Nothing Special   »   [go: up one dir, main page]

JP2012225515A - Premixed combustion device and flame control method of the same - Google Patents

Premixed combustion device and flame control method of the same Download PDF

Info

Publication number
JP2012225515A
JP2012225515A JP2011090393A JP2011090393A JP2012225515A JP 2012225515 A JP2012225515 A JP 2012225515A JP 2011090393 A JP2011090393 A JP 2011090393A JP 2011090393 A JP2011090393 A JP 2011090393A JP 2012225515 A JP2012225515 A JP 2012225515A
Authority
JP
Japan
Prior art keywords
flame
sound field
premixed
combustion
standing sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011090393A
Other languages
Japanese (ja)
Other versions
JP5812388B2 (en
Inventor
Mitsuaki Tanabe
光昭 田辺
Takuo Kuwabara
卓雄 桑原
Masanori Saito
允教 齊藤
Takaaki Inoue
貴明 井ノ上
Kimimaru Ogane
主丸 大鐘
Akinori Matsuyama
明憲 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2011090393A priority Critical patent/JP5812388B2/en
Publication of JP2012225515A publication Critical patent/JP2012225515A/en
Application granted granted Critical
Publication of JP5812388B2 publication Critical patent/JP5812388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To secure both characteristics of "reduction in NOx" and "stable combustion" in a premixed combustion device for burning a premixed gas obtained by mixing air and fuel in advance.SOLUTION: A stationary sound field is formed by a stationary sound field forming means (speaker 41, 42) within a cylindrical combustion chamber 30 and by applying the stationary sound field to a flame within the cylindrical combustion chamber 30, the flame is controlled by using a secondary flow in the direction vertical to the direction in which a pressure wave generated at the loop of speed vibration of the stationary sound field travels and wrinkles formed in the flame.

Description

本発明はロケットエンジンやガスタービンエンジンなどの連続燃焼を行う予混合燃焼装置及び、その火炎制御方法に関する。   The present invention relates to a premixed combustion apparatus that performs continuous combustion, such as a rocket engine and a gas turbine engine, and a flame control method thereof.

近年、ロケットエンジンやガスタービンエンジンなどでは、排出される窒素酸化物(NOx)が酸性雨や光化学スモッグ等の原因となるので、NOxを低減するために、予混合燃焼方式が採用されている。   In recent years, in rocket engines, gas turbine engines, and the like, exhausted nitrogen oxides (NOx) cause acid rain, photochemical smog, and the like, and therefore, a premixed combustion system has been adopted to reduce NOx.

予混合燃焼方式は、火炎温度を抑えながら燃焼が可能なためNOxを低減できるのであるが、燃焼の安定範囲の幅が狭く、失火や逆火など不安定な燃焼が問題となる。   The premixed combustion method can reduce NOx because combustion is possible while suppressing the flame temperature, but the range of stable combustion range is narrow, and unstable combustion such as misfire and flashback becomes a problem.

火炎の吹き飛びは、予混合気の流速が燃焼速度を上回り、火炎が伝播できないために発生する現象である。したがって、吹き飛びを抑制するためには、予混合気に対し、低速の領域を形成させることが必要不可欠である。   Flame blow-off is a phenomenon that occurs because the flow rate of the premixed gas exceeds the combustion speed and the flame cannot propagate. Therefore, in order to suppress blow-off, it is indispensable to form a low speed region for the premixed gas.

そこで、従来の燃焼器では、例えば、燃料と酸化剤の予混合気にスワーラで強旋回を加えることで生じる逆流領域で保炎している(例えば、特許文献1参照)。   Therefore, in a conventional combustor, for example, flame holding is performed in a backflow region generated by applying a strong swirl to a premixed gas of fuel and oxidant with a swirler (see, for example, Patent Document 1).

また、アフターバーナ等では保炎器を用いて、保炎器の下流側で生じる再循環領域内で保炎をしている。   In addition, in an afterburner or the like, a flame holder is used to hold a flame in a recirculation region generated on the downstream side of the flame holder.

また、火炎上流の流れ場に振動励起を与えることにより、浮き上がり噴流火炎を変化させ、噴流型燃焼器における燃焼制御を行うことが提案されている(例えば、特許文献2参照)。   In addition, it has been proposed to perform combustion control in a jet-type combustor by changing vibration of a rising jet flame by applying vibration excitation to the flow field upstream of the flame (see, for example, Patent Document 2).

特開平6−213445号公報JP-A-6-213445 特開2008−281314号公報JP 2008-281314 A

ところで、特許文献1の開示技術のように、燃料と酸化剤の予混合気にスワーラで強旋回を加えることで生じる逆流領域で保炎するのでは、燃焼安定性が向上する一方で、未燃ガスがスワーラを通過するために、圧力損失が生じるという問題がある。圧力損失は、ガスタービン機関にとって、効率に大きく影響するため、できる限り小さい方が望ましい。   By the way, as in the technology disclosed in Patent Document 1, if the flame is held in the reverse flow region generated by applying a strong swirl to the premixed mixture of fuel and oxidant with a swirler, combustion stability is improved while unburned There is a problem that pressure loss occurs because the gas passes through the swirler. Since the pressure loss greatly affects the efficiency for the gas turbine engine, it is desirable that the pressure loss be as small as possible.

また、保炎器を用いる場合、保炎器が火炎にさらされるため、熱による強度の低下などの熱疲労が問題となる。   In addition, when using a flame holder, the flame holder is exposed to a flame, and thermal fatigue such as a decrease in strength due to heat becomes a problem.

また、特許文献2の開示技術では、逆流領域を作らず、また火炎制御を目的としており、流速が速いと保炎できない。   In addition, the disclosed technique of Patent Document 2 does not create a backflow region and aims at flame control, and flame holding cannot be performed at a high flow rate.

