JP2012239929A - Method and apparatus for anaerobic treatment of organic wastewater - Google Patents
Method and apparatus for anaerobic treatment of organic wastewater Download PDFInfo
- Publication number
- JP2012239929A JP2012239929A JP2011109043A JP2011109043A JP2012239929A JP 2012239929 A JP2012239929 A JP 2012239929A JP 2011109043 A JP2011109043 A JP 2011109043A JP 2011109043 A JP2011109043 A JP 2011109043A JP 2012239929 A JP2012239929 A JP 2012239929A
- Authority
- JP
- Japan
- Prior art keywords
- anaerobic
- organic wastewater
- treatment
- anaerobic treatment
- effluent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
本発明は、有機性廃水の嫌気性処理方法及び装置に係り、更に詳しくは、難分解性成分を含む有機性廃水を生物学的に無害化する嫌気性処理方法及び装置に関する。 The present invention relates to an anaerobic treatment method and apparatus for organic wastewater, and more particularly to an anaerobic treatment method and apparatus for biologically detoxifying organic wastewater containing a hardly decomposable component.
有機性の廃水は、嫌気性処理によって分解、処理されることがある。こうした分解処理方法として、反応槽内に充填材を保持した嫌気性固定ろ床法や上向流嫌気性汚泥床法(以後、UASB法とも記す)やグラニュール汚泥膨張床(以後、EGSB法とも記す)がある。UASB法及びEGSB法は近年普及してきた方法で、メタン菌等の嫌気性菌をグラニュール状に造粒化することにより、リアクター内のメタン菌の濃度を高濃度に維持できるという特徴があり、その結果、廃水中の有機物の濃度が相当高い場合でも効率よく処理できる。例えば、この方法を具体化した装置では、重クロム酸カリウムを酸化剤として測定したCODcr(以後CODと記す)の容積負荷が20〜30kg/m3/dでも、効率よく運転できるという特徴がある。 Organic wastewater may be decomposed and treated by anaerobic treatment. As such a decomposition treatment method, an anaerobic fixed filter bed method in which a filler is held in a reaction tank, an upflow anaerobic sludge bed method (hereinafter also referred to as UASB method), or a granular sludge expanded bed (hereinafter referred to as EGSB method). There are notes). The UASB method and the EGSB method have been widely used in recent years, and are characterized by maintaining a high concentration of methane bacteria in the reactor by granulating anaerobic bacteria such as methane bacteria into granules. As a result, even when the concentration of organic matter in the wastewater is considerably high, it can be treated efficiently. For example, an apparatus embodying this method is characterized in that it can be operated efficiently even when the volume load of COD cr (hereinafter referred to as COD) measured using potassium dichromate as an oxidizing agent is 20 to 30 kg / m 3 / d. is there.
嫌気性処理工程での分解速度が遅い難分解性物質としては、クロロホルム、トリクロロエチレン、フェノール、p−トルイル酸、テレフタル酸等が、また、嫌気性処理工程での分解速度が速い易分解性物質としては、酢酸、糖類、エチレングリコール、安息香酸等が知られている。難分解性成分は、化学系の工場の廃水に含まれていることが多い。
従来、嫌気性処理法では、難分解性成分を対象として処理する例は極めて少なかったが、近年では、トリクロロエチレン、クロロホルム、フェノール、テレフタル酸のような難分解性成分も嫌気的に分解処理できることが明らかになってきている。難分解性成分を嫌気的に分解処理するためには、嫌気性条件下で長期間の処理を行うことが有効である。
難分解性成分と易分解性成分を含む廃水としては、精製テレフタル酸製造廃水が知られており、主成分は、難分解性成分のp−トルイル酸とテレフタル酸及び易分解性の酢酸、安息香酸である〔Sheng−Shung Chengら、Wat.Sci.Tech.,Vol.36,73〜82(1997)〕。
As a hardly decomposable substance having a slow decomposition rate in the anaerobic treatment process, chloroform, trichloroethylene, phenol, p-toluic acid, terephthalic acid, etc. are also easily degradable substances having a fast decomposition rate in the anaerobic treatment process. Acetic acid, saccharides, ethylene glycol, benzoic acid and the like are known. Refractory components are often contained in wastewater from chemical factories.
Conventionally, in the anaerobic treatment method, there have been very few examples of treating a hardly decomposable component, but in recent years, it is also possible to anaerobically decompose even a hardly decomposable component such as trichloroethylene, chloroform, phenol, terephthalic acid. It has become clear. In order to anaerobically decompose a hardly decomposable component, it is effective to perform a long-term treatment under anaerobic conditions.
As waste water containing a hardly decomposable component and an easily decomposable component, purified terephthalic acid production waste water is known. Acid [Sheng-Shung Cheng et al., Wat. Sci. Tech. , Vol. 36, 73-82 (1997)].
しかしながら、難分解性成分を含む有機性廃水を嫌気性処理する方法には、以下に示すような問題がある。
(1)難分解性成分を分解除去するためには、嫌気性条件下で長期間の処理を行うことが有効であるため、易分解性成分を含んでいる場合でも、低負荷で処理を行う必要があり、設備が過大となる。
(2)グラニュール汚泥を保持したUASB法で難分解性成分を処理する場合、廃水中の難分解性成分は、微生物(メタン菌)の自己造粒による固定化能力を比較的低下させる傾向にあり、グラニュール汚泥の形成を困難とし、また、グラニュール汚泥の緻密さを低下させるため、グラニュール汚泥の長期間の安定保持が困難となり、その結果、処理の継続が困難になる。
(3)難分解性成分そのものが嫌気微生物にとって阻害である場合、難分解性成分が嫌気微生物にとっての阻害濃度以下となるように希釈を行う必要がある。
However, the method for anaerobically treating organic wastewater containing a hardly decomposable component has the following problems.
(1) In order to decompose and remove a hardly decomposable component, it is effective to perform a long-term treatment under anaerobic conditions. Therefore, even when an easily decomposable component is contained, the treatment is performed with a low load. Necessary and excessive facilities.
(2) When processing refractory components by the UASB method holding granule sludge, the refractory components in the wastewater tend to lower the immobilization capacity of microorganisms (methane bacteria) by self-granulation. In addition, it is difficult to form granular sludge, and the granular sludge is reduced in density, so that it is difficult to stably maintain the granular sludge for a long period of time, and as a result, it is difficult to continue the treatment.
(3) When the hardly decomposable component itself is an inhibitor for anaerobic microorganisms, it is necessary to perform dilution so that the hardly decomposable component is below the inhibitory concentration for the anaerobic microorganism.
本発明は、上記従来技術に鑑み、有機性廃水を対象として、長期安定した処理ができる高性能な嫌気性処理方法及び装置を提供することを課題とする。 In view of the above-described prior art, an object of the present invention is to provide a high-performance anaerobic treatment method and apparatus capable of long-term stable treatment for organic wastewater.
上記課題を解決するために、本発明は、有機性廃水を生物学的に嫌気性処理する方法において、前記有機性廃水を、グラニュール汚泥を保持した上向流嫌気性汚泥床法により該有機性廃水中の易分解性の成分を除去する第一の嫌気性処理工程と、該第一の工程からの流出液を、粒状又は粉状の活性炭を使用した嫌気性固定ろ床法又は流動床法により、該流出液中の難分解性成分を除去する第二の嫌気性処理工程とで処理することを特徴とする有機性廃水の嫌気性処理方法としたものである。
前記処理方法において、第一及び第二の処理工程は、それぞれの処理工程の流出液の一部を、該それぞれの処理工程に循環して処理することができ、また、前記第二の処理工程の流出液の一部を第一の処理工程に循環することもできる。
さらに、前記処理方法において、嫌気微生物にとって阻害となる難分解性成分が分解除去された第二の処理工程の流出水の一部を、難分解性成分の濃度が嫌気性処理を阻害する濃度以下になるように第一の処理工程よりも上流側に循環させることで、難分解性成分による嫌気微生物への阻害を回避できる。
In order to solve the above-mentioned problems, the present invention provides a method for biologically anaerobically treating organic wastewater, wherein the organic wastewater is treated with an upflow anaerobic sludge bed method in which granular sludge is retained. A first anaerobic treatment step for removing readily decomposable components in the wastewater, and an anaerobic fixed filter bed or fluidized bed using granular or powdery activated carbon from the effluent from the first step. According to the method, an anaerobic treatment method for organic wastewater is characterized in that it is treated with a second anaerobic treatment step for removing a hardly decomposable component in the effluent.
