Nothing Special   »   [go: up one dir, main page]

JP2012226944A - Electrode of solid electrolyte battery including sulfur and method for producing the same - Google Patents

Electrode of solid electrolyte battery including sulfur and method for producing the same Download PDF

Info

Publication number
JP2012226944A
JP2012226944A JP2011092865A JP2011092865A JP2012226944A JP 2012226944 A JP2012226944 A JP 2012226944A JP 2011092865 A JP2011092865 A JP 2011092865A JP 2011092865 A JP2011092865 A JP 2011092865A JP 2012226944 A JP2012226944 A JP 2012226944A
Authority
JP
Japan
Prior art keywords
electrode
solid
sulfide electrolyte
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011092865A
Other languages
Japanese (ja)
Other versions
JP5673323B2 (en
Inventor
Tomoya Suzuki
知哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011092865A priority Critical patent/JP5673323B2/en
Publication of JP2012226944A publication Critical patent/JP2012226944A/en
Application granted granted Critical
Publication of JP5673323B2 publication Critical patent/JP5673323B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode in a solid state battery with a solid sulfide electrolyte layer which can suppress deterioration in reaction resistance after a durability test under severe conditions; and a method for producing the same.SOLUTION: In an electrode of a solid state battery with a solid sulfide electrolyte layer, the surface in which a thin film or particles 3 that comprise a cathode active material composing at least one portion of the electrode come into contact with a solid sulfide electrolyte 6 is laminated with a coat layer 5 comprising LiTiOobtained by not using an organic compound including a carbonyl group in the production process. A method for producing the above-mentioned electrode comprises a step of preparing LiTiOor a precursor solgel solution thereof from a starting raw material which can provide LiTiOin a solvent under the absence of the organic compound including the carbonyl group.

Description

本発明は、新規な固体電解質電池の電極およびその製造方法に関し、さらに詳しくは固体電池における反応抵抗の悪化を抑制し得る固体硫化物電解質層を有する固体電池の電極およびその製造方法に関する。   The present invention relates to an electrode for a novel solid electrolyte battery and a method for producing the same, and more particularly to an electrode for a solid battery having a solid sulfide electrolyte layer capable of suppressing deterioration of reaction resistance in the solid battery and a method for producing the same.

近年、高電圧および高エネルギー密度を有する電池としてリチウム電池が実用化されている。リチウム電池の用途が広い分野に拡大していることおよび高性能の要求から、リチウム電池の更なる性能向上のために種々の研究が行われている。
その中で、従来用いられてきた非水電解液系のリチウム電池に比べて燃えやすい電解液を用いないため安全性が高くセルの形状の自由度が高く構造の自由度が増し補器の数を減らすことができる等の多くの利点を有し得ることから、固体電池の実用化が期待されている。
In recent years, lithium batteries have been put into practical use as batteries having high voltage and high energy density. Due to the expansion of the use of lithium batteries in a wide range of fields and the demand for high performance, various studies have been conducted to further improve the performance of lithium batteries.
Among them, the use of non-flammable electrolytes compared to the conventional non-aqueous electrolyte type lithium batteries eliminates the need for flammable electrolytes, so the safety is high, the degree of freedom of the cell shape is high, the degree of freedom of the structure is increased, and the number of auxiliary devices Therefore, it is expected that the solid state battery will be put to practical use.

しかし、固体電池の実用化が実現するためには、高容量・高出力を与え得る固体電解質の創出および/又は高電極利用効率を実現し得る電極を創出することなどの様々な改良が必要である。
この固体電池の高容量・高出力を実現し得る技術の1つとして、LiS−Pなどの固体硫化物電解質が提案された。
しかし、前記のLiS−Pなどの固体硫化物電解質を用いた固体電池は、耐久後に電池特性が低下することが知られている。この耐久後の電池特性の低下の要因の1つとして考えられるのは、電極の少なくとも一部を構成する正極活物質と固体硫化物電解質との界面で正極活物質と固体硫化物電解質とが直接接触して反応が起こって絶縁層が形成されてリチウムイオンの電荷移伝導度が低下し、固体電池の反応抵抗が上昇することにあると考えられている。
However, in order to realize the practical application of solid state batteries, various improvements such as the creation of a solid electrolyte capable of providing high capacity and high output and / or the creation of electrodes capable of realizing high electrode utilization efficiency are required. is there.
A solid sulfide electrolyte such as Li 2 S—P 2 S 5 has been proposed as one of the technologies capable of realizing the high capacity and high output of this solid battery.
However, it is known that a solid battery using a solid sulfide electrolyte such as Li 2 S—P 2 S 5 described above deteriorates battery characteristics after durability. One possible cause of the deterioration in battery characteristics after endurance is that the positive electrode active material and the solid sulfide electrolyte are directly connected at the interface between the positive electrode active material and the solid sulfide electrolyte constituting at least a part of the electrode. It is considered that a reaction occurs by contact and an insulating layer is formed to reduce the charge transfer conductivity of lithium ions and increase the reaction resistance of the solid state battery.

この固体硫化物電解質を用いた固体電池における反応抵抗を抑制するために様々な検討がなされている。
例えば、固体電池において、正極活物質と固体硫化物電解質層との界面で反応が起って界面に高抵抗の反応層が形成されるのを防止するために、正極活物質表面や固体硫化物電解質表面に反応抑制層を形成する試みがなされている。この反応抑制層を形成するために、ニオブ酸リチウム、チタン酸リチウム、リン酸リチウムなどを使用することが提案されているが、いずれも初期の反応抑制については効果があるものの、維持率が低く、耐久性に劣るものであった。
Various studies have been made to suppress reaction resistance in a solid state battery using this solid sulfide electrolyte.
For example, in a solid state battery, in order to prevent a reaction from occurring at the interface between the positive electrode active material and the solid sulfide electrolyte layer and forming a high resistance reaction layer at the interface, the surface of the positive electrode active material or the solid sulfide Attempts have been made to form a reaction suppression layer on the electrolyte surface. In order to form this reaction suppression layer, it has been proposed to use lithium niobate, lithium titanate, lithium phosphate, etc., all of which are effective for suppressing the initial reaction, but have a low maintenance rate. It was inferior in durability.