そこで、本発明の目的は、上述の如き従来の実情に鑑み、圧力損失を低減するとともに安定した燃焼を行うことができる予混合燃焼装置及び、その火炎制御方法を提供することにある。   Accordingly, an object of the present invention is to provide a premixed combustion apparatus capable of reducing pressure loss and performing stable combustion, and a flame control method therefor, in view of the conventional situation as described above.

本発明の更に他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。   Other objects of the present invention and specific advantages obtained by the present invention will become more apparent from the description of embodiments described below.

本発明では、火炎に直接定在音場を作用させることによって、火炎に対し乱れを与えることによって吹き飛びを抑制することで、圧力損失を抑えた燃焼を行う。   In the present invention, combustion is performed with reduced pressure loss by applying a standing sound field directly to the flame, thereby suppressing the blow-off by giving a disturbance to the flame.

すなわち、本発明は、空気と燃料とを予め混合して得た予混合気を燃焼する予混合燃焼装置であって、上記予混合気の燃焼空間に定在音場を形成する定在音場形成手段を備え、上記燃焼空間において火炎に対して上記定在音場を印加することにより、上記定在音場の速度振動の腹において発生する圧力波の進行方向に対して垂直方向への二次流れと、火炎に形成される皺を用いて、火炎の保炎を行うことを特徴とする。   That is, the present invention is a premixed combustion apparatus for combusting a premixed gas obtained by premixing air and fuel, and forming a standing sound field in the combustion space of the premixed gas. Forming means, and applying the standing sound field to the flame in the combustion space, so that the vertical direction of the pressure wave generated at the antinode of the velocity vibration of the standing sound field The flame is held using the next flow and the soot formed in the flame.

本発明に係る予混合燃焼装置において、上記定在音場形成手段は、例えば、上記予混合気の燃焼空間を囲む共鳴管を備え、上記共鳴管により囲まれた上記予混合気の燃焼空間に定在音場を形成する。   In the premixed combustion apparatus according to the present invention, the standing sound field forming means includes, for example, a resonance tube that surrounds the combustion space of the premixed gas, and in the combustion space of the premixed gas surrounded by the resonance tube. Creates a standing sound field.

また、本発明に係る予混合燃焼装置において、上記定在音場形成手段は、例えば、正対する二台のスピーカから互いに逆位相の正弦波を発生し、上記正弦波の1/2波長で共鳴させることにより、上記共鳴管により囲まれた上記予混合気の燃焼空間に定在音場を形成する。   Further, in the premixed combustion apparatus according to the present invention, the standing sound field forming means generates, for example, sine waves of opposite phases from two speakers facing each other, and resonates at a half wavelength of the sine wave. By doing so, a standing sound field is formed in the combustion space of the premixed gas surrounded by the resonance tube.

さらに、本発明に係る予混合燃焼装置では、例えば、プロパンガスの希薄予混合気を上記共鳴管により囲まれた燃焼空間において燃焼し、155dB以上の定在音場により保炎を行う。   Furthermore, in the premixed combustion apparatus according to the present invention, for example, a lean premixed gas of propane gas is burned in a combustion space surrounded by the resonance tube, and flame holding is performed by a standing sound field of 155 dB or more.

本発明は、空気と燃料とを予め混合して得た予混合気を燃焼する予混合燃焼装置における火炎制御方法であって、上記予混合気の燃焼空間に定在音場を形成し、上記燃焼空間において火炎に対して上記定在音場を印加することにより、上記定在音場の速度振動の腹において発生する圧力波の進行方向に対して垂直方向への二次流れと、火炎に形成される皺を用いて、火炎の保炎を行うことを特徴とする。   The present invention is a flame control method in a premixed combustion apparatus for burning a premixed gas obtained by premixing air and fuel, forming a standing sound field in the combustion space of the premixed gas, By applying the standing sound field to the flame in the combustion space, the secondary flow in the direction perpendicular to the traveling direction of the pressure wave generated at the antinode of the velocity vibration of the standing sound field, and the flame The flame is held using the formed soot.

本発明によれば、空気と燃料とを予め混合して得た予混合気を燃焼する予混合燃焼装置において、火炎に直接定在音場を作用させて火炎に対し乱れを与えることによって吹き飛びを抑制することで、圧力損失を低減するとともに安定した燃焼を行うことができる。   According to the present invention, in a premixed combustion apparatus for combusting a premixed gas obtained by premixing air and fuel, a standing sound field is directly applied to the flame so as to disturb the flame. By suppressing, pressure loss can be reduced and stable combustion can be performed.

本発明を適用した予混合燃焼装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the premixing combustion apparatus to which this invention is applied. 定在音場の速度振動の腹に密度変化を与えることにより、圧力波の進行方向に対して垂直方向に発生する二次流れを模式的に示す図である。It is a figure which shows typically the secondary flow generate | occur | produced in the orthogonal | vertical direction with respect to the advancing direction of a pressure wave by giving a density change to the antinode of the velocity vibration of a standing sound field. 上記予混合燃焼装置における火炎の浮き上がり高さ、火炎形状の変化を観測した結果を示す図である。It is a figure which shows the result of having observed the floating height of the flame in the said premixing combustion apparatus, and the change of a flame shape. 上記予混合燃焼装置における各周波数及び音圧での、バーナーノズル出口流速と吹き飛び時の当量比の関係を示す図である。It is a figure which shows the relationship between the burner nozzle exit flow velocity and the equivalent ratio at the time of blowing in each frequency and sound pressure in the said premixed combustion apparatus. 上記予混合燃焼装置において音圧を変えたときに保炎できる最大のバーナーノズル出口流速の観測結果を図である。It is a figure which shows the observation result of the maximum burner nozzle exit flow velocity which can hold a flame when a sound pressure is changed in the said premixed combustion apparatus.