In the processing method, the first processing step and the second processing step can circulate a part of the effluent of each processing step to the respective processing step, and the second processing step. A part of the effluent can be circulated to the first treatment step.
Further, in the treatment method, a part of the effluent of the second treatment step in which the hardly decomposable component that is an obstacle for anaerobic microorganisms is decomposed and removed is less than the concentration at which the concentration of the hardly decomposable component inhibits the anaerobic treatment. By circulating to the upstream side of the first treatment step, it is possible to avoid inhibition of anaerobic microorganisms by a hardly decomposable component.
また、本発明では、有機性廃水を生物学的に嫌気性処理する装置において、前記有機性廃水中の易分解性成分を除去するグラニュール汚泥を保持した上向流嫌気性汚泥床の第一の処理装置と、該処理装置からの流出液中の難分解性成分を除去する粒状又は粉状の活性炭を使用した嫌気性固定ろ床又は流動床の第二の処理装置とを有することを特徴とする有機性廃水の嫌気性処理装置としたものである。
前記処理装置において、第一及び第二の処理装置は、該装置の本体側壁に、該側壁との角度が下向きに35度以下で、かつ各占有面積が該装置の横断面積の2分の1以上となる邪魔板を複数有し、該邪魔板により形成されるガス・液・固分離部を多段に有することができ、また、該処理装置には、それぞれの処理装置の流出液を、該それぞれの処理装置に循環する循環路を有することができ、また、第二の処理装置の流出液の一部を第一の処理装置に循環する循環路を有することができ、該循環路には、第一の処理装置に流入する有機性廃水中の難分解性成分が、嫌気性処理を阻害する濃度以下になるように循環液量を調整する調整手段を有することができる。
Further, in the present invention, in an apparatus for biologically anaerobically treating organic wastewater, the first of an upward flow anaerobic sludge bed holding granule sludge for removing easily decomposable components in the organic wastewater. And a second treatment device for an anaerobic fixed filter bed or fluidized bed using granular or powdery activated carbon that removes hardly decomposable components in the effluent from the treatment device. This is an anaerobic treatment device for organic wastewater.
In the processing apparatus, the first and second processing apparatuses are disposed on the main body side wall of the apparatus at an angle of 35 degrees or less downward with respect to the side wall, and each occupied area is a half of the cross-sectional area of the apparatus. A plurality of baffle plates as described above can be provided, and gas, liquid, and solid separation portions formed by the baffle plates can be provided in multiple stages, and the effluent of each treatment apparatus can be added to the treatment apparatus. It is possible to have a circulation path that circulates to each processing apparatus, and it is possible to have a circulation path that circulates a part of the effluent of the second treatment apparatus to the first treatment apparatus. In addition, it is possible to have an adjusting means for adjusting the amount of the circulating fluid so that the hardly decomposable component in the organic wastewater flowing into the first treatment apparatus is equal to or less than the concentration inhibiting the anaerobic treatment.
本発明の骨子は、第一の嫌気性処理工程で有機性廃水中の易分解性成分の除去を目的にグラニュール汚泥を保持した上向流嫌気性汚泥床により高負荷処理を行い、粒状又は粉状の活性炭を使用した嫌気性固定ろ床又は嫌気性流動床である第二の嫌気性処理工程により第一の嫌気性処理工程からの流出液中の難分解性成分を除去することであり、易分解性成分と難分解性成分とを含む有機性廃水を対象とした高性能な嫌気性処理が達成できることにある。さらに、その際の嫌気性処理装置として、装置の本体側壁に、該側壁との角度が35度以下かつ各占有面積が装置の横断面積の2分の1以上となる邪魔板を複数有し、該邪魔板により形成されるガス・液・固分離部を多段に有する上向流嫌気性処理装置を用いることでリアクター内のガス・液・固分離性能が高まるため、リアクター内にグラニュール汚泥を高濃度に保持し、また、粒状又は粉状の活性炭の安定保持が可能となる。 The essence of the present invention is that a high-load treatment is carried out by an upward-flow anaerobic sludge bed holding granular sludge for the purpose of removing readily degradable components in organic wastewater in the first anaerobic treatment step, It is to remove the hardly decomposable components in the effluent from the first anaerobic treatment step by the second anaerobic treatment step which is an anaerobic fixed filter bed using powdered activated carbon or anaerobic fluidized bed. The high-performance anaerobic treatment for organic wastewater containing an easily decomposable component and a hardly decomposable component can be achieved. Furthermore, as an anaerobic treatment apparatus at that time, the main body side wall of the apparatus has a plurality of baffle plates having an angle with the side wall of 35 degrees or less and each occupation area being one half or more of the cross-sectional area of the apparatus, By using an upflow anaerobic treatment device that has multiple stages of gas, liquid, and solid separation parts formed by the baffle plate, the gas, liquid, and solid separation performance in the reactor is enhanced. It is possible to maintain a high concentration and to stably maintain granular or powdery activated carbon.
本発明では、第一の嫌気性処理工程で、有機性廃水中の易分解性成分の除去を目的に、グラニュール汚泥を保持した上向流嫌気性汚泥床により高負荷処理を行い、次いで、粒状又は粉状の活性炭を使用した嫌気性固定ろ床又は嫌気性流動床である第二の嫌気性処理工程により第一の嫌気性処理工程からの流出液中の難分解性成分を除去しており、さらにその際の嫌気性処理装置として、装置本体側壁との角度が35度以下、かつ各占有面積が装置断面積の2分の1以上となる邪魔板により形成されるガス・液・固分離部を、多段に有する上向流嫌気性処理装置を用いることで、リアクター内のガス・液・固分離性能が高まるため、リアクター内にグラニュール汚泥を高濃度に保持し、また、及び粒状又は粉状の活性炭の安定保持が可能となる有機性廃水の処理方法とこれを実施する装置を提供することができる。 In the present invention, in the first anaerobic treatment step, for the purpose of removing easily decomposable components in the organic wastewater, a high-load treatment is performed by an upward flow anaerobic sludge bed holding granular sludge, By removing the hardly decomposable components in the effluent from the first anaerobic treatment step by the second anaerobic treatment step which is an anaerobic fixed filter bed or anaerobic fluidized bed using granular or powdered activated carbon. In addition, as an anaerobic treatment apparatus at that time, a gas, liquid, or solid formed by a baffle plate whose angle with the side wall of the apparatus main body is 35 degrees or less and each occupied area is one half or more of the cross-sectional area of the apparatus. By using an upflow anaerobic treatment device with multiple separation sections, the gas / liquid / solid separation performance in the reactor is enhanced, so that the granular sludge is kept at a high concentration in the reactor, and granular Or stable maintenance of powdered activated carbon becomes possible It is possible to provide a processing method and apparatus to implement this the machine waste water.
以下、実施の形態を図面を用いて説明する。
図1は、難分解性成分を含む有機性廃水の処理を実施するのに好ましい、本発明の処理フローの一形態を示した概略構成図である。
図1において、21は原水、22は酸発酵槽、23はグラニュール汚泥を保持した上向流嫌気性汚泥床処理装置(UASB)、24は粒状又は粉状の活性炭を充填した上向流嫌気性流動床処理装置(以下、GACとも記す)、25は処理水、26はUASB処理水循環配管、27はGAC処理水循環配管である。なお、24は上向流又は下向流の嫌気性固定ろ床として用いてもよい。
難分解性成分を含む有機性廃水である原水21は、原水の性状に応じて酸発酵槽22で酸発酵処理を行う。酸発酵槽での滞留時間は、4時間〜4日間程度である。酸発酵処理では、原水中の難分解性成分の分解促進や低分子化の効果は小さいが、UASBでの処理効率の向上を図るためには有効である。メタン発酵処理に適したpHは6〜8であるため、酸発酵槽22では、NaOHなどの中和剤を用いてpHの調整を行う。酸発酵処理を行わない場合には、原水21とUASB23の間にpH調整のためのpH調整槽を設けてもよい。
Hereinafter, embodiments will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an embodiment of the treatment flow of the present invention, which is preferable for carrying out treatment of organic wastewater containing a hardly decomposable component.