このため、固体電池における反応抵抗を抑制するために、長期間の耐久性を有する固体電極が検討された。
例えば、非特許文献1には、固体硫化物電解質を用いた固体電池のLiCoO電極にLiO−TiO膜を被覆した全固体リチウム二次電池により、LiO−TiO膜を被覆しなかった全固体リチウム二次電池に比べて固体電池の界面抵抗が低減し得ることが記載されている。そして、具体例として溶媒であるエタノール、アセチルアセトン、LiTiを与え得る出発原料およびTiOから調製したゾルをLiCoO粒子と混合し、乾燥後、350℃で30分間焼成して得られたLiTiおよびTiO被覆LiCoOと固体硫化物電解質とを混合して調製した正極により室温での充電−放電後に界面抵抗が低減したことが示されている。
For this reason, in order to suppress reaction resistance in a solid state battery, a solid electrode having long-term durability has been studied.
For example, in Non-Patent Document 1, a Li 2 O—TiO 2 film is covered with an all-solid lithium secondary battery in which a LiCoO 2 electrode of a solid battery using a solid sulfide electrolyte is covered with a Li 2 O—TiO 2 film. It is described that the interfacial resistance of a solid state battery can be reduced as compared with an all solid state lithium secondary battery that has not been used. As a specific example, a starting material capable of providing ethanol, acetylacetone, Li 2 Ti 2 O 5 as a solvent, and a sol prepared from TiO 2 are mixed with LiCoO 2 particles, dried, and calcined at 350 ° C. for 30 minutes. The positive electrode prepared by mixing the obtained Li 2 Ti 2 O 5 and TiO 2 -coated LiCoO 2 and a solid sulfide electrolyte has been shown to reduce interfacial resistance after charge-discharge at room temperature.

ジャーナル オブ パワー ソーシズ(Journal of Power Sources)195(2010)599−603Journal of Power Sources 195 (2010) 599-603

このように、有機溶媒、LiTiを与え得る出発原料およびアセチルアセトンから調製したゾルをLiCoO粒子と混合し、乾燥、焼成して得られたLiTi被覆LiCoOと固体硫化物電解質とからなる正極は、室温での耐久性を与え得るものであるが、厳しい条件下で耐久後に反応抵抗の悪化を抑制し得る固体電池の電極は知られてない。
従って、本発明の目的は、厳しい条件下での耐久後に反応抵抗の悪化を抑制し得る、固体硫化物電解質層を有する固体電池における電極を提供することである。
さらに、本発明の目的は、厳しい条件下での耐久後に反応抵抗の悪化を抑制し得る、固体硫化物電解質層を有する固体電池における電極の製造方法を提供することである。
Thus, Li 2 Ti 2 O 5 coated LiCoO 2 obtained by mixing a sol prepared from an organic solvent, a starting material capable of providing Li 2 Ti 2 O 5 and acetylacetone with LiCoO 2 particles, drying and firing, and A positive electrode made of a solid sulfide electrolyte can give durability at room temperature, but an electrode of a solid battery that can suppress deterioration of reaction resistance after durability under severe conditions is not known.
Accordingly, an object of the present invention is to provide an electrode in a solid state battery having a solid sulfide electrolyte layer capable of suppressing deterioration of reaction resistance after endurance under severe conditions.
Furthermore, the objective of this invention is providing the manufacturing method of the electrode in the solid battery which has a solid sulfide electrolyte layer which can suppress the deterioration of reaction resistance after the endurance on severe conditions.

本発明は、固体硫化物電解質層を有する固体電池の電極であって、該電極の少なくとも一部を構成する正極活物質からなる薄膜又は粒子の固体硫化物電解質と接する面が、製造工程でカルボニル基を含有する有機化合物を用いないで得られたLiTiからなるコート層によって積層されてなる、前記電極に関する。 The present invention relates to an electrode of a solid battery having a solid sulfide electrolyte layer, wherein a surface of a thin film or particle made of a positive electrode active material constituting at least a part of the electrode is in contact with a solid sulfide electrolyte in the production process. It is laminated by coating layers consisting of Li 2 Ti 2 O 5 obtained without using an organic compound containing a group relates to the electrode.

また、本発明は、固体硫化物電解質層を有する固体電池の電極の製造方法であって、
該電極の少なくとも一部を構成する正極活物質からなる薄膜又は粒子を用意する工程、
溶媒中でLiTiを与え得る出発原料からカルボニル基を含有する有機化合物の不存在下にLiTi又はその前駆体ゾルゲル溶液を用意する工程、および
前記正極活物質からなる薄膜又は粒子の固体硫化物電解質と接する面に、前記LiTi又はその前駆体ゾルゲル溶液を被覆し、乾燥、焼成してLiTiのコート層を形成する工程
を含む、前記製造方法に関する。
本明細書において、厳しい条件下での耐久とは、60℃以上の温度環境下で1ヶ月以上保存する試験を意味する。
また、本明細書において、反応抵抗とは後述の実施例の欄に詳述する測定法によって求められるインピーダンス解析における反応抵抗を意味する。
The present invention also relates to a method of manufacturing a solid battery electrode having a solid sulfide electrolyte layer,
Preparing a thin film or particles made of a positive electrode active material constituting at least a part of the electrode;
A step of preparing Li 2 Ti 2 O 5 or a precursor sol-gel solution thereof in the absence of an organic compound containing a carbonyl group from a starting material capable of providing Li 2 Ti 2 O 5 in a solvent; and from the positive electrode active material A step of forming a coating layer of Li 2 Ti 2 O 5 by coating the Li 2 Ti 2 O 5 or a precursor sol-gel solution thereof on the surface of the thin film or particle that comes into contact with the solid sulfide electrolyte, drying and firing The manufacturing method.
In the present specification, the durability under severe conditions means a test for storage for 1 month or more in a temperature environment of 60 ° C. or more.
Moreover, in this specification, reaction resistance means the reaction resistance in the impedance analysis calculated | required by the measuring method explained in full detail in the column of the below-mentioned Example.

本発明によれば、厳しい条件下での耐久後に反応抵抗の悪化を抑制し得る、固体硫化物電解質層を有する固体電池における電極を得ることができる。
また、本発明によれば、厳しい条件下での耐久後に反応抵抗の悪化を抑制し得る、固体硫化物電解質層を有する固体電池における電極を容易に得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the electrode in the solid battery which has a solid sulfide electrolyte layer which can suppress the deterioration of reaction resistance after the endurance on severe conditions can be obtained.
Further, according to the present invention, it is possible to easily obtain an electrode in a solid state battery having a solid sulfide electrolyte layer capable of suppressing deterioration of reaction resistance after endurance under severe conditions.

図1は、本発明の実施態様の固体電池の電極の部分拡大模式図である。FIG. 1 is a partially enlarged schematic view of an electrode of a solid state battery according to an embodiment of the present invention. 図2は、本発明の他の実施態様の固体電池の電極の部分拡大模式図である。FIG. 2 is a partially enlarged schematic view of an electrode of a solid state battery according to another embodiment of the present invention. 図3は、実施例で得られたLiTiのX線回折図である。FIG. 3 is an X-ray diffraction diagram of Li 2 Ti 2 O 5 obtained in the example. 図4は、実施例および比較例で得られた固体硫化物電解質層を有する固体電池の60℃の保存環境下での反応抵抗の経時変化を示すグラフである。FIG. 4 is a graph showing the change over time in reaction resistance of the solid state batteries having the solid sulfide electrolyte layers obtained in Examples and Comparative Examples under a storage environment at 60 ° C.

