Nothing Special   »   [go: up one dir, main page]

JP2012522013A - 調節ires媒介翻訳 - Google Patents

調節ires媒介翻訳 Download PDF

Info

Publication number
JP2012522013A
JP2012522013A JP2012502307A JP2012502307A JP2012522013A JP 2012522013 A JP2012522013 A JP 2012522013A JP 2012502307 A JP2012502307 A JP 2012502307A JP 2012502307 A JP2012502307 A JP 2012502307A JP 2012522013 A JP2012522013 A JP 2012522013A
Authority
JP
Japan
Prior art keywords
substituted
ires
rps25
unsubstituted
virus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012502307A
Other languages
English (en)
Inventor
サニー アール. トンプソン,
エリク ミルズ シュウィーバート,
ジョン エイチ. ストレイフ,
Original Assignee
ザ ユーエービー リサーチ ファウンデーション
ディスカバリーバイオメッド, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ ユーエービー リサーチ ファウンデーション, ディスカバリーバイオメッド, インコーポレイテッド filed Critical ザ ユーエービー リサーチ ファウンデーション
Publication of JP2012522013A publication Critical patent/JP2012522013A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D223/00Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
    • C07D223/14Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D223/18Dibenzazepines; Hydrogenated dibenzazepines
    • C07D223/22Dibenz [b, f] azepines; Hydrogenated dibenz [b, f] azepines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/113Antisense targeting other non-coding nucleic acids, e.g. antagomirs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Pyridine Compounds (AREA)

Abstract

IRES含有RNA分子を含むウイルスによって媒介されたウイルス感染、またはRNA分子のIRES媒介翻訳の増加もしくは減少に関連する癌を予防または処置する際に使用するための化合物および方法が本明細書に提供される。また、IRES媒介翻訳を阻害または促進する方法も提供される。また、IRES媒介翻訳を阻害する薬剤をスクリーニングする方法も提供される。被検体における癌を処置または予防する方法もまた提供される。