以下、本発明を実施するための最良の形態について、図面を参照しながら詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

本発明は、例えば図1に示すような構成の燃焼装置100に適用される。   The present invention is applied to, for example, a combustion apparatus 100 configured as shown in FIG.

この燃焼装置100は、図1の(A)に示すように、空気と燃料とを予め混合して得た予混合気を燃焼する予混合燃焼装置であり、燃焼用空気と燃料を混合する予混合室10と、この予混合室10において燃焼用空気と燃料とを混合した予混合気を噴射するバーナーノズル20と、上記バーナーノズル20から噴射された予混合気を燃焼させる円筒状の燃焼室30を備える。   As shown in FIG. 1A, this combustion apparatus 100 is a premixed combustion apparatus that burns a premixed gas obtained by previously mixing air and fuel, and is a premixed combustion apparatus that mixes combustion air and fuel. A mixing chamber 10, a burner nozzle 20 for injecting a premixed gas in which combustion air and fuel are mixed in the premixing chamber 10, and a cylindrical combustion chamber for burning the premixed gas injected from the burner nozzle 20 30.

上記予混合室10に供給される燃焼用空気と燃料の各供給路には、上記燃焼用空気と燃料の各流量を計測する流量計11,12が設けられている。   Flowmeters 11 and 12 for measuring the flow rates of the combustion air and the fuel are provided in the combustion air and fuel supply paths supplied to the premixing chamber 10.

なお、燃料用空気は、サージタンク13を介して上記予混合室10に供給されるようになっている。   The fuel air is supplied to the premixing chamber 10 via the surge tank 13.

上記燃焼室30には、上記バーナーノズル20から噴射された予混合気を室内に入射させるための開口32が、その周壁31の中央底部に設けられているとともに、燃焼ガスを外部に排出させるための排気口33が、上記周壁31の中央天部に設けられている。   The combustion chamber 30 is provided with an opening 32 for allowing the premixed gas injected from the burner nozzle 20 to enter the chamber at the center bottom of the peripheral wall 31 and for discharging the combustion gas to the outside. The exhaust port 33 is provided at the central top of the peripheral wall 31.

ここで、図1の(A)には、上記燃焼室30の一部を長手方向に縦断して示し、また、図1の(A)における上記燃焼室30のA−A線断面図を図1の(B)に示してある。   Here, in FIG. 1A, a part of the combustion chamber 30 is shown longitudinally cut in the longitudinal direction, and a sectional view taken along line AA of the combustion chamber 30 in FIG. 1 (B).

さらに、この予混合燃焼装置100には、上記円筒状の燃焼室30の両端に二台のスピーカ41,42が正対するように設けられている。   Further, the premixed combustion apparatus 100 is provided with two speakers 41 and 42 facing each other at both ends of the cylindrical combustion chamber 30.

上記正対する二台のスピーカ41,42は、正弦波信号発生器43から出力される正弦波信号を増幅する増幅器44を介して供給される互いに逆位相の正弦波信号によって駆動され、互いに逆位相の正弦波音響出力を発生し、上記正弦波の1/2波長で共鳴させることにより、上記円筒状の燃焼室30内に定在音場を形成する定在音場形成手段として機能する。   The two speakers 41, 42 facing each other are driven by sine wave signals having opposite phases and supplied via an amplifier 44 that amplifies the sine wave signal output from the sine wave signal generator 43, and have opposite phases to each other. The sine wave acoustic output is generated and resonated with a half wavelength of the sine wave, thereby functioning as a standing sound field forming means for forming a standing sound field in the cylindrical combustion chamber 30.

すなわち、この予混合燃焼装置100において、上記定在音場形成手段は、正対する二台のスピーカ41,42から互いに逆位相の正弦波を発生し、上記正弦波の1/2波長で共鳴させることにより、上記共鳴管により囲まれた上記予混合気の燃焼空間に定在音場を形成している。また、上記円筒状の燃焼室30は、上記燃焼用空気と燃料とを混合した予混合気の燃焼空間を囲む共鳴管として機能している。   That is, in the premixed combustion apparatus 100, the standing sound field forming means generates sine waves having opposite phases from the two speakers 41 and 42 facing each other, and resonates at a half wavelength of the sine wave. Thus, a standing sound field is formed in the combustion space of the premixed gas surrounded by the resonance tube. The cylindrical combustion chamber 30 functions as a resonance tube that surrounds the combustion space of the premixed gas in which the combustion air and fuel are mixed.

定在音場の速度振動の腹に密度変化を与えると、図2に示すように、圧力波の進行方向に対して垂直方向に二次流れが発生する。また、強い音圧の下では音響振動により火炎に皺が形成される。   When a density change is applied to the antinode of the velocity vibration of the standing sound field, as shown in FIG. 2, a secondary flow is generated in a direction perpendicular to the traveling direction of the pressure wave. Moreover, under strong sound pressure, soot is formed in the flame by acoustic vibration.

この予混合燃焼装置100では、上記バーナーノズル20から噴射された予混合気を燃焼させる上記円筒状の燃焼室30内で火炎に対して上記定在音場を印加することにより、上記定在音場の速度振動の腹において発生する圧力波の進行方向に対して垂直方向への二次流れと、火炎に形成される皺を用いて、火炎の保炎を行うことにより、予混合火炎の吹き飛び等の不安定な燃焼を解消し、安定燃焼を実現する。   In the premix combustion apparatus 100, the standing sound is applied by applying the standing sound field to a flame in the cylindrical combustion chamber 30 in which the premixed gas injected from the burner nozzle 20 is burned. The premixed flame is blown away by holding the flame using the secondary flow in the direction perpendicular to the traveling direction of the pressure wave generated in the antinode of the field velocity vibration and the soot formed in the flame. Eliminates unstable combustion, etc., and realizes stable combustion.