特に、本発明において、以下の実施態様を挙げることができる。
1)前記電極が、電極の少なくとも一部を構成する正極活物質からなる薄膜の固体硫化物電解質と接する面が、前記コート層によって積層されてなる薄膜電極である前記電極。
2)前記電極が、電極の少なくとも一部を構成する正極活物質からなる粒子の固体硫化物電解質と接する面が、前記コート層によって積層された前記粒子と固体硫化物電解質とからなる正極合材粉体が成型されてなる圧粉電極である前記電極。
3)前記正極活物質が、コバルト酸リチウム(LiCoO)である前記電極。
4)前記固体硫化物電解質層が、LiS−Pからなる前記電極。
5)前記正極活物質からなる薄膜の固体硫化物電解質と接する面に、前記LiTi又はその前駆体ゾルゲル溶液をスピンコーターにより被覆し、乾燥・焼成してLiTiのコート層を形成する前記製造方法。
6)固体硫化物電解質層を前記正極活物質上に成膜する前に、前記LiTiのコート層を形成する工程を含む前記製造方法。
In particular, in the present invention, the following embodiments can be mentioned.
1) The electrode, wherein the electrode is a thin film electrode in which a surface in contact with a solid sulfide electrolyte of a thin film made of a positive electrode active material constituting at least a part of the electrode is laminated by the coat layer.
2) A positive electrode mixture in which the electrode is in contact with a solid sulfide electrolyte of particles made of a positive electrode active material constituting at least a part of the electrode, and the particles laminated with the coat layer and the solid sulfide electrolyte. The electrode, which is a powder electrode formed by molding powder.
3) The electrode, wherein the positive electrode active material is lithium cobalt oxide (LiCoO 2 ).
4) the solid sulfide electrolyte layer, the electrode made of Li 2 S-P 2 S 5 .
5) The Li 2 Ti 2 O 5 or its precursor sol-gel solution is coated on the surface of the thin film made of the positive electrode active material in contact with the solid sulfide electrolyte by a spin coater, dried and fired, and Li 2 Ti 2 O 5 The said manufacturing method which forms the coating layer of.
6) the solid sulfide electrolyte layer before depositing the positive electrode active on material, said manufacturing method comprising the step of forming a coating layer of the Li 2 Ti 2 O 5.

本発明においては、固体硫化物電解質層を有する固体電池の電極の少なくとも一部を構成する正極活物質からなる薄膜又は粒子の固体硫化物電解質と接する面が、製造工程でカルボニル基を含有する有機化合物を用いないで得られたLiTiからなるコート層によって積層されてなる電極であることが必要であり、これによって厳しい条件下での耐久後の反応抵抗の悪化を抑制し得る。 In the present invention, the surface in contact with the solid sulfide electrolyte of the thin film or particles of the positive electrode active material constituting at least a part of the electrode of the solid battery having the solid sulfide electrolyte layer contains a carbonyl group in the production process. It is necessary to be an electrode laminated by a coating layer made of Li 2 Ti 2 O 5 obtained without using a compound, and this can suppress deterioration of reaction resistance after endurance under severe conditions. .

本発明の固体硫化物電解質層を有する固体電池の電極は、例えば、
固体硫化物電解質層を有する固体電池の電極の少なくとも一部を構成する正極活物質からなる薄膜又は粒子を用意する工程、
溶媒中でLiTiを与え得る出発原料からカルボニル基を含有する有機化合物の不存在下にLiTi又はその前駆体ゾルゲル溶液を用意する工程、および
前記正極活物質からなる粒子又は薄膜の固体硫化物電解質と接する面に、前記LiTi又はその前駆体ゾルゲル溶液を被覆し、乾燥、焼成してLiTiのコート層を形成する工程
を含む製造方法によって得ることができる。
The electrode of the solid battery having the solid sulfide electrolyte layer of the present invention is, for example,
Preparing a thin film or particles comprising a positive electrode active material constituting at least part of an electrode of a solid battery having a solid sulfide electrolyte layer;
A step of preparing Li 2 Ti 2 O 5 or a precursor sol-gel solution thereof in the absence of an organic compound containing a carbonyl group from a starting material capable of providing Li 2 Ti 2 O 5 in a solvent; and from the positive electrode active material The surface of the particles or thin film in contact with the solid sulfide electrolyte is coated with the Li 2 Ti 2 O 5 or its precursor sol-gel solution, dried and fired to form a Li 2 Ti 2 O 5 coating layer. It can obtain by the manufacturing method containing.

以下、図面を参照して本発明の実施の形態を詳説する。
本発明の実施態様の固体電池の電極1は、図1に示すように、電極の少なくとも一部を構成する正極活物質からなる薄膜2の固体硫化物電解質と接する面4が、製造工程でカルボニル基を含有する有機化合物を用いないで得られたLiTiからなるコート層5によって積層されてなる薄膜電極8である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the electrode 1 of the solid battery according to the embodiment of the present invention has a surface 4 in contact with the solid sulfide electrolyte of the thin film 2 made of the positive electrode active material constituting at least a part of the electrode. This is a thin film electrode 8 formed by laminating a coat layer 5 made of Li 2 Ti 2 O 5 obtained without using an organic compound containing a group.

また、本発明の他の実施態様の固体電池の電極1は、電極の少なくとも一部を構成する正極活物質からなる粒子3の固体硫化物電解質と接する面4が、製造工程でカルボニル基を含有する有機化合物を用いないで得られたLiTiからなるコート層5によって積層された粒子3と固体硫化物電解質6とからなる正極合材粉体7が成型されてなる圧粉電極9である。 Further, in the solid battery electrode 1 according to another embodiment of the present invention, the surface 4 of the particle 3 made of the positive electrode active material constituting at least a part of the electrode is in contact with the solid sulfide electrolyte, and contains a carbonyl group in the production process. Powder electrode formed by molding positive electrode composite powder 7 composed of particles 3 and solid sulfide electrolyte 6 laminated by coating layer 5 composed of Li 2 Ti 2 O 5 obtained without using an organic compound Nine.