Description

関連出願の相互参照
本出願は、その全体が本明細書に組み込まれる2009年3月27日に出願された米国仮出願第61/164,167号に対する優先権を主張する。
連邦政府による資金提供を受けた研究開発の記載
本発明は、国立衛生研究所からの認可番号CM084547および5T32HL007553からの助成および国立癌研究所からの認可番号CA−13148−31からの助成により行われた。米国政府は、本発明において一定の権利を有する。
メッセンジャーRNA(mRNA)の大部分は、翻訳のキャップ依存的機構を使用して翻訳される。しかしながら、メッセージの5%〜10%は、規定されないキャップ非依存的機構も使用して翻訳を開始する。5’非翻訳領域に位置する内部リボソーム侵入部位(IRES)を含有するmRNAは、キャップ非依存的機構によって翻訳を開始することができる。
内部リボソーム侵入部位(IRES)含有RNA分子を含むウイルスによって媒介されたウイルス感染、またはmRNA分子のIRES媒介翻訳の増加もしくは減少に関連する癌を予防または処置する際に使用するための化合物および方法が提供される。本方法は、内部リボソーム侵入部位(IRES)含有RNA分子を含むウイルスによって媒介されたウイルス感染を患うまたはウイルス感染を発症する危険性がある被検体を識別することと、本明細書に提供する化合物のいずれかの治療的に有効な量を、被検体に投与することとを含む。本化合物は、リボソームタンパク質S25(Rps25)発現または機能を低下させ得るか、または低下させ得ない。したがって、本方法は、Rps25発現または機能を低下させる治療的に有効な量の薬剤を被検体に投与することを含むか、またはさらに含む。
また、IRES媒介翻訳を阻害する方法も提供される。具体的には、細胞を提供することであって、細胞は、IRES含有RNA分子を含むことと、細胞を薬剤と接触させることであって、薬剤は、対照と比較して、リボソームタンパク質S25(Rps25)発現または機能を低下させることとを含む方法が提供される。本方法は、対照と比較して、IRES含有RNA分子により発現されたタンパク質のレベルの低下を検出することによって、IRES媒介翻訳が阻害されることを判断することをさらに含むことができる。
また、IRES媒介翻訳を阻害する薬剤をスクリーニングする方法も提供される。具体的には、Rps25またはRps25をコード化する核酸およびIRES含有RNA分子を含む系を提供することと、系を、被験薬剤と接触させることと、Rps25発現または機能を判断することとを含む方法が提供される。Rps25発現または機能のレベルの減少は、薬剤がIRES媒介翻訳を阻害することを示す。
また、IRES含有RNA分子を識別する方法も提供される。本方法は、細胞におけるRps25発現または機能を阻害することと、細胞におけるタンパク質発現パターンを判断することと、細胞におけるタンパク質発現パターンを対照と比較することとを含む。対照と比較するRNA分子のタンパク質発現の減少は、RNA分子がIRESを含有することを示す。
さらに、IRES媒介翻訳を促進する方法が提供される。本方法は、細胞を提供することであって、細胞は、IRES含有RNA分子を含むことと、細胞を薬剤と接触させることであって、薬剤は、対照と比較して、Rps25発現または活性を増加させることとを含む。本方法は、IRES媒介翻訳が、対照と比較して、IRES含有RNA分子により発現されたタンパク質のレベルの増加を検出することによって促進されることを判断することをさらに含むことができる。
CrPV IGR IRESの2次構造の略図を示す。ジシトロウイルス科のI型 IGR IRESにおける保存ヌクレオチドは、大文字で表わされる。 出芽酵母が増殖にRps25を必要としないことを示す。図2Aは、胞子形成された、ヘテロ接合rps25aΔbΔ2倍体酵母から解剖された4分子の画像を示す。図2B(上)は、図2B(下)に示す酵母増殖プレートの画像のマップを示す。図2B(下)は、pS25Aレスキュープラスミドを合成培地に含むおよび含まない野生型株およびRps25欠失株の増殖を実証するプレートの画像を示す。プレートは、30℃で3日間増殖された。 出芽酵母が増殖にRps25を必要としないことを示す。図2Aは、胞子形成された、ヘテロ接合rps25aΔbΔ2倍体酵母から解剖された4分子の画像を示す。図2B(上)は、図2B(下)に示す酵母増殖プレートの画像のマップを示す。図2B(下)は、pS25Aレスキュープラスミドを合成培地に含むおよび含まない野生型株およびRps25欠失株の増殖を実証するプレートの画像を示す。プレートは、30℃で3日間増殖された。 CrPV IGR IRESが生体内での翻訳開始にRps25を必要とすることを示す。図3Aは、ΔAUGジシストロン性ルシフェラーゼレポーターの図を示す。ジシストロン性レポーターの転写は、PGK1プロモーターの制御下にある。ウミシイタケルシフェラーゼは、キャップ依存的機構によって翻訳され、ホタル発現は、機能的IGR IRESに依存する。ホタルルシフェラーゼコード領域の第1のAUGを欠失させて、ホタルルシフェラーゼ活性が、開始のためにAUG開始コドンを必要としない機能的IGR IRESに単に依存しているかを確認する。図3Bは、野生型(灰色棒)またはIGRmut(白色棒)IGR IRESを有するジシストロン性レポーターで形質転換されたpS25Aレスキュープラスミドを含むおよび含まない野生型およびRps25欠失株のIRES活性を表わすヒストグラムを示す。ホタルルシフェラーゼ値を、内部対照として、ウミシイタケルシフェラーゼ値に正規化し、100%に任意に設定された野生型酵母におけるCrPV IGR IRESによる活性の割合として表現される。データ値を酵母株毎に与え、n=3の標準誤差が示される。図3Cは、図3Bのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示し、n=3の標準誤差が示される。 CrPV IGR IRESが生体内での翻訳開始にRps25を必要とすることを示す。図3Aは、ΔAUGジシストロン性ルシフェラーゼレポーターの図を示す。ジシストロン性レポーターの転写は、PGK1プロモーターの制御下にある。ウミシイタケルシフェラーゼは、キャップ依存的機構によって翻訳され、ホタル発現は、機能的IGR IRESに依存する。ホタルルシフェラーゼコード領域の第1のAUGを欠失させて、ホタルルシフェラーゼ活性が、開始のためにAUG開始コドンを必要としない機能的IGR IRESに単に依存しているかを確認する。図3Bは、野生型(灰色棒)またはIGRmut(白色棒)IGR IRESを有するジシストロン性レポーターで形質転換されたpS25Aレスキュープラスミドを含むおよび含まない野生型およびRps25欠失株のIRES活性を表わすヒストグラムを示す。ホタルルシフェラーゼ値を、内部対照として、ウミシイタケルシフェラーゼ値に正規化し、100%に任意に設定された野生型酵母におけるCrPV IGR IRESによる活性の割合として表現される。データ値を酵母株毎に与え、n=3の標準誤差が示される。図3Cは、図3Bのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示し、n=3の標準誤差が示される。 CrPV IGR IRESが生体内での翻訳開始にRps25を必要とすることを示す。図3Aは、ΔAUGジシストロン性ルシフェラーゼレポーターの図を示す。ジシストロン性レポーターの転写は、PGK1プロモーターの制御下にある。ウミシイタケルシフェラーゼは、キャップ依存的機構によって翻訳され、ホタル発現は、機能的IGR IRESに依存する。ホタルルシフェラーゼコード領域の第1のAUGを欠失させて、ホタルルシフェラーゼ活性が、開始のためにAUG開始コドンを必要としない機能的IGR IRESに単に依存しているかを確認する。図3Bは、野生型(灰色棒)またはIGRmut(白色棒)IGR IRESを有するジシストロン性レポーターで形質転換されたpS25Aレスキュープラスミドを含むおよび含まない野生型およびRps25欠失株のIRES活性を表わすヒストグラムを示す。ホタルルシフェラーゼ値を、内部対照として、ウミシイタケルシフェラーゼ値に正規化し、100%に任意に設定された野生型酵母におけるCrPV IGR IRESによる活性の割合として表現される。データ値を酵母株毎に与え、n=3の標準誤差が示される。図3Cは、図3Bのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示し、n=3の標準誤差が示される。 CrPV IGR IRESが、Rps25を欠く40Sリボソームサブユニットに結合することができないことを示す。野生型(上)と、pS25Aレスキュープラスミドを含む(下)および含まない(中)のrps25aΔbΔ酵母株からの40Sリボソームサブユニットの増加濃度を、放射性標識野生型CrPV IGR IRES RNAで培養した。アスタリスクは、汚染60Sサブユニット(右)からの80S複合体を示す。解離定数(K)は、フィルタ結合アッセイによって独立して判断された。n=3の標準誤差が示される。 Rps25の欠失が、グローバル翻訳にわずかな影響しか及ぼさないことを示す。図5Aは、野生型、rps25aΔ、rps25bΔ、およびrps25aΔbΔ欠失株のポリソーム分析を示す。ポリソーム対モノソーム比(P/M)が示される。図5Bは、野生型株およびrps25aΔbΔ株について35S−メチオニン混入により判断されたタンパク質合成速度のヒストグラムを示す。図5Cは、[5,6−H]ウラシルによるパルスチェイス標識化を介して視覚化された、野生型株およびrps25aΔbΔ株についてrRNA生合成を実証するゲルの画像を示す。図5D(上)は、リードスルーデュアルルシフェラーゼレポーターの図を示す。野生型、rps25aΔbΔ、および図5D(下)に示すように、テトラヌクレオチド終止コドンを含むレポーターを有するpS25A株を含むrps25aΔbΔについて、リードスルー効率を測定した。野生型株とrps25aΔbΔ株との間の倍率変化は、各テトラヌクレオチドの下に示す。n=4の標準誤差が示される。図5E(上)は、プログラムされたリボソームフレームシフトレポーターの図を示す。図5E(下)において、野生型、rps25aΔbΔ、またはpS25Aプラスミドを含むrps25aΔbΔの株について、レポーター毎のフレームシフト効率について試験した。n=3の標準誤差が示される。図5Fは、図5F(下)において、野生型株、rps25aΔbΔ株、またはレスキュープラスミド(pS25A)を含むrps25aΔbΔ株のミスコードを示す。図5F(上)に示すホタルORFにおいて突然変異を含むデュアルルシフェラーゼレポーターを使用して、ミスコードについて測定した。ミスコードの割合を、グラフの各棒の上に示し、n=4の標準誤差が示される。 Rps25の欠失が、グローバル翻訳にわずかな影響しか及ぼさないことを示す。図5Aは、野生型、rps25aΔ、rps25bΔ、およびrps25aΔbΔ欠失株のポリソーム分析を示す。ポリソーム対モノソーム比(P/M)が示される。図5Bは、野生型株およびrps25aΔbΔ株について35S−メチオニン混入により判断されたタンパク質合成速度のヒストグラムを示す。図5Cは、[5,6−H]ウラシルによるパルスチェイス標識化を介して視覚化された、野生型株およびrps25aΔbΔ株についてrRNA生合成を実証するゲルの画像を示す。図5D(上)は、リードスルーデュアルルシフェラーゼレポーターの図を示す。野生型、rps25aΔbΔ、および図5D(下)に示すように、テトラヌクレオチド終止コドンを含むレポーターを有するpS25A株を含むrps25aΔbΔについて、リードスルー効率を測定した。野生型株とrps25aΔbΔ株との間の倍率変化は、各テトラヌクレオチドの下に示す。n=4の標準誤差が示される。図5E(上)は、プログラムされたリボソームフレームシフトレポーターの図を示す。図5E(下)において、野生型、rps25aΔbΔ、またはpS25Aプラスミドを含むrps25aΔbΔの株について、レポーター毎のフレームシフト効率について試験した。n=3の標準誤差が示される。図5Fは、図5F(下)において、野生型株、rps25aΔbΔ株、またはレスキュープラスミド(pS25A)を含むrps25aΔbΔ株のミスコードを示す。図5F(上)に示すホタルORFにおいて突然変異を含むデュアルルシフェラーゼレポーターを使用して、ミスコードについて測定した。ミスコードの割合を、グラフの各棒の上に示し、n=4の標準誤差が示される。 Rps25の欠失が、グローバル翻訳にわずかな影響しか及ぼさないことを示す。図5Aは、野生型、rps25aΔ、rps25bΔ、およびrps25aΔbΔ欠失株のポリソーム分析を示す。ポリソーム対モノソーム比(P/M)が示される。図5Bは、野生型株およびrps25aΔbΔ株について35S−メチオニン混入により判断されたタンパク質合成速度のヒストグラムを示す。図5Cは、[5,6−H]ウラシルによるパルスチェイス標識化を介して視覚化された、野生型株およびrps25aΔbΔ株についてrRNA生合成を実証するゲルの画像を示す。図5D(上)は、リードスルーデュアルルシフェラーゼレポーターの図を示す。野生型、rps25aΔbΔ、および図5D(下)に示すように、テトラヌクレオチド終止コドンを含むレポーターを有するpS25A株を含むrps25aΔbΔについて、リードスルー効率を測定した。野生型株とrps25aΔbΔ株との間の倍率変化は、各テトラヌクレオチドの下に示す。n=4の標準誤差が示される。図5E(上)は、プログラムされたリボソームフレームシフトレポーターの図を示す。図5E(下)において、野生型、rps25aΔbΔ、またはpS25Aプラスミドを含むrps25aΔbΔの株について、レポーター毎のフレームシフト効率について試験した。n=3の標準誤差が示される。図5Fは、図5F(下)において、野生型株、rps25aΔbΔ株、またはレスキュープラスミド(pS25A)を含むrps25aΔbΔ株のミスコードを示す。図5F(上)に示すホタルORFにおいて突然変異を含むデュアルルシフェラーゼレポーターを使用して、ミスコードについて測定した。ミスコードの割合を、グラフの各棒の上に示し、n=4の標準誤差が示される。 Rps25の欠失が、グローバル翻訳にわずかな影響しか及ぼさないことを示す。図5Aは、野生型、rps25aΔ、rps25bΔ、およびrps25aΔbΔ欠失株のポリソーム分析を示す。ポリソーム対モノソーム比(P/M)が示される。図5Bは、野生型株およびrps25aΔbΔ株について35S−メチオニン混入により判断されたタンパク質合成速度のヒストグラムを示す。図5Cは、[5,6−H]ウラシルによるパルスチェイス標識化を介して視覚化された、野生型株およびrps25aΔbΔ株についてrRNA生合成を実証するゲルの画像を示す。図5D(上)は、リードスルーデュアルルシフェラーゼレポーターの図を示す。野生型、rps25aΔbΔ、および図5D(下)に示すように、テトラヌクレオチド終止コドンを含むレポーターを有するpS25A株を含むrps25aΔbΔについて、リードスルー効率を測定した。野生型株とrps25aΔbΔ株との間の倍率変化は、各テトラヌクレオチドの下に示す。n=4の標準誤差が示される。図5E(上)は、プログラムされたリボソームフレームシフトレポーターの図を示す。図5E(下)において、野生型、rps25aΔbΔ、またはpS25Aプラスミドを含むrps25aΔbΔの株について、レポーター毎のフレームシフト効率について試験した。n=3の標準誤差が示される。図5Fは、図5F(下)において、野生型株、rps25aΔbΔ株、またはレスキュープラスミド(pS25A)を含むrps25aΔbΔ株のミスコードを示す。図5F(上)に示すホタルORFにおいて突然変異を含むデュアルルシフェラーゼレポーターを使用して、ミスコードについて測定した。ミスコードの割合を、グラフの各棒の上に示し、n=4の標準誤差が示される。 Rps25の欠失が、グローバル翻訳にわずかな影響しか及ぼさないことを示す。図5Aは、野生型、rps25aΔ、rps25bΔ、およびrps25aΔbΔ欠失株のポリソーム分析を示す。ポリソーム対モノソーム比(P/M)が示される。図5Bは、野生型株およびrps25aΔbΔ株について35S−メチオニン混入により判断されたタンパク質合成速度のヒストグラムを示す。図5Cは、[5,6−H]ウラシルによるパルスチェイス標識化を介して視覚化された、野生型株およびrps25aΔbΔ株についてrRNA生合成を実証するゲルの画像を示す。図5D(上)は、リードスルーデュアルルシフェラーゼレポーターの図を示す。野生型、rps25aΔbΔ、および図5D(下)に示すように、テトラヌクレオチド終止コドンを含むレポーターを有するpS25A株を含むrps25aΔbΔについて、リードスルー効率を測定した。野生型株とrps25aΔbΔ株との間の倍率変化は、各テトラヌクレオチドの下に示す。n=4の標準誤差が示される。図5E(上)は、プログラムされたリボソームフレームシフトレポーターの図を示す。図5E(下)において、野生型、rps25aΔbΔ、またはpS25Aプラスミドを含むrps25aΔbΔの株について、レポーター毎のフレームシフト効率について試験した。n=3の標準誤差が示される。図5Fは、図5F(下)において、野生型株、rps25aΔbΔ株、またはレスキュープラスミド(pS25A)を含むrps25aΔbΔ株のミスコードを示す。図5F(上)に示すホタルORFにおいて突然変異を含むデュアルルシフェラーゼレポーターを使用して、ミスコードについて測定した。ミスコードの割合を、グラフの各棒の上に示し、n=4の標準誤差が示される。 Rps25の欠失が、グローバル翻訳にわずかな影響しか及ぼさないことを示す。図5Aは、野生型、rps25aΔ、rps25bΔ、およびrps25aΔbΔ欠失株のポリソーム分析を示す。ポリソーム対モノソーム比(P/M)が示される。図5Bは、野生型株およびrps25aΔbΔ株について35S−メチオニン混入により判断されたタンパク質合成速度のヒストグラムを示す。図5Cは、[5,6−H]ウラシルによるパルスチェイス標識化を介して視覚化された、野生型株およびrps25aΔbΔ株についてrRNA生合成を実証するゲルの画像を示す。図5D(上)は、リードスルーデュアルルシフェラーゼレポーターの図を示す。野生型、rps25aΔbΔ、および図5D(下)に示すように、テトラヌクレオチド終止コドンを含むレポーターを有するpS25A株を含むrps25aΔbΔについて、リードスルー効率を測定した。野生型株とrps25aΔbΔ株との間の倍率変化は、各テトラヌクレオチドの下に示す。n=4の標準誤差が示される。図5E(上)は、プログラムされたリボソームフレームシフトレポーターの図を示す。図5E(下)において、野生型、rps25aΔbΔ、またはpS25Aプラスミドを含むrps25aΔbΔの株について、レポーター毎のフレームシフト効率について試験した。n=3の標準誤差が示される。図5Fは、図5F(下)において、野生型株、rps25aΔbΔ株、またはレスキュープラスミド(pS25A)を含むrps25aΔbΔ株のミスコードを示す。図5F(上)に示すホタルORFにおいて突然変異を含むデュアルルシフェラーゼレポーターを使用して、ミスコードについて測定した。ミスコードの割合を、グラフの各棒の上に示し、n=4の標準誤差が示される。 哺乳類におけるCrPV IGR IRES活性およびHCV IRES活性にRps25が必要とされるかを示す。図6Aは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの48時間、72時間、および96時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Bは、ΔAUGジシストロン性ルシフェラーゼレポーターにおいてCrPV IGR IRESを含有する哺乳類DNA発現ベクターの図を示す。レポーターの転写は、CMVプロモーターによって促進される。図6Cは、ヒーラ細胞におけるsiRNAトランスフェクション96時間後におけるCrPV IGR IRES活性を表わすヒストグラムを示す。レポータープラスミドによるトランスフェクション(図6Bに示す)を、siRNAノックダウン48時間後に実行した。n=3の標準誤差が示される。図6Dは、図6Cのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。図6Eは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの72時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Fは、ジシストロン性ルシフェラーゼレポーターにおいてHCV IRESを含有する哺乳類DNA発現ベクターの図を示す。図6Gは、対照またはRps25 siRNAを含む細胞におけるHCV IRESのIRES活性を表わすヒストグラムを示す。siRNAノックダウン24時間後にレポーターを細胞内にトランスフェクトし、72時間でアッセイした。実験1および2について、それぞれn=5またはn=4の標準誤差が示される。図6Hは、図6Gのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。 哺乳類におけるCrPV IGR IRES活性およびHCV IRES活性にRps25が必要とされるかを示す。図6Aは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの48時間、72時間、および96時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Bは、ΔAUGジシストロン性ルシフェラーゼレポーターにおいてCrPV IGR IRESを含有する哺乳類DNA発現ベクターの図を示す。レポーターの転写は、CMVプロモーターによって促進される。図6Cは、ヒーラ細胞におけるsiRNAトランスフェクション96時間後におけるCrPV IGR IRES活性を表わすヒストグラムを示す。レポータープラスミドによるトランスフェクション(図6Bに示す)を、siRNAノックダウン48時間後に実行した。n=3の標準誤差が示される。図6Dは、図6Cのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。図6Eは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの72時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Fは、ジシストロン性ルシフェラーゼレポーターにおいてHCV IRESを含有する哺乳類DNA発現ベクターの図を示す。図6Gは、対照またはRps25 siRNAを含む細胞におけるHCV IRESのIRES活性を表わすヒストグラムを示す。siRNAノックダウン24時間後にレポーターを細胞内にトランスフェクトし、72時間でアッセイした。実験1および2について、それぞれn=5またはn=4の標準誤差が示される。図6Hは、図6Gのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。 哺乳類におけるCrPV IGR IRES活性およびHCV IRES活性にRps25が必要とされるかを示す。図6Aは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの48時間、72時間、および96時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Bは、ΔAUGジシストロン性ルシフェラーゼレポーターにおいてCrPV IGR IRESを含有する哺乳類DNA発現ベクターの図を示す。レポーターの転写は、CMVプロモーターによって促進される。図6Cは、ヒーラ細胞におけるsiRNAトランスフェクション96時間後におけるCrPV IGR IRES活性を表わすヒストグラムを示す。レポータープラスミドによるトランスフェクション(図6Bに示す)を、siRNAノックダウン48時間後に実行した。n=3の標準誤差が示される。図6Dは、図6Cのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。図6Eは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの72時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Fは、ジシストロン性ルシフェラーゼレポーターにおいてHCV IRESを含有する哺乳類DNA発現ベクターの図を示す。図6Gは、対照またはRps25 siRNAを含む細胞におけるHCV IRESのIRES活性を表わすヒストグラムを示す。siRNAノックダウン24時間後にレポーターを細胞内にトランスフェクトし、72時間でアッセイした。実験1および2について、それぞれn=5またはn=4の標準誤差が示される。図6Hは、図6Gのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。 哺乳類におけるCrPV IGR IRES活性およびHCV IRES活性にRps25が必要とされるかを示す。図6Aは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの48時間、72時間、および96時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Bは、ΔAUGジシストロン性ルシフェラーゼレポーターにおいてCrPV IGR IRESを含有する哺乳類DNA発現ベクターの図を示す。レポーターの転写は、CMVプロモーターによって促進される。図6Cは、ヒーラ細胞におけるsiRNAトランスフェクション96時間後におけるCrPV IGR IRES活性を表わすヒストグラムを示す。レポータープラスミドによるトランスフェクション(図6Bに示す)を、siRNAノックダウン48時間後に実行した。n=3の標準誤差が示される。図6Dは、図6Cのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。図6Eは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの72時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Fは、ジシストロン性ルシフェラーゼレポーターにおいてHCV IRESを含有する哺乳類DNA発現ベクターの図を示す。図6Gは、対照またはRps25 siRNAを含む細胞におけるHCV IRESのIRES活性を表わすヒストグラムを示す。siRNAノックダウン24時間後にレポーターを細胞内にトランスフェクトし、72時間でアッセイした。実験1および2について、それぞれn=5またはn=4の標準誤差が示される。図6Hは、図6Gのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。 哺乳類におけるCrPV IGR IRES活性およびHCV IRES活性にRps25が必要とされるかを示す。図6Aは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの48時間、72時間、および96時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Bは、ΔAUGジシストロン性ルシフェラーゼレポーターにおいてCrPV IGR IRESを含有する哺乳類DNA発現ベクターの図を示す。レポーターの転写は、CMVプロモーターによって促進される。図6Cは、ヒーラ細胞におけるsiRNAトランスフェクション96時間後におけるCrPV IGR IRES活性を表わすヒストグラムを示す。レポータープラスミドによるトランスフェクション(図6Bに示す)を、siRNAノックダウン48時間後に実行した。n=3の標準誤差が示される。図6Dは、図6Cのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。図6Eは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの72時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Fは、ジシストロン性ルシフェラーゼレポーターにおいてHCV IRESを含有する哺乳類DNA発現ベクターの図を示す。図6Gは、対照またはRps25 siRNAを含む細胞におけるHCV IRESのIRES活性を表わすヒストグラムを示す。siRNAノックダウン24時間後にレポーターを細胞内にトランスフェクトし、72時間でアッセイした。実験1および2について、それぞれn=5またはn=4の標準誤差が示される。図6Hは、図6Gのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。 哺乳類におけるCrPV IGR IRES活性およびHCV IRES活性にRps25が必要とされるかを示す。図6Aは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの48時間、72時間、および96時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Bは、ΔAUGジシストロン性ルシフェラーゼレポーターにおいてCrPV IGR IRESを含有する哺乳類DNA発現ベクターの図を示す。レポーターの転写は、CMVプロモーターによって促進される。図6Cは、ヒーラ細胞におけるsiRNAトランスフェクション96時間後におけるCrPV IGR IRES活性を表わすヒストグラムを示す。レポータープラスミドによるトランスフェクション(図6Bに示す)を、siRNAノックダウン48時間後に実行した。n=3の標準誤差が示される。図6Dは、図6Cのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。図6Eは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの72時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Fは、ジシストロン性ルシフェラーゼレポーターにおいてHCV IRESを含有する哺乳類DNA発現ベクターの図を示す。図6Gは、対照またはRps25 siRNAを含む細胞におけるHCV IRESのIRES活性を表わすヒストグラムを示す。siRNAノックダウン24時間後にレポーターを細胞内にトランスフェクトし、72時間でアッセイした。実験1および2について、それぞれn=5またはn=4の標準誤差が示される。図6Hは、図6Gのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。 哺乳類におけるCrPV IGR IRES活性およびHCV IRES活性にRps25が必要とされるかを示す。図6Aは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの48時間、72時間、および96時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Bは、ΔAUGジシストロン性ルシフェラーゼレポーターにおいてCrPV IGR IRESを含有する哺乳類DNA発現ベクターの図を示す。