In FIG. 1, 21 is raw water, 22 is an acid fermenter, 23 is an upflow anaerobic sludge bed treatment device (UASB) holding granule sludge, and 24 is an upflow anaerobic packed with granular or powdered activated carbon. Fluidized bed treatment apparatus (hereinafter also referred to as GAC), 25 is treated water, 26 is a UASB treated water circulation pipe, and 27 is a GAC treated water circulation pipe. In addition, you may use 24 as an anaerobic fixed filter bed of an upward flow or a downward flow.
The raw water 21 which is an organic wastewater containing a hardly decomposable component is subjected to an acid fermentation treatment in an acid fermentation tank 22 according to the properties of the raw water. The residence time in the acid fermenter is about 4 hours to 4 days. In the acid fermentation treatment, the effects of promoting the degradation of low-degradability components in raw water and reducing the molecular weight are small, but they are effective for improving the treatment efficiency with UASB. Since the pH suitable for the methane fermentation treatment is 6-8, the acid fermentation tank 22 adjusts the pH using a neutralizing agent such as NaOH. When acid fermentation treatment is not performed, a pH adjustment tank for pH adjustment may be provided between the raw water 21 and the UASB 23.
本発明の嫌気性処理は、30℃〜35℃を至適温度とした中温メタン発酵処理、50℃〜55℃を至適温度とした高温メタン発酵処理など全ての温度範囲の嫌気性処理を対象としている。
主として、原水中の易分解性成分の処理を行う第一の嫌気処理工程としては、グラニュール汚泥を保持したUASB法あるいはEGSB法が有効である。UASB23では、嫌気性ろ床法や嫌気性流動床法等の他の処理方法に比べ、嫌気性菌の保持量が多いため、COD負荷20kg/m3/d以上の高い負荷での処理が可能となる。
The anaerobic treatment of the present invention covers anaerobic treatment in all temperature ranges, such as a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C. to 35 ° C., and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C. to 55 ° C. It is said.
As a first anaerobic treatment step for mainly treating readily degradable components in raw water, the UASB method or EGSB method holding granule sludge is effective. Compared with other treatment methods such as anaerobic filter bed method and anaerobic fluidized bed method, UASB23 has a large amount of anaerobic bacteria, so it can be treated with a high COD load of 20 kg / m 3 / d or more. It becomes.
主として、UASB23流出水の難分解性成分を嫌気的に処理する第二の嫌気性処理工程としては、粒状活性炭を担体としたGAC24が有効である。粒状活性炭では、活性炭の吸着作用により難分解性成分を吸着し、活性炭上で付着増殖した嫌気性菌により嫌気条件下で長期間の処理を行う吸着分解が可能となり、活性炭の生物学的再生も可能となる。そのため、粒状活性炭は、プラスチック製担体等の他の担体に比べ難分解性成分の除去の効果が大きい。粒状活性炭の有効径は0.05mm〜3mm、好ましくは0.1mm〜1mm、さらに好ましくは0.2mm〜0.7mmであり、均等係数は1.2〜2.0である。また、第二の嫌気性処理工程にグラニュール汚泥を保持したUASB法を適用する場合、廃水中の難分解性成分は、微生物(メタン菌)の自己造粒による固定化能力を比較的低下させる傾向にあり、グラニュール汚泥の形成を困難とするし、また、グラニュール汚泥の緻密さを低下させるため、グラニュール汚泥の長期間の安定保持が困難となり、その結果、処理の継続が困難になる。 As a second anaerobic treatment step for anaerobically treating the hardly decomposable components of the UASB 23 effluent, GAC24 using granular activated carbon as a carrier is effective. Granular activated carbon adsorbs difficult-to-decompose components due to the adsorption action of activated carbon, and anaerobic bacteria that adhere and proliferate on the activated carbon enable adsorption decomposition that is performed for a long time under anaerobic conditions. It becomes possible. Therefore, granular activated carbon has a greater effect of removing hardly decomposable components than other carriers such as plastic carriers. The effective diameter of the granular activated carbon is 0.05 mm to 3 mm, preferably 0.1 mm to 1 mm, more preferably 0.2 mm to 0.7 mm, and the uniformity coefficient is 1.2 to 2.0. In addition, when applying the UASB method in which granular sludge is retained in the second anaerobic treatment step, the hardly decomposable component in the wastewater relatively lowers the immobilization ability by self-granulation of microorganisms (methane bacteria). This makes it difficult to form granulated sludge, and also reduces the granular sludge density, making it difficult to maintain stable granulated sludge for a long period of time. Become.
図2は、嫌気性処理方法を実施するのに好ましい本発明の上向流嫌気性処理装置の一形態を例示したフロー構成図であり、上向流嫌気性処理装置のリアクター2は、グラニュール汚泥を保持したUASB及び粒状活性炭を充填したGACである。
被処理液送液管1が連通し、上下を閉塞した筒状のリアクター2内部の左右両側壁には、それぞれに一方の端部を固定し、他方の端部を反対側の側壁方向に向かって下降しながら延ばしている邪魔板3が設置されている。邪魔板3は、上下方向に2箇所左右交互に設けてあって、リアクター側壁との間にそれぞれ鋭角の区分スラッジゾーン4a〜4bを形成している。リアクター2側壁と邪魔板3のなす角度θは35度以下の鋭角であり、占有面積は、リアクター2の横断面積の1/2以上である。35度を越える角度の場合には、スラッジゾーン4a,4bの邪魔板3の上部にグラニュール汚泥あるいは粒状活性炭が堆積し、流動性が不十分となり、デッドスペースが形成される。また、邪魔板3の占有面積が1/2以下だと、発生ガスの捕捉が不十分となり、気液固の分離に不具合を生じる。つまり、リアクター2の中心よりガスが上方へ抜けてしまい、後記のGSS部5にガスを十分に集積することができなくなる。
FIG. 2 is a flow diagram illustrating an embodiment of the upward flow anaerobic treatment apparatus of the present invention that is preferable for carrying out the anaerobic treatment method. The reactor 2 of the upward flow anaerobic treatment apparatus is composed of granules. A GAC filled with UASB holding granular sludge and granular activated carbon.
One end is fixed to each of the left and right side walls inside the cylindrical reactor 2 which is in communication with the liquid feed pipe 1 to be treated and closed up and down, and the other end faces toward the opposite side wall. A baffle plate 3 extending while descending is installed. The baffle plates 3 are provided alternately at two left and right locations in the vertical direction, and form acute slanted section sludge zones 4a to 4b between the reactor side walls. The angle θ between the side wall of the reactor 2 and the baffle plate 3 is an acute angle of 35 degrees or less, and the occupied area is ½ or more of the cross-sectional area of the reactor 2. In the case of an angle exceeding 35 degrees, granular sludge or granular activated carbon is deposited on the baffle plate 3 in the sludge zones 4a and 4b, resulting in insufficient fluidity and a dead space. On the other hand, when the occupied area of the baffle plate 3 is 1/2 or less, the trapping of the generated gas becomes insufficient, causing a problem in the separation of gas and liquid. That is, the gas escapes upward from the center of the reactor 2, and the gas cannot be sufficiently accumulated in the GSS unit 5 described later.
区分スラッジゾーン4a、4b上部は、GSS部5を形成している。反応が開始すると発生ガスが集まる気相部5aには、外部と通じる発生ガス回収配管6の排出口を設けてある。
なお、気相部5aから接続されている発生ガス回収配管6の吐出口は、水を充填した水封槽7の水中内で開口している。開口位置は、水圧が異なる適宜な水深位にあり、水封槽7には、発生ガス回収配管6から吐き出されたガス流量を測定するガスメータ8を設けてある。ガスメータ8の先には、ガスホルダー11が設けられている。また、リアクター2上端には、上澄み液を排出する処理水配管9が開口している。なお、16は、グラニュール汚泥又は活性炭が保持される上端部を示す。
The upper part of the divided sludge zones 4a and 4b forms a GSS portion 5. In the gas phase part 5a where the generated gas collects when the reaction starts, an outlet of the generated gas recovery pipe 6 communicating with the outside is provided.