本発明の固体硫化物電解質層を有する固体電池の電極が厳しい条件下での耐久後に反応抵抗の悪化を抑制し得る理論的な解明は未だ十分にはなされていないが、前記正極活物質からなる薄膜又は粒子の固体硫化物電解質と接する面が製造工程でカルボニル基を含有する有機化合物を用いないで得られたLiTiからなるコート層によって積層されてなることにより、1)LiTiからなるコート層におけるTiがO原子と強固に結合しており固体硫化物電解質中のSにO原子を引き抜かれず構造を維持可能であること、そして2)固体硫化物電解質とLiTiとが接触しても、製造工程でアセチルアセトンなどのカルボニル基を含有する有機化合物を用いて得られたLiTiが積層されている場合のような、厳しい条件下での耐久中にコート層中にカルボニル基が残留することがないため固体硫化物電解質分子中のSとカルボニル基との反応、すなわちCOOの結合がSと入れ替わる反応が生じないためであると考えられる。 Although the theoretical elucidation that the electrode of the solid battery having the solid sulfide electrolyte layer of the present invention can suppress the deterioration of the reaction resistance after endurance under severe conditions has not yet been made sufficiently, it is composed of the positive electrode active material. The surface of the thin film or particle in contact with the solid sulfide electrolyte is laminated by a coating layer made of Li 2 Ti 2 O 5 obtained without using an organic compound containing a carbonyl group in the production process. 2 Ti in the coating layer made of 2 Ti 2 O 5 is firmly bonded to O atoms, and the structure can be maintained without drawing O atoms to S in the solid sulfide electrolyte, and 2) the solid sulfide electrolyte even in contact with the Li 2 Ti 2 O 5, it is Li 2 Ti 2 O 5 obtained by using an organic compound containing a carbonyl group such as acetyl acetone in the manufacturing process have been stacked In some cases, the carbonyl group does not remain in the coating layer during durability under severe conditions, so that the reaction between S and the carbonyl group in the solid sulfide electrolyte molecule, that is, the reaction in which the COO bond is replaced with S. It is thought that this is because no occurs.

前記のカルボニル基を含有する有機化合物、例えばアセチルアセトンは、従来の固体電池の電極の製造工程におけるゾルゲル反応で一般的に用いられる物質であり、前記非特許文献1に記載の技術においてはLiTiからなるコート層の厚さの制御のために用いられていると考えられる。
本発明においては、カルボニル基を含有する有機化合物、例えばアセチルアセトンを用いないで、例えば前記正極活物質からなる薄膜の固体硫化物電解質と接する面に、前記LiTi又はその前駆体ゾルゲル溶液をスピンコーターにより被覆し、乾燥、焼成してLiTiのコート層を形成することによって、均一な厚さのコート層を形成し得る。
The organic compound containing the carbonyl group, for example, acetylacetone, is a substance generally used in the sol-gel reaction in the manufacturing process of the conventional solid battery electrode. In the technique described in Non-Patent Document 1, Li 2 Ti is used. It is considered that it is used for controlling the thickness of the coating layer made of 2 O 5 .
In the present invention, without using an organic compound containing a carbonyl group, for example, acetylacetone, the Li 2 Ti 2 O 5 or its precursor sol-gel is formed on the surface of the thin film made of the positive electrode active material in contact with the solid sulfide electrolyte. A coating layer having a uniform thickness can be formed by coating the solution with a spin coater, drying and firing to form a coating layer of Li 2 Ti 2 O 5 .

あるいは、本発明においては、カルボニル基を含有する有機化合物、例えばアセチルアセトンを用いないで、例えば前記正極活物質からなる粒子と前記LiTi又はその前駆体を低濃度で含むゾルゲル溶液とを混合し、乾燥・焼成してLiTiのコート層を形成する工程を複数回、例えば2〜5回繰り返すことによって、固体硫化物電解質と接する面に、前記LiTiの均一な厚さのコート層を形成し得る。 Alternatively, in the present invention, without using an organic compound containing a carbonyl group, for example, acetylacetone, for example, a particle composed of the positive electrode active material and a sol-gel solution containing the Li 2 Ti 2 O 5 or a precursor thereof at a low concentration They were mixed, dried and calcined to Li 2 Ti several times a step of forming a coating layer of 2 O 5, for example, by repeating 2-5 times, the surface in contact with the solid sulfide electrolyte, the Li 2 Ti 2 O A coat layer of 5 uniform thickness can be formed.

本発明の製造方法においては、固体硫化物電解質層を有する固体電池の電極の少なくとも一部を構成する正極活物質からなる粒子又は薄膜を用意する工程、
溶媒中でLiTiを与え得る出発原料からカルボニル基を含有する有機化合物の不存在下にLiTi又はその前駆体ゾルゲル溶液を用意する工程、および
前記正極活物質からなる薄膜又は粒子の固体硫化物電解質と接する面に、前記LiTi又はその前駆体ゾルゲル溶液を被覆し、乾燥、焼成してLiTiのコート層を形成する工程を含む。
前記正極活物質からなる薄膜又は粒子には、本発明の電極および該電極を用いた固体電池の性能向上のために任意の成分、例えばイオン伝導体が含まれ得る。
In the production method of the present invention, a step of preparing particles or a thin film made of a positive electrode active material constituting at least a part of an electrode of a solid battery having a solid sulfide electrolyte layer,
A step of preparing Li 2 Ti 2 O 5 or a precursor sol-gel solution thereof in the absence of an organic compound containing a carbonyl group from a starting material capable of providing Li 2 Ti 2 O 5 in a solvent; and from the positive electrode active material A step of forming a coating layer of Li 2 Ti 2 O 5 by coating the Li 2 Ti 2 O 5 or a precursor sol-gel solution thereof on the surface of the thin film or particle that comes into contact with the solid sulfide electrolyte, drying and firing Including.
The thin film or particles made of the positive electrode active material may contain any component, for example, an ion conductor, for improving the performance of the electrode of the present invention and a solid state battery using the electrode.

前記の固体硫化物電解質層を有する固体電池の電極の少なくとも一部を構成する正極活物質からなる薄膜又は粒子は、正極活物質から任意の方法によって調製し得る。
また、前記の溶媒としては、カルボニル基を含有しない有機化合物であれば特に制限はなく、例えばアルコール、例えばエタノール、メタノール、イソプロパノールなど、エーテル、例えばTHFなどが挙げられる。
The thin film or particles made of the positive electrode active material constituting at least a part of the electrode of the solid battery having the solid sulfide electrolyte layer can be prepared from the positive electrode active material by any method.
The solvent is not particularly limited as long as it is an organic compound not containing a carbonyl group, and examples thereof include alcohols such as ethanol, methanol, isopropanol, and ethers such as THF.

また、前記のLiTiを与え得る出発原料としては、リチウムアルコキシド、例えばリチウムエトキシド、リチウムメトキシド、リチウムプロポキシド、リチウムブトキシドなど、およびチタンテトラアルコキシド、例えばチタンテトラメトキシド、チタンテトラエトキシド、チタンテトライソイプロポキシド、チタンテトラブトキシドが挙げられる。
前記のリチウムアルコキシドとチタンテトラアルコキシドとは当モル量で用い得る。
The starting materials that can provide the Li 2 Ti 2 O 5 include lithium alkoxides such as lithium ethoxide, lithium methoxide, lithium propoxide, lithium butoxide, and titanium tetraalkoxides such as titanium tetramethoxide and titanium. Examples thereof include tetraethoxide, titanium tetraisopropoxide, and titanium tetrabutoxide.
The lithium alkoxide and titanium tetraalkoxide can be used in equimolar amounts.