レポーターの転写は、CMVプロモーターによって促進される。図6Cは、ヒーラ細胞におけるsiRNAトランスフェクション96時間後におけるCrPV IGR IRES活性を表わすヒストグラムを示す。レポータープラスミドによるトランスフェクション(図6Bに示す)を、siRNAノックダウン48時間後に実行した。n=3の標準誤差が示される。図6Dは、図6Cのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。図6Eは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの72時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Fは、ジシストロン性ルシフェラーゼレポーターにおいてHCV IRESを含有する哺乳類DNA発現ベクターの図を示す。図6Gは、対照またはRps25 siRNAを含む細胞におけるHCV IRESのIRES活性を表わすヒストグラムを示す。siRNAノックダウン24時間後にレポーターを細胞内にトランスフェクトし、72時間でアッセイした。実験1および2について、それぞれn=5またはn=4の標準誤差が示される。図6Hは、図6Gのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。 哺乳類におけるCrPV IGR IRES活性およびHCV IRES活性にRps25が必要とされるかを示す。図6Aは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの48時間、72時間、および96時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Bは、ΔAUGジシストロン性ルシフェラーゼレポーターにおいてCrPV IGR IRESを含有する哺乳類DNA発現ベクターの図を示す。レポーターの転写は、CMVプロモーターによって促進される。図6Cは、ヒーラ細胞におけるsiRNAトランスフェクション96時間後におけるCrPV IGR IRES活性を表わすヒストグラムを示す。レポータープラスミドによるトランスフェクション(図6Bに示す)を、siRNAノックダウン48時間後に実行した。n=3の標準誤差が示される。図6Dは、図6Cのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。図6Eは、ノーザンブロット法の画像を示し、Rps25がsiRNAを使用してノックダウンされたことが実証される。ノーザン分析により、siRNAトランスフェクションの72時間後にmRNAレベルを検査した。Rps25 mRNAのレベルをβ−アクチンに正規化し、各時点で対照の割合として表現される。図6Fは、ジシストロン性ルシフェラーゼレポーターにおいてHCV IRESを含有する哺乳類DNA発現ベクターの図を示す。図6Gは、対照またはRps25 siRNAを含む細胞におけるHCV IRESのIRES活性を表わすヒストグラムを示す。siRNAノックダウン24時間後にレポーターを細胞内にトランスフェクトし、72時間でアッセイした。実験1および2について、それぞれn=5またはn=4の標準誤差が示される。図6Hは、図6Gのウミシイタケルシフェラーゼ値およびホタルルシフェラーゼ値を示す。 哺乳類細胞におけるCrPV IGR IRES媒介翻訳にRps25が必要とされるかを示す。図7Aは、哺乳類細胞に使用されるジシストロン性レポーターの図を示す。図7Bは、Rps25 shRNAの対照を含むレンチウイルスで形質導入されたヒーラ細胞のノーザンブロット法の画像を示す。ノーザンブロット法は、Rps25 mRNAレベルのノックダウンを実証する。Rps25 mRNAのレベルをβ−アクチンに正規化し、対照の割合として表現される。図7Cは、ヒーラ細胞におけるRps25のshRNA媒介ノックダウン後のCrPV IGR IRES活性を示すヒストグラムを示す。n=3の標準誤差が示される。 哺乳類細胞におけるCrPV IGR IRES媒介翻訳にRps25が必要とされるかを示す。図7Aは、哺乳類細胞に使用されるジシストロン性レポーターの図を示す。図7Bは、Rps25 shRNAの対照を含むレンチウイルスで形質導入されたヒーラ細胞のノーザンブロット法の画像を示す。ノーザンブロット法は、Rps25 mRNAレベルのノックダウンを実証する。Rps25 mRNAのレベルをβ−アクチンに正規化し、対照の割合として表現される。図7Cは、ヒーラ細胞におけるRps25のshRNA媒介ノックダウン後のCrPV IGR IRES活性を示すヒストグラムを示す。n=3の標準誤差が示される。 哺乳類細胞におけるCrPV IGR IRES媒介翻訳にRps25が必要とされるかを示す。図7Aは、哺乳類細胞に使用されるジシストロン性レポーターの図を示す。図7Bは、Rps25 shRNAの対照を含むレンチウイルスで形質導入されたヒーラ細胞のノーザンブロット法の画像を示す。ノーザンブロット法は、Rps25 mRNAレベルのノックダウンを実証する。Rps25 mRNAのレベルをβ−アクチンに正規化し、対照の割合として表現される。図7Cは、ヒーラ細胞におけるRps25のshRNA媒介ノックダウン後のCrPV IGR IRES活性を示すヒストグラムを示す。n=3の標準誤差が示される。 IRES活性の減少が経時的に維持されることを示す。CrPV IGR IRES活性は、Rps25に対してshRNAを発現する安定細胞株において大幅に減少する。図8Aは、ノーザンブロット法の画像およびウエスタンブロット法の画像を示し、Rps25を対象とするsiRNAおよびshRNAの両方によるRps25のノックダウンが実証される。Rps25 mRNAのレベルは、β−アクチンに正規化され、対照の割合として表現される。図8Bは、ヒーラ細胞におけるRps25のsiRNAおよびshRNA媒介ノックダウン後のCrPV IGR IRES活性を表わすヒストグラムを示す。n=3の標準誤差が示される。 IRES活性の減少が経時的に維持されることを示す。CrPV IGR IRES活性は、Rps25に対してshRNAを発現する安定細胞株において大幅に減少する。図8Aは、ノーザンブロット法の画像およびウエスタンブロット法の画像を示し、Rps25を対象とするsiRNAおよびshRNAの両方によるRps25のノックダウンが実証される。Rps25 mRNAのレベルは、β−アクチンに正規化され、対照の割合として表現される。図8Bは、ヒーラ細胞におけるRps25のsiRNAおよびshRNA媒介ノックダウン後のCrPV IGR IRES活性を表わすヒストグラムを示す。n=3の標準誤差が示される。 2つの種類のIGR IRESにおいてRps25がIRES媒介翻訳に必要とされるかを示す。CrPV IRESは、ジシストロウイルスと呼ばれるウイルス科に属する。加えて、2つの種類のIGR IRESが存在する。CrPV IRESは、種類Iに属し、種類IIメンバーは、ドメインIIIにおいて、より大きなバルジおよび余分なステムループを有する。ヒストグラムに実証されるように、被験科の各メンバーは、Rps25の非存在下で効率的に翻訳することができなかった。Rps25の損失は両種のIGR IRESに影響を及ぼすことから、強調された2つのステムループとRps25が相互作用することが考えられ、この領域は、2つの種類間で保存される。 哺乳類細胞におけるHCV IRES媒介翻訳および複製にRps25が必要とされることを示す。図10Aは、Rps25を対象とするshRNAによるRps25のノックダウンを実証するノーザンブロット法を示す。図10Bは、ヒーラ細胞におけるRps25のshRNA媒介ノックダウン後のHCV IRES活性を表わすヒストグラムを示す。n=3の標準誤差が示される。図10Cは、Rps25のsiRNA媒介ノックダウンによってHuh7細胞におけるHCV複製が阻害されることを実証するウエスタンブロット法の画像を示す(左)。さらに、siRNAによる処理によってRps25 mRNAがノックダウンされることを実証するノーザンブロット法の画像が示される(右)。対照またはRps25 siRNAで24時間処置されたHuh7細胞を、HCVレプリコンで感染させた。72時間後、定量的ウエスタン分析のために、β−アクチン抗体およびHCVタンパク質NS5Aに対する抗体の両方を使用して、細胞を採取し、タンパク質抽出した。 哺乳類細胞におけるHCV IRES媒介翻訳および複製にRps25が必要とされることを示す。図10Aは、Rps25を対象とするshRNAによるRps25のノックダウンを実証するノーザンブロット法を示す。図10Bは、ヒーラ細胞におけるRps25のshRNA媒介ノックダウン後のHCV IRES活性を表わすヒストグラムを示す。n=3の標準誤差が示される。図10Cは、Rps25のsiRNA媒介ノックダウンによってHuh7細胞におけるHCV複製が阻害されることを実証するウエスタンブロット法の画像を示す(左)。さらに、siRNAによる処理によってRps25 mRNAがノックダウンされることを実証するノーザンブロット法の画像が示される(右)。対照またはRps25 siRNAで24時間処置されたHuh7細胞を、HCVレプリコンで感染させた。72時間後、定量的ウエスタン分析のために、β−アクチン抗体およびHCVタンパク質NS5Aに対する抗体の両方を使用して、細胞を採取し、タンパク質抽出した。 哺乳類細胞におけるHCV IRES媒介翻訳および複製にRps25が必要とされることを示す。図10Aは、Rps25を対象とするshRNAによるRps25のノックダウンを実証するノーザンブロット法を示す。図10Bは、ヒーラ細胞におけるRps25のshRNA媒介ノックダウン後のHCV IRES活性を表わすヒストグラムを示す。n=3の標準誤差が示される。図10Cは、Rps25のsiRNA媒介ノックダウンによってHuh7細胞におけるHCV複製が阻害されることを実証するウエスタンブロット法の画像を示す(左)。さらに、siRNAによる処理によってRps25 mRNAがノックダウンされることを実証するノーザンブロット法の画像が示される(右)。対照またはRps25 siRNAで24時間処置されたHuh7細胞を、HCVレプリコンで感染させた。72時間後、定量的ウエスタン分析のために、β−アクチン抗体およびHCVタンパク質NS5Aに対する抗体の両方を使用して、細胞を採取し、タンパク質抽出した。 ピコナウイルスIRESの活性をRps25が強化することを示す。Rps25ノックダウンがピコナウイルスIRES媒介翻訳に影響を及ぼすことを実証するヒストグラムが示される。4つのウイルスIRESのうちの1つを有するジシストロン性レポーターを、Rps25のsiRNA媒介ノックダウン48時間後に、細胞内にトランスフェクトした。IRES活性を96時間に測定した。n=3の標準誤差が示される。ECMV:脳心筋炎ウイルス;PV:ポリオウイルス;EV71:エンテロウイルス71。CrPV IGR IRESは、比較のために示される。 Rps25に対する軽度から重度の依存性を細胞IRESが明示することを示す。図12Aは、Rps25を対象とするsiRNAによるRps25のノックダウンを実証するノーザンブロット法の画像を示す。図12Bは、ヒーラ細胞におけるRps25のsiRNA媒介ノックダウン後に、IRES要素を有することで知られる複数の細胞RNAの細胞IRES活性を表わすヒストグラムを示す。対照およびRps25 siRNAにより48時間処置されたヒーラ細胞における細胞IRESについてのジシストロン性レポーターアッセイを実行した。IRES活性を96時間後に測定し、100%に任意設定される対照細胞において測定された対応するIRES活性の割合として表現される。n=3の標準誤差が示される。 Rps25に対する軽度から重度の依存性を細胞IRESが明示することを示す。図12Aは、Rps25を対象とするsiRNAによるRps25のノックダウンを実証するノーザンブロット法の画像を示す。図12Bは、ヒーラ細胞におけるRps25のsiRNA媒介ノックダウン後に、IRES要素を有することで知られる複数の細胞RNAの細胞IRES活性を表わすヒストグラムを示す。対照およびRps25 siRNAにより48時間処置されたヒーラ細胞における細胞IRESについてのジシストロン性レポーターアッセイを実行した。IRES活性を96時間後に測定し、100%に任意設定される対照細胞において測定された対応するIRES活性の割合として表現される。n=3の標準誤差が示される。 Bag−1細胞IRESが翻訳にRps25を必要とすることを示す。図13Aは、Rps25を対象とするsiRNAによるRps25のノックダウンを実証するノーザンブロット法の画像を示す。図13Bは、ヒーラ細胞におけるRps25のsiRNA媒介ノックダウン後の、Bag−1およびc−mycの細胞IRES活性を表わすヒストグラムを示す。図13Cは、3つのIRES要素のステムループの略図を示す。翻訳についてRps25に依存するIRES要素、CrPV要素、およびBag−1 IRES要素は、保存された配列モチーフ(ANYモチーフ)を共有する。 Bag−1細胞IRESが翻訳にRps25を必要とすることを示す。図13Aは、Rps25を対象とするsiRNAによるRps25のノックダウンを実証するノーザンブロット法の画像を示す。図13Bは、ヒーラ細胞におけるRps25のsiRNA媒介ノックダウン後の、Bag−1およびc−mycの細胞IRES活性を表わすヒストグラムを示す。図13Cは、3つのIRES要素のステムループの略図を示す。翻訳についてRps25に依存するIRES要素、CrPV要素、およびBag−1 IRES要素は、保存された配列モチーフ(ANYモチーフ)を共有する。 Bag−1細胞IRESが翻訳にRps25を必要とすることを示す。図13Aは、Rps25を対象とするsiRNAによるRps25のノックダウンを実証するノーザンブロット法の画像を示す。図13Bは、ヒーラ細胞におけるRps25のsiRNA媒介ノックダウン後の、Bag−1およびc−mycの細胞IRES活性を表わすヒストグラムを示す。図13Cは、3つのIRES要素のステムループの略図を示す。翻訳についてRps25に依存するIRES要素、CrPV要素、およびBag−1 IRES要素は、保存された配列モチーフ(ANYモチーフ)を共有する。 IGR IRESの40Sリボソームとの相互作用のモデルを示す(上)。酵母40Sサブユニットに結合されたIGR IRESのCryo−EM構造は、2つの配向で示される。左上図は、40Sサブユニットの界面側を示し、IGR IRESは、P部位およびE部位を占めるmRNAチャンネルに結合される(Schuler et al, Nat. Struct. Mol. Biol. 13:1092−6 (2006))。右上図は、示されるように、SL2.3の裏側を示すために、X軸に沿って90°およびY軸に沿って110°回転された複合体を示す。囲まれた範囲の拡大図は、SL2.3およびSL2.1の40Sサブユニットとの相互作用を示す。CrPV IGR IRESの密度は、明確にするために除去されており、IGR IRES構造のモデルが示される。加えて、原核生物rRNAおよびタンパク質(PDB:1S1H)の原子モデルは、Cryo−EM密度にモデル化されている(Spahn et al, EMBO J. 23;1008−19 (2004))。これらのモデルによって、Rps25であり得るRps5付近のリボソームの表面における非割り当て密度が明らかになる。この位置におけるタンパク質は、CrPV IGR IRES SL2.3と相互作用することが予測され得、N−末端またはC−末端伸張を有するSL2.1と相互作用し得る。 Huh7ヒト肝細胞におけるHCV IRESデュアルLUCレポーターの一過性トランスフェクション最適化を示す。複数の陽イオン性脂質ベースの一過性トランスフェクション試薬を使用して、レポーターの一過性トランスフェクションがハイスループットスクリーンに実現可能かを判断した。 HCV IRES翻訳阻害剤スクリーンのハイスループットプレートマップを示す。図16(上)は、半自動化ハイスループットスクリーンのプレートマップを示す。ウェルA1〜A6は、標準的な培地中1%DMSOで処置される。ウェルA7〜A12は、HCV IRESデュアルLUCレポーターのみでトランスフェクトされる。ウェルBl〜H12は、3組の試験小分子で3通りに処置される(例えば、ウェルB1〜B3は、化合物Aで処置され、ウェルB4〜6は、化合物Bで処理される等)。図16(下)は、完全自動化ハイスループットスクリーンのプレートマップを示す。列1は、模擬トランスフェクトされる。列2〜12は、HCV IRESデュアルLUCレポーターでトランスフェクトされる。列1および12は、小分子を必要としないが、標準的な培地中に1%DMSOを有する。列2〜11は、各小分子が3つの異なるウェルで評価され、かつ同一のウェルに2つの化合物が一緒に存在しないロボットおよび専有の3通りのバッチ沈着フォーマットでプレートされた80の小分子を必要とする。 960の初期化合物を使用するハイスループットスクリーンの試験実行の結果を示す。図17Aは、対照(試験分子無し:培地中の1%DMSO)対実験条件(試験小分子の3通りの評価)におけるHCVウイルスの程度としてウミシイタケLUCシグナル対ホタルLUCシグナルの比率を実証するヒストグラムを示す。12のマイクロタイタープレートにおいて、プレート毎に平均2つのヒットが認められた。全てのヒット小分子は、1%DMSOのみに暴露された模擬トランスフェクト対照に対して示される。図17Bは、0.02μMから20μMにおける阻害剤を使用するHCV IRES媒介翻訳の濃度依存的阻害を実証するヒストグラムを示す。図17Cは、トランスフェクション後72時間後のNS5Aレベルの低下によって証明されたように、2μMの阻害剤の存在下で、Huh7細胞においてHCV複製が阻害されることを明示するウエスタンブロット法の画像を示す。図17Dは、IRES媒介翻訳を阻害することが分かった初期化合物を示す。 960の初期化合物を使用するハイスループットスクリーンの試験実行の結果を示す。図17Aは、対照(試験分子無し:培地中の1%DMSO)対実験条件(試験小分子の3通りの評価)におけるHCVウイルスの程度としてウミシイタケLUCシグナル対ホタルLUCシグナルの比率を実証するヒストグラムを示す。12のマイクロタイタープレートにおいて、プレート毎に平均2つのヒットが認められた。全てのヒット小分子は、1%DMSOのみに暴露された模擬トランスフェクト対照に対して示される。図17Bは、0.02μMから20μMにおける阻害剤を使用するHCV IRES媒介翻訳の濃度依存的阻害を実証するヒストグラムを示す。図17Cは、トランスフェクション後72時間後のNS5Aレベルの低下によって証明されたように、2μMの阻害剤の存在下で、Huh7細胞においてHCV複製が阻害されることを明示するウエスタンブロット法の画像を示す。図17Dは、IRES媒介翻訳を阻害することが分かった初期化合物を示す。 960の初期化合物を使用するハイスループットスクリーンの試験実行の結果を示す。図17Aは、対照(試験分子無し:培地中の1%DMSO)対実験条件(試験小分子の3通りの評価)におけるHCVウイルスの程度としてウミシイタケLUCシグナル対ホタルLUCシグナルの比率を実証するヒストグラムを示す。12のマイクロタイタープレートにおいて、プレート毎に平均2つのヒットが認められた。全てのヒット小分子は、1%DMSOのみに暴露された模擬トランスフェクト対照に対して示される。図17Bは、0.02μMから20μMにおける阻害剤を使用するHCV IRES媒介翻訳の濃度依存的阻害を実証するヒストグラムを示す。図17Cは、トランスフェクション後72時間後のNS5Aレベルの低下によって証明されたように、2μMの阻害剤の存在下で、Huh7細胞においてHCV複製が阻害されることを明示するウエスタンブロット法の画像を示す。図17Dは、IRES媒介翻訳を阻害することが分かった初期化合物を示す。 960の初期化合物を使用するハイスループットスクリーンの試験実行の結果を示す。図17Aは、対照(試験分子無し:培地中の1%DMSO)対実験条件(試験小分子の3通りの評価)におけるHCVウイルスの程度としてウミシイタケLUCシグナル対ホタルLUCシグナルの比率を実証するヒストグラムを示す。12のマイクロタイタープレートにおいて、プレート毎に平均2つのヒットが認められた。全てのヒット小分子は、1%DMSOのみに暴露された模擬トランスフェクト対照に対して示される。図17Bは、0.02μMから20μMにおける阻害剤を使用するHCV IRES媒介翻訳の濃度依存的阻害を実証するヒストグラムを示す。図17Cは、トランスフェクション後72時間後のNS5Aレベルの低下によって証明されたように、2μMの阻害剤の存在下で、Huh7細胞においてHCV複製が阻害されることを明示するウエスタンブロット法の画像を示す。図17Dは、IRES媒介翻訳を阻害することが分かった初期化合物を示す。 構造において共通性を共有し、かつHuh7ヒト肝細胞におけるHCV IRES媒介翻訳の阻害を呈するハイスループットアッセイにおいて識別された小分子のクラスターを示す略図を示す。 IRES媒介翻訳を阻害する追加の識別された化合物を示す。図19Aは、2mMにおける試験化合物のIRES活性割合を実証するヒストグラムを示す。図19Bは、IRES媒介翻訳を阻害する識別された化合物の構造を示す。 IRES媒介翻訳を阻害する追加の識別された化合物を示す。図19Aは、2mMにおける試験化合物のIRES活性割合を実証するヒストグラムを示す。図19Bは、IRES媒介翻訳を阻害する識別された化合物の構造を示す。
被検体におけるウイルス感染または癌の処置または予防のための化合物が本明細書において提供される。ウイルス感染は、例えば、内部リボソーム侵入部位(IRES)含有RNA分子を含むウイルスによって媒介され得る。
癌は、例えば、細胞mRNA分子のIRES媒介翻訳の増加または減少によって引き起こされ得る。
本明細書に説明するウイルス感染(例えば、HCV)または癌(例えば、乳癌)の処置のための化合物は、化学式I:
が表わす化合物と、
そのプロドラックの医薬的に許容可能な塩とを含む。
化学式Iでは、Aは、CRまたはNである。いくつかの例では、Aは、CHまたはNである。
また、化学式Iでは、Lは、−O−CR1011C(O)−NR−、−NR12−NR−、−C(O)−NR−、−SO−NR−、−CH−NR−、−CH−CH−NR−、または置換もしくは非置換ヘテロアリールである。いくつかの例では、Lは、置換または非置換ピラゾールである。
加えて、化学式Iでは、nは、0、1、または2である。
また、化学式Iでは、Xは、−CR13=CR14−、−N=CR15−、−CR15=N−、NR16、O、またはSである。Xは、五員環または六員環における原子であることができる。例えば、XがNR16、O、またはSである場合、Xは、五員環の原子である(例えば、チオフェニル、ピロリル、フラニル、オキサゾリル、チアゾリル、またはイミダゾリル)。Xが−CR13=CR14−、−N=CR15−、または−CR15=N−である場合、Xは、例えば、フェニル、ピリジニル、またはピラジニル等の六員環の原子である。いくつかの例では、Xは、Sまたは−CH=CH−である。
さらに、化学式Iでは、R、R、R、R、R、R、R、R、R10、R11、R13、R14、およびR15の各々は、水素、ハロゲン、ヒドロキシル、トリフルオロメチル、置換もしくは非置換チオ、置換もしくは非置換アルコキシル、置換もしくは非置換アリールオキシル、置換もしくは非置換アミノ、置換もしくは非置換C1−12アルキル、置換もしくは非置換C2−12アルケニル、置換もしくは非置換C2−12アルキニル、置換もしくは非置換C1−12ヘテロアルキル、置換もしくは非置換C2−12ヘテロアルケニル、置換もしくは非置換C2−12ヘテロアルキニル、置換もしくは非置換シクロアルキル、置換もしくは非置換ヘテロシクロアルキル、置換もしくは非置換アリール、または置換もしくは非置換ヘテロアリールから独立して選択される。いくつかの例では、Rは、エトキシ、ジメチルアミノ、またはクロロである。
また、化学式Iでは、R、R12、およびR16の各々は、水素、置換もしくは非置換C1−12アルキル、置換もしくは非置換C2−12アルケニル、置換もしくは非置換C2−12アルキニル、置換もしくは非置換C1−12ヘテロアルキル、置換もしくは非置換C2−12ヘテロアルケニル、置換もしくは非置換C2−12ヘテロアルキニル、置換もしくは非置換シクロアルキル、置換もしくは非置換ヘテロシクロアルキル、置換もしくは非置換アリール、または置換もしくは非置換ヘテロアリール、または置換もしくは非置換カルボニルから独立して選択される。
本明細書で使用する際、用語のアルキル、アルケニル、およびアルキニルは、直鎖および分枝鎖の1価の置換基を含む。例として、メチル、エチル、イソブチル、3−ブチニル、およびその同等物が挙げられる。本明細書に説明する化合物および方法とともに有用であるこれらの群の範囲は、C−C20アルキル、C−C20アルケニル、およびC−C20アルキニルを含む。本明細書に説明する化合物および方法とともに有用であるこれらの群の追加の範囲は、C−C12アルキル、C−C12アルケニル、C−C12アルキニル、C−Cアルキル、C−Cアルケニル、C−Cアルキニル、C−Cアルキル、C−Cアルケニル、およびC−Cアルキニルを含む。
ヘテロアルキル、ヘテロアルケニル、およびヘテロアルキニルは、アルキル、アルケニル、およびアルキニルと同様に定義されるが、骨格内にO、S、もしくはNヘテロ原子またはそれらの組み合わせを含有することができる。本明細書に説明する化合物および方法とともに有用であるこれらの群の範囲は、C−C20ヘテロアルキル、C−C20ヘテロアルケニル、およびC−C20ヘテロアルキニルを含む。本明細書に説明する化合物および方法とともに有用であるこれらの群の追加の範囲は、C−C12ヘテロアルキル、C−C12ヘテロアルケニル、C−C12ヘテロアルキニル、C−Cヘテロアルキル、C−Cヘテロアルケニル、C−Cヘテロアルキニル、C−Cヘテロアルキル、C−Cヘテロアルケニル、およびC−Cヘテロアルキニルを含む。
用語のシクロアルキル、シクロアルケニル、およびシクロアルキニルは、単一の環または複数の縮合環を有する環式アルキル基を含む。例として、シクロヘキシル、シクロペンチルエチル、およびアダマンタニルが挙げられる。本明細書に説明する化合物および方法とともに有用であるこれらの群の範囲は、C−C20シクロアルキル、C−C20シクロアルケニル、およびC−C20シクロアルキニルを含む。本明細書に説明する化合物および方法とともに有用であるこれらの群の追加の範囲は、C−C12シクロアルキル、C−C12シクロアルケニル、C−C12シクロアルキニル、C−Cシクロアルキル、C−Cシクロアルケニル、およびC−Cシクロアルキニルを含む。
用語のヘテロシクロアルキル、ヘテロシクロアルケニル、およびヘテロシクロアルキニルは、シクロアルキル、シクロアルケニル、およびシクロアルキニルと同様に定義されるが、環状骨格内にO、S、もしくはNヘテロ原子またはそれらの組み合わせを含むことができる。本明細書に説明する化合物および方法とともに有用であるこれらの群の範囲は、C−C20ヘテロシクロアルキル、C−C20ヘテロシクロアルケニル、およびC−C20ヘテロシクロアルキニルを含む。本明細書に説明する化合物および方法とともに有用であるこれらの群の追加の範囲は、C−C12ヘテロシクロアルキル、C−C12ヘテロシクロアルケニル、C−C12ヘテロシクロアルキニル、C−Cヘテロシクロアルキル、C−Cヘテロシクロアルケニル、およびC−Cヘテロシクロアルキニルを含む。
アリール分子は、例えば、交互単共有結合および2重共有結合から成る場合と同じように番号付けられる非局在化電子によって連結される典型的には6個の炭素原子の1つ以上の平面集合を組み込む環状炭化水素を含む。アリール分子の例として、ベンゼンが挙げられる。ヘテロアリール分子は、O、N、またはS等の原子のその環状主鎖に沿って置換基を含む。ヘテロ原子が導入される場合、5つの原子の集合、例えば、4つの炭素およびヘテロ原子は、芳香族系を生成することができる。ヘテロアリール分子の例として、フラン、ピロール、チオフェン、イミダゾール、オキサゾール、ピリジン、ピラゾール、およびピラジンが挙げられる。また、アリールおよびヘテロアリール分子は、追加の縮合環、例えば、ベンゾフラン、インドール、ベンゾチオフェン、ナフタレン、アントラセン、およびキノリンも含むことができる。
本明細書で使用するアルキル、アルケニル、アルキニル、アリール、ヘテロアルキル、ヘテロアルケニル、ヘテロアルキニル、ヘテロアリール、シクロアルキル、シクロアルケニル、シクロアルキニル、ヘテロシクロアルキル、ヘテロシクロアルケニル、またはヘテロシクロアルキニル分子は、置換または非置換であることができる。本明細書で使用する際、用語の置換は、アルキル、アルケニル、アルキニル、アリール、ヘテロアルキル、ヘテロアルケニル、ヘテロアルキニル、ヘテロアリール、シクロアルキル、シクロアルケニル、シクロアルキニル、ヘテロシクロアルキル、ヘテロシクロアルケニル、またはヘテロシクロアルキニル基の、アルキル、アルケニル、アルキニル、アリール、ヘテロアルキル、ヘテロアルケニル、ヘテロアルキニル、ヘテロアリール、シクロアルキル、シクロアルケニル、シクロアルキニル、ヘテロシクロアルキル、ヘテロシクロアルケニル、またはヘテロシクロアルキニルの主鎖に付着した位置への添加、例えば、これらの分子の内の1つによる水素の置換である。置換基の例として、ヒドロキシル、ハロゲン(例えば、F、Br、Cl、またはI)、およびカルボキシル基が挙げられるが、これらに限定されない。反対に、本明細書で使用する際、用語の非置換は、アルキル、アルケニル、アルキニル、アリール、ヘテロアルキル、ヘテロアルケニル、ヘテロアルキニル、ヘテロアリール、シクロアルキル、シクロアルケニル、シクロアルキニル、ヘテロシクロアルキル、ヘテロシクロアルケニル、またはヘテロシクロアルキニルが、水素の完全補充を有し、すなわち、置換、例えば、直鎖デカン(−(CH−CH)を含まずにその飽和レベルに相応する。
化合物Iでは、フェニル環上の隣接R基、すなわち、R、R、R、R、およびRは、置換もしくは非置換アリール、置換もしくは非置換ヘテロアリール、置換もしくは非置換シクロアルキル、置換もしくは非置換シクロアルケニル、置換もしくは非置換シクロアルキニル、置換もしくは非置換ヘテロシクロアルキル、置換もしくは非置換ヘテロシクロアルケニル、または置換もしくは非置換ヘテロシクロアルキニル基を形成するように組み合わせられることができる。例えば、Rは、ホルムアミド基であることができ、Rは、エチレン基であることができ、これらは、組み合わせてピリジノン基を形成する。他の隣接R基は、RおよびR、RおよびR、ならびにRおよびRの組み合わせを含む。
化学式Iの具体的な例は、以下の通りである。
化学式Iの変形例には、化合物毎に上述した種々の成分の添加、除去、または移動が含まれる。同様に、1つ以上のキラル中心が分子に存在する場合、分子のキラリティーを変更することができる。本明細書に説明する化合物は、純粋な形態で、または異性体の混合として単離されることができる。加えて、化合物合成は、種々の化学基の保護および脱保護を伴うことができる。保護および脱保護の使用と、適切な保護基の選択とは、当業者が判断することができる。保護基の化学的性質については、例えば、参照によりその全体が本明細書に組み込まれるWuts and Greene, Protective Groups in Organic Synthesis, 4th Ed., Wiley & Sons, 2006に記載されている。
