if the Fourier transform and the phase recovery process can be performed based on information detected by the detector, the calculation apparatus and the X-ray imaging apparatus are provided separately. May be.
As the phase recovery method, the fringe scanning recovery method described in Patent Document 1 may be used.

上記の位相回復処理演算は、X線源の回転に応じた各ステップについて行ない、シフト加算法によりトモシンセシス画像の再構成を行なう。
シフト加算法とは、撮像された一連の画像に対して、各々の画像を走査方向に適量シフトし、画像を重ね合わせることで、任意の断面の画像を構成する方法である。
また、演算装置と表示部を接続してX線撮像システムを構成しても良い。
但し、本明細書においては、演算装置を含めたX線撮像装置と、その演算装置の演算結果に基づいた画像を表示する表示部をまとめてX線撮像システムと呼ぶ。以上の本実施形態の構成によれば、遮蔽格子を構成する部分遮蔽格子のうちの少なくともいずれか1つの姿勢を制御することにより、高画質な位相像や微分位相像を得ることが可能となる。
The above phase recovery processing calculation is performed for each step according to the rotation of the X-ray source, and the tomosynthesis image is reconstructed by the shift addition method.
The shift addition method is a method of forming an image of an arbitrary cross section by shifting an appropriate amount of each image in the scanning direction with respect to a series of captured images and superimposing the images.
In addition, an X-ray imaging system may be configured by connecting an arithmetic device and a display unit.
However, in this specification, an X-ray imaging apparatus including an arithmetic device and a display unit that displays an image based on the arithmetic result of the arithmetic device are collectively referred to as an X-ray imaging system. According to the configuration of the present embodiment described above, it is possible to obtain a high-quality phase image and a differential phase image by controlling the attitude of at least one of the partial shielding gratings constituting the shielding grating. .

110:X線源
111:X線
120:被検体(被検査物)
130:回折格子
131:位相進行部
132:位相遅延部
140:干渉パターン
150:遮蔽格子
151:透過部
152:遮蔽部
170:検出器(検出手段)
180:演算装置
190:制御部(制御手段)
110: X-ray source 111: X-ray 120: Subject (inspection object)
130: diffraction grating 131: phase advancing unit 132: phase delay unit 140: interference pattern 150: shielding grating 151: transmission unit 152: shielding unit 170: detector (detecting means)
180: arithmetic device 190: control unit (control means)

Claims (6)