すなわち、この予混合燃焼装置100では、二つの正対させたスピーカ41,42より正弦波を生じさせ、共鳴させることで上記燃焼室30内に定在波を生成し、この定在波を火炎に対して直接印加することで生じる二次流れによる逆流領域、及び、それに伴うしわによって火炎の吹き飛びを抑制する。   That is, in the premixed combustion apparatus 100, a sine wave is generated from the two directly opposed speakers 41 and 42 and resonated to generate a standing wave in the combustion chamber 30. This standing wave is flamed. The blow-off of the flame is suppressed by the backflow region due to the secondary flow generated by direct application and the wrinkles associated therewith.

ここで、上記予混合燃焼装置100において、燃焼用空気とプロパンガスの流量を流量計11,12で測定し、予混合室10において所定の比率で燃焼用空気と燃料とを混合した予混合気を得て、上記バーナーノズル20から噴射された予混合気を上記円筒状の燃焼室30内で燃焼させ、火炎に対して上記定在音場を印加する実験を行ったところ、次のような結果が得られた。   Here, in the premixed combustion apparatus 100, the flow rates of the combustion air and propane gas are measured by the flow meters 11 and 12, and the premixed gas in which the combustion air and the fuel are mixed at a predetermined ratio in the premixing chamber 10. The premixed gas injected from the burner nozzle 20 was burned in the cylindrical combustion chamber 30 and an experiment was performed in which the standing sound field was applied to the flame. Results were obtained.

実験では、上記バーナーノズル20として、内径10mm、リム厚1mmのステンレス製円管バーナを用い、常温、大気圧の下で火炎を形成させ、上記円筒状の燃焼室30として、直径267mmのステンレス製で長さ300mmと400mmの円管を用いた。二つの正対させたスピーカ41,42から、互いに逆位相となる正弦波を生じさせ、円管内で共鳴させることで定在音場を形成した。周波数は、1/2波長で共鳴するように長さ300mmの円管では約620Hz、長さ400mmの円管では約480Hzとした。燃焼中は、円管内温度が変化し音速の変化による共鳴周波数の変化が生じるので、その都度周波数を微調整した。   In the experiment, a stainless steel tube burner having an inner diameter of 10 mm and a rim thickness of 1 mm was used as the burner nozzle 20 to form a flame at room temperature and atmospheric pressure, and the cylindrical combustion chamber 30 was made of stainless steel having a diameter of 267 mm. And 300 mm and 400 mm long tubes were used. A standing sound field was formed by generating sine waves with opposite phases from the two directly facing speakers 41 and 42 and resonating them in a circular tube. The frequency was about 620 Hz for a 300 mm long tube and about 480 Hz for a 400 mm long tube so as to resonate at ½ wavelength. During combustion, the temperature inside the tube changes and the resonance frequency changes due to the change in sound speed. The frequency was finely adjusted each time.

そして、火炎の形成に際して、バーナリムでの保炎をさけるためにバーナーノズル出口流速を高くした。この状態では火炎が吹き飛ぶため、図1に破線で示すように直径12mmの保炎器50を用いて火炎を保炎し、次に、火炎位置と速度振動の腹が一致するように定在音場を形成し、その状態で保炎器50を外し、音場のみで保炎する状態をつくり、音圧一定の下でプロパンガスの流量を減少させ、吹き飛びが生じた時点での流量から、保炎限界の当量比を算出した。   In forming the flame, the burner nozzle outlet flow velocity was increased in order to avoid flame holding at the burner rim. In this state, since the flame blows off, the flame is held by using a flame holder 50 having a diameter of 12 mm as shown by a broken line in FIG. 1, and then the standing sound is set so that the flame position coincides with the velocity vibration belly. Form a field, remove the flame holder 50 in that state, create a state to hold the flame only with the sound field, reduce the flow rate of propane gas under a constant sound pressure, and from the flow rate at the time of blowout, The equivalent ratio of flame holding limit was calculated.

また、音圧はピエゾ抵抗型差圧センサ(KELLER 社製PR−10)60によって圧力振動の腹の位置で測定結果をオシロスコープ70で観測し、火炎が音場で保炎されている状態から、当量比一定の下音圧を下げていき、吹き飛びが生じた時点での音圧をオシロスコープ70を用いて読み取った。また、火炎は、図示しない高速度ビデオカメラ(株式会社ナックイメージテクノロジー社製MEMRECAM GX−8)およびスチルカメラにより撮影した。   The sound pressure was measured with an oscilloscope 70 at the position of the antinode of pressure vibration by a piezoresistive differential pressure sensor (PR-10 manufactured by KELLER) 60, and the flame was held in the sound field. The sound pressure at a constant equivalent ratio was lowered and the sound pressure at the time when blow-off occurred was read using an oscilloscope 70. Moreover, the flame was image | photographed with the high-speed video camera (MEMRCAM GX-8 by Nac Image Technology Co., Ltd.) and a still camera which are not shown in figure.

当量比φ=0.7、バーナーノズル出口流速Uu=36m/s、および周波数f=640Hzが一定の条件下での音圧Psの違いによる火炎の浮き上がり高さ、火炎形状の変化を観測した結果を図3に示す。図中の白線はバーナーノズル出口、白点線は共鳴管入り口、ハッチング部分は保炎器50を示している。   Result of observing changes in flame height and flame shape due to differences in sound pressure Ps under the conditions of equivalent ratio φ = 0.7, burner nozzle outlet flow velocity Uu = 36 m / s, and frequency f = 640 Hz. Is shown in FIG. In the figure, the white line indicates the burner nozzle outlet, the white dotted line indicates the resonance tube inlet, and the hatched portion indicates the flame holder 50.