本明細書に説明する化合物は、当業者が理解するように、有機合成またはその変形について当業者が既知である多種多様の方式で調製されることができる。本明細書に説明する化合物は、容易に入手可能な出発材料から調製されることができる。最適反応条件は、使用する特定の反応物または溶媒に応じて変動し得るが、このような条件は、当業者によって判断されることができる。
本明細書に説明する化合物を生成する反応は、有機合成の当業者が選択可能である溶媒中で実行されることができる。溶媒は、反応を実行する条件下、すなわち、温度および圧力下で、出発材料(反応物)、中間体、または生成物と実質的に非反応性であることができる。反応は、1つの溶媒中、または2つ以上の溶媒の混合中で実行されることができる。生成物または中間体形成は、当技術分野において既知の任意の適切な方法に従って監視されることができる。例えば、生成物形成は、核磁気共鳴分光学法(例えば、Hまたは13C)、赤外線分光学法、分光光度法(例えば、紫外線可視)、もしくは質量分析法等の分光学的手段によって、または高性能液体クロマトグラフィー(HPLC)もしくは薄層クロマトグラフィー等のクロマトグラフィーによって監視されることができる。
被検体におけるウイルス感染を処置または予防する方法が本明細書において提供される。本方法は、ウイルス感染を患うまたはウイルス感染を発症する危険性がある被検体を識別することであって、ウイルス感染は、IRES含有RNA分子を含むウイルスによって媒介されることと、本明細書に開示する化合物のうちのいずれかの治療的に有効な量を被検体に投与することとを含む。本化合物は、例えば、対照と比較して、被検体においてRps25発現または機能を低下させることができる。任意選択により、本方法は、対照と比較して、被検体におけるRps25発現または機能を低下させる治療的に有効な量の薬剤を、被検体に投与することをさらに含む。
本方法は、例えば、ウイルス感染を患うまたはウイルス感染を発症する危険性がある被検体を識別することであって、ウイルス感染は、IRES含有RNA分子を含むウイルスによって媒介されることと、対照と比較して、被検体におけるRps25発現または機能を低下させる治療的に有効な量の薬剤を、被検体に投与することとを含むことができる。
本明細書において使用する際、Rps25発現または機能を低下させる薬剤は、例えば、小分子、ポリペプチド、核酸分子、ペプチド模倣薬、またはそれらの組み合わせから成る群から選択されることができる。任意選択により、核酸分子は、アンチセンス分子、低分子干渉RNA(siRNA)分子、ミクロRNA(miRNA)分子、RNAアプタマー、またはそれらの組み合わせから成る群から選択される。siRNA分子は、例えば、配列番号5を含むことができる。
任意選択により、ウイルスは、ピコルナウイルス科内のウイルス、ジシストロウイルス科内のウイルス、フラビウイルス科内のウイルス、ヘルペスウイルス科内のウイルス、レトロウイルス科内のウイルス、およびポックスウイルス科内のウイルスから成る群から選択される。任意選択により、ウイルスは、コオロギ麻痺ウイルス、タウラ症候群ウイルス、およびイスラエル急性麻痺ウイルスから成る群から選択される。任意選択により、ウイルスは、C型肝炎ウイルス(HCV)である。
また、内部リボソーム侵入部位(IRES)媒介翻訳を阻害する方法も本明細書において提供される。本方法は、細胞を提供することであって、細胞は、IRES含有RNA分子を含むことと、Rps25発現または機能を低下させる薬剤と細胞を接触させることとを含む。対照と比較するRps25発現または機能の低下は、薬剤がIRES媒介翻訳を阻害することを示す。任意選択により、本方法は、対照と比較して、IRES含有RNA分子により発現されたタンパク質のレベル低下を判断することによって、IRES媒介翻訳が阻害されることを判断することをさらに含む。Rps25の発現は、Rps25RNAまたはタンパク質発現のレベルを減少させることによって低下することができる。Rps25の機能は、例えば、Rps25のIRES含有RNA分子に対する結合を阻害することによって、低下することができる。任意選択により、Rps25の機能は、Rps25の40Sリボソームサブユニットに対する結合を阻害することによって低下することができる。
任意選択により、IRES含有mRNAは、ホタルルシフェラーゼmRNA、VEGF mRNA、MNT mRNA、Set7 mRNA、L−myc mRNA、MTG8a mRNA、Myb mRNA、BIP mRNA、eIF4G mRNA、PIM−1 mRNA、CYR61 mRNA、p27 mRNA、XIAP mRNA、BAG−1 mRNA、またはそれらの組み合わせから成る群から選択される。
被検体における癌を処置または予防する方法がさらに提供される。本方法は、癌を患うまたは癌を発症する危険性がある被検体を識別することであって、癌は、mRNA分子のIRES媒介翻訳の増加または減少に関連することと、本明細書に説明する化合物のいずれかのうちの治療的に有効な量を被検体に投与することとを含む。任意選択により、本化合物は、mRNAのIRES媒介翻訳の増加に関連する癌において、被検体におけるRps25発現または機能を低下させる。任意選択により、本方法は、mRNAのIRES媒介翻訳の増加に関連する癌において、対照と比較して、Rps25発現または機能を低下させる治療的に有効な量の薬剤を、被検体に投与することをさらに含む。任意選択により、本化合物は、mRNAのIRES媒介翻訳の減少に関連する癌において、Rps25発現または機能を増加させる。任意選択により、本方法は、mRNAのIRES媒介翻訳の減少に関連する癌において、対照と比較して、Rps25発現または機能を増加させる治療的に有効な量の薬剤を、被検体に投与することをさらに含む。
本方法は、例えば、癌を患うまたは癌を発症する危険性がある被検体を識別することであって、癌は、mRNA分子のIRES媒介翻訳の増加に関連することと、対照と比較して、Rps25発現または機能を低下させる治療的に有効な量の薬剤を、被検体に投与することとを含むことができる。本方法は、例えば、癌を患うまたは癌を発症する危険性がある被検体を識別することであって、癌は、mRNA分子のIRES媒介翻訳の減少に関連することと、対照と比較して、Rps25発現または機能を増加させる治療的に有効な量の薬剤を、被検体に投与することとを含むことができる。任意選択により、薬剤は、核酸分子である。核酸分子は、例えば、Rps25をコード化する核酸またはその機能的断片を含むことができる。
本明細書において定義する際、IRES媒介翻訳の増加または減少に関連する癌は、1つ以上のIRES含有mRNAの翻訳における増加もしくは減少に起因して転移する癌、および/またはそれを呈して存在する癌によって引き起こされる癌である。1つ以上のIRES含有mRNAの翻訳における増加または減少は、癌の転移による癌の発生からの癌の存続期間中の任意の時点に直接的または間接的に寄与する。癌の例として、乳癌、前立腺癌、肺癌、肝臓癌、膵臓癌、皮膚癌、精巣癌、卵巣癌、甲状腺癌、口腔/食道癌、および/または脳癌が挙げられるが、これらに限定されない。
また、IRES媒介翻訳を阻害または促進する薬剤をスクリーニングする方法も提供される。本方法は、Rps25またはRps25をコード化する核酸およびIRES含有RNA分子を含む系を提供することと、系をスクリーニングされる薬剤と接触させることと、Rps25発現または機能を判断することとを含む。Rps25発現または機能のレベルの減少は、薬剤がIRES媒介翻訳を阻害することを示す。Rps25発現または機能のレベルの増加は、薬剤がIRES媒介翻訳を促進することを示す。任意選択により、系は、細胞を含む。細胞は、自然発生のIRES含有RNA分子を含有することができる。また、細胞は、人工IRES含有RNA分子を含有するように修飾されることもできる。任意選択により、系は、生体外アッセイを含む。被験薬剤は、例えば、小分子、ポリペプチド、核酸分子、ペプチド模倣薬、またはそれらの組み合わせから成る群から選択されることができる。また、本明細書に説明するスクリーニング方法によって単離された薬剤も提供される。
また、IRES含有RNA分子を識別する方法も提供される。本方法は、細胞におけるRps25発現または機能を阻害することと、細胞におけるタンパク質発現パターンを判断することと、タンパク質発現パターンを対照と比較することとを含む。対照と比較するRNA分子のタンパク質発現の減少は、RNA分子がIRESを含有することを示す。本方法は、新規のIRES含有RNA分子を識別すること、または以前仮定されたIRES含有RNA分子を検証することを含むことができる。Rps25発現または機能は、本明細書に説明する薬剤、例えば、配列番号5を含むsiRNAを使用して阻害されることができる。細胞のタンパク質発現パターンを判断することは、例えば、タンパク質配列を行うこと、または細胞内におけるポリソーム画分に関するディープシークエンシングアッセイを実行することを含むことができる。代替として、タンパク質発現パターンを判断することは、当技術分野において既知のタンパク質発現を判断する他の方法を使用することを含むことができる。
IRES媒介翻訳を促進する方法がさらに提供され、本方法は、細胞を提供することであって、細胞は、IRES含有RNA分子を含むことと、対照と比較してRps25発現または機能を増加させる薬剤と細胞を接触させることとを含む。Rps25発現または機能の増加は、薬剤がIRES媒介翻訳を促進することを示す。任意選択により、本方法は、対照と比較して、IRES含有RNA分子によりコード化されたタンパク質のレベルの増加を検出することによって、IRES媒介翻訳が促進されるかを判断することをさらに含む。
また、IRES媒介翻訳を促進する方法も提供され、本方法は、Rps25タンパク質をコード化する核酸またはその機能的断片を細胞に提供することを含む。このような方法は、生体内または生体外であることができる。
また、被検体における癌を検出する方法も提供され、本方法は、被検体におけるRps25発現のレベルを判断することと、Rps25のレベルを基準と比較することと、癌の存在を判断することとを含む。Rps25翻訳または機能のレベルにおける調節は、癌の存在と相関する。類似のステップを使用して、処置の有効性を検出することができる。例えば、Rps25のレベルは検出され、Rps25翻訳または機能のレベルの増加は、処置が無効であるか、または処置を変更する必要があるかを示す。
本明細書に説明するように、IRES含有RNA分子は、人工的に生成されるか、または自然発生であることができる。人工的に生成されたIRES含有RNA分子は、例えば、ホタルルシフェラーゼタンパク質の翻訳を制御するIRESを含有するホタルルシフェラーゼmRNAであることができる。また、人工的に生成されたIRES含有RNA分子は、緑色蛍光タンパク質の翻訳を制御するIRESを含有する緑色蛍光タンパク質mRNAであることもできる。これらのIRES含有RNA分子は、概して、IRES媒介翻訳のレポーターとして使用される。自然発生のIRES含有RNA分子は、例えば、細胞またはウイルスRNA分子であることができる。IRES含有細胞RNAは、例えば、VEGF mRNA、MNT mRNA、Set7 mRNA、L−myc mRNA、MTG8a mRNA、Myb mRNA、BIP mRNA、eIF4G mRNA、PIM−1 mRNA、CYR61 mRNA、p27 mRNA、XIAP mRNA、およびBAG−1 mRNAから成る群から選択されることができる。IRES含有ウイルスmRNA分子は、ピコルナウイルス科のウイルス、ジシストロウイルス科のウイルス、フラビウイルス科のウイルス、レトロウイルス科のウイルス、ヘルペスウイルス科のウイルス、またはポックスウイルス科のウイルスに見られる。
本明細書に説明するように、Rps25タンパク質発現のレベルは、例えば、ウエスタンブロット法、酵素結合免疫吸着測定法(ELISA)、酵素免疫測定法(EIA)、放射免疫測定法(RIA)、またはタンパク質アレイから成る群から選択されるアッセイを使用して判断されることができる。Rps25RNA発現のレベルは、例えば、マイクロアレイ解析、ジーンチップ、ノーザンブロット法、原位置ハイブリダイゼーション、逆転写ポリメラーゼ連鎖反応法(RT−PCR)、ワンステップPCR、およびリアルタイム定量リアルタイム(qRT)−PCRから成る群から選択されるアッセイを使用して判断されることができる。タンパク質またはRNA発現を判断するための分析技法については既知である。例えば、Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd Ed., Cold Spring Harbor Press, Cold Spring Harbor, NY (2001)を参照されたい。
本明細書に説明するように、Rps25機能のレベルは、例えば、RNA移動度シフトアッセイ、RNA架橋アッセイ、RNA親和性アッセイ、タンパク質−タンパク質結合アッセイ、およびIRES含有RNA分子のIRES媒介翻訳を測定するアッセイから成る群から選択されるアッセイを使用して、判断されることができる。Rps25機能の減少は、例えば、対照と比較して、IRES含有RNA分子に対する結合の損失、40Sリボソームサブユニットに対する結合の損失、またはIRES含有RNA分子のIRES媒介翻訳の減少によって実証されることができる。Rps25機能の増加は、例えば、対照と比較して、IRES含有RNA分子に対する結合の強化、40Sリボソームサブユニットに対する結合の強化、またはIRES含有RNA分子のIRES媒介翻訳の増加によって、実証されることができる。また、Rps25機能の増加は、対照と比較して、IRES含有分子のIRES媒介翻訳の増加によっても実証されることができる。
本明細書で使用する際、薬剤は、例えば、小分子、ポリペプチド、核酸分子、ペプチド模倣薬、またはそれらの組み合わせから成る群から選択されることができる。任意選択により、ポリペプチドは、抗体である(例えば、Rps25、40Sリボソームサブユニット、またはIRES自体に対する抗体)。任意選択により、核酸分子は、Rps25阻害核酸分子である。
Rps25阻害核酸分子は、例えば、アンチセンス分子、低分子干渉RNA(siRNA)分子、ミクロRNA(miRNA)分子、RNAアプタマー、またはそれらの組み合わせから成る群から選択されることができる。
21−25ヌクレオチドsiRNA配列またはmiRNA配列は、例えば、低分子ヘアピン型RNA(shRNA)配列、つまり60−80ヌクレオチド前駆体配列の転写によって、発現ベクターから産生されることができ、その後、siRNA配列またはmiRNA配列を産生するように細胞RNAi機構によって処理される。代替として、21−25ヌクレオチドsiRNA配列またはmiRNA配列は、例えば、化学的に合成されることができる。siRNA配列またはmiRNA配列の化学合成は、Dharmacon, Inc.(Lafayette, CO)、Qiagen(Valencia, CA)、およびAmbion(Austin, TX)等の企業から市販されている。siRNA配列は、好ましくは、Rps25 mRNA内の特異的な配列を正確な相補性と結合させ、その結果、Rps25 mRNA分子の分解をもたらす。siRNA配列は、Rps25 mRNA分子内のいかなる位置でも結合することができる。任意選択により、Rps25 siRNA配列は、ヒトRps25 mRNAヌクレオチド配列のヌクレオチド283−301に対応する配列5’−GGACUUAUCAAACUGGUUU−3’(配列番号11)を標的とすることができ、この場合、位置1は、GenBankの登録番号NM_001028のRps25 mRNA分子のコード配列の第1のヌクレオチドで開始する。任意選択により、siRNA配列は、配列番号5を含む。miRNA配列は、好ましくは、Rps25 mRNA内の特異的な配列を、正確な、または正確とは言えない相補性と結合させ、その結果、Rps25 mRNA分子の翻訳抑制をもたらす。miRNA配列は、Rps25 mRNA配列内のいかなる位置でも結合することができるが、好ましくは、Rps25 mRNA分子の3’非翻訳領域内で結合する。siRNA分子またはmiRNA分子を送達する方法は、当技術分野において既知であり、例えば、Oh and Park, Adv. Drug. Deliv. Rev. 61(10):850−62 (2009); Gondi and Rao, J. Cell Physiol. 220(2):285−91 (2009);およびWhitehead et al, Nat. Rev. Drug Discov. 8(2): 129−38 (2009)を参照されたい。
アンチセンス核酸配列は、例えば、Rps25 mRNAの少なくとも特異的部分に相補的であるRNAおよび/またはRps25をコード化する内在性遺伝子を産生するように、発現ベクターから転写されることができる。特定の細胞条件下におけるアンチセンス核酸のハイブリダイゼーションは、結果として、転写および/または翻訳を阻害することによって、Rps25タンパク質発現の阻害をもたらす。
本明細書に説明する抗体は、Rps25を結合し、Rps25の機能に拮抗する。任意選択により、本明細書に説明する抗体は、IRES要素を結合し、IRES要素に対するRps25の結合を阻害する。用語の抗体は、本明細書において広義で使用され、ポリクローナル抗体およびモノクローナル抗体の両方を含む。また、本用語は、ヒト抗体および/またはヒト化抗体も指すことができる。ヒトモノクローナル抗体産生のための技法の例として、Cole et al. (Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77, 1985) and by Boerner et al. (J. Immunol. 147(1):86−95 (1991))に説明する技法が挙げられる。また、ヒト抗体(およびその断片)は、ファージディスプレイライブラリを使用して産生されることもできる(Hoogenboom et al., J. Mol. Biol. 227:381 (1991); Marks et al., J. Mol. Biol. 222:581 (1991))。また、開示するヒト抗体は、形質転換動物からも入手されることができる。例えば、免疫化に応答して、ヒト抗体の完全なレパートリーを産生可能な形質転換変異マウスについて説明されている(例えば、Jakobovits et al, Proc. Natl. Acad. Sci. USA 90:2551−5 (1993); Jakobovits et al, Nature 362:255−8 (1993); Bruggermann et al., Year in Immunol. 7:33 (1993)参照)。
本明細書で使用する際、用語の抗体は、いかなる種類の全免疫グロブリン(すなわち、インタクト抗体)も包含するが、これに限定されない。また、用語の抗体またはその断片は、2重もしくは複数の抗原またはエピトープ特異性、ならびにハイブリッド断片を含むF(ab’)2、Fab’、Fab、およびその同等物等の断片を有する、キメラ抗体およびハイブリッド抗体も包含することができる。したがって、その特異的抗原を結合する能力を保持する抗体の断片が提供される。例えば、Rps25および/またはIRES結合活性を維持する抗体の断片は、用語の抗体またはその断片の意味内に含まれる。
任意選択により、抗体は、モノクローナル抗体である。用語のモノクローナル抗体は、本明細書で使用する際、抗体の実質的に均質の集団からの抗体を指し、すなわち、集団を含む個々の抗体は、少量で存在し得る可能な自然発生の変異を除いて同一である。モノクローナル抗体は、Kohler and Milstein, Nature, 256:495 (1975)またはHarlow and Lane, Antibodies, A Laboratory Manual. Cold Spring Harbor Publications, New York (1988)に説明する方法等のハイブリドーマ方法を使用して調製されてもよい。また、モノクローナル抗体は、米国特許第4,816,567号に説明する方法等の組み換えDNA方法によって作製されてもよい。
任意選択により、Rps25は、ヒトに関するものである。任意選択により、Rps25は、非ヒトに関するものである(例えば、齧歯動物、イヌ科の動物、またはネコ科の動物)。GenBankに開示する多種多様の配列が存在し、これらの配列および他の配列は、個々の配列または断片が本明細書に含まれるように、参照によりその全体が本明細書に組み込まれる。本明細書で使用する際、Rps25は、リボソームS25ポリペプチドと、その同族体、変異体、およびイソフォームを指す。例えば、ヒトRps25のヌクレオチド配列およびアミノ酸配列は、GenBank登録番号NM_001028およびNP_001019.1においてそれぞれ発見される。したがって、上述のGenBank登録番号のヌクレオチド配列に少なくとも約70%、75%、80%、85%、90%、95%、98%、99%、またはそれ以上同一のヌクレオチド配列を含むRps25のヌクレオチド配列が提供される。また、上述のGenBank登録番号の配列に少なくとも約70%、75%、80%、85%、90%、95%、98%、99%、またはそれ以上同一のアミノ酸配列を含むRps25のアミノ酸配列も提供される。
ポリペプチド配列、その変異体、および断片をコード化する核酸が開示される。これらの配列は、特異的タンパク質配列に関連する全ての縮重配列、すなわち、1つの特定のタンパク質配列をコード化する配列を有する全ての核酸と、タンパク質配列の開示された変異体および誘導体をコード化する縮重核酸を含む全ての核酸とを含む。したがって、各特定の核酸配列を本明細書に書き出すことはできないが、あらゆる配列が実際は開示され、開示されたタンパク質配列によって本明細書に説明されることを理解されたい。
本明細書で使用する際、用語のペプチド、ポリペプチド、またはタンパク質は、ペプチド結合によりリンクされた2つ以上のアミノ酸から構成される分子を意味するように使用される。また、タンパク質、ペプチド、およびポリペプチドは、アミノ酸配列を指すように、本明細書において交換可能に使用される。用語のポリペプチドまたはタンパク質が、分子を含む特定のサイズまたは特定の数のアミノ酸を提案するように本明細書において使用されないこと、ならびに開示するポリペプチドが、いくつかのアミノ酸残基までまたはそれ以上のアミノ酸残基を含有することができることを認識されたい。
その断片を含む全てのペプチド、ポリペプチド、およびタンパク質に関し、ペプチド、ポリペプチド、またはタンパク質の性質または機能を改変しない変異Rps25ポリペプチドのアミノ酸配列における追加の修飾が発生することができることを理解されたい。このような修飾には、保存アミノ酸置換が含まれ、以下により詳細に論じられる。
本明細書に提供するポリペプチドは、所望の機能を有する。Rps25は、IRES要素を結合し、かつIRES媒介翻訳を促進するリボソーム複合体の一部である。ポリペプチドは、本明細書に説明する生体外アッセイを使用して、その所望の活性について試験される。
本明細書に説明するポリペプチドは、所望の機能が維持される限り、さらに修飾および変異されることができる。本明細書に開示する遺伝子およびタンパク質の任意の既知の修飾および誘導体または発生し得るものを規定する1つの方式が、特異的な既知の配列との同一性に関して修飾および誘導体を規定することによるものであることを理解されたい。具体的には、本明細書に提供されるRps25および変異体に対して少なくとも70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99パーセントの同一性を有するポリペプチドが開示される。当業者は、2つのポリペプチドの同一性の判断法を容易に理解する。例えば、同一性がその最高レベルになるように、2つの配列をアラインメントした後に同一性を計算することができる。
同一性を計算する別の方式は、発表されたアルゴリズムによって実行されることができる。比較のための配列の最適なアラインメントは、Smith and Waterman, Adv. Appl. Math 2:482 (1981)の局所的同一性アルゴリズムによって、Needleman and Wunsch, J. Mol. Biol. 48:443 (1970)の同一性アラインメントアルゴリズムによって、Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85:2444 (1988)の類似性方法の検索によって、これらのアルゴリズムのコンピュータ化実装によって(GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI)、または検査によって、行われてもよい。
同じ種類の同一性は、例えば、核酸アラインメントに関連する少なくとも材料について参照により本明細書に組み込まれる、Zuker, Science 244:48−52 (1989); Jaeger et al., Proc. Natl. Acad. Sci. USA 86:7706−10 (1989); Jaeger et al., Methods Enzymol. 183:281−306 (1989)に開示されたアルゴリズムによって、核酸について入手されることができる。方法のいずれかが、典型的には、使用可能であること、ならびに一定の事例では、これらの種々の方法の結果が異なり得るが、当業者は、これらの方法のうちの少なくとも1つで同一性を発見することを理解し、配列が、記述の同一性を有し、かつ本明細書に開示されると言われ得ることを理解されたい。
タンパク質修飾は、アミノ酸配列修飾を含む。アミノ酸配列における修飾は、対立遺伝子変異として(例えば、遺伝的多型に起因して)自然に発生し得るか、環境の影響に起因して(例えば、紫外線に対する暴露によって)発生し得るか、または誘起された点突然変異体、欠失変異体、挿入変異体および置換変異体等のヒトの介入によって(例えば、クローンDNA配列の突然変異によって)産生され得る。これらの修飾は、結果的に、アミノ酸配列における変化をもたらすか、サイレント変異を提供するか、制限部位を修飾するか、または他の特異的突然変異を提供することができる。アミノ酸配列修飾は、典型的には、置換修飾、挿入修飾、または欠失修飾の3つの種類のうちの1つ以上に当てはまる。挿入は、アミノ末端融合および/または末端融合と、単一または複数のアミノ残基の配列内挿入とを含む。挿入は、通常、例えば、約1個から4個の残基のアミノ末端融合またはカルボキシル末端融合の挿入よりも小さい挿入である。欠失は、タンパク質配列からの1つ以上のアミノ酸残基の除去を特徴とする。典型的には、約2個から6個以下の残基が、タンパク質分子内の任意の一部位で欠失される。アミノ酸置換は、典型的には、単一の残基に関するが、一度に多数の異なる位置で発生することができ、挿入は、通常、約1個から10個のアミノ酸残基であり、欠失は、約1個から30個の残基の範囲である。欠失または挿入は、好ましくは、隣接する対、すなわち、2個の残基の欠失または2個の残基の挿入で行われる。置換、欠失、挿入、または任意のそれらの組み合わせを組み合わせて、最終構築物に到達してもよい。突然変異は、リーディングフレーム外に配列を配置してはならず、好ましくは、二次的mRNA構造を産生し得る相補領域を生成しない。置換修飾は、少なくとも1つの残基が除去され、異なる残基がその場所に挿入されることである。このような置換は、概して、以下の表1に従って行われ、保存的置換と呼ばれる。
特異的アミノ酸置換を含む修飾は、既知の方法によって行われる。例として、修飾は、タンパク質をコード化するDNAにおけるヌクレオチドの部位特異的突然変異によって行われ、これによって、修飾をコード化するDNAが産生され、その後、組み換え細胞培養においてDNAが発現される。既知の配列を有するDNAの所定の部位において置換変異を行う技法は、周知であり、例えばM13プライマー突然変異およびPCR突然変異が挙げられる。
被検体におけるウイルス感染または癌を処置または予防する方法が本明細書において提供される。このような方法は、本明細書に開示する有効量の化合物、または小分子、ポリペプチド、核酸分子、ペプチド模倣薬、もしくはそれらの組み合わせを含む薬剤を投与することを含む。任意選択により、小分子、ポリペプチド、核酸分子、および/またはペプチド模倣薬は、医薬組成物内に含有される。
提供される小分子、ポリペプチド、核酸分子、および/またはペプチド模倣薬を含有する組成物が、最適には、本明細書に説明する医薬的に許容可能な担体を含んで本明細書において提供される。本明細書に提供される組成物は、生体外投与または生体内投与に適切である。医薬的に許容可能な担体は、非生物学的である材料あるいは望ましい材料を意味し、すなわち、材料は、望ましくない生物学的効果を引き起こさずに、または材料が含有される医薬組成物の他の成分に有害的に相互作用せずに、被検体に投与される。担体は、活性成分のいかなる分解も最小限に抑えるように、および被検体におけるいかなる副作用も最小限に抑えるように選択される。
適切な担体およびその製剤については、Remington: The Science and Practice of Pharmacy, 21st Edition, David B. Troy, ed., Lippicott Williams & Wilkins (2005)に説明されている。典型的には、製剤等張性を与えるために、適切な量の医薬的に許容可能な塩を製剤中に使用する。医薬的に許容可能な担体の例として、滅菌水、生理食塩水、リンガー溶液等の緩衝液、およびデキストロース溶液が挙げられるが、これらに限定されない。溶液のpHは、概して、約5から約8、または約7から7.5である。他の担体は、免疫原性ポリペプチドを含有する固体疎水性ポリマーの半透過性マトリクス等の徐放性製剤を含む。マトリクスは、成形品の形態、例えば、フィルム、リポソーム、または微粒子である。一定の担体が、例えば、投与経路および投与される組成物濃度に応じて、より好ましくてもよい。担体は、薬剤、例えば、小分子、ポリペプチド、核酸分子、および/またはペプチド模倣薬をヒトまたは他の被検体に投与するのに適切な担体である。
組成物は、所望する処置が局所かまたは全身かに応じて、および処置する部位に応じて、多数の方式で投与される。組成物は、局所、経口、非経口、静脈内、関節内、腹腔内、筋肉内、皮下、腔内、経皮、肝内、頭蓋内、噴霧/吸入を含むいくつかの投与経路を介して、または気管支鏡検査法を介する設置によって、投与される。任意選択により、組成物は、経口吸入投与、鼻孔吸入投与、または鼻腔内粘膜投与によって投与される。吸入による組成物の投与は、例えば、エアロゾルの形態で噴霧機構または液滴機構による送達を介して、鼻または口を通ることができる。癌処置の場合、組成物または薬剤は、腫瘍内または腫瘍上に直接投与されることができる。
非経口投与のための調製は、滅菌水溶液または非水溶液、懸濁液、および乳剤を含む。非水溶媒の例として、プロピレングリコール、ポリエチレングリコール、オリーブ油等の植物油、オレイン酸エチル等の注射用有機エステルが挙げられる。水溶性担体には、生理食塩水および緩衝媒質を含む、水、アルコール溶液/水溶液、乳剤、または懸濁液が含まれる。非経口ビヒクルには、塩化ナトリウム溶液、ブドウ糖リンゲル液、ブドウ糖および塩化ナトリウム、乳酸加リンゲル液、または固定油が含まれる。静脈内ビヒクルには、流体および栄養補充薬、電解質補充薬(ブドウ糖リンゲル液ベースのもの等)、およびその同等物が含まれる。保存剤および他の添加剤、例えば、抗菌剤、抗酸化剤、キレート剤、および不活性ガス、およびその同等物等が、任意選択により存在する。