In addition, the discharge port of the generated gas recovery pipe 6 connected from the gas phase part 5a is opened in the water of the water-sealed tank 7 filled with water. The opening position is at an appropriate water depth with different water pressure, and the water sealing tank 7 is provided with a gas meter 8 for measuring the flow rate of the gas discharged from the generated gas recovery pipe 6. A gas holder 11 is provided at the tip of the gas meter 8. A treated water pipe 9 for discharging the supernatant liquid is opened at the upper end of the reactor 2. In addition, 16 shows the upper end part by which granule sludge or activated carbon is hold | maintained.
リアクター2内では、嫌気性菌からなるグラニュール汚泥及び嫌気性菌を保持した粒状活性炭の介在によって有機性廃水が分解し、バイオガスが発生する。発生したガスは、各区分スラッジゾーン4a〜4b上端のGSS部5に別れて集まり、それぞれに気相部5aを形成し、発生ガス回収配管6を通じて水封槽7に至る。こうした発生ガスは、ガスメータ8でその排出量が記録され、ガスホルダー11に送られる。発生ガスの一部は、区分スラッジゾーン4a〜4b内でグラニュール汚泥あるいは粒状活性炭に付着し、その見かけ比重を軽減させると共に、グラニュール汚泥あるいは粒状活性炭を同伴してGSS部5の水面に達する。こうした発生ガスは、気泡を形成して水面気泡部5bに一時的に滞留する。水面気泡部5bに集合した気泡は、やがて破裂して、発生ガスとグラニュール汚泥あるいは粒状活性炭とが分離され、グラニュール汚泥あるいは粒状活性炭は元の比重を回復して水中に潜り、発生ガスは発生ガス回収配管6から水封槽7を経由して、系外に排出される。有機物が分解して清澄になって水は、リアクター上端から処理水配管9を経由して系外に排出される。 In the reactor 2, organic waste water is decomposed by the presence of granular sludge made of anaerobic bacteria and granular activated carbon holding the anaerobic bacteria, and biogas is generated. The generated gas is collected separately in the GSS part 5 at the upper end of each of the divided sludge zones 4a to 4b, forms a gas phase part 5a in each, and reaches the water seal tank 7 through the generated gas recovery pipe 6. The amount of such generated gas is recorded by the gas meter 8 and sent to the gas holder 11. Part of the generated gas adheres to the granular sludge or granular activated carbon in the divided sludge zones 4a to 4b, reduces the apparent specific gravity, and accompanies the granular sludge or granular activated carbon to the water surface of the GSS section 5. . Such generated gas forms bubbles and temporarily stays in the water surface bubble portion 5b. The air bubbles gathered in the water surface bubble portion 5b eventually burst, and the generated gas and granular sludge or granular activated carbon are separated. The granular sludge or granular activated carbon recovers its original specific gravity and dives into the water. It is discharged out of the system from the generated gas recovery pipe 6 via the water seal tank 7. The organic matter is decomposed and clarified, and the water is discharged out of the system via the treated water pipe 9 from the upper end of the reactor.
各GSS部5の気相部5aのガス圧は異なるので、その差圧は水封槽7で調整するとよい。被処理液送液側に近い順に水封圧は高く保つ必要がある。ガス回収の圧調整は、水封槽7を使う方法以外にも多くの方法がある。例えば、圧力弁等を使用してもよい。本発明の嫌気性処理方法では、各区分スラッジゾーン毎にそこで発生する発生ガスを回収できるため、リアクター単位断面積当たりの発生ガス量が少なくなる。特に、処理水を流出させる処理水配管9に最も近い所では、リアクターの単位断面積当たりのガス量が小さくなる。そのため、グラニュール汚泥及び粒状活性炭の系外流出量は、非常に少なくすることができる。
被処理水を、UASBの処理水あるいはGACの処理水による循環液や系外から供給する希釈水等により、必要に応じて適宜希釈を行い、流入水のリアクター2内部での通水速度を調節する。GSS部を多段に設置したUASBリアクターでは、通水速度を1〜5m/hとすることにより、グラニュール汚泥層の流動状態が良好となり、また、GSS部を多段に設置したGACリアクターでは、通水速度を2〜10m/hとすることにより、粒状活性炭充填層の流動状態が良好となる。
Since the gas pressure in the gas phase part 5 a of each GSS part 5 is different, the differential pressure may be adjusted in the water-sealed tank 7. It is necessary to keep the water sealing pressure higher in the order closer to the liquid feed side. There are many methods for adjusting the pressure for gas recovery in addition to the method using the water-sealed tank 7. For example, a pressure valve or the like may be used. In the anaerobic treatment method of the present invention, the generated gas generated in each sludge zone can be recovered, so that the generated gas amount per reactor unit cross-sectional area is reduced. In particular, the gas amount per unit cross-sectional area of the reactor becomes small at a place closest to the treated water pipe 9 through which treated water flows out. Therefore, the outflow amount of granule sludge and granular activated carbon can be extremely reduced.
The water to be treated is appropriately diluted as necessary with circulating water from UASB treated water or GAC treated water, or dilution water supplied from outside the system, and the flow rate of water in the reactor 2 is adjusted. To do. In a UASB reactor in which the GSS section is installed in multiple stages, the flow rate of the granular sludge layer is improved by setting the water flow rate to 1 to 5 m / h. In a GAC reactor in which the GSS section is installed in multiple stages, By setting the water speed to 2 to 10 m / h, the fluidized state of the granular activated carbon packed bed is improved.
原水中の有機物の成分や原水中の易分解性成分と難分解性成分の比率などにより、UASB及びGACのCOD容積負荷が決まり、UASB及びGACの容量が決定されるため、UASBとGACを同一水量で通水し、UASB及びGACを適正通水速度で通水することは困難であることが多い。つまり、原水を一過性でUASB及びGACに通水する場合や、原水とGAC処理水の循環液をUASB及びGACに通水する場合、UASB及びGACともに適正通水速度で通水することが難しい場合が多い。そのため、UASB及びGACのそれぞれを適正通水速度で通水する手段として、UASB処理水循環液をUASB流入部に、GAC処理水をGAC流入部に各々循環することは有効である。
原水中の難分解性成分が嫌気微生物にとって阻害となる場合は、難分解性成分が分解除去されたGAC処理水をUASB流入部に循環させることで、UASB及びGACに流入する阻害性有機物濃度(阻害性難分解性成分濃度)を嫌気微生物への阻害濃度以下とすることでUASB及びGAC内部での嫌気微生物への阻害を回避できる。GAC処理水をUASB流入部に循環させる場合においても、UASB処理水循環液をUASB流入部に、GAC処理水をGAC流入部に各々循環する手法は、UASB及びGACのそれぞれを適正通水速度で通水する上で有効な手段となる。
The UASB and GAC COD volume load is determined by the organic matter components in the raw water and the ratio of easily decomposable and hardly decomposable components in the raw water, and the UASB and GAC capacities are determined. In many cases, it is difficult to pass water at an appropriate water flow rate by passing water at an appropriate amount. In other words, when the raw water is passed through the UASB and GAC temporarily, or when the circulating water of the raw water and the GAC treated water is passed through the UASB and the GAC, both the UASB and the GAC may be passed at an appropriate flow rate. Often difficult. Therefore, it is effective to circulate the UASB treated water circulating liquid to the UASB inflow portion and the GAC treated water to the GAC inflow portion as means for passing each of the UASB and GAC at an appropriate water flow rate.
In the case where the hardly decomposable component in the raw water is an obstacle for anaerobic microorganisms, the concentration of the inhibitory organic substance flowing into the UASB and the GAC is circulated by circulating the GAC treated water from which the hardly decomposable component is decomposed and removed to the UASB inflow portion ( Inhibitory to anaerobic microorganisms in UASB and GAC can be avoided by setting the inhibitory hardly decomposable component concentration) to an inhibitory concentration or less for anaerobic microorganisms. Even when the GAC treated water is circulated to the UASB inflow section, the UASB treated water circulating liquid is circulated to the UASB inflow section and the GAC treated water is circulated to the GAC inflow section. It is an effective means for watering.
阻害性有機物濃度を嫌気微生物への阻害濃度以下にするためのGAC処理水のUASB流入部への循環水量は、次の方法で調整される。
・ 対象とする有機物の阻害性濃度(C0)を予め、回分試験等で求める。
・ UASBに流入する阻害性有機物濃度を原水(Cin)及びGAC処理水(Cout)について測定し、下記式に基づき、UASB流入部での阻害性有機物濃度(C)がC0以下の範囲となるように、GAC処理水のUASB流入部への循環水量(Qr)を設定する。阻害性有機物濃度(C)は、C0と同等未満が必要であり、実際上はC<1/2C0にすることが好ましい。
C<C0=(Cin×Q+Cout×Qr)/(Q+Qr)
Q:原水水量(m3/d)
Qr:GAC処理水のUASB流入部への循環水量(m3/d)
C,C0,Cin,Cout:阻害性有機物濃度あるいは統括的有機物濃度(mg/L)
The amount of circulating water to the UASB inflow part of the GAC treated water for making the inhibitory organic substance concentration below the inhibitory concentration for anaerobic microorganisms is adjusted by the following method.
• Obtain the inhibitory concentration (C 0 ) of the target organic substance in advance by a batch test or the like.
・ The concentration of inhibitory organic substances flowing into UASB was measured for raw water (C in ) and GAC treated water (C out ), and the concentration of inhibitory organic substances (C) at the UASB inflow section was C 0 or less based on the following formula. The circulating water amount (Q r ) to the UASB inflow portion of the GAC treated water is set so that Inhibitory concentration of organic substances (C), it is necessary C 0 and less than equivalent, in practice it is preferable to C <1 / 2C 0.
C <C 0 = (C in × Q + C out × Q r ) / (Q + Q r )
Q: Raw water quantity (m 3 / d)
Q r : amount of circulating water to the UASB inflow part of GAC treated water (m 3 / d)
C, C 0 , C in , C out : Inhibitory organic substance concentration or overall organic substance concentration (mg / L)
発泡性の原水の場合には、GSS5内の気相部5a及び発生ガス回収配管6が閉塞し、発生ガスの回収が困難となる。このような場合、リアクター2流入水に予め消泡剤10を加えることで、GSS5内での発泡を抑えることができる。GSS5内に消泡剤を滴下、噴霧する方法に比べ、本手法は密閉空間での消泡に効果的である。消泡剤10は、原水性状に応じた消泡効果を有し、発酵液の消泡に適した、中温(30〜35℃)あるいは高温(50〜55℃)において消泡効果を失すことのない消泡剤を使用する。消泡剤の種類としては、シリコーン系消泡剤、アルコール系消泡剤の何れも適用が可能である。 In the case of foaming raw water, the gas phase portion 5a and the generated gas recovery pipe 6 in the GSS 5 are blocked, making it difficult to recover the generated gas. In such a case, foaming in the GSS 5 can be suppressed by adding the antifoaming agent 10 to the reactor 2 inflow water in advance. Compared to the method of dropping and spraying an antifoaming agent in GSS5, this method is more effective for defoaming in a sealed space. The antifoaming agent 10 has a defoaming effect according to the raw aqueous state, and loses the defoaming effect at an intermediate temperature (30 to 35 ° C.) or high temperature (50 to 55 ° C.) suitable for defoaming the fermentation broth. Use a defoamer with no air bubbles. As a kind of antifoaming agent, any of a silicone type antifoaming agent and an alcohol type antifoaming agent can be applied.
原水性状等の影響により、スカムを形成しやすい場合には、GSS5内の気泡部5b表面及び内部にスカムを形成し、発生ガスの回収が困難となる。このような場合には、発生ガス吹き込み配管13を発生ガス回収配管6あるいは散気管12に接続し、ガスホルダー11内の発生ガスをGSS5内に供給することで、スカムの破壊あるいはスカムの形成防止が可能となる。
発生ガス吹き込み配管13を発生ガス回収配管6に接続し、下部のGSS5内のスカムを破壊・除去する場合は、バルブ14aを閉じ、下部のGSS5内全体を気相部5aとし、下部のGSS5からスカムを排出する。この排出されたスカムは下部のGSS5内に止まるため、バルブ14bを閉じ、上部のGSS5内全体を気相部5aとし、上部のGSS5からスカムを排出し、これを処理水と共に流出させる。
When scum is likely to be formed due to the influence of the raw water state or the like, scum is formed on the surface and inside of the bubble portion 5b in the GSS 5 and it becomes difficult to recover the generated gas. In such a case, the generated gas blowing pipe 13 is connected to the generated gas recovery pipe 6 or the diffuser pipe 12, and the generated gas in the gas holder 11 is supplied into the GSS 5 to prevent scum destruction or scum formation. Is possible.
When the generated gas blowing pipe 13 is connected to the generated gas recovery pipe 6 to destroy or remove the scum in the lower GSS 5, the valve 14 a is closed and the entire lower GSS 5 is used as the gas phase part 5 a, and the lower GSS 5 Discharge scum. Since this discharged scum stops in the lower GSS 5, the valve 14 b is closed, the entire upper GSS 5 is made the gas phase portion 5 a, and the scum is discharged from the upper GSS 5 and flows out together with the treated water.
また、発生ガス吹き込み配管13を散気管12に接続する場合は、散気管12から吹き込まれる気泡によりスカムが破壊され、破壊されたスカムは、リアクター2内の液の流れと共に処理水として排出される。本手法の場合には、バルブ14の開閉は問わない。バルブ14を開けて操作する場合は、散気管12から吹き込まれた気体は、発生ガス回収配管6より回収される。バルブ14を閉じて操作する場合は、散気管12から吹き込まれる気泡によるスカムの破壊効果に加え、前記発生ガス吹き込み配管13を発生ガス回収配管6に接続した場合のスカム排出効果も期待できる。なお、GSS5内部のスカムを破壊・除去するために、GSS5内に吹き込む気体は、窒素ガス等の酸素を含まないメタン発酵等の生物処理に影響を与えない気体を適用できるが、嫌気性処理によって発生したガスを使用することが望ましい。GSS5内にガスを吹き込む頻度は、廃水の性状にもよるが1日に1回から1週間に1回とすることで、GSS5内部のスカムを破壊・除去の効果がある。 Further, when the generated gas blowing pipe 13 is connected to the diffuser pipe 12, the scum is broken by the bubbles blown from the diffuser pipe 12, and the broken scum is discharged as treated water together with the liquid flow in the reactor 2. . In the case of this method, the valve 14 can be opened and closed. When the valve 14 is opened and operated, the gas blown from the diffuser pipe 12 is recovered from the generated gas recovery pipe 6. When the valve 14 is closed and operated, in addition to the effect of destroying the scum due to the bubbles blown from the air diffuser 12, the effect of discharging the scum when the generated gas blowing pipe 13 is connected to the generated gas recovery pipe 6 can be expected. In addition, in order to destroy and remove the scum inside GSS5, the gas blown into GSS5 can be applied to a gas that does not contain oxygen such as nitrogen gas and does not affect biological treatment such as methane fermentation. It is desirable to use the generated gas. Although the frequency of blowing gas into the GSS 5 varies depending on the properties of the wastewater, it is effective to destroy and remove the scum inside the GSS 5 by changing it once a day to once a week.
以下、本発明を実施例により具体的に説明する。
実施例1
図3に、実験に用いた上向流式嫌気性処理装置の断面構成図を示す。
実験に用いた装置2は同一構造であり、傾斜する邪魔板3を3個取り付け、装置側壁と邪魔板との角度θを30度とし、原水1に消泡剤10を添加した。装置の液相部の容量は1m3である。リアクター内の水温は、35度になるように制御している。
原水には、テレフタル酸製造廃水(COD:9000mg/L)に無機栄養塩類(窒素、リンなど)を添加し、pHを7に中和したものを用いた。原水の主成分は、難分解性成分のp−トルイル酸とテレフタル酸及び易分解性の酢酸、安息香酸である。
Hereinafter, the present invention will be specifically described by way of examples.
Example 1
FIG. 3 shows a cross-sectional configuration diagram of the upward flow anaerobic treatment apparatus used in the experiment.
The apparatus 2 used in the experiment has the same structure, three inclined baffle plates 3 were attached, the angle θ between the apparatus side wall and the baffle plate was 30 degrees, and the antifoaming agent 10 was added to the raw water 1. The capacity of the liquid phase part of the device is 1 m 3 . The water temperature in the reactor is controlled to be 35 degrees.
As raw water, terephthalic acid production waste water (COD: 9000 mg / L) was added with inorganic nutrient salts (nitrogen, phosphorus, etc.) and the pH was neutralized to 7. The main components of raw water are p-toluic acid and terephthalic acid, which are hardly decomposable components, and easily decomposable acetic acid and benzoic acid.
図4に、実験に用いた処理フローの概略構成図を示す。
A系列は、GAC単独処理であり、GAC処理水を循環し、通水速度を5m/hに設定した。
B系列は、UASB単独処理であり、UASB処理水を循環し、通水速度を2m/hに設定した。
C系列は、第一の嫌気性処理工程及び第二の嫌気性処理工程にUASB処理を適用した。UASB(1)の処理水を循環することでUASB(1)の通水速度を2m/hに、UASB(2)の処理水を循環することでUASB(2)の通水速度を2m/hに設定した。
D系列は、第一の嫌気性処理工程にUASB処理を、第二の嫌気性処理工程にGAC処理を適用した。UASBの処理水を循環することでUASBの通水速度を2m/hに、GACの処理水を循環することでGACの通水速度を5m/hに設定した。D系列は本発明に基づく系列である。
なお、C系列UASB(2)では、所定のCOD負荷となるようにUASB(2)へのUASB(1)処理水流入量を調整した。同様に、D系列のGACでは所定のCOD負荷となるように、GACへのUASB処理水流入量を調整した。
FIG. 4 shows a schematic configuration diagram of the processing flow used in the experiment.
Series A was a GAC single treatment, in which GAC treated water was circulated and the water flow rate was set to 5 m / h.
Series B was UASB single treatment, UASB treated water was circulated, and the water flow rate was set to 2 m / h.
C series applied the UASB process to the first anaerobic treatment step and the second anaerobic treatment step. By circulating the treated water of UASB (1), the flow rate of UASB (1) is 2 m / h, and by circulating the treated water of UASB (2), the flow rate of UASB (2) is 2 m / h. Set to.
In the D series, UASB treatment was applied to the first anaerobic treatment step, and GAC treatment was applied to the second anaerobic treatment step. The flow rate of UASB was set to 2 m / h by circulating the treated water of UASB, and the flow rate of GAC was set to 5 m / h by circulating the treated water of GAC. The D series is a series based on the present invention.
In C series UASB (2), the amount of UASB (1) treated water flowing into UASB (2) was adjusted so as to achieve a predetermined COD load. Similarly, in the D-series GAC, the UASB treated water inflow amount to the GAC was adjusted so that a predetermined COD load was obtained.
表1、表2に処理成績結果を示す。なお、C系列のUASB(2)及びD系列のGACのCOD除去率は、原水CODに対する除去率である。
(1)A系列(GAC単独)
300日後では、COD負荷5kg/m3/dでCOD除去率78%の処理であったが、400日後に、COD負荷10kg/m3/dで処理を行ったところ、COD除去率は61%に低下した。
(2)B系列(UASB単独)
300日後では、COD負荷5kg/m3/dでCOD除去率68%の処理であったが、グラニュール汚泥は、処理開始時の約3分の2に低下した。400日後では、グラニュール汚泥は処理開始時の約3分の1に低下したため、COD負荷5kg/m3/dで処理を継続したが、COD除去率は38%に低下した。
Tables 1 and 2 show the processing results. Note that the COD removal rate of the C-series UASB (2) and the D-series GAC is the removal rate of the raw water COD.
(1) A series (GAC alone)
After 300 days, the COD removal rate was 78% at a COD load of 5 kg / m 3 / d, but after 400 days, the COD removal rate was 61% when treated at a COD load of 10 kg / m 3 / d. Declined.
(2) B series (UASB alone)
After 300 days, the COD removal rate was 68% with a COD load of 5 kg / m 3 / d, but the granule sludge decreased to about two-thirds at the start of the treatment. After 400 days, the granule sludge was reduced to about one third of that at the start of the treatment, so the treatment was continued at a COD load of 5 kg / m 3 / d, but the COD removal rate was lowered to 38%.
(3)C系列〔UASB(1)+UASB(2)〕
UASB(1)は、300日〜400日後では、COD負荷60kg/m3/dでCOD除去率50%の処理が安定して行えたが、UASB(2)では、B系列と同様にグラニュール汚泥量の減少が認められ、COD負荷5kg/m3/dで処理を継続したが、COD除去率は300日後の72%から400日後の61%に低下した。
(4)D系列
UASBは、300日〜400日後では、COD負荷60kg/m3/dでCOD除去率50%の処理が安定して行えた。GACでは、300日後は、COD負荷10kg/m3/dでCOD除去率80%、400日後では、COD負荷15kg/m3/dでCOD除去率81%の処理であった。
(3) Series C [UASB (1) + UASB (2)]
In UASB (1), the treatment with a COD removal rate of 50% was stably performed at a COD load of 60 kg / m 3 / d after 300 days to 400 days, but in UASB (2), the granule is similar to the B series. A decrease in the amount of sludge was observed and the treatment was continued at a COD load of 5 kg / m 3 / d, but the COD removal rate decreased from 72% after 300 days to 61% after 400 days.
(4) D series UASB was able to stably perform a COD removal rate of 50% with a COD load of 60 kg / m 3 / d after 300 to 400 days. In GAC, after 300 days, the COD removal rate was 80% at a COD load of 10 kg / m 3 / d, and after 400 days, the COD removal rate was 81% at a COD load of 15 kg / m 3 / d.
B系列のUASB及びC系列のUASB(2)では、傾斜する邪魔板を3個取り付け、グラニュール汚泥保持効果を高めたにもかかわらず、グラニュール汚泥は減少したため、B系列及びC系列での安定した処理の継続は困難であった。
A系列では、安定した処理の継続は可能であったが、COD負荷5kg/m3/dの低負荷で運転を行う必要がある。
本発明法であるD系列は、A〜C系列に比べ、安定した処理性能の維持が可能であり、高いCOD除去性能を示し、かつ、省スペースな処理方式であった。
In B series UASB and C series UASB (2), three sloping baffle plates were attached and the granule sludge decreased despite the increased sludge retention effect. It was difficult to continue the stable treatment.
In the A series, stable processing can be continued, but it is necessary to operate with a low load of COD load of 5 kg / m 3 / d.
Compared to the A to C series, the D series which is the method of the present invention is capable of maintaining stable processing performance, exhibits high COD removal performance, and is a space-saving processing method.
実施例2
図3に、実験に用いた上向流式嫌気性処理装置の断面構成図を示す。
実験に用いた装置2は同一構造であり、傾斜する邪魔板3を3個取り付け、装置側壁と邪魔板との角度θを30度とし、原水1に消泡剤10を添加した。装置の液相部の容量は100Lである。リアクター内の水温は、35度になるように制御している。
原水には、フェノール含有廃水に酢酸を添加した廃水(COD:9000mg/L、フェノール濃度:1200〜2000mg−COD/L)に無機栄養塩類(窒素、リンなど)を添加し、pHを7に中和したものを用いた。原水の主成分は、難分解性成分のフェノール及び易分解性の酢酸である。難分解性成分であるフェノールは濃度が高い場合には嫌気微生物にとって阻害となる。本廃水の場合、フェノールの濃度阻害の範囲は、COD換算で1000mg/L以上であることを回分試験で確認した。
Example 2
FIG. 3 shows a cross-sectional configuration diagram of the upward flow anaerobic treatment apparatus used in the experiment.
The apparatus 2 used in the experiment has the same structure, three inclined baffle plates 3 were attached, the angle θ between the apparatus side wall and the baffle plate was 30 degrees, and the antifoaming agent 10 was added to the raw water 1. The capacity of the liquid phase part of the apparatus is 100L. The water temperature in the reactor is controlled to be 35 degrees.
In the raw water, inorganic nutrient salts (nitrogen, phosphorus, etc.) are added to waste water (COD: 9000 mg / L, phenol concentration: 1200 to 2000 mg-COD / L) obtained by adding acetic acid to phenol-containing waste water, and the pH is adjusted to 7. The sum was used. The main components of the raw water are the hardly decomposable component phenol and easily degradable acetic acid. Phenol, which is a hardly decomposable component, becomes an inhibitor for anaerobic microorganisms when the concentration is high. In the case of this wastewater, it was confirmed by a batch test that the range of phenol concentration inhibition was 1000 mg / L or more in terms of COD.
図5に、実験に用いた処理フローの概略構成図を示す。
E系列は、第一の嫌気性処理工程にUASB処理を、第二の嫌気性処理工程にGAC処理を適用した。UASBの処理水を循環することでUASBの通水速度を2m/hに、GACの処理水を循環することでGACの通水速度を5m/hに設定した。
F系列は、E系列と同様に、第一の嫌気性処理工程にUASB処理を、第二の嫌気性処理工程にGAC処理を適用した。F系列では、GAC処理水を第一の嫌気処理工程に循環し、第一処理工程流入フェノール濃度が、500mg−COD/L以下になるようにGAC処理水循環量を調整した。UASBの処理水を循環することでUASBの通水速度を2m/hに、GACの処理水を循環することでGACの通水速度を5m/hに設定した。
なお、E系列、F系列ともに、GACでは所定のCOD負荷となるように、GACへのUASB処理水流入量を調整した。
また、E系列、F系列とも、GACについては、事前にフェノール分解除去処理が十分に行えるように馴致を施した。
FIG. 5 shows a schematic configuration diagram of a processing flow used in the experiment.
In the E series, UASB treatment was applied to the first anaerobic treatment step, and GAC treatment was applied to the second anaerobic treatment step. The flow rate of UASB was set to 2 m / h by circulating the treated water of UASB, and the flow rate of GAC was set to 5 m / h by circulating the treated water of GAC.
In the F series, as in the E series, the UASB process was applied to the first anaerobic treatment process and the GAC process was applied to the second anaerobic treatment process. In the F series, the GAC treated water was circulated to the first anaerobic treatment step, and the GAC treated water circulation amount was adjusted so that the first treatment step inflow phenol concentration was 500 mg-COD / L or less. The flow rate of UASB was set to 2 m / h by circulating the treated water of UASB, and the flow rate of GAC was set to 5 m / h by circulating the treated water of GAC.
Note that the amount of UASB treated water flowing into the GAC was adjusted so that the GAC had a predetermined COD load for both the E and F series.
For both E series and F series, GAC was adapted in advance so that the phenol decomposition removal treatment could be sufficiently performed.
表3に処理成績結果を示す。なお、E系列及びF系列のCOD除去率は、原水CODとGAC処理水CODから求めた除去率である。
(1)E系列
UASBでは、COD負荷を3kg/m3/d以上とすると、フェノール濃度の阻害の影響で処理が悪化する傾向にあった。そのため、COD負荷を3kg/m3/dで処理を行った。GACでは、UASBで未分解であった有機物の流入が多くなるため、COD負荷1kg/m3/dの低負荷で処理を行う必要があった。このとき、GAC処理水COD800mg/L、GAC処理水フェノール濃度5mg/Lであった。
(2)F系列
GAC処理水の一部を循環液としてUASB流入部に循環した。GAC処理水循環量は、原水量の2倍量(2Q)とした。GAC処理水をUASB流入部に循環することで、UASB流入部のフェノール濃度は403mg−COD/Lとなり、フェノールの濃度阻害の影響を受けなかった。そのため、UASBでは、COD負荷30kg/m3/d、GACではCOD負荷を6kg/m3/dで処理の処理が可能であり、GAC処理水COD800mg/L、GAC処理水フェノール濃度5mg/Lの処理であった。
Table 3 shows the results of processing results. Note that the ED and F series COD removal rates are the removal rates obtained from the raw water COD and the GAC treated water COD.
(1) E series In UASB, when the COD load was 3 kg / m 3 / d or more, the treatment tended to deteriorate due to the influence of the inhibition of the phenol concentration. Therefore, the COD load was processed at 3 kg / m 3 / d. In GAC, since the inflow of organic matter that has not been decomposed by UASB increases, it was necessary to perform treatment at a low load of COD load of 1 kg / m 3 / d. At this time, the GAC-treated water COD was 800 mg / L and the GAC-treated water phenol concentration was 5 mg / L.
(2) F series A part of the GAC treated water was circulated to the UASB inflow part as a circulating liquid. The circulation amount of the GAC treated water was twice the amount of raw water (2Q). By circulating the GAC-treated water to the UASB inflow part, the phenol concentration in the UASB inflow part became 403 mg-COD / L, and was not affected by the concentration inhibition of phenol. Therefore, in UASB, COD load 30 kg / m 3 / d, GAC COD load 6 kg / m 3 / d can be processed, GAC treated water COD 800 mg / L, GAC treated water phenol concentration 5 mg / L It was processing.
E系列では、GAC処理水COD800mg/L、GAC処理水フェノール濃度5mg/Lの処理が継続可能であったが、UASBでのCOD負荷を3kg/m3/d、GACでのCOD負荷を1kg/m3/dとし、低負荷で処理を行う必要があった。
一方、GAC処理水をUASB流入部に循環することで、フェノールの濃度阻害を回避できたF系列では、UASBでのCOD負荷を30kg/m3/d、GACでのCOD負荷を6kg/m3/dの高負荷処理が達成できる処理方式であった。
難分解性成分が嫌気微生物にとって濃度阻害を引き起こす場合には、難分解性成分が分解除去されたGAC処理水をUASB流入部に循環させ、UASB及びGACに流入する阻害性有機物濃度(阻害性難分解性成分濃度)を嫌気微生物への阻害濃度以下とすることで、UASB及びGAC内部での嫌気微生物への阻害を回避できるF系列の処理方式が有効である。
In E series, GAC treated water COD 800 mg / L and GAC treated water phenol concentration 5 mg / L could be continued, but the COD load in UASB was 3 kg / m 3 / d, and the COD load in GAC was 1 kg / L. It was necessary to carry out the treatment with a low load at m 3 / d.
On the other hand, in the F series in which inhibition of phenol concentration can be avoided by circulating the GAC treated water to the UASB inflow portion, the COD load in UASB is 30 kg / m 3 / d, and the COD load in GAC is 6 kg / m 3. This is a processing method that can achieve high load processing of / d.
When the hardly decomposable component causes concentration inhibition for anaerobic microorganisms, the GAC treated water from which the hardly decomposable component is decomposed and removed is circulated to the UASB inflow portion, and the concentration of inhibitory organic substances flowing into the UASB and GAC (inhibitory difficulty) By making the degradable component concentration) below the inhibitory concentration for anaerobic microorganisms, an F-series treatment system capable of avoiding the inhibition of anaerobic microorganisms inside UASB and GAC is effective.
1:原液送液管、2:上向流嫌気性処理装置リアクター、3:邪魔板、4a〜4b:スラッジゾーン、5:GSS部、5a:気相部、5b:気泡部、6:発生ガス回収配管、7:水封槽、8:ガスメータ、9:処理水配管、10:消泡剤、11:ガスホルダー、12:散気管、13:配管、14a、14b:バルブ、21:原水、22:酸発酵槽、23:上向流嫌気性汚泥床処理装置(UASB)、24:上向流嫌気性流動床処理装置(GAC)、25:処理水、26:UASB処理水循環配管、27:GAC処理水循環配管 1: Stock solution feed pipe, 2: Upflow anaerobic treatment device reactor, 3: Baffle plate, 4a-4b: Sludge zone, 5: GSS part, 5a: Gas phase part, 5b: Bubble part, 6: Generated gas Recovery pipe, 7: water sealing tank, 8: gas meter, 9: treated water pipe, 10: antifoaming agent, 11: gas holder, 12: air diffuser, 13: pipe, 14a, 14b: valve, 21: raw water, 22 : Acid fermenter, 23: Upstream anaerobic sludge bed treatment device (UASB), 24: Upflow anaerobic fluidized bed treatment device (GAC), 25: Treated water, 26: UASB treated water circulation piping, 27: GAC Treated water circulation piping
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011109043A JP2012239929A (en) | 2011-05-16 | 2011-05-16 | Method and apparatus for anaerobic treatment of organic wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011109043A JP2012239929A (en) | 2011-05-16 | 2011-05-16 | Method and apparatus for anaerobic treatment of organic wastewater |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012239929A true JP2012239929A (en) | 2012-12-10 |
Family
ID=47462199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011109043A Pending JP2012239929A (en) | 2011-05-16 | 2011-05-16 | Method and apparatus for anaerobic treatment of organic wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012239929A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015171677A (en) * | 2014-03-11 | 2015-10-01 | 住友重機械エンバイロメント株式会社 | Water treatment method and water treatment device |
JP2016087595A (en) * | 2014-11-11 | 2016-05-23 | オルガノ株式会社 | Waste water treatment device and waste water treatment method |
CN105668780A (en) * | 2014-11-21 | 2016-06-15 | 中国寰球工程公司 | Acidification quick-recovery anaerobic reaction system |
JP2016203029A (en) * | 2015-04-15 | 2016-12-08 | 水ing株式会社 | Processing method and processing apparatus of organic wastes |
CN111115810A (en) * | 2020-01-16 | 2020-05-08 | 南环(宁夏)环境科技有限公司 | Anaerobic bioreactor, sewage treatment system and sewage treatment method |
JP2020163328A (en) * | 2019-03-29 | 2020-10-08 | 栗田工業株式会社 | Biological treatment system and method for organic wastewater |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58150496A (en) * | 1982-03-02 | 1983-09-07 | Sumitomo Jukikai Envirotec Kk | Process for methane fermentation of waste liquid highly contg. nitrogen |
JPS6154293A (en) * | 1984-08-24 | 1986-03-18 | Hitachi Zosen Corp | Treatment of high concentrated organic waste water |
JP2000237786A (en) * | 1999-02-19 | 2000-09-05 | Kurita Water Ind Ltd | Anaerobic treatment device for organic waste water |
JP2003190986A (en) * | 2001-12-26 | 2003-07-08 | Ebara Corp | Anaerobic treatment method and apparatus therefor |
JP2003334585A (en) * | 2002-05-15 | 2003-11-25 | Ebara Corp | Treatment method for organic wastewater and treatment apparatus therefor |
KR20050105302A (en) * | 2004-04-28 | 2005-11-04 | 주식회사 세신청정 | Treatment method of petro-chemical wastewater comprising terephthalic acid |
JP2006110424A (en) * | 2004-10-13 | 2006-04-27 | Ebara Corp | Method and apparatus for treating organic waste water |
JP2008155072A (en) * | 2006-12-20 | 2008-07-10 | Sumitomo Heavy Industries Environment Co Ltd | Anaerobic treatment apparatus and method |
JP2010042352A (en) * | 2008-08-12 | 2010-02-25 | Ebara Corp | Anaerobic treatment method and apparatus |
JP2012076023A (en) * | 2010-10-01 | 2012-04-19 | Kurita Water Ind Ltd | Method and device for anaerobically treating wastewater containing terephthalic acid |
-
2011
- 2011-05-16 JP JP2011109043A patent/JP2012239929A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58150496A (en) * | 1982-03-02 | 1983-09-07 | Sumitomo Jukikai Envirotec Kk | Process for methane fermentation of waste liquid highly contg. nitrogen |
JPS6154293A (en) * | 1984-08-24 | 1986-03-18 | Hitachi Zosen Corp | Treatment of high concentrated organic waste water |
JP2000237786A (en) * | 1999-02-19 | 2000-09-05 | Kurita Water Ind Ltd | Anaerobic treatment device for organic waste water |
JP2003190986A (en) * | 2001-12-26 | 2003-07-08 | Ebara Corp | Anaerobic treatment method and apparatus therefor |
JP2003334585A (en) * | 2002-05-15 | 2003-11-25 | Ebara Corp | Treatment method for organic wastewater and treatment apparatus therefor |
KR20050105302A (en) * | 2004-04-28 | 2005-11-04 | 주식회사 세신청정 | Treatment method of petro-chemical wastewater comprising terephthalic acid |
JP2006110424A (en) * | 2004-10-13 | 2006-04-27 | Ebara Corp | Method and apparatus for treating organic waste water |
JP2008155072A (en) * | 2006-12-20 | 2008-07-10 | Sumitomo Heavy Industries Environment Co Ltd | Anaerobic treatment apparatus and method |
JP2010042352A (en) * | 2008-08-12 | 2010-02-25 | Ebara Corp | Anaerobic treatment method and apparatus |
JP2012076023A (en) * | 2010-10-01 | 2012-04-19 | Kurita Water Ind Ltd | Method and device for anaerobically treating wastewater containing terephthalic acid |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015171677A (en) * | 2014-03-11 | 2015-10-01 | 住友重機械エンバイロメント株式会社 | Water treatment method and water treatment device |
JP2016087595A (en) * | 2014-11-11 | 2016-05-23 | オルガノ株式会社 | Waste water treatment device and waste water treatment method |
CN105668780A (en) * | 2014-11-21 | 2016-06-15 | 中国寰球工程公司 | Acidification quick-recovery anaerobic reaction system |
CN105668780B (en) * | 2014-11-21 | 2018-10-16 | 中国寰球工程公司 | It is acidified fast quick-recovery anaerobic reaction system |
JP2016203029A (en) * | 2015-04-15 | 2016-12-08 | 水ing株式会社 | Processing method and processing apparatus of organic wastes |
JP2020163328A (en) * | 2019-03-29 | 2020-10-08 | 栗田工業株式会社 | Biological treatment system and method for organic wastewater |
JP7268448B2 (en) | 2019-03-29 | 2023-05-08 | 栗田工業株式会社 | BIOLOGICAL TREATMENT SYSTEM AND METHOD OF ORGANIC WASTEWATER |
CN111115810A (en) * | 2020-01-16 | 2020-05-08 | 南环(宁夏)环境科技有限公司 | Anaerobic bioreactor, sewage treatment system and sewage treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101404179B1 (en) | Fluidized membrane bioreactor | |
JP5017725B2 (en) | Anaerobic treatment method and apparatus | |
KR101328008B1 (en) | Apparatus and method for anaerobic wastewater treatment with membrane | |
JP2012239929A (en) | Method and apparatus for anaerobic treatment of organic wastewater | |
JP6491406B2 (en) | Anaerobic biological treatment method and anaerobic biological treatment apparatus | |
CN104085988A (en) | Device and method for processing coking wastewater by adopting suspended filler-anaerobic membrane bioreactor | |
JP2010042352A (en) | Anaerobic treatment method and apparatus | |
JP4428188B2 (en) | Organic wastewater treatment method and treatment apparatus | |
JP3999036B2 (en) | Method and apparatus for treating organic wastewater | |
JP2001246396A (en) | Method for holding fungus in bioreactor and device therefor | |
KR101667932B1 (en) | Apparatus and method for anaerobic wastewater treatment with membrane distillation | |
CN102910780B (en) | Device and method for processing high-salinity degradation-resistant waste water | |
JP5043671B2 (en) | Biological denitrification method and apparatus | |
JP2006281215A (en) | Apparatus for treating organic waste water and method therefor | |
JP4080046B2 (en) | Anaerobic treatment method and apparatus | |
JP4162234B2 (en) | Anaerobic treatment equipment | |
JP4001507B2 (en) | Method and apparatus for treating organic wastewater | |
KR20100092115A (en) | External circulation anaerobic digester | |
JP2006142302A (en) | Anaerobic treatment method and apparatus | |
JP2007118000A (en) | Method for treating waste water with aerobic microorganism | |
JP3955431B2 (en) | Anaerobic treatment method and apparatus | |
CN105254123B (en) | Coking advanced waste treatment system and its reuse technology | |
JPH10263594A (en) | Removing method and device of nitrate ion in waste water | |
CN106745708A (en) | A kind of compound type sludge bed reactor and its application | |
JP3700935B2 (en) | Anaerobic treatment method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150417 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150817 |