音無しでは図3の(A)に示すように保炎器50がないと火炎は吹き飛ぶが、保炎器50なしで、Ps=0.8kPaの火炎では図3の(B)に示すように音圧レベルSPL=153dBの音で保炎でき、Ps=1.1kPaの火炎では図3の(C)に示すように、音圧レベルSPL=155dBの音とすることにより保炎位置はよりバーナリムへ近づき、さらに、Ps=2.0kPaの火炎は図3の(D)に示すように、音圧レベルSPL=160dBの音でバーナリムに付着した。   When there is no sound, the flame blows off without the flame holder 50 as shown in FIG. 3A, but without the flame holder 50, the flame of Ps = 0.8 kPa as shown in FIG. The flame holding position can be set to a burner rim by setting the sound pressure level SPL = 155 dB as shown in FIG. 3 (C) in the case of the flame of Ps = 1.1 kPa in the case of the flame of the sound pressure level SPL = 153 dB. Further, the flame with Ps = 2.0 kPa adhered to the burner rim with a sound pressure level SPL = 160 dB as shown in FIG.

したがって、音圧が高いほど、火炎基部はより上流へと移動し、より高いバーナーノズル出口流速に対しても保炎可能である。   Therefore, the higher the sound pressure, the more the flame base moves upstream, and the flame can be held even at a higher burner nozzle outlet flow velocity.

また、火炎形状に着目すると、Ps=0.8kPaからPs=1.1kPaまでは顕著な変化は確認できなかったが、Ps=2.0kPaの火炎は、Ps=0.8からPs=1.1kPaの火炎で確認できた下流側の輝度の低い火炎が確認できなかった。また、全ての火炎において皺が確認された。   Further, when focusing on the flame shape, no significant change could be confirmed from Ps = 0.8 kPa to Ps = 1.1 kPa, but the flame of Ps = 2.0 kPa is from Ps = 0.8 to Ps = 1. A low-flame flame on the downstream side that could be confirmed with a 1 kPa flame could not be confirmed. Moreover, soot was confirmed in all flames.

次に、各周波数及び音圧での、バーナーノズル出口流速と吹き飛び時の当量比の関係を図4に示す。   Next, the relationship between the burner nozzle outlet flow velocity and the equivalent ratio at the time of blowing off at each frequency and sound pressure is shown in FIG.

流速がおよそ35m/s以下の低流量域では、高い音圧時には火炎基部がバーナノズルリムに付着した。この場合、音だけでなくリムの保炎機構が無視できなくなる可能性があるため測定対象にしていない。音圧0.8kPaに比べて1.8kPaの方が高い流速に対しても希薄燃焼が可能となった。また、f=480Hz、PS=1.8kPaにおいては、直径12mmの保炎器50と同等の吹き飛び限界が確認された。   In the low flow rate region where the flow velocity was about 35 m / s or less, the flame base adhered to the burner nozzle rim during high sound pressure. In this case, not only the sound but also the flame holding mechanism of the rim may not be ignored, so it is not measured. Lean combustion was possible even at a higher flow rate at 1.8 kPa than at a sound pressure of 0.8 kPa. Moreover, at f = 480 Hz and PS = 1.8 kPa, the blow-off limit equivalent to the flame holder 50 having a diameter of 12 mm was confirmed.

定在音場中の予混合火炎に皺を形成する原因はバロクリニックトルクと考えられ、次の(1)式の渦度方程式の右辺に現れる項である。   The cause of the formation of soot in the premixed flame in the standing sound field is thought to be baroclinic torque, and is a term that appears on the right side of the vorticity equation of the following equation (1).

Figure 2012225515
Figure 2012225515

ここで、ωは渦度ベクトル、ρは密度、pは圧力である。密度勾配∇ρは、周波数によらず一定と仮定し、圧力勾配∇pは以下で述べる音による圧力勾配とする。定在音場内での圧力振動は次の(2)式で表わされる。 Here, ω is a vorticity vector, ρ is density, and p is pressure. It is assumed that the density gradient ∇ρ is constant regardless of the frequency, and the pressure gradient ∇p is a pressure gradient caused by sound described below. The pressure vibration in the standing sound field is expressed by the following equation (2).

Figure 2012225515
Figure 2012225515

ここで,P0は圧力振幅、fは周波数、cは音速、tは時間であり、x軸はスピーカの振動面をOとして圧力波の伝播方向にとった。したがって、速度振動の腹での圧力勾配は、(2)式のPの空間勾配を取り、次の(3)式で表わされる。 Here, P0 is the pressure amplitude, f is the frequency, c is the speed of sound, t is the time, and the x-axis is taken in the propagation direction of the pressure wave with the vibration surface of the speaker as O. Therefore, the pressure gradient at the antinode of the velocity vibration takes the spatial gradient of P in the equation (2) and is expressed by the following equation (3).

Figure 2012225515
Figure 2012225515

したがって、(1)式及び(3)式より、音圧と周波数にバロクリニックトルクは正比例する。しかし、バロクリニックトルクが火炎面に作用する時間は、周波数に反比例することより、火炎面の変形に要する時間は短くなる。そのため火炎面の変形の度合いは周波数の影響を受けないと考えられるので、吹き飛び限界は音圧P0またはその実効値PSをパラメータとすることで整理することが妥当である。   Therefore, the baroclinic torque is directly proportional to the sound pressure and the frequency from the equations (1) and (3). However, the time required for the baroclinic torque to act on the flame surface is inversely proportional to the frequency, so that the time required for the deformation of the flame surface is shortened. Therefore, it is considered that the degree of deformation of the flame surface is not affected by the frequency, and therefore it is appropriate to arrange the blow-off limit by using the sound pressure P0 or its effective value PS as a parameter.