局所投与のための製剤には、軟膏、ローション、クリーム、ゲル、点滴薬、坐薬、噴霧、液体、および粉末が含まれる。従来の医薬担体、水溶液、粉末または油ベース、増粘剤、およびその同等物が、任意選択により、必要であるか、または望ましい。
経口投与のための組成物には、粉末または顆粒、水または非水媒質中の懸濁液または溶液、カプセル、サシェ、または錠剤が含まれる。増粘剤、香味剤、希釈剤、乳化剤、分散助剤、または結合剤が、任意選択により望ましい。
任意選択により、核酸分子またはポリペプチドは、ポリペプチドをコード化する核酸分子または核酸配列を含むベクターによって投与される。生体外または生体内のいずれかで、例えば発現ベクターを介して核酸分子および/またはポリペプチドを細胞に送達するために使用可能である多数の組成物および方法が存在する。これらの方法および組成物は、主に、ウイルスベースの送達システムおよび非ウイルスベースの送達システムの2つの種類に分類されることができる。このような方法は、当技術分野において周知であり、本明細書に説明する組成物および方法とともに使用するために容易に適合可能である。
本明細書で使用する際、プラスミドまたはウイルスベクターは、分解せずに開示する核酸を細胞内に移動する薬剤であり、核酸が送達される細胞において核酸分子および/またはポリペプチドの発現を生じるプロモーターを含む。ウイルスベクターは、例えば、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポリオウイルス、シンドビス、およびHIV骨格を有するこれらのウイルスを含む他のRNAウイルスである。また、ベクターとしての使用に適切にするこれらのウイルスの特性を共有する任意のウイルス科も好ましい。レトロウイルスベクターは、概して、ベクターおよびベクターを作製する方法について、参照により本明細書に組み込まれるCoffin et al, Retorviruses, Cold Spring Harbor Laboratory Press (1997)によって説明される。複製欠損アデノウイルスの構築について説明されている(Berkner et al., J. Virology 61 :1213−20 (1987); Massie et al., Mol. Cell. Biol. 6:2872−83 (1986); Haj−Ahmad et al., J. Virology 57:267−74 (1986); Davidson et al., J. Virology 61:1226−39 (1987); Zhang et al., BioTechniques 15:868− 72 (1993))。これらのウイルスのベクターとしての便益および使用は、初期感染細胞内で複製することができるが、新しい感染ウイルス粒子を形成することができないため、他の細胞型に拡散可能である程度で制限される。組み換えアデノウイルスは、気道上皮、肝細胞、血管内皮、CNS実質、および多数の他の組織部位への直接生体内送達の後に高効率を達成することが分かっている。他の有用なシステムには、例えば、複製および宿主制限非複製ワクシニアウイルスベクターが含まれる。
提供されるポリペプチドおよび/または核酸分子は、ウイルス様粒子を介して送達されることができる。ウイルス様粒子(VLP)は、ウイルスの構造タンパク質由来のウイルスタンパク質から成る。ウイルス様粒子を作製および使用するための方法は、例えば、Garcea and Gissmann, Current Opinion in Biotechnology 15:513−7 (2004)に説明される。
提供されるポリペプチドは、サブウイルス濃密体(DB)によって送達されることができる。DBは、膜融合によって、タンパク質を標的細胞内に移動する。DBを作製および使用するための方法は、例えば、Pepperl−Klindworth et al., Gene Therapy 10:278−84 (2003)に説明される。
提供されるポリペプチドは、テグメント凝集体によって送達されることができる。テグメント凝集体を作製および使用するための方法は、国際公開第WO2006/110728号に説明される。
非ウイルスベースの送達方法は、ポリペプチドをコード化する核酸分子および核酸配列を含む発現ベクターを含むことができ、核酸は、発現制御配列に作用可能にリンクされる。適切なベクター骨格には、例えば、プラスミド、人工染色体、BAC、YAC、またはPAC等の当技術分野において日常的に使用されるものが含まれる。多数のベクター系および発現系が、Novagen(Madison, WI)、Clonetech(Palo Alto, CA)、Stratagene(La Jolla, CA)、およびInvitrogen/Life Technologies(Carlsbad, CA)等の企業から市販されている。ベクターは、典型的には、1つ以上の調節領域を含有する。調節領域には、プロモーター配列、エンハンサー配列、応答要素、タンパク質認識部位、誘導要素、タンパク質結合配列、5’および3’非翻訳領域(UTR)、転写開始部位、終結配列、ポリアデニル化配列、およびイントロンが含まれるが、これらに限定されない。
哺乳類宿主細胞におけるベクターからの転写を制御する好適なプロモーターは、種々の源、例えば、ポリオーマ、シミアンウイルス40(SV40)、アデノウイルス、レトロウイルス、B型肝炎ウイルス、およびサイトメガロウイルス(CMV)等のウイルスのゲノムから、または異種哺乳類プロモーター、例えば、β−アクチンプロモーターもしくはEF1αプロモーターから、またはハイブリッドもしくはキメラプロモーター(例えば、β−アクチンプロモーターに融合されたCMVプロモーター)から入手されてもよい。当然ながら、宿主細胞または関連種からのプロモーターも本明細書において有用である。
エンハンサーは、概して、転写開始部位から固定距離をおかずに機能し、かつ転写単位までの5’または3’であることができるDNAの配列を指す。さらに、エンハンサーは、イントロン内ならびにコード配列自体内に存在することができる。エンハンサーの長さは通常10bpから300bpの間であり、シスにおいて機能する。エンハンサーは、通常、近接プロモーターからの転写を増加させるように機能する。また、エンハンサーは、転写の調節を媒介する応答要素も含有することができる。哺乳類遺伝子からの多くのエンハンサー配列(グロビン、エラスターゼ、アルブミン、フェトプロテイン、およびインスリン)が既知であるが、典型的には、一般的な発現について、真核細胞ウイルスからのエンハンサーが使用される。好適な例として、複製起点の後期側にあるSV40エンハンサー、サイトメガロウイルス初期プロモーターエンハンサー、複製起点の後期側にあるポリオーマエンハンサー、およびアデノウイルスエンハンサーが挙げられる。
プロモーターおよび/またはエンハンサーは、誘導性であることができる(例えば、化学的または物理的に調節される)。化学的に調節されるプロモーターおよび/またはエンハンサーは、例えば、アルコール、テトラサイクリン、ステロイド、または金属の存在によって調節されることができる。物理的に調節されるプロモーターおよび/またはエンハンサーは、例えば、温度および光等の環境要因によって調節されることができる。任意選択により、プロモーターおよび/またはエンハンサー領域は、転写される転写単位の領域の発現を最大限にするように、構成的プロモーターおよび/またはエンハンサーとしての役割を果たすことができる。一定のベクターでは、プロモーターおよび/またはエンハンサー領域は、細胞型に特異的な方式で活性であることができる。任意選択により、一定のベクターでは、プロモーターおよび/またはエンハンサー領域は、細胞型に関係なく、全ての真核細胞において活性であることができる。この種類の好適なプロモーターとして、CMVプロモーター、SV40プロモーター、β−アクチンプロモーター、EF1αプロモーター、およびレトロウイルスの長い端末反復(LTR)が挙げられる。
また、ベクターは、例えば、複製起点および/またはマーカーも含むことができる。マーカー遺伝子は、細胞上で、選択可能な表現型、例えば、抗生物質耐性をもたらすことができる。マーカー生成物は、ベクターが細胞に送達されているか、および一旦送達されると、発現されているかを判断するために使用される。哺乳類細胞の選択可能なマーカーの例として、ジヒドロ葉酸還元酵素(DHFR)、チミジンキナーゼ、ネオマイシン、ネオマイシン類似体G418、ハイグロマイシン、ピューロマイシン、およびブラストサイジンが挙げられる。このような選択可能なマーカーが、哺乳類宿主細胞内への移動に成功する場合、形質転換された哺乳類宿主細胞は、選択圧下に置かれる場合に生存することができる。他のマーカーの例として、例えば、大腸菌lacZ遺伝子、緑色蛍光タンパク質(GFP)、およびルシフェラーゼが挙げられる。加えて、発現ベクターは、発現されたポリペプチドの操作または検出(例えば、浄化または局在)を容易にするように設計されたタグ配列を含むことができる。GFP、グルタチオンS−トランスフェラーゼ(GST)、ポリヒスチジン、c−myc、血球凝集素、またはFLAGTMタグ(Kodak; New Haven, CT)配列等のタグ配列は、典型的には、コード化されたポリペプチドとの融合として発現される。このようなタグは、カルボキシル末端またはアミノ末端のいずれかを含むポリペプチド内のいずれの位置にも挿入されることができる。
本明細書において使用する際、被検体は、脊椎動物、より具体的には、哺乳類(例えば、ヒト、ウマ、ネコ、イヌ、ウシ、ブタ、ヒツジ、ヤギ、マウス、ウサギ、ラット、およびモルモット)、鳥類、爬虫類、両生類、魚類、および任意の他の動物であることができる。本用語は、特定の年齢または性別を示さない。したがって、成体および新生の被検体が、雄雌にかかわらず、含まれるように意図される。本明細書で使用する際、患者または被検体は、交換可能に使用されてもよく、病気または疾患(例えば、ウイルス感染または癌)を有する被検体を指すことができる。用語の患者または被検体は、ヒトおよび動物の被検体を含む。
被検体には、癌を患うまたは癌を発症する危険性がある被検体、またはウイルス感染を患うまたはウイルス感染を発症する危険性がある被検体が含まれる。癌を発症する危険性がある被検体は、遺伝的に癌にかかりやすい可能性があり、例えば、家族歴を有するか、あるいは病気もしくは疾患を引き起こすまたは免疫欠陥であり得る遺伝子の突然変異を有する。ウイルス感染を発症する危険性がある被検体は、ウイルス感染にかかりやすい可能性があり、例えば、被検体をウイルス感染にかかる危険性のある状態に置く職業を有するか、免疫不全を有するか、またはウイルスに暴露されている。現在癌またはウイルス感染を患う被検体は、癌またはウイルス感染の1つまたは複数の症状を有し、癌またはウイルス感染と診断されている可能性がある。
本明細書に説明する方法および薬剤は、予防的処置および治療的処置の両方に有用である。予防的使用では、本明細書に説明する治療的に有効な量の薬剤は、発病前(例えば、癌またはウイルス感染の明らかな徴候前)または初期発症中(例えば、癌またはウイルス感染の初期徴候および症状時)に、被検体に投与される。予防的投与は、癌またはウイルス感染の症状の顕在化の前に、数年間から何年間もの間発生し得る。予防的投与は、癌に対する遺伝的素因と診断された被検体の予防的処置において使用されることができる。治療的処置は、癌またはウイルス感染の診断または発症後に、本明細書に説明する治療的に有効な量の薬剤を被検体に投与することを伴う。
本明細書に教示する方法によると、被検体は、有効量の薬剤を投与される。用語の有効量および有効投与量は、交換可能に使用される。用語の有効量は、所望の生理学的反応(例えば、ウイルス感染または癌の処置をもたらすIRES媒介翻訳のレベルの減少)を産生するのに必要な任意の量として定義される。有効量および薬剤の投与スケジュールは、経験的に判断されてもよく、このような判断を行うことは、当技術分野の技術内にある。投与に関する投与量範囲は、病気または疾患のうちの1つ以上の症状が影響を受ける(例えば、低減または遅延する)所望の効果を産生するのに十分多量である。投与量は、不要な交差反応、アナフィラキシー反応、およびその同等物等の実質的な副作用を引き起こすほど多量であってはならない。概して、投与量は、年齢、病状、性別、病気の種類、病気もしくは疾患の程度、投与経路、または他の薬物がレジメンに含まれるか否かに応じて変動し、当業者によって判断されることができる。投与量は、いかなる禁忌の場合も個々の医師によって調整されることができる。投与量は、変動することができ、1日間または数日間の間、毎日1回以上の用量投与で投与されることができる。所定の種類の医薬品の適切な投与量についてのガイダンスは、文献に見られ得る。
本明細書で使用する際、用語の処置、処置する、または処置することは、病気(例えば、癌)もしくは病状(例えば、ウイルス感染)の影響または病気または病状の症状を低減させる方法を指す。したがって、開示する方法では、処置は、罹患している病気もしくは病状の重症度または病気もしくは病状の症状における10%、20%、30%、40%、50%、60%、70%、80%、90%、または100%の低減を指すことができる。例えば、病気を処置するための方法は、対照と比較して、被検体における病気の1つ以上の症状が10%低減する場合に、処置であると考えられる。したがって、低減は、自然レベルまたは対照レベルと比較して、10%から100%の間の10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、または任意のパーセントの低減であることができる。また、処置は、1つ以上の症状の進行を遅らせることも含むことができる。処置が、必ずしも、病気、病状、または病気もしくは病状の症状の治癒または完全切除を指すとは限らないことを理解されたい。したがって、処置は、例えば、ウイルス感染または癌の1つ以上の症状における改善を指す。
本明細書で使用する際、病気(例えば、癌)または病状(例えば、ウイルス感染)に関する用語の予防する、予防すること、および予防は、行為、例えば、病気または病状の1つ以上の症状を被検体が示し始める前または示し始めるのとほぼ同時に発生する治療薬剤であって、病気または病状の1つ以上の症状の発症または悪化を阻害または遅延させる治療薬剤の投与を指す。本明細書で使用する際、減少、低減、または阻害することの言及は、対照レベルと比較して、10%、20%、30%、40%、50%、60%、70%、80%、90%、またはそれ以上の変化を含む。このような用語は、完全排除を含むが、必ずしも完全排除を含むとは限らない。
対照は、処置の欠如または薬剤もしくは組成物の欠如を意味する。したがって、対照は、処置前または処置後の、既知の基準、または被検体、細胞、もしくは系であることができる。また、対照は、未処置の被検体、細胞、または系であることができる。
開示する方法および組成物に使用可能であるか、それらとともに使用可能であるか、それらの調製に使用可能であるか、またはそれらの生成物である材料、組成物、および成分が開示される。これらの材料および他の材料は、本明細書に開示され、これらの材料の組み合わせ、サブセット、相互作用、グループ等が開示される場合、これらの化合物の各種々の個々のおよび集団的組み合わせおよび置換の具体的な言及が、明示的に開示され得なくても、各々が、具体的に想定され、本明細書において説明されることを理解されたい。例えば、方法について開示および説明され、方法を含む多数の分子に加えることができる多数の修正について説明される場合、方法のあらゆる組み合わせおよび置換ならびに可能な修正が、これとは異なる具体的な規定がない限り、具体的に想定される。同様に、これらの任意のサブセットまたは組み合わせも、具体的に想定および開示される。本概念は、開示する組成物を使用する方法におけるステップを含むがこれらに限定されない全ての態様に当てはまる。したがって、実行可能な多種多様の追加のステップが存在する場合、これらの追加のステップの各々が、開示する方法の方法ステップの任意の具体的な方法ステップまたはその組み合わせであることができること、ならびにこのような各組み合わせまたは組み合わせのサブセットが具体的に想定され、開示されるものと考えられるべきであることを理解されたい。
本明細書に引用する出版物および引用される資料は、参照によりその全体が本明細書に具体的に組み込まれる。
一般的方法
一般的な酵母および細胞培養
本研究で使用する出芽酵母株は、サッカロミセス属欠失プロジェクトからのものであった:野生型(BY4741:MATα his3ΔI leu2Δ0 met15Δ0 ura3Δ0)、rps25αΔ (BY4657:MATα his3ΔI leu2Δ0 met15Δ0 ura3Δ0 rps25a::KanMX)、およびrps25bD(BY15242: MATα his3ΔI leu2Δ0 lys2Δ0 ura3Δ0 rps25b::KanMX)(Winzeler et al, Science 285:901−6 (1999))。rps25aΔbΔ (SRT221: MATα his3ΔI leu2Δ0 lys2Δ0 ura3Δ0 rps25a::anMX rps25b::KanMX)を、標準的な遺伝子的技術を使用して、BY4657およびBY 15242を交配させ、胞子を形成させ、およびテトラドを解剖することによって生成した(Treco and Winston, Curr. Protoc. Mol. Biol. 82;13.12.11−13.12.12 (2008))。標準的な方法を使用して、酵母株を増殖および形質転換させた(Becker and Lundblad, Curr. Protoc. Mol. Biol. 27:13.17.11−13.17.10 (1993); Treco and Lundblad, Curr. Protoc. Mol. Biol. 23:13.11.11−13.11.17 (1993))。サザンブロット法を実行して、RPS25AおよびRPS25Bの両方が、rps25aΔbΔ酵母株において分裂することを確認した。
完全培地(10%[v/v]ウシ胎仔血清、1%[v/v]L−グルタミン酸、1%[v/v]ペニシリン、およびストレプトマイシンで補充された高グルコースダルベッコ変法イーグル培地[DMEM])中に、37℃および5%CO2でヒーラ細胞(Ambion; Austin, TX)を保持した。
プラスミド操作
プライマー(S25addstop_センス、5’−AACCACTTTGTACAAGAAAGCTTAGTTTTCAGAAGCAGTAGCTCTG−3’(配列番号1);S25addstop_アンチセンス、5’−CAGAGCTACTGCTTCTGAAAACTAAGCTTTCTT GTACAAAGTGGTT−3’(配列番号2)を使用して、以前説明されているように(Deniz et al., RNA 15:932−46 (2009))、部位特異的突然変異誘発によって、RPS25A ORFの後およびC末端His6タグの前に、UAA終止コドンをpS25Aレスキュープラスミド(Open Biosystems; Huntsvilled, AL, catalog no. YSC3869−9518490)内に挿入した。高コピージシストロン性レポーター(pSRT209)を生成するために、PGK1プロモーター、ウミシイタケルシフェラーゼORF、CrPV IGR IRES(ヌクレオチド6028−6213)、およびΔATGホタルルシフェラーゼを含有するpDualLuc (Deniz et al., RNA 15:932−46 (2009))からのBamHIおよびSalI断片を、pRS425プラスミド(Christianson et al., Gene 110:119−22 (1992))のBamHI部位およびSalI部位内にサブクローニングした。特異的プライマー(ΔPKI_センス、5’−CAGATTAGGTAGTCGAAAAACCTAAGAAATTT AGGTGCTACATTTCAAGATT−3’(配列番号3);ΔPKI_アンチセンス、5’−AATCTTGAA
ATGTAGCACCTAAATTTCTTAGGTTTTTCGACTACCTAATCTG−3’(配列番号4)(Deniz et al, RNA 15:932−46 (2009))を使用して、部位特異的突然変異誘発によって、IGRmut陰性対照pSRT210を生成した。pΔEMCVプラスミド(Carter and Sarnow, J. Biol. Chem. 275:28301−7 (2000))を修飾して、下流Apal制限部位をホタルルシフェラーゼシストロンからBamHIに変化させ、pSRT222を生成することによって、クローニングを促進した。哺乳類のジシストロン性IGR IRESレポーターpSRT206を構築するために、ウミシイタケルシフェラーゼCrPV IGR IRES(ヌクレオチド6028−6213)およびDATGホタルルシフェラーゼを含有する、pDualLuc(Deniz et al., RNA 15:932−46 (2009))からのNheIからXhoIの断片を、pSRT222のNheI部位およびBamHI部位内にクローニングした。リードスルーレポーターおよびミスコードレポーターについては、以前に説明されている(Keeling et al., RNA 10:691−703 (2004); Salas−Marco and Bedwell, J. Mol. Biol. 348:801−15 (2005))。フレームシフトレポーターについては、以前に説明されている(Harger and Dinman, RNA 9:1019−24 (2003))。
ルシフェラーゼアッセイ
以前に説明されているように(Deniz et al., RNA 15:932−46 (2009))、IRESおよびフレームシフトルシフェラーゼアッセイを実行した。簡潔に言うと、指示レポータープラスミドで酵母株を形質転換した。ルシフェラーゼ活性を測定するために、細胞を、SD培地中、30℃で、対数期中間まで増殖した。細胞の1つのOD600をペレット状にし、100mLの13受動的溶解緩衝液(PLB)で2分間溶解した。製造会社のプロトコルに従ってデュアルルシフェラーゼアッセイキット(Promega; Madison, WI)を使用して、Lumat LB 9507ルミノメータ(Berthold; Oak Ridge, TN)で、株毎の発光を測定した。各アッセイを3通り実行した。IRES活性は、野生型株のホタル/ウミシイタケルシフェラーゼ比率に正規化されたホタル/ウミシイタケルシフェラーゼ比率として表現される。
デュアルルシフェラーゼフレームシフトレポーター(Harger and Dinman, RNA 9: 1019−24 (2003))を使用して、フレームシフト活性を測定した。フレームシフトは、フレームシフトシグナルが欠如し、かつ同一のリーディングフレームに両方のルシフェラーゼを有する、対照のホタル/ウミシイタケルシフェラーゼ比率により割られたフレームシフトレポーターのホタル/ウミシイタケルシフェラーゼ比率として表現される。リードスルーおよびミスコードを、レポーターを使用して測定した。簡単に言うと、1X10細胞を対数期中間に採取し、製造会社のプロトコル(Promega; Madison, WI)に従って、デュアルルシフェラーゼアッセイを4通り実行した。ウミシイタケルシフェラーゼORFの後の終止コドンにおけるリードスルーまたはミスコード事象の発生時にホタルルシフェラーゼが翻訳された。ホタルルシフェラーゼ活性の量を、内部対照としてのウミシイタケルシフェラーゼ活性に正規化した。次いで、この値を、理論的に100%リードスルーまたはミスコードであり得る、終止コドンまたはセンスコドンが存在しないレポーターからのウミシイタケルシフェラーゼに正規化されたホタルルシフェラーゼ活性で割ることによって、レポーター毎のリードスルー値またはミスコード値の割合が提供された。したがって、株毎のリードスルーまたはミスコードの割合は、ホタル/ウミシイタケルシフェラーゼ活性比率(センスコドンまたはミスコードレポーター)により割られたホタル/ウミシイタケルシフェラーゼ活性比率(終止コドンまたはミスコードレポーター)に100を掛けるものとして表現される。
ヒーラ細胞中のルシフェラーゼ活性を測定するために、6ウェルプレートからの細胞を、リン酸緩衝生理食塩水(137mMのNaCl、2.7mMのKCl、10mMの第2リン酸ナトリウム、pH7.4の2mMのリン酸カリウム)で洗浄し、微小遠心管に移動した。細胞を遠心分離でペレット状にし、200mLの13PLB(Promega)で、室温で15分間溶解し、製造会社のプロトコル(Promega)に従って、LumatLB9507ルミノメータ(Berthold)を使用して、20mLの溶解物をアッセイした。全てのアッセイを3通り実行した。
ポリソームプロフィル
酵母株を合成最少培地中で対数期中間まで増殖した(OD600=0.6)。細胞を氷上で冷却し、シクロヘキサミドを添加して、0.1mg/mLの終濃度にした。細胞を遠心分離で採取し(13,000g、4℃で5分)、溶解緩衝液(pH8.0の20mMのトリス−HCl、140mMのKCl、1.5mMのMgCl2、0.5mMのDTT、1%トリトンX−100、0.1mg/mLのシクロヘキサミド、1mg/mLのヘパリン)で一度洗浄した。遠心分離(2000g、4℃で5分)の後、ペレットを溶解緩衝液中で再懸濁し、ガラスビーズ破砕によって細胞を溶解した。溶解物を遠心分離によって除去し、勾配緩衝液(pH8.0の20mMのトリス−HCl、140mMのKCl、5mMのMgCl2、0.5mMのDTT、0.1mg/mLのシクロヘキサミド、1mg/mLのヘパリン)中で作製された20%〜50%ショ糖密度勾配の上に層状にした。151,263gにおいて、4℃で160分間、Beckman SW41ローターにおいて、勾配を遠心分離によって処理した。画分を回収し、ISCO UA−5吸収度モニター(Teledyne; Thousand Oaks, CA)を使用して、A254を記録した。
40S−結合アッセイ
酵母をYPD(野生型またはrps25aΔbΔ)または合成最少培地(rps25aΔbΔ+pS25A)中で増殖して、1.0のOD600にした。次いで、細胞を採取し、リボ溶解緩衝液(pH7.4の20mMのHEPES、pH7.6の100mMのKOAc、2.5mMのMg(OAc)、1mg/mLのヘパリン、2mMのDTT、Completeプロテアーゼ阻害剤錠剤EDTAフリー(Roche))中でガラスビーズ破砕によって溶解した。細胞溶解物を遠心分離によって浄化し、ショ糖クッション上に層状にし、123,379gで237分間、Beckman Type 42.1ローターで回転させて、ポリソームをペレット状にした。ポリソームを高塩濃度洗浄液(pH7.4の20mMのHEPES、pH7.6の100mMのKOAc、2.5mMのMg(OAc)、500mMのKCl、1mg/mLのヘパリン、2mMのDTT]中で一時間再懸濁し、ショ糖クッション[pH7.4の20mMのHEPES、pH7.6の100mMのKOAc、2.5mMのMg(OAc)2,500mMのKCl、1Mのショ糖、2mMのDTT]上で層状にし、424,480gで30分間、Beckman TLA 100.3ローターで遠心分離機にかけた。ピューロマイシン(4mM)の添加によりポリソームをmRNAから放出し、5%〜20%ショ糖密度勾配(pH7.4の50mMのHEPES、500mMのKCl、5mMのMgCl、0.1mMのEDTA、2mMのDTT)を通して、リボソームサブユニットを遠心分離によって分離した。勾配を画分し、40Sサブユニットを含有する画分をMicrocon遠心濃縮器(Millipore; Billerica, MA)で濃縮し、勾配緩衝液を、サブユニット保管緩衝液(20mMのHepes、pH7.4のKOH、pH7.6の100mMのKOAc、2.5mMのMg(OAc)、250mMのショ糖、2mMのDTT)と交換した。精製サブユニットの完全性を評価するために、リボソーム抽出緩衝液(pH5.0の0.3MのNaOAc、12.5mMのEDTA、0.5%のSDS)中で、20pmolの精製40Sサブユニットから、フェノール(pH7.0)で3回、クロロホルムで1回、RNAを3回抽出した。RNAをエタノールで沈着させ、1pmolのRNAを、5%変性ポリアクリルアミドゲル上で分離し、メチレンブルー(pH5.0の0.5MのNaOAc中の0.04%)で視覚化した。
放射性標識CrPV IGR IRES RNAを、NarI線形化単シストロン性ルシフェラーゼプラスミド(Wilson et al., Cell 102:511−20 (2000))から転写した。放射性標識転写産物を、T7 RiboMax Transcriptionキット(Promega)を使用して、α−32P−UTPで生成した。転写産物を、6%の変性ポリアクリルアミドゲル上でゲル精製し、溶出緩衝液(0.5MのNHOAc、1mMのEDTA、0.1%のSDS)中で12時間溶出した。RNAを、フェノール酸:クロロホルム(3:1)(Ambion; Austin, TX)で一度抽出し、エタノールで沈着させ、H2O中で再懸濁した。
天然ゲルシフトでは、1Xリコン緩衝液中(pH7.4の30mMのHEPES KOH、pH7.6の100mMのKOAc、5mMのMgCl、2mMのDTT)の0−286nMの40Sサブユニットを含む1nMの放射性標識RNAを、室温で15分間インキュベートした。複合体を、4%の非変性ポリアクリルアミドゲル上で分離した。PhosphorImager(Molecular Dynamics Inc., Sunnyvale, CA)を使用して、バンドを視覚化した。EcoRIで線形化されたpCDNA3ベクターから転写された50ng/μLの非競合RNAを含む1Xリコン緩衝液中で、広範な濃度の放射性標識IRES RNA(2nMから300nM)で、100nMの精製40Sサブユニットで、フィルタ結合アッセイを実行した。反応物を室温で20分間インキュベートし、その後、Whatman Protranニトロセルロースフィルタ(Sigma; St. Louis, MO)を通してろ過した。1mLの13リコン緩衝液でフィルタを2度洗浄し、aWallac1409シンチレーションカウンター(Perkin Elmer; Waltham, MA)を使用して、シンチレーション流体中で計数した。K値を、3回の独立した実験から計算した。
rRNAプロセッシング
rRNAプロセッシングを検査するために、酵母株を、pRS426(Christianson et al, Gene 110: 119−22 (1992))、URA3骨格を含む2μベクターで形質転換し、ウラシルを欠く選択培地中で0.8OD600まで増殖した。100マイクロリットルの[5,6−H]ウラシル(50Ci/mmol, Perkin−Elmer)を培地に添加して、0.100mCiの終濃度のために、30℃で3分間培養し、0.064mg/mLの冷却ウラシルで、[5,6−H]ウラシルを追跡した。冷却ウラシルの添加後0分、2分、5分、および15分で試料を除去し、液体窒素中で急速冷凍した。RNAを試料から単離し、MOPS緩衝液(20mMのMOPS、5mMのNaOAc、pH7.0の1mMのEDTA)中の変性1%アガロースゲル、1%アガロース、および16%ホルムアルデヒドで継続した。RNAをHyBond−Nナイロン膜(GE Healthcare; Piscataway, NJ)に移動し、amplify(GE Healthcare)に浸漬し、乾燥し、オートラジオグラフィを使用して視覚化した。