また、前記のゾルゲル溶液の被覆、乾燥、焼成は、含浸法やスピンコート法などによる被覆、室温での乾燥、空気中又は不活性雰囲気、例えば窒素中で200〜350℃で0.3〜1時間程度の加熱による焼成により実施し得る。   The sol-gel solution is coated, dried and fired by coating by impregnation or spin coating, drying at room temperature, air or inert atmosphere, for example, nitrogen at 200 to 350 ° C. at 0.3 to 1 It can be carried out by baking with heating for about an hour.

本発明における正極活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルマンガンコバルト酸リチウム(Li1+xNi1/3Mn1/3Co1/3)、リチウムコバルト酸ニッケル(LiCo0.3Ni0.7)、マンガン酸リチウム(LiMn)、チタン酸リチウム(Li4/3Ti5/3)、リチウムマンガン酸化合物(Li1+xMn2−x−y;M=Al、Mg、Fe、Cr、Co、Ni、Zn)、チタン酸リチウム(LiTiO)、リン酸金属リチウム(LiMPO、M=Fe、Mn、Co、Ni)、酸化バナジウム(V)、酸化モリブデン(MoO3)、硫化チタン(TiS)、リチウムコバルト窒化物(LiCoN)、リチウムシリコン窒化物(LiCoN)、リチウム金属、リチウム合金(LiM、M=Sn、Si、Al、Ge、Sb、P)、リチウム貯蔵性金属間化合物(MgxM、M=Sn、Ge、Sb、あるいはXySb、X=In、Cu、Mn)やそれらの誘導体が挙げられる。
特に、LiCoO、LiNiO、LiMn、LiNi1/2Mn1/2、LiNi1/3Co1/3Mn1/3、Li[NiLi1/3−2y/3]O(0≦x≦1、0<y<1/2)やこれらのリチウム遷移金属酸化物のリチウム又は遷移金属を他の元素で置換したリチウム遷移金属、特にLiCoOが正極活物質として挙げられる。
As the positive electrode active material in the present invention, lithium cobaltate (Li x CoO 2 ), lithium nickelate (Li x NiO 2 ), nickel manganese lithium cobaltate (Li 1 + x Ni 1/3 Mn 1/3 Co 1/3 O 2 ), lithium cobaltate nickel (LiCo 0.3 Ni 0.7 O 2 ), lithium manganate (Li x Mn 2 O 4 ), lithium titanate (Li 4/3 Ti 5/3 O 4 ), lithium manganese acid compound (Li 1 + x M y Mn 2-x-y O 4; M = Al, Mg, Fe, Cr, Co, Ni, Zn), lithium titanate (Li x TiO y), phosphate metal lithium (LiMPO 4 , M = Fe, Mn, Co , Ni), vanadium oxide (V 2 O 5), molybdenum oxide (MoO3), titanium sulfide (TiS 2), Titanium cobalt nitride (LiCoN), lithium silicon nitride (LiCoN), lithium metal, lithium alloy (LiM, M = Sn, Si, Al, Ge, Sb, P), lithium storable intermetallic compound (MgxM, M = Sn, Ge, Sb, or XySb, X = In, Cu, Mn) and derivatives thereof.
In particular, Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x Ni 1/2 Mn 1/2 O 2 , Li x Ni 1/3 Co 1/3 Mn 1/3 O 2 , Li x [Ni y Li 1 / 3-2y / 3 ] O 3 (0 ≦ x ≦ 1, 0 <y <1/2) and lithium or transition metal of these lithium transition metal oxides were substituted with other elements Lithium transition metals, especially LiCoO 2, are mentioned as positive electrode active materials.

本発明における固体硫化物電解質としては、LiS−SiS、LiI−LiS−SiS、liI−liS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiPS、LiS−Pなどの硫化物系非晶質固体電解質、好適にはLiS−Pが挙げられる。 Examples of the solid sulfide electrolyte in the present invention include Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , liI-li 2 S—P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 3. PO 4 -Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 - Examples thereof include sulfide-based amorphous solid electrolytes such as P 2 S 5 , Li 3 PS 4 and Li 2 S—P 2 S 5 , and preferably Li 2 S—P 2 S 5 .

前記のLiS−Pは、硫化リチウムと、五硫化二燐及び/又は、単体燐及び単体硫黄から得るができ、例えばこれら原料を溶融反応した後、急冷するか、又は原料をメカニカルミリング法により処理して得られる硫化物ガラスを加熱処理することによって得ることができる。硫化リチウムと、五硫化二燐又は単体燐及び単体硫黄の混合モル比は、通常50:50〜80:20、好ましくは60:40〜75:25であり、好適にはLiS:P=70:30〜75:25(モル比)程度である。 The Li 2 S—P 2 S 5 can be obtained from lithium sulfide and diphosphorus pentasulfide and / or simple phosphorus and simple sulfur. For example, these raw materials are melt-reacted and then rapidly cooled or the raw materials are used. It can be obtained by heat-treating sulfide glass obtained by processing by a mechanical milling method. The mixing molar ratio of lithium sulfide to diphosphorus pentasulfide or simple phosphorus and simple sulfur is usually 50:50 to 80:20, preferably 60:40 to 75:25, and preferably Li 2 S: P 2. S 5 = 70: 30~75: is about 25 (mole ratio).

本発明の電極は、前記成分以外にイオン伝導体成分を含み得る。
前記リチウムイオン伝導体としては、造粒体に含まれる活物質および電極中に含まれる他の成分である固体電解質と反応しない物質であることが必要であり、例えば、LiTi(POなど、あるいはLiO−B−P、LiO−SiO、LiO−B、LiO−B−ZnOなどの酸化物系非晶質固体電解質、LiI−LiS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiPS、LiS−Pなどの硫化物系非晶質固体電解質、LiNbO、あるいはLi1.3Al0.3Ti0.7(PO、Li1+x+yTi2−xSi3−y12(A=Al又はGa、0≦x≦0.4、0<y≦0.6)、[(B1/2Li1/21−z]TiO(B=La、Pr、Nd、Sm、C=Sr又はBa、0≦x≦0.5)、LiLaTa12、LiLaZr12、LiBaLaTa12、LiPO(4−3/2w)(w<1)、Li3.6Si0.60.4などの結晶質酸化物や酸窒化物などのニオブ、タンタル、ケイ素、リンおよびホウ素から選ばれる少なくとも1種の元素とリチウムとを含むリチウム含有化合物、LiI、LiI−Al、LiN、LiN−LiI−LiOHなどが挙げられる。
The electrode of the present invention may contain an ion conductor component in addition to the above components.
The lithium ion conductor needs to be a material that does not react with the active material contained in the granulated body and the solid electrolyte that is another component contained in the electrode. For example, LiTi 2 (PO 4 ) 3 Or oxide-based amorphous such as Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 2 O—B 2 O 3 , Li 2 O—B 2 O 3 —ZnO quality solid electrolyte, LiI-Li 2 S-P 2 S 5, LiI-Li 2 S-B 2 S 3, Li 3 PO 4 -Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2 , LiPO 4 -Li 2 S-SiS , LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, Li 3 PS 4, Li 2 sulfides such S-P 2 S 5 Amorphous solid electrolyte, LiNbO 3 , a Rui Li 1.3 Al 0.3 Ti 0.7 (PO 4) 3, Li 1 + x + y A x Ti 2-x Si y P 3-y O 12 (A = Al or Ga, 0 ≦ x ≦ 0.4 , 0 <y ≦ 0.6), [(B 1/2 Li 1/2 ) 1−z C z ] TiO 3 (B = La, Pr, Nd, Sm, C = Sr or Ba, 0 ≦ x ≦ 0.5), Li 5 La 3 Ta 2 O 12, Li 7 La 3 Zr 2 O 12, Li 6 BaLa 2 Ta 2 O 12, Li 3 PO (4-3 / 2w) N w (w <1), Li-containing containing at least one element selected from crystalline oxides such as Li 3.6 Si 0.6 P 0.4 O 4 and niobium such as oxynitrides, tantalum, silicon, phosphorus and boron and lithium compounds, LiI, LiI-Al 2 O 3, LiN 3, Li 3 N-L Such as I-LiOH, and the like.

本発明の固体電池の電極を用いて固体電池を得るには、正極に本発明により得られる薄膜型の電極を適用し、固体硫化物電解質を積層し、負極には本発明の電極以外の電極を適用することによって作製し得る。
あるいは、固体電池は、例えば固体硫化物電解質をセルに入れ、プレスし、セパレータとして機能する固体硫化物電解質層のペレットを作製し、次いで本発明の電極を与え得る正極合材粉体および負極合材粉体を固体硫化物電解質層の両面に入れ、プレスすることによって作製し得る。
また、固体電池は、先ず本発明の電極を与え得る正極合材粉体および負極合材粉体をプレスしてペレット化して正負極の電極を形成し、両極の間に固体硫化物電解質層を形成することによって作製し得る。
In order to obtain a solid battery using the electrode of the solid battery of the present invention, a thin film type electrode obtained by the present invention is applied to the positive electrode, a solid sulfide electrolyte is laminated, and an electrode other than the electrode of the present invention is applied to the negative electrode. Can be made.
Alternatively, for example, a solid battery is prepared by placing a solid sulfide electrolyte into a cell, pressing it, producing a pellet of a solid sulfide electrolyte layer that functions as a separator, and then providing the electrode of the present invention and a negative electrode composite powder. It can be produced by putting the material powder on both sides of the solid sulfide electrolyte layer and pressing it.
Further, in the solid battery, first, the positive electrode mixture powder and the negative electrode mixture powder capable of providing the electrode of the present invention are pressed and pelletized to form positive and negative electrodes, and a solid sulfide electrolyte layer is formed between both electrodes. It can be made by forming.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
以下の各例において、反応抵抗は以下の方法により行った。なお、以下の方法は例示であって、当業者が同等と考える方法も同様に用い得る。
反応抵抗の測定法:交流インピーダンス法
反応抵抗の測定装置:東陽テクニカ社、ソーラトロン
実施例で得られたLiTiについて、以下のXRD装置を用いて測定し同定を行った。
XRD測定装置:リガク社、スマートラボ
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.
In each of the following examples, reaction resistance was measured by the following method. In addition, the following method is an illustration, Comprising: The method which those skilled in the art consider that is equivalent can be used similarly.
Reaction resistance measurement method: AC impedance method Reaction resistance measurement device: Toyo Technica, Solartron Li 2 Ti 2 O 5 obtained in the examples was measured and identified using the following XRD device.
XRD measuring device: Rigaku, Smart Lab

実施例1
エタノール(10mL、和光純薬工業社)、リチウムエトキシド(1mmol、高純度化学研究所社)およびチタンテトライソプロポキシド(1mmol、高純度化学研究所社)を窒素置換したガラス瓶中で、1時間マグネットスターラーで攪拌混合して、ゾルゲル反応によりLiTi前駆体ゾルゲル溶液を調製した。
コバルト酸リチウム薄膜表面に、このLiTi前駆体ゾルゲル溶液をスピンコータ(ミカサ社製、MS−A100)にて5000rpm、10秒で塗布した。乾燥後、350℃で0.5時間焼成し、LiTiコート層を形成して、正極を得た。
形成されたLiTiコート層について、XRDにより同定を行って、確認した。LiTiのX線回折図を図3に示す。
Example 1
1 hour in a glass bottle in which ethanol (10 mL, Wako Pure Chemical Industries, Ltd.), lithium ethoxide (1 mmol, High Purity Chemical Laboratories) and titanium tetraisopropoxide (1 mmol, High Purity Chemical Laboratories) were replaced with nitrogen. The mixture was stirred and mixed with a magnetic stirrer to prepare a Li 2 Ti 2 O 5 precursor sol-gel solution by a sol-gel reaction.
Lithium cobaltate thin film surface, the Li 2 Ti 2 O 5 precursor sol-gel solution a spin coater (Mikasa Co., MS-A100) were coated at 5000 rpm, 10 seconds at. After drying, it was baked at 350 ° C. for 0.5 hour to form a Li 2 Ti 2 O 5 coat layer to obtain a positive electrode.
For Li 2 Ti 2 O 5 coating layer formed by performing identification by XRD, it was confirmed. An X-ray diffraction pattern of Li 2 Ti 2 O 5 is shown in FIG.

得られた薄膜からなる電極を正極とし、セパレータとして固体硫化物電解質である75LiS−25Pを、負極としてLi−In箔を用いて全固体電池を作製した。
得られた全固体電池のインピーダンス測定を、初期と60℃耐久試験(保存条件:60℃環境、OCV、1ケ月間)における反応抵抗変化(=耐久試験における所定時間経過後の抵抗/初期抵抗)の経時変化を求めた。
得られた結果を他の結果とまとめて図4に示す。
An all-solid battery was fabricated using the obtained thin film electrode as a positive electrode, 75Li 2 S-25P 2 S 5 which is a solid sulfide electrolyte as a separator, and Li-In foil as a negative electrode.
Impedance measurement of the obtained all-solid-state battery was performed at the initial stage and at 60 ° C. endurance test (storage conditions: 60 ° C. environment, OCV, for 1 month) (= resistance after a predetermined time in the endurance test / initial resistance) The change with time was determined.
The obtained results are shown together with other results in FIG.

比較例1
エタノール(10mL、和光純薬工業社)、リチウムエトキシド(1mmol、高純度化学研究所社)、チタンテトライソプロポキシド(1mmol、高純度化学研究所社)およびアセチルアセトン(1mmol、和光純薬工業社)を窒素置換したガラス瓶中で、1時間マグネットスターラーで攪拌混合して、ゾルゲル反応によりLiTi前駆体ゾルゲル溶液を調製した。
このLiTi前駆体ゾルゲル溶液を用いた他は実施例1と同様にして、正極および全固体電池を得た。
この全固体電池について測定した結果を他の例とまとめて図4に示す。
Comparative Example 1
Ethanol (10 mL, Wako Pure Chemical Industries, Ltd.), lithium ethoxide (1 mmol, High Purity Chemical Laboratories), titanium tetraisopropoxide (1 mmol, High Purity Chemical Laboratories) and acetylacetone (1 mmol, Wako Pure Chemical Industries, Ltd.) In a glass bottle substituted with nitrogen, the mixture was stirred and mixed with a magnetic stirrer for 1 hour to prepare a Li 2 Ti 2 O 5 precursor sol-gel solution by a sol-gel reaction.
A positive electrode and an all-solid-state battery were obtained in the same manner as in Example 1 except that this Li 2 Ti 2 O 5 precursor sol-gel solution was used.
The measurement results of this all solid state battery are shown together with other examples in FIG.

比較例2
エタノール(487g、和光純薬工業社)、リチウムエトキシド(0.59mol、高純度化学研究所社)およびチタンテトライソプロポキシド(0.74mol、高純度化学研究所社)を混合して、ゾルゲル反応によりLiTi前駆体ゾルゲル溶液を調製した。
このLiTi12前駆体ゾルゲル溶液を用いた他は実施例1と同様にして、正極および全固体電池を得た。
この全固体電池について測定した結果を他の例とまとめて図4に示す。
Comparative Example 2
Ethanol (487 g, Wako Pure Chemical Industries, Ltd.), lithium ethoxide (0.59 mol, High Purity Chemical Research Laboratories) and titanium tetraisopropoxide (0.74 mol, High Purity Chemical Research Laboratories) are mixed, and sol-gel A Li 2 Ti 2 O 5 precursor sol-gel solution was prepared by the reaction.
A positive electrode and an all-solid battery were obtained in the same manner as in Example 1 except that this Li 4 Ti 5 O 12 precursor sol-gel solution was used.
The measurement results of this all solid state battery are shown together with other examples in FIG.

図4の結果は、本発明の固体硫化物電解質層を有する固体電池における電極が、製造工程でカルボニル基を含有する有機化合物を用いて得られたLiTiからなるコート層によって積層されてなる電極およびLiTi12からなるコート層によって積層されてなる電極に比べて、厳しい条件下での耐久後に反応抵抗の悪化を抑制し得ることが確認できた。 The result of FIG. 4 shows that the electrode in the solid battery having the solid sulfide electrolyte layer of the present invention is laminated by a coating layer made of Li 2 Ti 2 O 5 obtained using an organic compound containing a carbonyl group in the production process. It was confirmed that the deterioration of reaction resistance could be suppressed after endurance under severe conditions as compared with the electrode formed and the electrode laminated with the coating layer made of Li 4 Ti 5 O 12 .

本発明によって、固体電池用の高耐久性の固体電池用電極を得ることができ、また、本発明によって、固体電池用の高耐久性の固体電池用電極を容易に得ることができる。   According to the present invention, a highly durable solid battery electrode for a solid battery can be obtained, and a highly durable solid battery electrode for a solid battery can be easily obtained according to the present invention.

1 本発明の実施態様の固体電池の電極
2 正極活物質からなる薄膜
3 正極活物質からなる粒子
4 固体硫化物電解質と接する面
5 LiTiからなるコート層
6 固体硫化物電解質
7 正極合材粉体
8 圧粉電極
A solid battery electrode 2 positive active material embodiment of one invention thin film 3 electrode active contact with the material consisting of particles 4 solid sulfide electrolyte surface 5 Li 2 Ti 2 O 5 consisting coat layer 6 solid sulfide electrolyte 7 Positive electrode composite powder 8 Compact electrode

Claims (8)

固体硫化物電解質層を有する固体電池の電極であって、該電極の少なくとも一部を構成する正極活物質からなる薄膜又は粒子の固体硫化物電解質と接する面が、製造工程でカルボニル基を含有する有機化合物を用いないで得られたLiTiからなるコート層によって積層されてなる、前記電極。 An electrode of a solid battery having a solid sulfide electrolyte layer, wherein a surface of a thin film or particle made of a positive electrode active material constituting at least a part of the electrode and contacting the solid sulfide electrolyte contains a carbonyl group in the production process laminated by coating layers consisting of Li 2 Ti 2 O 5 obtained without using an organic compound formed by the electrode. 前記電極が、電極の少なくとも一部を構成する正極活物質からなる薄膜の固体硫化物電解質と接する面が、前記コート層によって積層されてなる薄膜電極である請求項1に記載の電極。   2. The electrode according to claim 1, wherein the electrode is a thin film electrode in which a surface in contact with a solid sulfide electrolyte of a thin film made of a positive electrode active material constituting at least a part of the electrode is laminated by the coat layer. 前記電極が、電極の少なくとも一部を構成する正極活物質からなる粒子の固体硫化物電解質と接する面が、前記コート層によって積層された前記粒子と固体硫化物電解質とからなる正極合材粉体が成型されてなる圧粉電極である請求項1に記載の電極。   The positive electrode mixture powder in which the surface of the electrode that is in contact with the solid sulfide electrolyte of the positive electrode active material constituting at least a part of the electrode is formed of the particles and the solid sulfide electrolyte laminated by the coat layer The electrode according to claim 1, which is a compacted electrode formed by molding. 前記正極活物質が、コバルト酸リチウム(LiCoO)である請求項1〜3のいずれか1項に記載の電極。 The electrode according to claim 1, wherein the positive electrode active material is lithium cobalt oxide (LiCoO 2 ). 前記固体硫化物電解質層が、LiS−Pからなる請求項1〜4のいずれか1項に記載の電極。 The electrode according to claim 1, wherein the solid sulfide electrolyte layer is made of Li 2 S—P 2 S 5 . 固体硫化物電解質層を有する固体電池の電極の製造方法であって、
該電極の少なくとも一部を構成する正極活物質からなる粒子又は薄膜を用意する工程、
溶媒中でLiTiを与え得る出発原料からカルボニル基を含有する有機化合物の不存在下にLiTi又はその前駆体ゾルゲル溶液を用意する工程、および
前記正極活物質からなる薄膜又は粒子の固体硫化物電解質と接する面に、前記LiTi又はその前駆体ゾルゲル溶液を被覆し、乾燥、焼成してLiTiからなるコート層を形成する工程
を含む、前記製造方法。
A method for producing an electrode of a solid battery having a solid sulfide electrolyte layer, comprising:
Preparing a particle or thin film comprising a positive electrode active material constituting at least a part of the electrode;
A step of preparing Li 2 Ti 2 O 5 or a precursor sol-gel solution thereof in the absence of an organic compound containing a carbonyl group from a starting material capable of providing Li 2 Ti 2 O 5 in a solvent; and from the positive electrode active material A step of forming a coating layer made of Li 2 Ti 2 O 5 by coating the Li 2 Ti 2 O 5 or a precursor sol-gel solution thereof on the surface of the thin film or particle to be in contact with the solid sulfide electrolyte, drying and firing The said manufacturing method including.
前記正極活物質からなる薄膜の固体硫化物電解質と接する面に、前記LiTi又はその前駆体ゾルゲル溶液をスピンコーターにより被覆し、乾燥、焼成してLiTiのコート層を形成する請求項6に記載の製造方法。 The surface of the thin film made of the positive electrode active material in contact with the solid sulfide electrolyte is coated with the Li 2 Ti 2 O 5 or its precursor sol-gel solution by a spin coater, dried and fired to coat Li 2 Ti 2 O 5 The manufacturing method of Claim 6 which forms a layer. 固体硫化物電解質層を前記正極活物質上に被覆する前に、前記LiTiのコート層を形成する工程を含む、請求項7に記載の製造方法。 Before coating the solid sulfide electrolyte layer on the positive electrode active on material, comprising the step of forming a coating layer of the Li 2 Ti 2 O 5, The method according to claim 7.
JP2011092865A 2011-04-19 2011-04-19 Electrode for solid electrolyte battery containing sulfur and method for producing the same Active JP5673323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011092865A JP5673323B2 (en) 2011-04-19 2011-04-19 Electrode for solid electrolyte battery containing sulfur and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011092865A JP5673323B2 (en) 2011-04-19 2011-04-19 Electrode for solid electrolyte battery containing sulfur and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012226944A true JP2012226944A (en) 2012-11-15
JP5673323B2 JP5673323B2 (en) 2015-02-18

Family

ID=47276904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092865A Active JP5673323B2 (en) 2011-04-19 2011-04-19 Electrode for solid electrolyte battery containing sulfur and method for producing the same

Country Status (1)

Country Link
JP (1) JP5673323B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117977044A (en) * 2024-04-01 2024-05-03 四川新能源汽车创新中心有限公司 Method for recycling sulfide-based all-solid-state battery material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428631A (en) * 2016-01-20 2016-03-23 宁德新能源科技有限公司 Lithium battery positive-pole material, preparation method thereof and lithium-ion battery containing positive-pole material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313034A (en) * 2000-03-24 2001-11-09 Merck Patent Gmbh Lithium double oxide particle for coating and manufacturing method of the same
JP2004319105A (en) * 2003-04-11 2004-11-11 Sony Corp Positive active material and nonaqueous electrolyte secondary battery using it
WO2007004590A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery
JP2009193940A (en) * 2008-02-18 2009-08-27 Toyota Motor Corp Electrode and method of manufacturing the same, and lithium ion secondary battery
JP2010040439A (en) * 2008-08-07 2010-02-18 Sumitomo Electric Ind Ltd Lithium battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313034A (en) * 2000-03-24 2001-11-09 Merck Patent Gmbh Lithium double oxide particle for coating and manufacturing method of the same
JP2004319105A (en) * 2003-04-11 2004-11-11 Sony Corp Positive active material and nonaqueous electrolyte secondary battery using it
WO2007004590A1 (en) * 2005-07-01 2007-01-11 National Institute For Materials Science All-solid lithium battery
JP2009193940A (en) * 2008-02-18 2009-08-27 Toyota Motor Corp Electrode and method of manufacturing the same, and lithium ion secondary battery
JP2010040439A (en) * 2008-08-07 2010-02-18 Sumitomo Electric Ind Ltd Lithium battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014028651; Sakuda,A etAl.: 'Electorochemical performance of all-solid-state lithium secondary batteries improved by the coating' JOURNAL OF POWER SOURCES Vol195,2, 2010, p.599-603 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117977044A (en) * 2024-04-01 2024-05-03 四川新能源汽车创新中心有限公司 Method for recycling sulfide-based all-solid-state battery material

Also Published As

Publication number Publication date
JP5673323B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
Hou et al. Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries
US20200176815A1 (en) All-solid battery including a solid electrolyte and a layer of polymer material
JP7299620B2 (en) Lithium solid electrolyte interface treatment method
JP6615404B2 (en) Lithium rich anti-perovskite compound, electrolyte for lithium secondary battery containing the same, and lithium secondary battery containing the same
KR101935365B1 (en) Flexible solid electrolyte, all solid state lithium battery comprising the electrolyte, and preparation method thereof
JP4381273B2 (en) Secondary battery and method for manufacturing secondary battery
JP5741685B2 (en) Method for producing electrode active material
JP5144845B2 (en) Solid battery
WO2020045633A1 (en) Sulfide solid electrolyte and all-solid-state battery
CN102668190B (en) Solid electrolyte cell and positive active material
WO2012008422A1 (en) All-solid-state battery
JP2019506706A (en) All-solid battery including a solid electrolyte and an ion conductive material layer
JP7553352B2 (en) All-solid-state battery
WO2012176808A1 (en) Fully solid lithium secondary cell and method for producing same
WO2007004590A1 (en) All-solid lithium battery
WO2015050031A1 (en) Covered cathode active material and lithium battery
JP2010045019A (en) All-solid lithium secondary battery, and method of manufacturing the same
JP5516749B2 (en) All-solid battery and method for manufacturing the same
JP2016169142A (en) Garnet-type lithium ion-conducting oxide and all solid lithium ion secondary battery
CN112448025A (en) Softened solid electrolyte for lithium ion batteries
JP2009081140A (en) Secondary battery, and manufacturing method of secondary battery
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
JP2011192606A (en) Method of manufacturing electrolyte/electrode laminate, electrolyte and electrode laminate, and all-solid battery
WO2012060402A1 (en) All-solid-state battery and method for manufacturing same
CN100472853C (en) Lithium-contained composite metal oxide material of lamina structure and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5673323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151