音圧を変えたときに保炎できる最大のバーナーノズル出口流速の観測結果を図5に示す。図5に示すように、吹き飛び限界でのバーナーノズル出口流速の向上を達成するためには、より高い音圧でなければならず、その関係はほぼ比例であった。これは、図3で示した火炎の浮き上がり高さや前分析からの推定と一致する。また、周波数の違いによる吹き飛び限界時の音圧に若干の差異が確認され、620Hzに比べ480Hzの方が全体的に高い音圧でないと保炎できなかった。   The observation result of the maximum burner nozzle outlet flow velocity that can hold the flame when the sound pressure is changed is shown in FIG. As shown in FIG. 5, in order to achieve an improvement in the burner nozzle outlet flow velocity at the blow-off limit, the sound pressure must be higher, and the relationship was almost proportional. This is consistent with the flame height shown in FIG. 3 and the estimation from the previous analysis. Further, a slight difference was confirmed in the sound pressure at the time of blow-off limit due to the difference in frequency, and flame holding could not be performed unless the sound pressure was generally higher at 480 Hz than at 620 Hz.

以上の実験結果からも明らかなように、この予混合燃焼装置100では、上記バーナーノズル20から噴射された予混合気を燃焼させる上記円筒状の燃焼室30内で火炎に対して上記定在音場を印加することにより、上記定在音場の速度振動の腹において発生する圧力波の進行方向に対して垂直方向への二次流れと、音による圧力勾配と燃焼による密度勾配によって生じるバロクリニックトルクに起因して火炎に形成される皺を用いて、火炎の保炎を行い、予混合火炎の吹き飛び等の不安定な燃焼を解消し、安定燃焼を実現することができる。   As is clear from the above experimental results, in the premixed combustion apparatus 100, the standing sound with respect to the flame in the cylindrical combustion chamber 30 in which the premixed gas injected from the burner nozzle 20 is combusted. By applying a field, a baroclinic is created by the secondary flow in the direction perpendicular to the direction of the pressure wave generated in the antinode of the velocity vibration of the standing sound field, the pressure gradient due to sound, and the density gradient due to combustion. A flame formed in the flame due to the torque is used to hold the flame, so that unstable combustion such as blowing of the premixed flame is eliminated and stable combustion can be realized.

すなわち、上記予混合燃焼装置100では、プロパンガスの予混合気を燃焼し、155dB以上の定在音場により保炎を行うことにより、吹き飛び限界が改善できる。具体的には、上記予混合燃焼装置100では、周波数480Hz、実効音圧1.8Kpa(SPL=159dB)の条件の下で、予混合気流速が50m/s程度の流速まで、プロパンの可燃限界付近(当量比0.5付近)まで、保炎器50なしで火炎の吹き飛びを生じさせずに保炎することができた。   That is, in the premixed combustion apparatus 100, the blow-off limit can be improved by burning the premixed gas of propane gas and holding the flame with a standing sound field of 155 dB or more. Specifically, in the premixed combustion apparatus 100, the flammability limit of propane is reached up to a flow rate of about 50 m / s under a condition of a frequency of 480 Hz and an effective sound pressure of 1.8 Kpa (SPL = 159 dB). The flame could be held to the vicinity (near the equivalent ratio of 0.5) without causing the flame to blow without the flame holder 50.

したがって、上記予混合燃焼装置100では、プロパンガスの希薄予混合気を共鳴管により囲まれた燃焼空間において燃焼し、155dB以上の定在音場により保炎を行うことにより、「低NOx化」と「安定燃焼」の両特性を確保できる。   Therefore, in the premixed combustion apparatus 100, the lean premixed gas of propane gas is burned in the combustion space surrounded by the resonance tube, and flame holding is performed by a standing sound field of 155 dB or more, thereby reducing “NOx”. And "stable combustion" can be secured.

このように、本発明では、空気と燃料とを予め混合して得た予混合気を燃焼する予混合燃焼装置100において、共鳴管により囲まれた予混合気の燃焼空間に定在音場形成手段により定在音場を形成し、上記燃焼空間において火炎に対して上記定在音場を印加することにより、上記定在音場の速度振動の腹において発生する圧力波の進行方向に対して垂直方向への二次流れと、火炎に形成される皺を用いて、火炎の保炎を行い、圧力損失を低減するとともに安定した燃焼を行うことができる。   Thus, in the present invention, in the premixed combustion apparatus 100 that burns the premixed gas obtained by premixing air and fuel, a standing sound field is formed in the combustion space of the premixed gas surrounded by the resonance tube. By forming a standing sound field by means and applying the standing sound field to the flame in the combustion space, the traveling direction of the pressure wave generated in the antinode of the velocity vibration of the standing sound field Using the secondary flow in the vertical direction and the soot formed in the flame, the flame can be held, pressure loss can be reduced, and stable combustion can be performed.

なお、上記予混合燃焼装置100では、1/2波長で共鳴する共鳴管として機能する円筒状の燃焼室30内に定在音場形成手段により定在音場を形成しているが、上記燃焼室30は、円筒状である必要はなく、また、1波長や2波長で共鳴する共鳴管として機能するものであってもよい。また、上記予混合燃焼装置100では、二台のスピーカ41,42によって燃焼室30内に定在音場を生成しているが、燃焼器自身の自励振動などによって燃焼室30内に定在音場を生成する構造とすることもできる。また、音源を2つでなく多数組み合わせ、それらの配置を最適化することにより、予混合気の流速をより高速しても吹き飛び抑えることができる。また、本発明は、ガスタービンエンジン、ラムジェットエンジン、スクラムジェットエンシン等の定在火炎を用いるエンジンの燃焼器内における火炎の吹き飛びの抑制、ジェットエンジンのアフターバーナの保炎、ボイラー類、ガスコンロ等定在火炎を用いる燃焼装置全般に適用することができる。   In the premixed combustion apparatus 100, the standing sound field is formed by the standing sound field forming means in the cylindrical combustion chamber 30 that functions as a resonance tube that resonates at ½ wavelength. The chamber 30 does not need to be cylindrical, and may function as a resonance tube that resonates at one wavelength or two wavelengths. In the premixed combustion apparatus 100, a standing sound field is generated in the combustion chamber 30 by the two speakers 41 and 42. However, the premixed combustion apparatus 100 is fixed in the combustion chamber 30 by the self-excited vibration of the combustor itself. A structure that generates a sound field can also be used. Further, by combining many sound sources instead of two and optimizing their arrangement, it is possible to suppress blow-off even if the flow rate of the premixed gas is higher. In addition, the present invention also includes suppression of flame blow-off in an engine combustor using a stationary flame such as a gas turbine engine, a ramjet engine, a scramjet engine, etc., flame holding of an afterburner of a jet engine, boilers, a gas stove, etc. The present invention can be applied to all combustion devices using a stationary flame.