タンパク質合成速度
35S]メチオニン混入によって、タンパク質合成速度を判断した。簡単に言うと、野生型酵母株およびrps25aΔbΔ酵母株を、メチオニンを含まない選択培地中でOD6000.5まで増殖した。初期時点では、各培養物を冷却メチオニン(50mM)および[35S]メチオニン(1mCi/mL; EasyTag EXPRESS35S、74MBq、Perkin Elmer)で調整した。15分間隔で、OD600を判断し、1mLの培養物を200mLの冷却50%トリクロロ酢酸(TCA)に添加した。試料を10分間氷上で培養し、20分間70℃で培養し、Whatman GF/Aフィルタを通してろ過した。10mLの5%冷却TCAでフィルタを洗浄し、その後、10mLの95%エタノールで洗浄し、シンチレーション計数の前に10分間乾燥させた。タンパク質合成速度を、3回の独立した実験から判断した。
siRNAおよびDNAトランスフェクション
Rps25を標的とするカスタム2本鎖siRNAをAmbionから購入した:センス、5’−GGACUUAUC AAACUGGUUUtt−3’(配列番号5)、およびアンチセンス、5’−AAACCAGUUUGAUAAGUCCtt−3’(配列番号6)(siRNAID #142220)。陰性対照である非標的siRNAをDharmaconから購入した(siCONTROL Nontargeting siRNA #1)(Dharmacon; Lafayette, CO)。抗生物質を含まない完全培地中で2 3 105ヒーラ細胞により重層された20mmプレートにおいて、75mMのsiRNAを5mLのsiPORT NeoFXトランスフェクション試薬(Ambion)と混合することによって、ヒーラ細胞をsiRNAでトランスフェクトした。ウェル当たり4mgのDNAを使用して、製造会社のプロトコルに従ってLipofectamine 2000(Invitrogen; Carlsbad, CA)を使用して、DNAトランスフェクションをsiRNA処置後24時間または48時間後に実行した。72時間または96時間におけるルシフェラーゼ分析、またはノーザン分析のいずれかのために細胞を採取した。
shRNAレンチウイルスベクターを、pLVTHMベクター(Addgene plasmid 12247; Addgene; Cambridge, MA)を使用して構築した。rpS25 shRNAオリゴ(センス、5’−cgcgtccccGGACTTATCAAACTGGTTTttcaagagaAAACCAGTTTGATAAGTCCttttt ggaaat−3’(配列番号12)およびアンチセンス、5’−cgatttccaaaaaCCTGAATAGTTTGACCAAA
agagaacttTTTGGTCAAACTATTCAGGcccct−3’(配列番号13))を商業的に合成し(IDT DNA Technologies; Coralville、IA)、リン酸化し(T4 Kinase, Promega)、ClaI/MluI制限pLVTHMベクター内に結合する前にアニールした。シークエンシングによりクローニングを検証した。レンチウイルスベクター、パッケージングプラスミド(psPAX2[addgene plasmid 12260])、およびVSV−Gエンベローププラスミド(pMG2.G[addgene plasmid 12259])のHEK293T細胞内への共トランスフェクションによって、ウイルスを生成した。24時間後、2日間、12時間毎に上清を回収した。0.2umのフィルタを使用してウイルス上清をフィルタ滅菌し、標的細胞株に直接使用した。
ノーザン分析
製造会社の指示書に従ってTRIzol(Invitrogen Life Technologies; Carlsbad, CA)によるトランスフェクションの48時間、72時間、および96時間後に、siRNA処置細胞から全てのRNAを採取した。4マイクログラムのRNAを、MOPS緩衝液中の変性アガロースゲル(0.8%アガロース、16%ホルムアルデヒド)上で分離し、Zeta−Probe膜(Bio−Rad; Hercules, CA)に移動した。以下のプライマー:センス、5’−ATGCCGCCTA AGGACGAC−3’(配列番号7)、およびアンチセンス、5’−TC ATGC ATCTTC ACC AGC−3’(配列番号8)を含むHeLa cDNAプールから増幅されたPCR生成物を使用して、Prime−a−Geneキット(Promega)および32P−dCTP(PerkinElmer)で、放射性標識Rps25プローブを生成した。製造会社のプロトコルに従って膜をハイブリタイズし、オートラジオグラフィによって分析した。剥離緩衝液(0.1%SSC、0.5%SDS)中、95℃で膜を剥離し、β−アクチン(プライマー:センス、5’−GCACTCT TCCAGCCTTCC−3’(配列番号9)、およびアンチセンス、5’−GCGCTCAGGAGGGAGCAAT−3’(配列番号10))について再検出した。
実施例1:Rps25は、IRES活性に必須である
コオロギ麻痺ウイルス(CrPV)IGR IRESは、〜180ヌクレオチド長さを有し、生体外で40Sサブユニットに直接結合し、その後、60Sサブユニットを動員して、翻訳的に有能な80Sリボソームを集合させることができる。これは、酵母細胞および哺乳類細胞の両方において、生体内で翻訳を開始することができる。したがって、これは、IGR IRESのリボソームとの相互作用の良いモデルとしての役割を果たす。IGR IRES(図1)は、3つのシュードノット構造(PKI、PKII、およびPKIII)から成る。シストロウイルス科において最高配列保存を有する範囲(図1、大文字のヌクレオチド参照)は、ループ領域に位置し、リボソームと直接相互作用することが予測されている。ステムループ2.1(SL2.1)、SL2.3、およびPKIIIは、翻訳および40S複合体形成の減少をもたらす、ステムループの突然変異分析に基づく40Sサブユニット動員を担うと考えられる(Jan and Sarnow, J. Mol. Bio. 324:889−902 (2002); Costantino and Kieft, RNA 11:332−43 (2005))。IGR IRESの結晶化研究および低温電子顕微鏡観察(cryo−EM)研究により、SL2.1およびSL2.3が相互に隣接して突出して40Sリボソームに接触する密集したコアを、IRESが形成することが明らかになった(Spahn et al., Cell 118:465−75 (2004); Pfingsten et al., Science 314:1450−4 (2006); Schuler et al., Nat. Struct. Mol. Biol. 13:1092−6 (2006); Costantino et al., Nat. Struct. Mol. Biol. 15:57− 64 (2008))。PKIIおよびバルジ領域は、60Sサブユニットと相互作用することが予測される(Schuler et al., Nat. Struct. Mol. Biol. 13:1092−6 (2006))。PKIは、リボソームのP部位に配置され、A部位に配置される隣接コドンにおいて翻訳を開始する(Wilson et al., Cell 102:511−20 (2000))。
2つの証拠により、Rps25がIGR IRESと相互作用し得ることが提案される。第1に、Rps25は、チャバネアオカメムシ腸ウイルス(PSIV)IGR IRESに生体外で架橋結合する(Nishiyama et al., Nucleic Acids Res. 35:1514−21 (2007))。第2に、80Sリボソームに結合したCrPV IGR IRES のcryo−EMモデルによって、SL2.1がRps5と相互作用し、SL2.3が、原核細胞相同体を含まない隣接タンパク質密度と相互作用することが予測される(Schuler et al., Nat. Struct. Mol. Biol. 13:1092−6 (2006))。真核細胞リボソームによる架橋結合実験は、Rps5に近接するものとしてRps25を識別した(Uchiumi et al., J. Biochem. 90:185−93 1981)。
Rps25pが生体内のCrPV IGR IRES活性に関与し得るか否かを判断するために、RPS25の酵母ノックアウト株を生成した。出芽酵母中の大部分のリボソームタンパク質と同様に、RPS25は、ゲノムにおいて重複している。遺伝子は、C−末端において1つのアミノ酸だけ異なるタンパク質Rps25aおよびRps25bをコード化する。rps25aΔおよびrps25bΔ半数体を交配させて、2倍体を得た。2倍体の胞子形成および4分子の解剖によって、一貫して、野生型増殖速度で増殖した2つのコロニーと、よりゆっくり増殖した2つのコロニーとがもたらされた(図2)。RPS25AおよびRPS25B欠失を、PCRおよびサザン分析の両方によって確認し、以前の研究に一致して、Rps25pが、出芽酵母における必須タンパク質ではないことが明示された(Ferreira−Cerca et al., Mol. Cell 20:263−75 (2005))。RPS25Aは、細胞中のRps25pの〜66%を占め(Ghaemmaghami et al., Nature 425:737−41 (2003))、これによって、RPS25Bの欠失が細胞増殖にいかなる欠陥ももたらさない理由が説明され得る。RPS25Aを発現するプラスミドは、rps25aΔ株およびrps25aΔbΔ株の増殖欠陥を救うことができた(図2B)。
生体内でのIRES媒介翻訳にRps25が必要とされるかを判断するために、ウミシイタケルシフェラーゼORFとホタルルシフェラーゼORFとの間に挿入されたCrPV IGR IRESを含有するジシストロン性レポーターを野生型酵母株および変異酵母株に形質転換した(図3A)。CrPV IGR IRESが、AUGメチオニンコドンではなく、アラニンコドンで開始することから、ホタルルシフェラーゼORFのAUG開始コドンを欠失させて、潜在プロモーターにより生成された転写産物から活性ホタルルシフェラーゼの発現を排除した(Deniz et al., RNA 15:932−46 (2009))。ホタルルシフェラーゼ活性は、N−末端切断に敏感であり、アミノ酸残基3−10の欠失は、野生型レベルの0.1%までホタルルシフェラーゼ活性を減少させる(Sung and Kang, Photochem. Photobiol. 68:749−53 (1998))。ゆえに、開始AUGコドンを欠失することによって、キャップ依存的機構を使用して翻訳を開始し得る潜在プロモーターから生成された任意の転写産物は、次のインフレームAUGコドンが29コドン下流にあるため、ホタル活性をもたらさない。さらに、CrPV IGR IRESは、野生型酵母株において活性であるが、PKIにおいて塩基対合を分裂させる非活性IGRmutは、いかなるIRES活性ももたない(図3B; Deniz et al., RNA 15:932−46 (2009))。rps25bΔ株が、野生型に類似するIGR IRES活性を有することが分かった。対照的に、rps25aΔ株は、〜40%IRES活性を呈するが、rps25aΔbΔ変異株は、野生株の2.3%で、事実上IRES活性をもたない。RPS25Aがプラスミドから発現される場合、IRES活性は、rps25aΔ株およびrps25aΔbΔ株の両方について、野生型レベルまで回復する(図3Bおよび図3C)。対照的に、キャップ依存的翻訳は、Rps25の欠如の影響を受けない(図3C、ウミシイタケRLU)。まとめると、これらの結果により、キャップ依存的翻訳以外のIGR IRES活性が、Rps25タンパク質に依存することが実証される。
rps25aΔbΔ株におけるIGR IRES活性の欠如は、40Sサブユニットを動員するIRESの欠陥か、または60Sサブユニット加入または疑似転座等の何らかの他の下流処理における欠陥によって引き起こされ得る。IGR IRESは、精製40Sサブユニットに結合し、その後、60Sサブユニットを動員して、80S複合体を生体外で形成することが分かっている(Wilson et al, Cell 102:511−20 (2000); Jan et al, Proc. Natl. Acad. Sci. USA 100:15410−5 (2003); Pestova and Hellen, Genes Dev. 17:181−6 (2003))。IRES活性の減少が、IRESの40Sサブユニットを結合する能力の欠如に起因したかを判断するために、天然ゲルシフトを、放射性標識CrPV IGR IRES RNA および野生型、rps25aΔbΔ、またはrps25aΔbΔ+pS25A酵母株のいずれかからの精製40Sリボソームサブユニットで実行した。IGR IRES RNAは、5.5nMの解離定数で野生型40Sサブユニットに結合することができ、これは、放射性標識RNAの移動度のシフトによっても証明される(図4、上)。しかしながら、Rps25pが存在しない場合、IGR IRES RNAの40Sサブユニットを結合する能力は、最高濃度の40Sサブユニットであっても著しく損なわれた(図4、中)。Rps25がプラスミドから発現される場合、40Sサブユニットに対するIGR IRESの結合は回復する(図4、下)。rps25aΔbΔ+pS25Aゲルシフトでは、40S調製におけるいくつかの汚染60Sサブユニットに起因して、80S複合体の形成が認められた(図4、アスタリスク)。精製サブユニットから単離されたリボソームRNA(rRNA)のゲルは、rRNAが無傷であることを実証し、rps25aΔbΔリボソームによる40Sサブユニット結合の欠如が、Rps25タンパク質の欠如に起因し、サブユニットの分解に起因しないことを示した。これらの結合アッセイは、rps25aΔbΔ酵母がIRES活性をもたらさなかった(図3)生体内で判断されたIGR IRES活性と一致する。IRES活性および40Sリボソームサブユニット結合は、Rps25がプラスミドから発現された場合に、野生型レベルまで救われた。したがって、出芽酵母におけるRps25の欠失は、本質的に、40Sサブユニットを動員するIRESの無能力に起因して、生体内のIGR IRES活性を排除する。
実施例2:Rps25欠失は、グローバル翻訳およびリボソーム忠実性にわずかな影響しか及ぼさない。
RPS25遺伝子のノックアウトが、IRES媒介翻訳の劇的な減少をもたらすことから、Rps25が任意の他のリボソーム機能に必要とされるか否かを判断することが求められた。野生型、rps25aΔ、rps25bΔ、およびrps25aΔbΔ酵母に関するポリソーム分析を実施した(図5A)。欠失株の全ては、類似のポリソームプロフィルおよびポリソーム対モノソーム比を有した。ポリソーム画分の減少が認められなかったため、Rps25の一方または両方のコピーの欠失が、グローバル翻訳開始に著しい欠陥を引き起こさないことが判断された。これは、以前に分かっていることに一致している(Ferreira−Cerca et al., Mol. Cell 20:263−75 (2005))。また、これらの結果は、ウミシイタケルシフェラーゼ活性が、欠失株の全てにおいて野生型活性に類似したという観測にも一致している。グローバルタンパク質合成に対するRps25欠失の影響をより慎重に評価するために、 35S−メチオニン混入アッセイを実行した。これらの結果により、rps25aΔbΔ株が、野生型株よりもグローバルタンパク質合成において、わずかな減少(19%)(図5B)を呈することが示される。40Sおよび60Sサブユニットの量は、全ての株において類似すると考えられ、リボソーム生合成における欠陥は提案されない。これをより慎重に評価するために、野生型株およびrps25aΔbΔ株についてパルスチェイス実験を実行した(図5C)。完全に処理された25Sおよび18S rRNA種の出現は、2重欠失変異体においてわずかに遅延する。しかしながら、プレrRNA種の明らかな蓄積は存在せず、25Sおよび18S rRNAの量は、野生型株とrps25aΔbΔ株との間では類似すると考えられる。タンパク質合成速度に認められたわずかな低下または遅延rRNA生合成速度は、認められた低速増殖表現型に寄与し得る。
Rps25pを欠くリボソームが翻訳エラーの増加を呈したか否かを判断するために、終始コドンのリードスルー、ミスコード、およびプログラムされたリボソームフレームシフト(PRF)について検査した。デュアルルシフェラーゼリードスルーレポーターを使用する終止コドン認識の効率について測定した(図5D、上)。翻訳終止は、終止コドンだけでなく、周囲背景、具体的には、終止コドン直後のヌクレオチド(テトラヌクレオチド終結シグナル)にも依存する(Bonetti et al., J. Mol. Biol. 251 :334−45 (1995))。3つの終止コドンの各々について以下のヌクレオチドとしてアデノシンまたはシトシンを含むデュアルルシフェラーゼリードスルーレポーターを使用する野生型、rps25aΔbΔ、およびpS25A株を含むrps25aΔbΔにおけるリードスルーの割合を、アッセイした。rps25aΔbΔ株が、試験されたテトラヌクレオチド終止コドンの全てについて、野生型株に比べて終止コドン認識の増加を呈したことが認められた(図5D)。重要なことは、pS25Aレスキュープラスミドが、リードスルーを野生型レベルに回復させたことである。リードスルーに認められた一貫した減少は、これが、任意の特定の終止コドンに特異的ではない一般現象であることを実証する。
リードスルーに加え、PRFに対するRPS25欠失の影響についても検査した。フレームシフトは、mRNAにおける特定のシグナルが、3’方向(+1PRF)または5’方向(−1PRF)にリーディングフレームを変更するようにリボソームを誘起させる場合に発生し得る(Namy et al, Mol. Cell 13:157−168 (2004); Brierley and Dos Ramos, Virus Res. 119:29−42 (2006); Giedroc and Cornish, Virus Res. 139:193−208 (2009))。フレームシフトは、2つの要素、つまり、tRNA移動またはミスアラインメントが好ましい滑り配列と、リボソーム停止を引き起こすことによって処理を増強する刺激要素とによって引き起こされる。RPS25の欠失が、プログラムされたリボソームフレームシフトに任意の影響を及ぼすかを判断するために、ウミシイタケルシフェラーゼORFとホタルルシフェラーゼORFとの間の領域に挿入された4つのウイルスPRFシグナル(L−A、HIV、Ty1、およびTy3)のうちの1つを含有するデュアルルシフェラーゼレポーターを使用した(図5E、上; Harger and Dinman, RNA 9: 1019−24 (2003))。L−AおよびHIVは、両方とも、プログラムされた−1リボソームフレームシフトシグナルであり、データによって、野生型とrps25aΔbΔリボソームフレームシフト値との間に差異が無いことが示される(図5E)。しかしながら、Ty1+1PRFシグナルについて、rps25aΔbΔ株においてフレームシフトの増加と、Ty3+1 PRFシグナルについてわずかな増加とが存在する(図5E)。Ty1+1フレームシフトは、リボソームのA部位のAGGコドンにおけるリボソーム停止により、Tyレトロトランスポゾンにおける7−nt配列において発生する。AGGコドンを復号化するtRNAの利用可能性は低く、停止および後続のmRNA滑りが引き起こされる。rps25aΔbΔ株における+1フレームシフトの量は、依然として、野生型出芽酵母細胞について報告されているものの範囲内にある(Belcourt and Farabaugh, Cell 62:339−52 (1990))が、このシグナルが、野生型と比べて、rps25aΔbΔ細胞においてほぼ2倍であることに留意されたい。重要なことは、野生型のフレームシフト速度が、rps25aΔbΔ株にpS25Aレスキュープラスミドが存在した場合に回復したことである。最後に、ホタルルシフェラーゼのコドン245において有害のヒスチジンからアルギニンへの突然変異を含有するデュアルルシフェラーゼミスコードレポーターを使用して、ミスコードについて検査した(図5F、上; Salas−Marco and Bedwell, J. Mol. Biol. 348:801−815 (2005))。この位置におけるアミノ酸の誤取り込みにより、ホタルルシフェラーゼ活性の増加がもたらされる。野生型株とrps25aΔbΔ株との間に、誤取り込みにおける差異は認められなかった(図5F、下)。まとめると、これらの結果により、概して、リボソームが機能性であり、かつ40SサブユニットからのRps25pの欠失が、リボソーム機能における顕著な欠陥をもたらさないことが実証される。これは、Rps25pが活性および40Sサブユニットに対する結合に絶対的に必要とされるIGR IRES媒介翻訳におけるその役割とは著しく対照的である。
実施例3:IRES媒介翻訳におけるRps25の機能は、哺乳類において保存される。
IGR IRESが、植物、哺乳類、および酵母等の多種多様の有機体からのリボソームで翻訳を開始する機能を果たすことから、IGR IRES媒介翻訳におけるRps25pの機能が哺乳類細胞において保存されるか否かを判断することが求められた。RPS25は、哺乳類のゲノムにおけるコピーの1つだけに存在し、その47%は、酵母RPS25Aに同一であり、71%は酵母RPS25Aに類似する。RPS25 mRNAに対するsiRNAを使用して、ヒーラ細胞におけるRps25タンパク質の発現をノックダウンした。RPS25 mRNAの75%の減少が達成された(図6A)。Rps25ノックダウンが哺乳類細胞におけるIGR IRES活性に影響を及ぼすか否かを判断するために、シストロン間領域においてCrPV IGR IRESを含有するジシストロン性ルシフェラーゼレポーターを細胞においてトランスフェクトした(図6B)。Rps25がノックダウンされた場合に、IGR IRES媒介翻訳の60%の減少が認められた(図6C)。この阻害レベルは、細胞におけるRps25タンパク質の66%の減少に対応するrps25aΔに認められた阻害(図3)と同等である(Ghaemmaghami et al., Nature 425:737−41 (2003))。また、酵母における実験に一致して、キャップ依存的翻訳の顕著な減少は、Rps25がノックダウンされた場合に認められなかった(図6D)。Rps25タンパク質のノックダウンは、適正な抗体の欠乏に起因して確認することができなかった。しかしながら、RPS25 mRNAとIGR IRES媒介翻訳との両方の減少が認められたことから、タンパク質レベルも影響を受けたと考えられる。哺乳類細胞におけるIGR IRES機能にRps25が必要とされることが結論付けられる。
他のIRESにRps25が必要とされるか否かを判断するために、Rps25損失のHCV IRESに対する影響について分析した。対照またはRps25 siRNAをヒーラ細胞にトランスフェクトして、Rps25をノックダウンした(図6E)。次いで、24時間後、HCV IRESジシストロン性レポーターをトランスフェクトし(図6F)、IRES活性についてアッセイした。Rps25 mRNAがノックダウンされた場合、HCV IRES活性において劇的な減少が認められ、HCV IRESにもRps25が必要とされることが実証された(図6G)。さらに、Rps25 shRNAを生成し、レンチウイルスベクター内にクローニングしてRps25をノックダウンした。
類似の実験において、対照またはRps25 shRNAを含有するレンチウイルス構築物をヒーラ細胞内に形質導入して、Rps25をノックダウンした(図7B)。次いで、24時間後、HCV IRESジシストロン性レポーター(図7A)をトランスフェクトし、IRES活性についてアッセイした。Rps25 mRNAがノックダウンされた場合、HCV IRES活性において劇的な減少が認められ(図7C)、HCV IRES活性にRps25が必要とされることがさらに確認された。
実施例4:Rps25は、他のウイルスRNAおよび細胞RNAのIRES媒介翻訳に必要とされる。
また、両種のIGR IRESにRps25が必要とされるかも判断された。CrPVは、2つの種類のIGR IRESを含有するジシストロウイルス科に属する。CrPV IRESは、種類Iに属し、一方、種類II IRESは、IRESのドメインIIIにおいてより大きなバルジおよび余分なステムループを有する。上記に実行した実験に類似する実験では、両種のIGR IRESのIRES媒介翻訳にRps25が必須であることが判断された(図9)。
また、Rps25は、ピコナウイルスIRES活性を強化することも分かっている。脳心筋炎ウイルスIRES、ポリオウイルスIRES、およびエンテロウイルス71 IRESを含有するジシストロン性レポーター構築物を、生成および使用して、IRES媒介翻訳に対するRps25ノックダウンの影響について判断した。Rps25のノックダウンによって、これらのピコナウイルスIRES要素からのIRES媒介翻訳のレベルの減少がもたらされた(図11)。
HCV要素およびCrPV IGR IRES要素は、構造的および機能的に異なるが、これらの両方は、Rps25について同一の要件を共有する。Rps25依存性が他の種類のIRES要素に拡張されるかを判断するために、2つの細胞IRESであるBag−1およびc−mycを使用して、Rps25が翻訳に必要とされるかを判断した。Bag−1 IRES要素は、翻訳についてRps25に依存することが分かった(図13B)。c−myc IRES要素は、翻訳についてRps25に依存しなかった(図13B)。HCV、CrPV、およびBag−1 IRESの系統発生的比較によって、類似の配列モチーフが存在することが判断された(図13C)。具体的には、これらは、ループ領域においてAGC配列を含有するステムループを有する。CrPV IGR IRESステムループにおける広範な部位特異的突然変異誘発を実行し、AGCだけが機能する配列ではないことが示され、ANY(A:アデニン、N:任意のヌクレオチド、Y:ピリミジン)モチーフを有する任意の配列は、結果として、野生型IRES活性またはそれ以上の活性をもたらす。このコンセンサス配列は、ウイルスのジシストロウイルス科における全ての既知のSL2.3配列と一致する(Nakashima and Uchiumi, Virus Res. 139:137−47 (2009))。興味深いことに、HCVドメインIIb(UAGCCAU)(配列番号14)は、全てのHCV遺伝子型ならびに密接に関連する古典的ブタ熱ウイルス(CSFV)の中でも特に、100%保存される。HCV IRESのドメインIIbは、Rps25の予測位置であるリボソームのE部位と相互作用する(Uchiumi et al, J. Biochem. 90:185−95 (1981);およびLandry et al, Genes Dev. 23:2753−64 (2009))。
Bag−1およびc−myc IRES要素に加え、IRESの使用により翻訳される複数の細胞RNAも存在する。いくつかの細胞IRES要素をジシストロン性IRESレポーター内にクローニングした。siRNAによるRps25のノックダウンは、細胞IRES要素のIRES媒介翻訳のレベル低下をもたらした(図12)。Bag−1レベルが、CrPV IRES要素のレベルまで低下したことに留意されたい。
実施例5:HCV IRESデュアルLUCレポーターのHuh7ヒト肝細胞内への一過性トランスフェクションの最適化。
アッセイ設計および最適化における第1の障害は、Huh7ヒト肝細胞が、陽イオン性脂質トランスフェクション試薬の使用で容易にトランスフェクト可能かを判断することであった。LipofectAMINE試薬(Gibco−BRL; Invitrogen; Carlsbad, CA)は、単独で使用する場合に、あまり有効ではなかった。しかしながら、LipofectAMINE PLUSおよびLipofectAMINE 2000を、HCV IRES Dual LUCレポータープラスミドの増加量と比較した(図15)。LipofectAMINE 2000は、LipofectAMINE PLUSほど有効ではなかった。最初にPLUS試薬をプラスミドDNAと混合して、Gibco−BRLが開発し、かつInvitrogenが入手した専有化学により、LipofectAMINEによって、より有効なトランスフェクションのためにDNAを刺激した。LipofectAMINE PLUS媒介一過性トランスフェクションは、2マイクログラムのプラスミドおよび6マイクロリットルの両方のPLUS試薬およびLipofectAMINE試薬を96ウェルプレート(12ウェル)の列毎に使用した場合に、十分なシグナルを産生した。この最適化された条件は、以下に提示される実験設計、最適化、および実装に適用され、全ての後の実験を実行または修正する(すなわち、アッセイがより少ないウェルにさらに小型化される場合)ベンチマークとなる。
2つの異なる96ウェルマイクロタイタープレート設計を使用して、実際の試験小分子によりほぼ最適化されたアッセイを「テストドライブ」した。両設計によって、各試験小分子は、3通りにスクリーニング可能になる(すなわち、マイクロタイタープレート内の3つの異なるウェルにおける)。最初の160の被験化合物では、第1の設計を使用した(図16、上)。初期パイロットハイスループット「テストドライブ」において960の全小分子をスクリーニングする次の800の化合物では、あらゆるハイスループットバイオアッセイおよびプログラムの自動化ロボット実装の標準的な設計である第2の設計を使用した(図16、下)。いずれの設計でも、ヒット化合物は、達成された強固なデュアルLUCシグナルにより、容易に認識可能であった(以下参照)。
実施例6: 小分子スクリーンにより、HCV IRES翻訳阻害剤の識別がもたらされる。
合成有機小分子の大量回収の最初の12のトレイからスクリーニングされた960の小分子から、24のヒット化合物が識別された。このパイロット実験により、2.5%のヒット率が明らかにされる。図17Aでは、HCV IRESの阻害%が対照の割合として示されるヒストグラムにおいてデータ低下が提示される。このデータ提示により、HCV IRES阻害剤(siRNAを使用してRPS25レベルを低下させた場合のヒーラ細胞において上記に示したデータとかなり類似する)が明らかになる。この初期のヒットシリーズ内の軽度、大幅な、および著しい阻害能力の連続が分かる。小分子のサブセットは、この初期ヒットシリーズにおいて共通の構造または骨格を共有した(図18)。
識別された阻害剤のうち、新規化合物は、濃度に依存してHCV IRES媒介翻訳を阻害し(図17B)、2μM濃度でHuh7細胞におけるHCV複製を阻害することが分かった(図17C)。化合物は、全て、類似の構造を共有し、ハイスループットスクリーンから独立したアッセイで実証された(図17D)。上述のように実行した追加のスクリーンにより、IRES媒介翻訳を阻害する3つのさらなる化合物の識別がもたらされた(図19A)。化合物の構造を図19Bに示す。

Claims (86)

  1. 以下の化学式の化合物

    またはそのプロドラックの医薬的に許容可能な塩であって、
    Aは、CRまたはNであり、
    Lは、−O−CR1011C(O)−NR−、−NR12−NR−、C(O)−NR−、−SO−NR−、−CH−NR−、−CH−CH−NR−、または置換もしくは非置換ヘテロアリールであり、
    nは、0、1、または2であり、
    Xは、−CR13=CR14−、−N=CR15−、−CR15=N−、NR16、O、またはSであり、
    、R、R、R、R、R、R、R、R10、R11、R13、R14、およびR15の各々は、水素、ハロゲン、ヒドロキシル、トリフルオロメチル、置換もしくは非置換チオ、置換もしくは非置換アルコキシル、置換もしくは非置換アリールオキシル、置換もしくは非置換アミノ、置換もしくは非置換C1−12アルキル、置換もしくは非置換C2−12アルケニル、置換もしくは非置換C2−12アルキニル、置換もしくは非置換C1−12ヘテロアルキル、置換もしくは非置換C2−12ヘテロアルケニル、置換もしくは非置換C2−12ヘテロアルキニル、置換もしくは非置換シクロアルキル、置換もしくは非置換ヘテロシクロアルキル、置換もしくは非置換アリール、または置換もしくは非置換ヘテロアリールから独立して選択され、
    、R12、およびR16の各々は、水素、置換もしくは非置換C1−12アルキル、置換もしくは非置換C2−12アルケニル、置換もしくは非置換C2−12アルキニル、置換もしくは非置換C1−12ヘテロアルキル、置換もしくは非置換C2−12ヘテロアルケニル、置換もしくは非置換C2−12ヘテロアルキニル、置換もしくは非置換シクロアルキル、置換もしくは非置換ヘテロシクロアルキル、置換もしくは非置換アリール、または置換もしくは非置換ヘテロアリール、または置換もしくは非置換カルボニルから独立して選択される、
    化合物。
  2. およびRは、置換もしくは非置換アリール、置換もしくは非置換ヘテロアリール、置換もしくは非置換シクロアルキル、置換もしくは非置換シクロアルケニル、置換もしくは非置換シクロアルキニル、置換もしくは非置換ヘテロシクロアルキル、置換もしくは非置換ヘテロシクロアルケニル、または置換もしくは非置換ヘテロシクロアルキニルを形成するように組み合わせられる、請求項1に記載の化合物。
  3. およびRは、置換もしくは非置換アリール、置換もしくは非置換ヘテロアリール、置換もしくは非置換シクロアルキル、置換もしくは非置換シクロアルケニル、置換もしくは非置換シクロアルキニル、置換もしくは非置換ヘテロシクロアルキル、置換もしくは非置換ヘテロシクロアルケニル、または置換もしくは非置換ヘテロシクロアルキニルを形成するように組み合わせられる、請求項1に記載の化合物。
  4. およびRは、置換もしくは非置換アリール、置換もしくは非置換ヘテロアリール、置換もしくは非置換シクロアルキル、置換もしくは非置換シクロアルケニル、置換もしくは非置換シクロアルキニル、置換もしくは非置換ヘテロシクロアルキル、置換もしくは非置換ヘテロシクロアルケニル、または置換もしくは非置換ヘテロシクロアルキニルを形成するように組み合わせられる、請求項1に記載の化合物。
  5. およびRは、置換もしくは非置換アリール、置換もしくは非置換ヘテロアリール、置換もしくは非置換シクロアルキル、置換もしくは非置換シクロアルケニル、置換もしくは非置換シクロアルキニル、置換もしくは非置換ヘテロシクロアルキル、置換もしくは非置換ヘテロシクロアルケニル、または置換もしくは非置換ヘテロシクロアルキニルを形成するように組み合わせられる、請求項1に記載の化合物。
  6. Aは、CHまたはNである、請求項1に記載の化合物。
  7. Lは、置換または非置換ピラゾールである、請求項1に記載の化合物。
  8. は、エトキシ、ジメチルアミノ、またはクロロである、請求項1に記載の化合物。
  9. Xは、Sまたは−CH=CH−である、請求項1に記載の化合物。
  10. 前記化合物は、

    である、請求項1に記載の化合物。
  11. 前記化合物は、

    である、請求項1に記載の化合物。
  12. 前記化合物は、

    である、請求項1に記載の化合物。
  13. 前記化合物は、

    である、請求項1に記載の化合物。
  14. 前記化合物は、

    である、請求項1に記載の化合物。
  15. 前記化合物は、

    である、請求項1に記載の化合物。
  16. 前記化合物は、

    である、請求項1に記載の化合物。
  17. 前記化合物は、

    である、請求項1に記載の化合物。
  18. 前記化合物は、

    である、請求項1に記載の化合物。
  19. 前記化合物は、

    である、請求項1に記載の化合物。
  20. 前記化合物は、

    である、請求項1に記載の化合物。
  21. 前記化合物は、

    である、請求項1に記載の化合物。
  22. 前記化合物は、

    である、請求項1に記載の化合物。
  23. 被検体におけるウイルス感染を処置または予防する方法であって、
    (a)ウイルス感染を患うまたはウイルス感染を発症する危険性がある被検体を識別することであって、前記ウイルス感染は、IRES含有RNA分子を含むウイルスによって媒介されることと、
    (b)請求項1〜22に記載の化合物のいずれかの治療的に有効な量を、前記被検体に投与することと、
    を含む、方法。
  24. 前記化合物は、対照と比較して、前記被検体におけるリボソームタンパク質S25(Rps25)発現または機能を低下させる、請求項23に記載の方法。
  25. 対照と比較して、前記被検体におけるリボソームタンパク質S25(Rps25)発現または機能を低下させる治療的に有効な量の薬剤を、前記被検体に投与することをさらに含む、請求項23に記載の方法。
  26. 薬剤は、小分子、ポリペプチド、核酸分子、ペプチド模倣薬、またはそれらの組み合わせから成る群から選択される、請求項25に記載の方法。
  27. 前記薬剤は、核酸分子である、請求項26に記載の方法。
  28. 前記核酸分子は、アンチセンス分子、低分子干渉RNA(siRNA)分子、ミクロRNA(miRNA)分子、RNAアプタマー、またはそれらの組み合わせから成る群から選択される、請求項27に記載の方法。
  29. 前記核酸分子は、低分子干渉RNA(siRNA)分子である、請求項28に記載の方法。
  30. 前記siRNA分子は、配列番号5を含む、請求項29に記載の方法。
  31. 前記ウイルスは、ピコルナウイルス科内のウイルス、ジシストロウイルス科内のウイルス、フラビウイルス科内のウイルス、ヘルペスウイルス科内のウイルス、レトロウイルス科内のウイルス、およびポックスウイルス科内のウイルスから成る群から選択される、請求項23に記載の方法。
  32. 前記ウイルスは、ジシストロウイルス科内のウイルスを含む、請求項31に記載の方法。
  33. 前記ウイルスは、コオロギ麻痺ウイルス、タウラ症候群ウイルス、およびイスラエル急性麻痺ウイルスから成る群から選択される、請求項32に記載の方法。
  34. 前記ウイルスは、フラビウイルス科内のウイルスを含む、請求項31に記載の方法。
  35. 前記ウイルスは、C型肝炎ウイルス(HCV)である、請求項34に記載の方法。
  36. 被検体におけるウイルス感染を処置または予防する方法であって、
    (a)ウイルス感染を患うまたはウイルス感染を発症する危険性がある被検体を識別することであって、前記ウイルス感染は、IRES含有RNA分子を含むウイルスによって媒介されることと、
    (b)前記被検体に有効量の治療薬剤を投与することであって、前記薬剤は、対照と比較して、前記被検体におけるリボソームタンパク質S25(Rps25)発現または機能を低下させることと、
    を含む、方法。
  37. 前記ウイルスは、ピコルナウイルス科のウイルス、ジシストロウイルス科のウイルス、フラビウイルス科のウイルス、ヘルペスウイルス科のウイルス、レトロウイルス科のウイルス、ポックスウイルス科のウイルスから成る群から選択される、請求項36に記載の方法。
  38. 前記ウイルスは、ジシストロウイルス科内のウイルスである、請求項37に記載の方法。
  39. 前記ウイルスは、コオロギ麻痺ウイルス、タウラ症候群ウイルス、およびイスラエル急性麻痺ウイルスから成る群から選択される、請求項38に記載の方法。
  40. 前記ウイルスは、フラビウイルス科内のウイルスを含む、請求項37に記載の方法。
  41. 前記ウイルスは、C型肝炎ウイルス(HCV)である、請求項40に記載の方法。
  42. 薬剤は、小分子、ポリペプチド、核酸分子、ペプチド模倣薬、またはそれらの組み合わせから成る群から選択される、請求項36に記載の方法。
  43. 前記薬剤は、核酸分子である、請求項42に記載の方法。
  44. 前記核酸分子は、アンチセンス分子、低分子干渉RNA(siRNA)分子、ミクロRNA(miRNA)分子、RNAアプタマー、またはそれらの組み合わせから成る群から選択される、請求項43に記載の方法。
  45. 前記核酸分子は、低分子干渉RNA(siRNA)分子である、請求項44に記載の方法。
  46. 前記siRNA分子は、配列番号5を含む、請求項45に記載の方法。
  47. 内部リボソーム侵入部位(IRES)媒介翻訳を阻害する方法であって、
    (a)細胞を提供することであって、前記細胞は、IRES含有RNA分子を含むことと、
    (b)リボソームタンパク質S25(Rps25)発現または機能を低下させる薬剤と前記細胞を接触させることであって、対照と比較するRps25発現または機能の低下は、前記薬剤がIRES媒介翻訳を阻害することを示すことと、
    を含む、方法。
  48. 対照と比較して、前記IRES含有RNA分子により発現されたタンパク質のレベル低下を検出することによって、IRES媒介翻訳が阻害されることを判断することをさらに含む、請求項47に記載の方法。
  49. 前記Rps25の機能は、Rps25の前記IRESに対する結合を阻止することによって低下する、請求項47に記載の方法。
  50. 前記Rps25の機能は、Rps25の前記リボソームに対する結合を阻止することによって低下する、請求項47に記載の方法。
  51. Rps25の発現は、Rps25 RNAまたはタンパク質発現のレベルを減少させることによって低下する、請求項47に記載の方法。
  52. 前記薬剤は、小分子、ポリペプチド、核酸分子、ペプチド模倣薬、またはそれらの組み合わせから成る群から選択される、請求項47に記載の方法。
  53. 前記薬剤は、核酸分子である、請求項52に記載の方法。
  54. 前記核酸分子は、アンチセンス分子、低分子干渉RNA(siRNA)分子、ミクロRNA(miRNA)分子、RNAアプタマー、またはそれらの組み合わせから成る群から選択される、請求項53に記載の方法。
  55. 前記核酸分子は、低分子干渉RNA(siRNA)分子である、請求項54に記載の方法。
  56. 前記siRNA分子は、配列番号5を含む、請求項55に記載の方法。
  57. 前記IRES含有mRNAは、ホタルルシフェラーゼmRNA、VEGF mRNA、MNT mRNA、Set7 mRNA、L−myc mRNA、MTG8a mRNA、Myb mRNA、BIP mRNA、eIF4G mRNA、PIM−1 mRNA、CYR61 mRNA、p27 mRNA、XIAP mRNA、BAG−1 mRNA、またはそれらの組み合わせから成る群から選択される、請求項47に記載の方法。
  58. 前記IRES含有mRNA分子は、ホタルルシフェラーゼmRNAである、請求項57に記載の方法。
  59. 被検体における癌を処置または予防する方法であって、
    (a)癌を患うまたは癌を発症する危険性がある被検体を識別することであって、前記癌は、mRNA分子の内部リボソーム侵入部位(IRES)媒介翻訳の増加に関連することと、
    (b)請求項1〜23に記載の化合物のいずれかの治療的に有効な量を、前記被検体に投与することと、
    を含む、方法。
  60. 前記化合物は、対照と比較して、前記被検体におけるリボソームタンパク質S25(Rps25)発現または機能を低下させる、請求項59に記載の方法。
  61. 対照と比較して、前記被検体におけるリボソームタンパク質S25(Rps25)発現または機能を低下させる治療的に有効な量の薬剤を、前記被検体に投与することをさらに含む、請求項59に記載の方法。
  62. 薬剤は、小分子、ポリペプチド、核酸分子、ペプチド模倣薬、またはそれらの組み合わせから成る群から選択される、請求項61に記載の方法。
  63. 前記薬剤は、核酸分子である、請求項62に記載の方法。
  64. 前記核酸分子は、アンチセンス分子、低分子干渉RNA(siRNA)分子、ミクロRNA(miRNA)分子、RNAアプタマー、またはそれらの組み合わせから成る群から選択される、請求項63に記載の方法。
  65. 前記核酸分子は、低分子干渉RNA(siRNA)分子である、請求項64に記載の方法。
  66. 前記siRNA分子は、配列番号5を含む、請求項65に記載の方法。
  67. 被検体における癌を処置または予防する方法であって、
    (a)癌を患うまたは癌を発症する危険性がある被検体を識別することであって、前記癌は、細胞mRNAの内部リボソーム侵入部位(IRES)媒介翻訳の増加に関連すること、
    (b)前記被検体に有効量の治療薬剤を投与することであって、前記薬剤は、対照と比較して、前記被検体におけるリボソームタンパク質S25(Rps25)発現または機能を低下させることと、
    を含む、方法。
  68. 薬剤は、小分子、ポリペプチド、核酸分子、ペプチド模倣薬、またはそれらの組み合わせから成る群から選択される、請求項67に記載の方法。
  69. 前記薬剤は、核酸分子である、請求項68に記載の方法。
  70. 前記核酸分子は、アンチセンス分子、低分子干渉RNA(siRNA)分子、ミクロRNA(miRNA)分子、RNAアプタマー、またはそれらの組み合わせから成る群から選択される、請求項69に記載の方法。
  71. 前記核酸分子は、低分子干渉RNA(siRNA)分子である、請求項70に記載の方法。
  72. 前記siRNA分子は、配列番号5を含む、請求項71に記載の方法。
  73. 被検体における癌を処置または予防する方法であって、
    (a)癌を患うまたは癌を発症する危険性がある被検体を識別することであって、前記癌は、細胞mRNAの内部リボソーム侵入部位(IRES)媒介翻訳の減少に関連することと、
    (b)前記被検体に有効量の治療薬剤を投与することであって、前記薬剤は、対照と比較して、前記被検体におけるリボソームタンパク質S25(Rps25)発現または機能を増加させることと、
    を含む、方法。
  74. 薬剤は、小分子、ポリペプチド、核酸分子、ペプチド模倣薬、またはそれらの組み合わせから成る群から選択される、請求項73に記載の方法。
  75. 前記薬剤は、核酸分子である、請求項74に記載の方法。
  76. 前記核酸分子は、Rps25をコード化する核酸またはその機能的断片を含む、請求項75に記載の方法。
  77. 内部リボソーム侵入部位(IRES)媒介翻訳を阻害または促進する薬剤をスクリーニングする方法であって、
    (a)リボソームタンパク質S25(Rps25)またはRps25をコード化する核酸およびIRES含有RNA分子を含む系を提供することと、
    (b)前記系を、スクリーニングされる前記薬剤と接触させることと、
    (c)Rps25発現または機能を判断することであって、Rps25発現または機能のレベルの減少は、前記薬剤がIRES媒介翻訳を阻害することを示し、Rps25発現または機能のレベルの増加は、前記薬剤がIRES媒介翻訳を促進することを示すことと、
    を含む、方法。
  78. 前記系は、細胞を含む、請求項77に記載の方法。
  79. 前記系は、生体外アッセイを含む、請求項77に記載の方法。
  80. 前記被験薬剤は、小分子、ポリペプチド、核酸分子、ペプチド模倣薬、またはそれらの組み合わせから成る群から選択される、請求項77に記載の方法。
  81. 請求項77に記載の方法によって単離された薬剤。
  82. IRES含有細胞RNA分子を識別する方法であって、
    (a)細胞におけるRps25発現または機能を阻害することと、
    (b)前記細胞におけるタンパク質発現パターンを判断することと、
    (c)前記細胞における前記タンパク質発現パターンを対照と比較することであって、対照と比較する細胞RNA分子のタンパク質発現の減少は、前記細胞RNA分子がIRESを含有することを示すことと、
    を含む、方法。
  83. 内部リボソーム侵入部位(IRES)媒介翻訳を促進する方法であって、
    (a)細胞を提供することであって、前記細胞は、IRES含有RNA分子を含むことと、
    (b)リボソームタンパク質S25(Rps25)発現または機能を増加させる薬剤と前記細胞を接触させることであって、対照と比較するRps25発現または機能の増加は、前記薬剤がIRES媒介翻訳を促進することを示すことと、
    を含む、方法。
  84. IRES媒介翻訳が、対照と比較して、前記IRES含有RNA分子によりコード化されたタンパク質のレベルの増加を検出することによって促進されることを判断することをさらに含む、請求項83に記載の方法。
  85. 内部リボソーム侵入部位(IRES)媒介翻訳を促進する方法であって、Rps25タンパク質をコード化する核酸またはその機能的断片を細胞に提供することを含む、方法。
  86. 被検体における癌を検出する方法であって、
    (a)被検体におけるRps25発現のレベルを判断することと、
    (b)Rps25のレベルを基準と比較することと、
    (c)癌の存在を判断することと、
    を含む、方法。
JP2012502307A 2009-03-27 2010-03-26 調節ires媒介翻訳 Withdrawn JP2012522013A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16416709P 2009-03-27 2009-03-27
US61/164,167 2009-03-27
PCT/US2010/028917 WO2010111653A2 (en) 2009-03-27 2010-03-26 Modulating ires-mediated translation

Publications (1)

Publication Number Publication Date
JP2012522013A true JP2012522013A (ja) 2012-09-20

Family

ID=42781931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012502307A Withdrawn JP2012522013A (ja) 2009-03-27 2010-03-26 調節ires媒介翻訳

Country Status (4)

Country Link
US (1) US20120065247A1 (ja)
EP (1) EP2411007A4 (ja)
JP (1) JP2012522013A (ja)
WO (1) WO2010111653A2 (ja)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702293B2 (ja) 2008-11-10 2015-04-15 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Atrキナーゼの阻害剤として有用な化合物
PL3354650T3 (pl) 2008-12-19 2022-06-13 Vertex Pharmaceuticals Incorporated Związki przydatne jako inhibitory kinazy atr
WO2011143399A1 (en) 2010-05-12 2011-11-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
JP2013526540A (ja) 2010-05-12 2013-06-24 バーテックス ファーマシューティカルズ インコーポレイテッド Atrキナーゼ阻害剤として有用な化合物
AU2011253025A1 (en) 2010-05-12 2012-11-29 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
JP2013526539A (ja) 2010-05-12 2013-06-24 バーテックス ファーマシューティカルズ インコーポレイテッド Atrキナーゼ阻害剤として有用なピラジン
WO2011143423A2 (en) 2010-05-12 2011-11-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
AU2011253021A1 (en) 2010-05-12 2012-11-29 Vertex Pharmaceuticals Incorporated 2 -aminopyridine derivatives useful as inhibitors of ATR kinase
WO2011160206A1 (en) 2010-06-23 2011-12-29 Morin Ryan D Biomarkers for non-hodgkin lymphomas and uses thereof
AU2011270807A1 (en) 2010-06-23 2013-01-31 Vertex Pharmaceuticals Incorporated Pyrrolo- pyrazine derivatives useful as inhibitors of ATR kinase
CN105797158B (zh) 2010-09-10 2019-11-08 Epizyme股份有限公司 人ezh2抑制剂及其应用方法
US9175331B2 (en) 2010-09-10 2015-11-03 Epizyme, Inc. Inhibitors of human EZH2, and methods of use thereof
AU2012240030A1 (en) 2011-04-05 2013-10-24 Vertex Pharmaceuticals Incorporated Aminopyrazine compounds useful as inhibitors of TRA kinase
JO3438B1 (ar) 2011-04-13 2019-10-20 Epizyme Inc مركبات بنزين مستبدلة بأريل أو أريل غير متجانس
TWI598336B (zh) 2011-04-13 2017-09-11 雅酶股份有限公司 經取代之苯化合物
US9096602B2 (en) 2011-06-22 2015-08-04 Vertex Pharmaceuticals Incorporated Substituted pyrrolo[2,3-B]pyrazines as ATR kinase inhibitors
EP2723746A1 (en) 2011-06-22 2014-04-30 Vertex Pharmaceuticals Inc. Compounds useful as inhibitors of atr kinase
EP2723745A1 (en) 2011-06-22 2014-04-30 Vertex Pharmaceuticals Inc. Compounds useful as inhibitors of atr kinase
EP2751097A2 (en) 2011-09-30 2014-07-09 Vertex Pharmaceuticals Incorporated Processes for making compounds useful as inhibitors of atr kinase
KR20140084112A (ko) 2011-09-30 2014-07-04 버텍스 파마슈티칼스 인코포레이티드 Atr 키나제의 억제제로서 유용한 화합물
WO2013049720A1 (en) 2011-09-30 2013-04-04 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
EP3733185B1 (en) 2011-09-30 2022-12-07 Vertex Pharmaceuticals Incorporated Treating non-small cell lung cancer with atr inhibitors
US8765751B2 (en) 2011-09-30 2014-07-01 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
WO2013071085A1 (en) 2011-11-09 2013-05-16 Vertex Pharmaceuticals Incorporated Pyrazine compounds useful as inhibitors of atr kinase
WO2013071090A1 (en) 2011-11-09 2013-05-16 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
EP2776429A1 (en) 2011-11-09 2014-09-17 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
US8846917B2 (en) 2011-11-09 2014-09-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
US8841450B2 (en) 2011-11-09 2014-09-23 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
WO2013082237A1 (en) * 2011-11-29 2013-06-06 President And Fellows Of Harvard College Compositions and methods for the treatment of viral infections
CA2869309C (en) 2012-04-05 2021-02-09 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase and combination therapies thereof
SI2836491T1 (sl) 2012-04-13 2017-06-30 Epizyme, Inc. Oblike soli inhibitorja humane histon metiltransferaze EZH2
US20150105433A1 (en) * 2012-04-27 2015-04-16 The Uab Research Foundation TREATING VIRAL INFECTIONS HAVING VIRAL RNAs TRANSLATED BY A NON-IRES MEDIATED MECHANISM
WO2013192517A2 (en) 2012-06-21 2013-12-27 Whitehead Institute For Biomedical Research Compounds for treating infectious diseases
WO2014055756A1 (en) 2012-10-04 2014-04-10 Vertex Pharmaceuticals Incorporated Method for measuring atr inhibition mediated increases in dna damage
CN105102432B (zh) 2012-10-15 2019-01-04 Epizyme股份有限公司 经取代的苯化合物
US8912198B2 (en) 2012-10-16 2014-12-16 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of ATR kinase
DK2941432T3 (en) 2012-12-07 2018-06-14 Vertex Pharma 2-amino-6-fluoro-N- (5-fluoro-4- (4- (4- (oxetan-3-yl) piperazine-1-carbonyl) piperidin-1-yl) pyridine-3-yl) pyrazolo [ 1,5ALPHA] PYRIMIDIN-3-CARBOXAMIDE AS ATR-KINASE INHIBITOR
JP2016512815A (ja) 2013-03-15 2016-05-09 バーテックス ファーマシューティカルズ インコーポレイテッドVertex Pharmaceuticals Incorporated Atrキナーゼの阻害剤として有用な縮合ピラゾロピリミジン誘導体
TW201512171A (zh) 2013-04-19 2015-04-01 Pfizer Ltd 化學化合物
EP3057962B1 (en) 2013-10-16 2023-10-18 Epizyme, Inc. Hydrochloride salt form for ezh2 inhibition
KR102153886B1 (ko) 2013-12-06 2020-09-09 버텍스 파마슈티칼스 인코포레이티드 Atr 키나제 억제제로서 유용한 2-아미노-6-플루오로-n-[5-플루오로-피리딘-3-일]피라졸로[1,5-a]피리미딘-3-카복스아미드 화합물, 이의 제조 방법, 이의 상이한 고체형 및 방사성표지된 유도체
WO2015143653A1 (en) 2014-03-26 2015-10-01 Merck Sharp & Dohme Corp. TrkA KINASE INHIBITORS,COMPOSITIONS AND METHODS THEREOF
WO2015143652A1 (en) 2014-03-26 2015-10-01 Merck Sharp & Dohme Corp. TrkA KINASE INHIBITORS,COMPOSITIONS AND METHODS THEREOF
WO2015143654A1 (en) 2014-03-26 2015-10-01 Merck Sharp & Dohme Corp. TrkA KINASE INHIBITORS,COMPOSITIONS AND METHODS THEREOF
AU2015271030B2 (en) 2014-06-05 2019-05-16 Vertex Pharmaceuticals Incorporated Radiolabelled derivatives of a 2-amino-6-fluoro-n-[5-fluoro-pyridin-3-yl]- pyrazolo [1,5-a] pyrimidin-3-carboxamide compound useful as ATR kinase inhibitor, the preparation of said compound and different solid forms thereof
AU2015277212B2 (en) 2014-06-17 2020-07-02 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of Chk1 and ATR inhibitors
WO2016161572A1 (en) 2015-04-08 2016-10-13 Merck Sharp & Dohme Corp. TrkA KINASE INHIBITORS, COMPOSITIONS AND METHODS THEREOF
WO2017059357A1 (en) 2015-09-30 2017-04-06 Vertex Pharmaceuticals Incorporated Method for treating cancer using a combination of dna damaging agents and atr inhibitors
KR101762143B1 (ko) * 2015-12-09 2017-07-27 한국과학기술연구원 에틸벤젠 인체 노출 여부 확인용 마이크로 rna 및 이를 이용한 노출 확인 방법
US11142504B2 (en) 2016-03-07 2021-10-12 Northwestern University Substituted heterocycles as c-MYC targeting agents
EP3426636B1 (en) * 2016-03-07 2021-12-29 Northwestern University Specific 2-(4-(phenoxy)-1h-pyrazol-3-yl)phenol derivatives as inhibitors of c-myc/dna binding activity for treating cancer
WO2020022961A1 (en) * 2018-07-23 2020-01-30 Agency For Science, Technology And Research Inhibitors of ires portion of an enterovirus
CA3121202A1 (en) 2018-11-30 2020-06-04 Nuvation Bio Inc. Pyrrole and pyrazole compounds and methods of use thereof
WO2020257261A1 (en) 2019-06-17 2020-12-24 Northwestern University SUBSTITUTED HETEROCYCLES AS c-MYC TARGETING AGENTS

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3101889A1 (de) * 1981-01-22 1982-08-26 Hoechst Ag, 6000 Frankfurt "neue phenoxycarbonsaeureamide, verfahren zu ihrer herstellung und ihre verwendung als herbizide"
US5139564A (en) * 1985-11-19 1992-08-18 Park Sang W Herbicidal aryloxyacetic acid derivatives
US5208247A (en) * 1991-08-01 1993-05-04 American Cyanamid Company Pyridinium compounds which are useful as antagonists of platelet activating factor
WO2003043578A2 (en) * 2001-11-19 2003-05-30 Iconix Pharmaceuticals, Inc. Modulators of rho c activity
US20040259948A1 (en) * 2003-01-10 2004-12-23 Peter Tontonoz Reciprocal regulation of inflammation and lipid metabolism by liver X receptors
US20050113423A1 (en) * 2003-03-12 2005-05-26 Vangoor Frederick F. Modulators of ATP-binding cassette transporters
US7326790B2 (en) * 2003-05-02 2008-02-05 Rigel Pharmaceuticals, Inc. Diphenylisoxazole compounds and hydro isomers thereof
GB0509965D0 (en) * 2005-05-17 2005-06-22 Ml Lab Plc Improved expression elements
KR100787131B1 (ko) * 2006-07-04 2007-12-21 한국생명공학연구원 Hif―1 활성을 저해하는 화합물, 이의 제조방법 및이를 유효성분으로 함유하는 약학적 조성물
BRPI0815057B8 (pt) * 2007-08-03 2021-05-25 Romark Laboratories Lc composto, composição farmacêutica, e, uso de um composto
EP2222646B1 (en) * 2007-09-17 2014-01-22 AbbVie Bahamas Ltd. Uracil or thymine derivative for treating hepatitis c

Also Published As

Publication number Publication date
EP2411007A4 (en) 2012-12-05
WO2010111653A2 (en) 2010-09-30
US20120065247A1 (en) 2012-03-15
EP2411007A2 (en) 2012-02-01
WO2010111653A3 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP2012522013A (ja) 調節ires媒介翻訳
US20150105433A1 (en) TREATING VIRAL INFECTIONS HAVING VIRAL RNAs TRANSLATED BY A NON-IRES MEDIATED MECHANISM
Mao et al. Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein
Kim et al. Intracellular interleukin-32γ mediates antiviral activity of cytokines against hepatitis B virus
US10258639B2 (en) Methods for treating insulin resistance and for sensitizing patients to GLP1 agonist therapy
Shen et al. RanBP2/Nup358 enhances miRNA activity by sumoylating Argonautes
Linder et al. Defective interfering genomes and the full-length viral genome trigger RIG-I after infection with vesicular stomatitis virus in a replication dependent manner
Velasco et al. An N-terminal SIAH-interacting motif regulates the stability of the ubiquitin specific protease (USP)-19
Kumthip et al. Pivotal role for the ESCRT-II complex subunit EAP30/SNF8 in IRF3-dependent innate antiviral defense
Kuo et al. Hepatitis C virus NS 5A protein enhances gluconeogenesis through upregulation of Akt‐/JNK‐PEPCK signalling pathways
US20100297605A1 (en) Screening method for prophylactic and/or therapeutic agent for disease accompanied by hepatitis c
Lee et al. RANKL-induced schlafen2 is a positive regulator of osteoclastogenesis
US9765337B2 (en) Phosphoribosyl pyrophosphate synthetase 2 (PRPS2) as a therapeutic target in cancer treatment
US20190203211A1 (en) Treatment and prevention of viral infection
US11325978B2 (en) Compositions and methods for treating beta-globinopathies
WO2020221334A1 (en) Pim1 inhibitors for use in treatment of viral infection and pharmaceutical compositions thereof
Dobson et al. Identifying intrinsic and extrinsic determinants that regulate internal initiation of translation mediated by the FMR1 5'leader
US10378015B2 (en) Targeting hepatitis B virus (HBV) host factors
CN112014557A (zh) 一种可用于埃博拉病毒病治疗的靶点
AU2009279375B2 (en) Methods of treating and preventing glucose toxicity
BR112020000679A2 (pt) visando o complexo hdac2-sp3 para potencializar a função sináptica
KR20070029199A (ko) B형 간염에 대한 치료제, 예방제 및 진단제
CN116688128A (zh) 微肽altTAP2在制备抗骨髓瘤药物中的应用
US10954515B2 (en) Therapeutic methods, products and compositions inhibiting ZNF555
Yu et al. Targeting tumor-macrophage interaction via the Notch2-Jag1 axis reverses tumor resistance to paclitaxel

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604