回転可能に構成された電磁波源と、
前記電磁波源から出射された電磁波を回折する回折格子と、
前記回折格子によって回折された前記電磁波の一部を遮る遮蔽格子と、
前記遮蔽格子を経た前記電磁波の強度分布を検出する検出手段と、
を備え、前記検出手段で検出された情報に基づき被検査物内部の奥行き情報を取得するトモシンセシス撮像装置であって、
前記遮蔽格子は、透過部と遮蔽部とが周期的に配列され、これらの周期が互いに異なる周期を有する、少なくとも2つの部分遮蔽格子の積層によって構成され、
前記2つの部分遮蔽格子を前記周期の方向に移動させ、前記積層による部分遮蔽格子間の各遮蔽部の重なり状態を制御する制御手段を備え、
前記電磁波源の回転による電磁波源の入射方向に応じて、前記制御手段により前記各遮蔽部の重なり状態を制御し、
前記電磁波源から出射され前記遮蔽格子の透過部を透過する電磁波が、前記各遮蔽部による遮蔽を抑制することを特徴とするトモシンセシス撮像装置。
An electromagnetic wave source configured to be rotatable;
A diffraction grating for diffracting electromagnetic waves emitted from the electromagnetic wave source;
A shielding grating that blocks a part of the electromagnetic wave diffracted by the diffraction grating;
Detecting means for detecting an intensity distribution of the electromagnetic wave that has passed through the shielding grid;
A tomosynthesis imaging device for obtaining depth information inside the object to be inspected based on information detected by the detection means,
The shielding grating is composed of a stack of at least two partially shielding gratings in which a transmission part and a shielding part are periodically arranged, and these periods have different periods.
Control means for controlling the overlapping state of the shielding portions between the partial shielding gratings by the stack by moving the two partial shielding gratings in the direction of the period;
According to the incident direction of the electromagnetic wave source due to the rotation of the electromagnetic wave source, to control the overlapping state of the shielding portions by the control means,
The tomosynthesis imaging apparatus, wherein an electromagnetic wave emitted from the electromagnetic wave source and transmitted through a transmission part of the shielding grating suppresses shielding by the shielding parts.
前記電磁波源から出射された電磁波を分割する光源格子を有することを特徴とする請求項1に記載の撮像装置。   The imaging apparatus according to claim 1, further comprising: a light source grid that divides electromagnetic waves emitted from the electromagnetic wave source. 前記制御手段は、前記電磁波源の回転に応じて、前記遮蔽格子の格子面と前記回折格子の格子面を平行に姿勢を制御し、かつ前記電磁波の入射方向に対して前記回折格子の格子面方向に姿勢を制御することを特徴とする請求項1または請求項2に記載のトモシンセシス撮像装置。   The control means controls the posture of the grating surface of the shielding grating and the grating surface of the diffraction grating in parallel according to the rotation of the electromagnetic wave source, and the grating surface of the diffraction grating with respect to the incident direction of the electromagnetic wave The tomosynthesis imaging apparatus according to claim 1, wherein the posture is controlled in a direction. 前記制御手段は、前記電磁波源の回転に応じて、電磁波入射方向に対して前記回折格子の格子面が垂直になるように前記回折格子の姿勢を制御することを特徴とする請求項1または請求項2に記載のトモシンセシス撮像装置。   2. The control unit according to claim 1, wherein the control unit controls the attitude of the diffraction grating so that a grating surface of the diffraction grating is perpendicular to an electromagnetic wave incident direction according to rotation of the electromagnetic wave source. Item 3. The tomosynthesis imaging apparatus according to Item 2. 前記電磁波が、X線であることを特徴とする請求項1乃至4のいずれか1項に記載のトモシンセシス撮像装置。   The tomosynthesis imaging apparatus according to any one of claims 1 to 4, wherein the electromagnetic wave is an X-ray. 回転可能に構成された電磁波源と、
前記電磁波源から出射された電磁波を回折する回折格子と、
前記回折格子によって回折された前記電磁波の一部を遮る遮蔽格子と、
前記遮蔽格子を経た前記電磁波の強度分布を検出する検出手段と、
を備え、前記検出手段で検出された情報に基づき被検査物内部の奥行き情報を取得するトモシンセシス画像の撮像方法であって、
前記遮蔽格子として、透過部と遮蔽部とが周期的に配列され、これらの周期が互いに異なる周期を有する、少なくとも2つの部分遮蔽格子の積層によって構成された遮蔽格子を用いて前記トモシンセシス画像を撮像するに際し、
前記電磁波源を回転させる工程と、
前記電磁波源の回転に応じて、前記回折格子の姿勢を制御する工程と、
前記電磁波源の入射方向に応じて、前記各遮蔽部の重なり状態を制御し、
前記電磁波源から出射され前記遮蔽格子の透過部を透過する電磁波が、前記各遮蔽部により遮蔽されることを抑制する工程と、
前記電磁波源の回転に応じて、前記検出手段の姿勢を制御する工程と、
を有することを特徴とするトモシンセシス画像の撮像方法。
An electromagnetic wave source configured to be rotatable;
A diffraction grating for diffracting electromagnetic waves emitted from the electromagnetic wave source;
A shielding grating that blocks a part of the electromagnetic wave diffracted by the diffraction grating;
Detecting means for detecting an intensity distribution of the electromagnetic wave that has passed through the shielding grid;
A tomosynthesis image capturing method for obtaining depth information inside an object based on information detected by the detection means,
The tomosynthesis image is picked up by using a shielding grating composed of a stack of at least two partial shielding gratings, in which a transmission part and a shielding part are periodically arranged, and these periods have different periods. When doing
Rotating the electromagnetic wave source;
Controlling the attitude of the diffraction grating according to the rotation of the electromagnetic wave source;
According to the incident direction of the electromagnetic wave source, to control the overlapping state of the shielding portions,
Suppressing the electromagnetic wave emitted from the electromagnetic wave source and transmitted through the transmission part of the shielding grid from being shielded by the shielding parts;
Controlling the attitude of the detection means according to the rotation of the electromagnetic wave source;
A tomosynthesis image capturing method characterized by comprising:
JP2011183406A 2011-08-25 2011-08-25 Tomosynthesis imaging device and imaging method of tomosynthesis image Withdrawn JP2013042983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011183406A JP2013042983A (en) 2011-08-25 2011-08-25 Tomosynthesis imaging device and imaging method of tomosynthesis image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011183406A JP2013042983A (en) 2011-08-25 2011-08-25 Tomosynthesis imaging device and imaging method of tomosynthesis image

Publications (1)

Publication Number Publication Date
JP2013042983A true JP2013042983A (en) 2013-03-04

Family

ID=48007361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183406A Withdrawn JP2013042983A (en) 2011-08-25 2011-08-25 Tomosynthesis imaging device and imaging method of tomosynthesis image

Country Status (1)

Country Link
JP (1) JP2013042983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055867A1 (en) * 2016-09-23 2018-03-29 株式会社島津製作所 Diffraction grating for x-ray phase difference image capture device, x-ray emission unit for x-ray phase difference image capture device, and x-ray phase difference image capture device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055867A1 (en) * 2016-09-23 2018-03-29 株式会社島津製作所 Diffraction grating for x-ray phase difference image capture device, x-ray emission unit for x-ray phase difference image capture device, and x-ray phase difference image capture device

Similar Documents

Publication Publication Date Title
US9080858B2 (en) Wavefront measuring apparatus, wavefront measuring method, and computer-readable medium storing program
JP5777360B2 (en) X-ray imaging device
JP5796976B2 (en) X-ray imaging device
JP5595473B2 (en) Subject information acquisition apparatus, X-ray imaging apparatus, subject information acquisition method, and program
US8908824B2 (en) Imaging apparatus
JP4445397B2 (en) X-ray imaging apparatus and imaging method
JP5586986B2 (en) X-ray imaging device
JP6581713B2 (en) X-ray detector for phase contrast and / or dark field imaging, interferometer having the X-ray detector, X-ray imaging system, method for performing phase contrast X-ray imaging and / or dark field X-ray imaging, and computer program , Computer readable media
US20130070895A1 (en) X-ray imaging apparatus
JP5875280B2 (en) Imaging device using Talbot interference and method for adjusting imaging device
JP2017500160A (en) Large-field phase contrast imaging method based on detuning configuration including acquisition and reconstruction techniques
JP2011189118A (en) X-ray imaging apparatus and x-ray imaging method
US20140286475A1 (en) Interferometer and object information acquisition system
JP6058860B2 (en) X-ray imaging apparatus and X-ray imaging method
JP2013116270A (en) X-ray imaging apparatus
JP6566839B2 (en) X-ray Talbot interferometer and Talbot interferometer system
JP2013164339A (en) X-ray imaging device
WO2015156379A1 (en) Image processing unit and control method for image processing unit
JP2017093496A (en) Imaging device
JP2017090414A (en) Two-dimensional interference pattern imaging device
JP2013042983A (en) Tomosynthesis imaging device and imaging method of tomosynthesis image
JP2017083413A (en) X-ray Talbot interferometer
WO2019171920A1 (en) Radiation phase imaging device
JP2022006401A (en) X-ray image photographing apparatus and x-ray image generation method
JP2011237773A (en) Imaging apparatus and imaging method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20131212

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104