10 予混合室、11,12 流量計、13 サージタンク、20 バーナーノズル、30 燃焼室、31 周壁、32 開口、33 排気口、41,42 スピーカ、43 正弦波信号発生器、44 増幅器、50 保炎器、60 ピエゾ抵抗型差圧センサ、70 オシロスコープ、100 予混合燃焼装置   10 Premixing chamber, 11, 12 Flow meter, 13 Surge tank, 20 Burner nozzle, 30 Combustion chamber, 31 Perimeter wall, 32 Opening, 33 Exhaust port, 41, 42 Speaker, 43 Sine wave signal generator, 44 Amplifier, 50 Flame, 60 piezoresistive differential pressure sensor, 70 oscilloscope, 100 premixed combustion device

Claims (5)

空気と燃料とを予め混合して得た予混合気を燃焼する予混合燃焼装置であって、
上記予混合気の燃焼空間に定在音場を形成する定在音場形成手段を備え、
上記燃焼空間において火炎に対して上記定在音場を印加することにより、上記定在音場の速度振動の腹において発生する圧力波の進行方向に対して垂直方向への二次流れと、火炎に形成される皺を用いて、火炎の保炎を行うことを特徴とする予混合燃焼装置。
A premixed combustion apparatus for burning a premixed gas obtained by premixing air and fuel,
A standing sound field forming means for forming a standing sound field in the combustion space of the premixed gas,
By applying the standing sound field to the flame in the combustion space, the secondary flow in the direction perpendicular to the traveling direction of the pressure wave generated at the antinode of the velocity vibration of the standing sound field, and the flame A premixed combustion apparatus for holding a flame by using a soot formed on the flame.
上記定在音場形成手段は、上記予混合気の燃焼空間を囲む共鳴管を備え、上記共鳴管により囲まれた上記予混合気の燃焼空間に定在音場を形成することを特徴とする請求項1記載の予混合燃焼装置。   The standing sound field forming means includes a resonance tube surrounding the combustion space of the premixed gas, and forms a standing sound field in the combustion space of the premixed gas surrounded by the resonance tube. The premixed combustion apparatus according to claim 1. 上記定在音場形成手段は、正対する二台のスピーカから互いに逆位相の正弦波を発生し、上記正弦波の1/2波長で共鳴させることにより、上記共鳴管により囲まれた上記予混合気の燃焼空間に定在音場を形成することを特徴とする請求項2記載の予混合燃焼装置。   The standing sound field forming means generates sine waves of opposite phases from two speakers facing each other, and resonates at a half wavelength of the sine wave, so that the premixing surrounded by the resonance tube 3. A premixed combustion apparatus according to claim 2, wherein a standing sound field is formed in the combustion space of the gas. プロパンガスの希薄予混合気を上記共鳴管により囲まれた燃焼空間において燃焼し、155dB以上の定在音場により保炎を行うことを特徴とする請求項2記載の予混合燃焼装置。   3. The premixed combustion apparatus according to claim 2, wherein a propane gas lean premixed gas is burned in a combustion space surrounded by the resonance tube, and flame holding is performed by a standing sound field of 155 dB or more. 空気と燃料とを予め混合して得た予混合気を燃焼する予混合燃焼装置における火炎制御方法であって、
上記予混合気の燃焼空間に定在音場を形成し、上記燃焼空間において火炎に対して上記定在音場を印加することにより、上記定在音場の速度振動の腹において発生する圧力波の進行方向に対して垂直方向への二次流れと、火炎に形成される皺を用いて、火炎の保炎を行うことを特徴とする火炎制御方法。
A flame control method in a premixed combustion apparatus for burning a premixed gas obtained by premixing air and fuel,
By forming a standing sound field in the combustion space of the premixed gas and applying the standing sound field to a flame in the combustion space, a pressure wave generated at the antinode of the velocity vibration of the standing sound field A flame control method characterized by performing flame holding using a secondary flow in a direction perpendicular to the traveling direction of the flame and a soot formed in the flame.
JP2011090393A 2011-04-14 2011-04-14 Premixed combustion apparatus and flame control method thereof Expired - Fee Related JP5812388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011090393A JP5812388B2 (en) 2011-04-14 2011-04-14 Premixed combustion apparatus and flame control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090393A JP5812388B2 (en) 2011-04-14 2011-04-14 Premixed combustion apparatus and flame control method thereof

Publications (2)

Publication Number Publication Date
JP2012225515A true JP2012225515A (en) 2012-11-15
JP5812388B2 JP5812388B2 (en) 2015-11-11

Family

ID=47275887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090393A Expired - Fee Related JP5812388B2 (en) 2011-04-14 2011-04-14 Premixed combustion apparatus and flame control method thereof

Country Status (1)

Country Link
JP (1) JP5812388B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010799A (en) * 2013-07-01 2015-01-19 学校法人日本大学 Premixed combustion device and flame control method thereof
CN106050470A (en) * 2016-05-30 2016-10-26 北京理工大学 Method for actively adjusting damping of engine jet pipe to restrain unstable combustion
CN114458479A (en) * 2022-02-08 2022-05-10 北京航空航天大学 Pulsating gas generating device and unstable combustion experimental equipment
CN114526479A (en) * 2022-02-23 2022-05-24 浙江科技学院 Method for inhibiting soot generation through pulse combustion
CN114811650A (en) * 2022-06-01 2022-07-29 清华大学 Electric heating stable combustion device and method and storage medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770626A (en) * 1986-03-06 1988-09-13 Sonotech, Inc. Tunable pulse combustor
JPH05113213A (en) * 1991-10-21 1993-05-07 Nkk Corp Dust incinerator
JPH05280717A (en) * 1992-04-02 1993-10-26 Kubota Corp Waste incinerating furnace
JPH06313539A (en) * 1993-04-28 1994-11-08 Babcock Hitachi Kk Combustion vibration monitoring device for fire furnace
US5428951A (en) * 1993-08-16 1995-07-04 Wilson; Kenneth Method and apparatus for active control of combustion devices
WO2001084053A1 (en) * 2000-05-03 2001-11-08 Cambridge University Technical Services Ltd. Controller for combustion system
JP2005030639A (en) * 2003-07-09 2005-02-03 Nissan Motor Co Ltd Combustor
JP2008281314A (en) * 2007-05-14 2008-11-20 Tohoku Univ Method and device for controlling flame of jet type coombustor
US20100203460A1 (en) * 2009-01-26 2010-08-12 Paulo Orestes Formigoni Process of extinction, expantion and controlling of fire flames thru acoustic

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770626A (en) * 1986-03-06 1988-09-13 Sonotech, Inc. Tunable pulse combustor
JPH05113213A (en) * 1991-10-21 1993-05-07 Nkk Corp Dust incinerator
JPH05280717A (en) * 1992-04-02 1993-10-26 Kubota Corp Waste incinerating furnace
JPH06313539A (en) * 1993-04-28 1994-11-08 Babcock Hitachi Kk Combustion vibration monitoring device for fire furnace
US5428951A (en) * 1993-08-16 1995-07-04 Wilson; Kenneth Method and apparatus for active control of combustion devices
WO2001084053A1 (en) * 2000-05-03 2001-11-08 Cambridge University Technical Services Ltd. Controller for combustion system
JP2005030639A (en) * 2003-07-09 2005-02-03 Nissan Motor Co Ltd Combustor
JP2008281314A (en) * 2007-05-14 2008-11-20 Tohoku Univ Method and device for controlling flame of jet type coombustor
US20100203460A1 (en) * 2009-01-26 2010-08-12 Paulo Orestes Formigoni Process of extinction, expantion and controlling of fire flames thru acoustic

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010799A (en) * 2013-07-01 2015-01-19 学校法人日本大学 Premixed combustion device and flame control method thereof
CN106050470A (en) * 2016-05-30 2016-10-26 北京理工大学 Method for actively adjusting damping of engine jet pipe to restrain unstable combustion
CN114458479A (en) * 2022-02-08 2022-05-10 北京航空航天大学 Pulsating gas generating device and unstable combustion experimental equipment
CN114526479A (en) * 2022-02-23 2022-05-24 浙江科技学院 Method for inhibiting soot generation through pulse combustion
CN114811650A (en) * 2022-06-01 2022-07-29 清华大学 Electric heating stable combustion device and method and storage medium
CN114811650B (en) * 2022-06-01 2023-02-07 清华大学 Electric heating stable combustion device and method and storage medium

Also Published As

Publication number Publication date
JP5812388B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
Ditaranto et al. Combustion instabilities in sudden expansion oxy–fuel flames
Chen et al. Effects of fuel variation and inlet air temperature on combustion stability in a gas turbine model combustor
Li et al. Investigation of injection strategy for liquid-fuel rotating detonation engine
JP5812388B2 (en) Premixed combustion apparatus and flame control method thereof
Poppe et al. Control of NOx emissions in confined flames by oscillations
Schildmacher et al. Experimental characterization of premixed flame instabilities of a model gas turbine burner
US9057518B2 (en) Reheat burner
Lee et al. Staggered swirler arrangement in two self-excited interacting swirl flames
Shi et al. Experimental investigation on flame stabilization of a kerosene-fueled scramjet combustor with pilot hydrogen
Tao et al. Dilution effects of CO2, Ar, N2 and He microjets on the combustion dynamic and emission characteristics of unsteady premixed flame
Alabaş Effect of biogas addition on combustion instability of propane flame at different external acoustic enforcement frequencies
Seo Combustion instability mechanism of a lean premixed gas turbine combustor
Joo et al. Effect of fuel line acoustics on the flame dynamics of H2/CH4 syngas in a partially premixed gas turbine combustor
US8708696B2 (en) Swirl-counter-swirl microjets for thermoacoustic instability suppression
US9126210B1 (en) Efficient premixing fuel-air nozzle system
JP2008281314A (en) Method and device for controlling flame of jet type coombustor
Li et al. Experimental study of a flameless gas turbine combustor
Hwang et al. Combustion instability characteristics in a dump combustor using different hydrocarbon fuels
Xavier et al. Towards Low-NOx Operation in a Complex Burner: Optimization of an Annular Trapped Vortex Combustor
JP6136654B2 (en) Premixed combustion apparatus and flame control method thereof
Tong et al. An experimental study of effects of confinement ratio on swirl stabilized flame macrostructures
Kwak et al. Combustion instability characteristics under various fuel and air flow rates in a partially premixed model gas turbine combustor
Schimek et al. An experimental investigation of the nonlinear response of an atmospheric swirl-stabilized premixed flame
Allen Flame Diagnostics of Swirl Stabilized Combustion Without and With Porous Inert Media for Passive Mitigation of Thermo-Acoustic Instabilities
Fang et al. Experimental study on combustion and thermoacoustic instability characteristics of ethanol/methane Co-firing flames

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150910

R150 Certificate of patent or registration of utility model

Ref document number: 5812388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees