Nothing Special   »   [go: up one dir, main page]

JP2012216526A - Metal-coated carbon fiber wire - Google Patents

Metal-coated carbon fiber wire Download PDF

Info

Publication number
JP2012216526A
JP2012216526A JP2012074178A JP2012074178A JP2012216526A JP 2012216526 A JP2012216526 A JP 2012216526A JP 2012074178 A JP2012074178 A JP 2012074178A JP 2012074178 A JP2012074178 A JP 2012074178A JP 2012216526 A JP2012216526 A JP 2012216526A
Authority
JP
Japan
Prior art keywords
metal
carbon fiber
wire
coated carbon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012074178A
Other languages
Japanese (ja)
Inventor
Kimiko Fujisawa
季実子 藤澤
Kenichi Oga
賢一 大賀
Makoto Kajita
誠 梶田
Atsushi Tsuchiya
厚志 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denka Ind Co Ltd
Furukawa Electric Co Ltd
Tokyo Electronic Industry Co Ltd
Original Assignee
Tokyo Denka Ind Co Ltd
Furukawa Electric Co Ltd
Tokyo Electronic Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denka Ind Co Ltd, Furukawa Electric Co Ltd, Tokyo Electronic Industry Co Ltd filed Critical Tokyo Denka Ind Co Ltd
Priority to JP2012074178A priority Critical patent/JP2012216526A/en
Publication of JP2012216526A publication Critical patent/JP2012216526A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide metal-coated carbon fibers exhibiting excellent flexibility, and to provide a wire (including a cable) in which high strength and lightweight are attained while satisfying the conductivity as a wire, by fully utilizing the characteristics of the metal-coated carbon fibers.SOLUTION: In the metal-coated carbon fiber wire, an insulation coating layer is provided around a conductor, i.e. metal-coated carbon fibers where one or a plurality of metal layers are provided on an underlying metal layer consisting of one kind selected from nickel, a nickel alloy, palladium, and cobalt provided on the surface of carbon fibers.

Description

本発明は電線重量を削減し、耐熱性、屈曲性、強度等の特性に優れる金属被覆炭素繊維電線に関するものである。   The present invention relates to a metal-coated carbon fiber electric wire that reduces the weight of the electric wire and is excellent in characteristics such as heat resistance, flexibility and strength.

電線は電気機器内の配線や、通信機器間の配線、移動体の配線など幅広く使用されてきている。近年各種機器の高性能化に伴い、耐熱性、屈曲性、強度、導電率の向上など、電線自体に対する高性能化の要求も高まってきている。
また、自動車、鉄道車両、航空機など移動体用電線においては、安全性、快適性、機能性の向上に伴い使用電線量が増大する一方、燃費の向上のために電線重量の削減が必須であり、電線の軽量化が強く求められてきている。
Electric wires have been widely used for wiring in electrical equipment, wiring between communication equipment, wiring of moving bodies, and the like. In recent years, with the improvement in performance of various devices, there is an increasing demand for higher performance on the wires themselves, such as improvement in heat resistance, flexibility, strength, and conductivity.
In addition, in electric wires for mobile objects such as automobiles, railway vehicles, and aircraft, the amount of wires used increases as safety, comfort, and functionality improve, while reducing the weight of the wires is essential to improve fuel efficiency. There is a strong demand for weight reduction of electric wires.

このような要求に対して特許文献1、2では、導電性があり、高強度、高弾性率である炭素繊維の表面に銅、アルミニウムなどの金属を被覆することで、軽量でかつ高強度であり金属疲労のない電線を製造する方法が提案されている。しかし、炭素繊維に銅またはアルミニウム皮膜を直接設けると、炭素繊維とこれら金属との濡れ性、親和性が悪く、炭素繊維上に良好に密着した銅またはアルミニウム皮膜層を得ることは極めて困難であった。
炭素繊維と金属皮膜との密着性が悪いと、金属被覆炭素繊維を撚り合わせて撚線導体とする際、摩擦によって金属被覆が剥がれ、撚線導体とするのに極めて高度の技術を必要としていた。
In order to meet such demands, Patent Documents 1 and 2 have a light weight and high strength by covering the surface of carbon fiber having conductivity, high strength and high elastic modulus with a metal such as copper and aluminum. There has been proposed a method of manufacturing an electric wire without metal fatigue. However, when a copper or aluminum film is provided directly on the carbon fiber, the wettability and affinity between the carbon fiber and these metals are poor, and it is extremely difficult to obtain a copper or aluminum film layer that adheres well on the carbon fiber. It was.
If the adhesion between the carbon fiber and the metal film is poor, when the metal-coated carbon fiber is twisted to make a stranded conductor, the metal coating is peeled off by friction, and a very advanced technique is required to make a stranded conductor. .

特開平2−189811号公報JP-A-2-189811 特開平6−20522号公報JP-A-6-20522

本発明は屈曲性に優れる金属被覆炭素繊維を提供し、さらに、該金属被覆炭素繊維の特性を充分に活かし、電線としての導電性を満足しながら、高強度化、軽量化が図られた電線(ケーブルを含む、以下同様)を提供することにある。   The present invention provides a metal-coated carbon fiber having excellent flexibility, and further makes use of the characteristics of the metal-coated carbon fiber to achieve high strength and light weight while satisfying the electrical conductivity of the wire. (Including cables, and so on).

本発明は、炭素繊維の表面に設けたニッケル、ニッケル合金、パラジウム、コバルトより選択される一種からなる下地金属層上に、1乃至複数層の金属層が設けられた金属被覆炭素繊維を導体とし、該導体の周囲に絶縁被覆層が設けられている金属被覆炭素繊維電線である。   The present invention uses, as a conductor, a metal-coated carbon fiber in which one or more metal layers are provided on a base metal layer made of one selected from nickel, nickel alloy, palladium, and cobalt provided on the surface of the carbon fiber. A metal-coated carbon fiber electric wire in which an insulating coating layer is provided around the conductor.

本発明は、内部導体、該内部導体の外周に絶縁層、外部導体、保護絶縁層がこの順に設けられている電線であって、前記内部導体と前記外部導体のいずれか一方または両方が、炭素繊維の表面に設けたニッケル、ニッケル合金、パラジウム、コバルトより選択される一種からなる下地金属層上に1乃至複数層の金属層が設けられた金属被覆炭素繊維線からなる金属被覆炭素繊維電線である。   The present invention is an electric wire in which an outer conductor, an outer conductor, and a protective insulating layer are provided in this order on the outer periphery of the inner conductor, and either or both of the inner conductor and the outer conductor are carbon A metal-coated carbon fiber wire comprising a metal-coated carbon fiber wire in which one or more metal layers are provided on a base metal layer made of one selected from nickel, nickel alloy, palladium, and cobalt provided on the surface of the fiber. is there.

前記導体は、金属被覆炭素繊維の単線、或いは該金属被覆炭素繊維を複数本束ねた束線、或いは該金属被覆炭素繊維の複数本を同心撚り、ユニレイ撚り、集合撚り、ロープ撚りのいずれかの方法で撚り合わせた撚線、のいずれかであることが好ましい。   The conductor is a single wire of a metal-coated carbon fiber, a bundle of a plurality of the metal-coated carbon fibers, or a plurality of the metal-coated carbon fibers that are concentrically twisted, unilay twisted, collective twisted, or rope twisted It is preferably any one of stranded wires twisted by a method.

本発明は、前記金属被覆炭素繊維電線を導体とし、該導体の外周に絶縁層を設けた金属被覆炭素繊維電線を複数本束ね、その周囲に保護絶縁層を設けた金属被覆炭素繊維電線である。   The present invention is a metal-coated carbon fiber electric wire in which the metal-coated carbon fiber electric wire is a conductor, a plurality of metal-coated carbon fiber electric wires provided with an insulating layer around the conductor are bundled, and a protective insulating layer is provided around the bundle. .

本発明は、内部導体、該内部導体の外周に絶縁層、外部導体、保護絶縁層がこの順に設けられている電線であって、前記内部導体と前記外部導体のいずれか一方または両方が、炭素繊維の表面に設けたニッケル、ニッケル合金、パラジウム、コバルトより選択される一種からなる下地金属層上に1乃至複数層の金属層が設けられた金属被覆炭素繊維線からなる金属被覆炭素繊維電線を複数本束ね、その周囲に保護絶縁層を設けた金属被覆炭素繊維電線である。   The present invention is an electric wire in which an outer conductor, an outer conductor, and a protective insulating layer are provided in this order on the outer periphery of the inner conductor, and either or both of the inner conductor and the outer conductor are carbon A metal-coated carbon fiber electric wire comprising a metal-coated carbon fiber wire in which one or more metal layers are provided on a base metal layer made of one selected from nickel, nickel alloy, palladium, and cobalt provided on the surface of the fiber. It is a metal-coated carbon fiber electric wire bundled in plural and provided with a protective insulating layer around it.

前記金属層が銅層または銅層の上に設けた銀層または銅層の上に設けたスズ層であることが好ましい。   The metal layer is preferably a copper layer or a silver layer provided on the copper layer or a tin layer provided on the copper layer.

前記炭素繊維の直径が3μm以上、20μm以下であり、前記金属層が銅層である金属被覆炭素繊維線の、前記金属被覆炭素繊維の炭素繊維直径Xと下地金属層の厚さYと銅層の厚さZとの比が
X:Y:Z=1:(0.004〜0.071):(0.005〜1.314)
であることが好ましい。
The carbon fiber diameter X of the metal-coated carbon fiber, the thickness Y of the base metal layer, and the copper layer of the metal-coated carbon fiber wire in which the diameter of the carbon fiber is 3 μm or more and 20 μm or less and the metal layer is a copper layer The ratio of the thickness to the thickness Z is X: Y: Z = 1: (0.004 to 0.071) :( 0.005 to 1.314)
It is preferable that

本発明は、引張強度、耐熱性に優れ、かつ非常に軽量である炭素繊維の表面に良導電率の金属層を設けて電線としたもので、導電性を満足しながら、高強度化、軽量化が図られ、屈曲性に優れる金属被覆炭素繊維電線を提供することができる。   The present invention is an electric wire by providing a metal layer with good conductivity on the surface of carbon fiber, which has excellent tensile strength and heat resistance, and is very lightweight. Therefore, a metal-coated carbon fiber electric wire excellent in flexibility can be provided.

図1は金属被覆炭素繊維線の一実施形態を示す断面図である。FIG. 1 is a cross-sectional view showing one embodiment of a metal-coated carbon fiber wire. 図2は本発明の金属被覆炭素繊維電線の第一の例を示す断面図である。FIG. 2 is a sectional view showing a first example of the metal-coated carbon fiber electric wire of the present invention. 図3は本発明の金属被覆炭素繊維電線の第二の例を示す断面図である。FIG. 3 is a cross-sectional view showing a second example of the metal-coated carbon fiber electric wire of the present invention. 図4は本発明の金属被覆炭素繊維電線の第三の例を示す断面図である。FIG. 4 is a sectional view showing a third example of the metal-coated carbon fiber electric wire of the present invention.

本発明の金属被覆炭素繊維電線の実施形態を図面により説明する。
図1に示すように本発明金属被覆炭素繊維電線10の導体となる金属被覆炭素繊維線1は、炭素繊維線2の表面にニッケル、ニッケル合金、パラジウム、コバルトより選択される一種からなる下地金属層(皮膜)3が形成され、その上に良導電性の銅層(皮膜)4が形成され、必要により該銅層4上に銀層或いはスズ層5が設けられている。なお、本発明においては前記銅層4単独、或いは銅層4と銀層またはスズ層5を合わせて金属層と表現する。
An embodiment of a metal-coated carbon fiber electric wire of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a metal-coated carbon fiber wire 1 serving as a conductor of a metal-coated carbon fiber wire 10 of the present invention is a base metal made of a kind selected from nickel, nickel alloy, palladium, and cobalt on the surface of the carbon fiber wire 2. A layer (coating) 3 is formed, a highly conductive copper layer (coating) 4 is formed thereon, and a silver layer or a tin layer 5 is provided on the copper layer 4 as necessary. In the present invention, the copper layer 4 alone or a combination of the copper layer 4 and the silver layer or tin layer 5 is expressed as a metal layer.

本発明の金属被覆炭素繊維電線は前記金属被覆炭素繊維線1を導体とする電線である。電線の導体としては金属被覆炭素繊維線1を単線で、或いは複数本を束ねた束線で、或いは種々の撚り合わせ方法で撚り合わせた撚線として電線導体11(図2参照)とする。   The metal-coated carbon fiber electric wire of the present invention is an electric wire using the metal-coated carbon fiber wire 1 as a conductor. As the conductor of the electric wire, the metal-coated carbon fiber wire 1 is a single wire, a bundle of a plurality of wires, or a stranded wire twisted by various twisting methods to form the wire conductor 11 (see FIG. 2).

図2は金属被覆炭素繊維線を導体とする金属被覆炭素繊維電線10である。導体11は金属被覆炭素繊維線1を単線で、或いは複数本を束ねた束線で、或いは種々の撚り合わせ方法で撚り合わせた撚線として電線導体11とする。図2は金属被覆炭素繊維線を1000本束ねた束線を電線導体11としている。この導体(束線)11の外周に絶縁層12が設けられ、金属被覆炭素繊維電線10が構成されている。   FIG. 2 shows a metal-coated carbon fiber electric wire 10 using a metal-coated carbon fiber wire as a conductor. The conductor 11 is the wire conductor 11 as a single wire, a bundle of bundles of the metal-coated carbon fiber wires 1 or a twisted wire twisted by various twisting methods. In FIG. 2, a bundle of 1000 metal-coated carbon fiber wires is used as the wire conductor 11. An insulating layer 12 is provided on the outer periphery of the conductor (bundle wire) 11 to constitute a metal-coated carbon fiber electric wire 10.

図3に示す金属被覆炭素繊維電線20は、前記金属被覆炭素繊維電線10を3本ロープ撚りし、その外周に保護被覆層21が設けられた金属被覆炭素繊維電線20である。   A metal-coated carbon fiber electric wire 20 shown in FIG. 3 is a metal-coated carbon fiber electric wire 20 in which three metal-coated carbon fiber electric wires 10 are twisted with three ropes and a protective coating layer 21 is provided on the outer periphery thereof.

図4に示す金属被覆炭素繊維電線30は、内部導体31、該内部導体31の外周に絶縁層32、外部導体33、保護被覆層34がこの順に設けられている電線30である。前記内部導体31は前記金属被覆炭素繊維線1の単線、束線或いは撚線で構成され、或いは銅線(銅合金線を含む)で形成されている。前記外部導体33は前記金属被覆炭素繊維線1の束線、撚線或いは網状に組んだ網線で構成され、或いは銅線(銅合金線を含む)、銅網線で形成され、内部導体31、外部導体33のいずれか一方または両方が、前記金属被覆炭素繊維線1で構成されている。   A metal-coated carbon fiber electric wire 30 shown in FIG. 4 is an electric wire 30 in which an inner conductor 31 and an outer periphery of the inner conductor 31 are provided with an insulating layer 32, an outer conductor 33, and a protective covering layer 34 in this order. The inner conductor 31 is constituted by a single wire, bundled wire or stranded wire of the metal-coated carbon fiber wire 1 or is formed by a copper wire (including a copper alloy wire). The outer conductor 33 is composed of a bundle of the metal-coated carbon fiber wire 1, a twisted wire, or a mesh wire assembled in a net shape, or is formed of a copper wire (including a copper alloy wire) or a copper mesh wire. Any one or both of the outer conductors 33 are composed of the metal-coated carbon fiber wire 1.

本発明において、炭素繊維2に先ず下地金属層3を設けるのは、炭素繊維に銅を直接めっきすると、炭素繊維と銅との親和性(濡れ性)が悪く、銅が炭素繊維に密着しづらく、銅をめっきした炭素繊維を屈曲すると銅層が剥離する不具合が発生するためである。そのため本発明においては、炭素繊維2の表面に先ず炭素繊維2と親和性の高いニッケル、ニッケル合金、パラジウム、コバルトより選択される一種を下地金属層3として施し、その上に銅層4を設けている。   In the present invention, the base metal layer 3 is first provided on the carbon fiber 2 because when the carbon fiber is directly plated with copper, the affinity (wetability) between the carbon fiber and copper is poor and the copper is difficult to adhere to the carbon fiber. This is because when the carbon fiber plated with copper is bent, the copper layer peels off. Therefore, in the present invention, first, a kind selected from nickel, nickel alloy, palladium, and cobalt having high affinity with the carbon fiber 2 is applied to the surface of the carbon fiber 2 as the base metal layer 3, and the copper layer 4 is provided thereon. ing.

本発明において、(炭素繊維の直径X):(下地金属層の厚さY)の比を1:(0.004〜0.071)とすることが望ましい。
下地金属層の厚さYが炭素繊維の直径Xに対して0.004倍未満であると、下地金属層の上に設ける銅層(銅めっき皮膜)の密着性が充分に得られず、下地金属層厚比が、0.071より高いと、仕上がった金属被覆炭素繊維の屈曲性が乏しくなり好ましくないためである。
In the present invention, the ratio of (carbon fiber diameter X) :( underlying metal layer thickness Y) is preferably 1: (0.004-0.071).
If the thickness Y of the base metal layer is less than 0.004 times the diameter X of the carbon fiber, sufficient adhesion of the copper layer (copper plating film) provided on the base metal layer cannot be obtained. This is because if the metal layer thickness ratio is higher than 0.071, the finished metal-coated carbon fiber has poor flexibility and is not preferable.

本発明において、(炭素繊維の直径X):(銅層皮膜の厚さZ)の比を1:(0.005〜1.314)とすることが好ましい。
本発明は金属被覆炭素繊維線を導体とし、該導体の周囲に絶縁層が設けられている金属被覆炭素繊維電線である。炭素繊維の熱膨張率は非常に小さく、該炭素繊維の外周に設ける絶縁層の樹脂は熱膨張係数が大きいため、両者の熱膨張率の差は非常に大きくなる。このため金属被覆炭素繊維を導体とした電線において、該電線に通電し、電線が発熱(加熱)状態となると、熱膨張の差により絶縁被覆層が導体から剥離する現象が起きる。
発熱量が少ない電線においては熱膨張率の差はさほど問題にならないが、発熱量の大きい電線になると熱膨張率の差が問題となる。本発明ではこの熱膨張率の差を銅層の厚さを調整することで解決している。
即ち、銅層の厚さを炭素繊維の直径の0.005倍未満とすると、炭素繊維と絶縁層との間の熱膨張率の差を緩和できず、通電時の温度上昇により金属被覆炭素繊維と絶縁層との間が剥離する不具合を起こす。一方、銅層の皮膜厚比が1.314より高いと、銅層が炭素繊維と絶縁層との間の熱膨張率に対する緩和層となり、熱履歴特性は良好となる。しかし、銅層が厚くなる分屈曲性が乏しくなり、また、銅層の皮膜を厚くするメリットもなくなるため、これ以上厚くすることは好ましくない。
In the present invention, the ratio of (carbon fiber diameter X) :( copper layer coating thickness Z) is preferably 1: (0.005 to 1.314).
The present invention is a metal-coated carbon fiber electric wire in which a metal-coated carbon fiber wire is used as a conductor and an insulating layer is provided around the conductor. Since the thermal expansion coefficient of the carbon fiber is very small and the resin of the insulating layer provided on the outer periphery of the carbon fiber has a large thermal expansion coefficient, the difference between the thermal expansion coefficients of both is very large. For this reason, in an electric wire using a metal-coated carbon fiber as a conductor, when the electric wire is energized and the electric wire is heated (heated), a phenomenon occurs in which the insulating coating layer is peeled off from the conductor due to a difference in thermal expansion.
The difference in coefficient of thermal expansion is not a problem for an electric wire with a small amount of heat generation, but the difference in coefficient of thermal expansion is a problem for an electric wire with a large amount of heat generation. In the present invention, this difference in coefficient of thermal expansion is solved by adjusting the thickness of the copper layer.
That is, if the thickness of the copper layer is less than 0.005 times the diameter of the carbon fiber, the difference in coefficient of thermal expansion between the carbon fiber and the insulating layer cannot be relaxed, and the metal-coated carbon fiber is increased due to the temperature rise during energization. This causes a problem of peeling between the insulating layer and the insulating layer. On the other hand, when the film thickness ratio of the copper layer is higher than 1.314, the copper layer becomes a relaxation layer for the coefficient of thermal expansion between the carbon fiber and the insulating layer, and the thermal history characteristics are improved. However, as the copper layer becomes thicker, the flexibility becomes poor, and the merit of making the copper layer film thicker is lost.

金属被覆炭素繊維線を導体とし、その上に設ける絶縁層は電線として一般に使用される絶縁樹脂であれば種類を問わず採用することができる。
絶縁層の形成は一般に押し出し成形で設けるが、金属被覆炭素繊維の上にコーティングで設けることもできる。
A metal-coated carbon fiber wire is used as a conductor, and the insulating layer provided thereon can be adopted regardless of the type as long as it is an insulating resin generally used as an electric wire.
The insulating layer is generally formed by extrusion, but can also be formed on the metal-coated carbon fiber by coating.

本発明において、炭素繊維の表面に設けた銅層の上に銀層又はスズ層を設けることがある。銀又はスズを皮膜するのは半田濡れ性を改善するためで、半田濡れ性を問題としない場合には設ける必要性はない。半田濡れ性を改善する銀又はスズ層の厚さは0.5μm以下である。   In the present invention, a silver layer or a tin layer may be provided on the copper layer provided on the surface of the carbon fiber. The coating of silver or tin is to improve solder wettability, and there is no need to provide it when solder wettability is not a problem. The thickness of the silver or tin layer that improves solder wettability is 0.5 μm or less.

以下に本発明を実施例により詳細に説明する。
炭素繊維に電解または、無電解めっき法によりニッケル、ニッケル合金、パラジウム、またはコバルトの下地層(0.2μm厚)を施し、次いで銅めっき層(2μm厚)を形成することで金属被覆炭素繊維線を作製した。
作製した金属被覆炭素繊維線を1000本束ね、撚り合わせて導体とし、該導体をフッ素樹脂でコーティング(0.3mm厚)することで金属被覆炭素繊維電線とした。
本実施例においては、炭素繊維として直径7μmのポリアクリロニトリル(PAN)系炭素繊維を用いた。
Hereinafter, the present invention will be described in detail with reference to examples.
A metal-coated carbon fiber wire is formed by applying an underlayer (0.2 μm thickness) of nickel, nickel alloy, palladium, or cobalt to carbon fiber by electrolysis or electroless plating, and then forming a copper plating layer (2 μm thickness). Was made.
1,000 metal-coated carbon fiber wires were bundled and twisted to form a conductor, and the conductor was coated with a fluororesin (thickness: 0.3 mm) to obtain a metal-coated carbon fiber electric wire.
In this example, polyacrylonitrile (PAN) carbon fiber having a diameter of 7 μm was used as the carbon fiber.

本実施例で使用しためっき浴は次の通りである。
<電解ニッケルめっき>
浴組成(スルファミン酸系めっき浴)
スルファミン酸ニッケル 320g/L
塩化ニッケル 20g/L
ほう酸 30g/L
めっき条件:
浴温: 50℃
電流密度: 0.3A/dm
時間: 2min
The plating bath used in this example is as follows.
<Electrolytic nickel plating>
Bath composition (sulfamic acid plating bath)
Nickel sulfamate 320g / L
Nickel chloride 20g / L
Boric acid 30g / L
Plating conditions:
Bath temperature: 50 ° C
Current density: 0.3 A / dm 2
Time: 2min

<電解ニッケル-亜鉛合金めっき>
浴組成
硫酸ニッケル 220g/L
硫酸亜鉛 3g/L
硫酸アンモニウム 15g/L
めっき条件:
液温: 60℃
電流密度: 0.5A/dm
時間: 3min
<Electrolytic nickel-zinc alloy plating>
Bath composition Nickel sulfate 220g / L
Zinc sulfate 3g / L
Ammonium sulfate 15g / L
Plating conditions:
Liquid temperature: 60 ℃
Current density: 0.5 A / dm 2
Time: 3min

<電解パラジウムめっき>
浴組 :
ジアミノ亜硝酸パラジウム 9g/L
硝酸アンモニウム 110g/L
亜硝酸ナトリウム 5g/L
めっき条件:
浴温: 50℃
電流密度: 0.3A/dm2
時間: 2min
<Electrolytic palladium plating>
Bath group:
Diaminopalladium nitrite 9g / L
Ammonium nitrate 110g / L
Sodium nitrite 5g / L
Plating conditions:
Bath temperature: 50 ° C
Current density: 0.3 A / dm 2
Time: 2min

<電解コバルトめっき>
浴組成:
塩化コバルト 200g/L
炭酸コバルト 40g/L
亜リン酸 60g/L
リン酸 50ml/L
めっき条件:
浴温: 70℃
電流密度: 0.8A/dm
時間: 2min
<Electrolytic cobalt plating>
Bath composition:
Cobalt chloride 200g / L
Cobalt carbonate 40g / L
Phosphorous acid 60g / L
Phosphoric acid 50ml / L
Plating conditions:
Bath temperature: 70 ° C
Current density: 0.8 A / dm 2
Time: 2min

<電解銅めっき>
浴組成(シアン系銅めっき浴)
シアン化銅 45g/L
シアン化カリウム 100g/L
炭酸カリウム 10g/L
めっき条件:
浴温: 40℃
電流密度: 0.4A/dm
時間: 3min
<Electrolytic copper plating>
Bath composition (cyan-based copper plating bath)
Copper cyanide 45g / L
Potassium cyanide 100g / L
Potassium carbonate 10g / L
Plating conditions:
Bath temperature: 40 ° C
Current density: 0.4 A / dm 2
Time: 3min

<電解スズめっき>
浴組成:
硫酸第一スズ 45g/L
硫酸 70g/L
ゼラチン 3g/L
クレゾールスルホン酸 100g/L
めっき条件:
浴温: 25℃
電流密度: 0.3A/dm
時間: 2min
<Electrolytic tin plating>
Bath composition:
Stannous sulfate 45g / L
Sulfuric acid 70g / L
Gelatin 3g / L
Cresol sulfonic acid 100g / L
Plating conditions:
Bath temperature: 25 ° C
Current density: 0.3 A / dm 2
Time: 2min

<電解銀めっき>
浴組成:
シアン化銀 40g/L
シアン化カリウム 40g/L
炭酸ナトリウム 55g/L
めっき条件:
浴温: 25℃
電流密度: 0.3A/dm
時間: 3min
<Electrolytic silver plating>
Bath composition:
Silver cyanide 40g / L
Potassium cyanide 40g / L
Sodium carbonate 55g / L
Plating conditions:
Bath temperature: 25 ° C
Current density: 0.3 A / dm 2
Time: 3min

めっき厚の測定
金属被覆炭素繊維を樹脂で埋め、クロスセクションポリッシャー(CP)により断面出しを行い、走査型電子顕微鏡(SEM)によってめっき層の厚みを測定した。めっき厚に関してはサンプル上で10点の皮膜厚を測定し、その平均値をめっき厚とした。
Measurement of Plating Thickness Metal-coated carbon fibers were filled with resin, a cross section was taken out with a cross section polisher (CP), and the thickness of the plating layer was measured with a scanning electron microscope (SEM). Regarding the plating thickness, the film thickness at 10 points was measured on the sample, and the average value was defined as the plating thickness.

金属皮膜の密着性評価
金属炭被服素繊維線を撚り合わせた撚り線(絶縁被覆前)に対して、作製した電線導体をφ1mmの金属棒に巻きつけ、その後、走査型電子顕微鏡およびマイクロスコープを用いて表面観察を行い、表面のめっき皮膜の剥離の有無の確認を行った。評価は剥離のみられなかったサンプルを○、剥離が10%未満を△、剥離が10%以上観察されたサンプルを×とし、表1、2に記載した。
Evaluation of adhesion of metal film A wire conductor is wound around a φ1 mm metal rod around a twisted wire (before insulation coating) made by twisting metallic carbon fiber fibers, and then a scanning electron microscope and a microscope are used. The surface was observed and the presence or absence of peeling of the plating film on the surface was confirmed. The evaluation was shown in Tables 1 and 2 with ◯ indicating that the sample was not peeled off, Δ when peeling was less than 10%, and x indicating samples where peeling was observed 10% or more.

電線の作製、実施例1〜29、比較例1〜8、従来例1〜5
図2に示す構成の金属被覆炭素繊維電線10を、金属被覆炭素繊維線1000本を束ねた束線、或いは1000本を撚り合わせた撚線を電線導体11と、絶縁樹脂層12としてフッ素樹脂をコーティング(0.3mm厚)とで作製した。なお、導体11の撚り方については実施例毎に表1、表2に記載する。
Production of electric wires, Examples 1 to 29, Comparative Examples 1 to 8, Conventional Examples 1 to 5
The metal-coated carbon fiber electric wire 10 having the configuration shown in FIG. 2 is a bundle of 1000 metal-coated carbon fiber wires, or a twisted wire in which 1000 wires are twisted. It was prepared by coating (0.3 mm thickness). In addition, about how to twist the conductor 11, it describes in Table 1 and Table 2 for every Example.

電線の作製、実施例30〜34
図3に示す構成の金属被覆炭素繊維電線20を、実施例1〜5で作成した電線11を3本束にし、周囲を保護絶縁層(ポリビニルアルコール、0.7mm厚)21で被覆した金属被覆炭素繊維電線(多芯ケーブル)(以下ケーブルAと称することがある)を作製した。
Production of electric wires, Examples 30 to 34
The metal-coated carbon fiber electric wire 20 having the configuration shown in FIG. 3 is formed by bundling three electric wires 11 created in Examples 1 to 5, and the periphery is covered with a protective insulating layer (polyvinyl alcohol, 0.7 mm thickness) 21. A carbon fiber electric wire (multi-core cable) (hereinafter sometimes referred to as cable A) was produced.

電線の作成、実施例35〜49
図4に示すように内部導体31、該内部導体31の周囲に絶縁樹脂層(ポリエチレン0.03mm厚)32、外部導体33、該外部導体33の外周に保護被覆層(ポリエチレンテレフタレート、0.23mm厚)34を形成した金属被覆炭素繊維電線(同軸ケーブル)30(以下ケーブルBと称することがある)を作成した。
実施例35〜39は内部導体を金属被覆炭素繊維線1を1000本、同心撚りで撚りあわせた炭素繊維線撚線で構成し、外部導体を直径0.1mmの銅合金線を網状に編んだ銅網線で構成している。
実施例40〜44は内部導体を直径0.1mmの銅合金線を7本よりあわせて作製した銅撚線で構成し、外部導体を金属被覆炭素繊維線を1000本、編みあわせた網線で構成している。
実施例45〜49は内部導体、外部導体共に金属被覆炭素繊維線で構成している。なお、内部導体、外部導体は前記実施例と同様である(表3参照)。
Creation of electric wires, Examples 35-49
As shown in FIG. 4, an inner conductor 31, an insulating resin layer (polyethylene 0.03 mm thickness) 32 around the inner conductor 31, an outer conductor 33, and a protective coating layer (polyethylene terephthalate, 0.23 mm around the outer conductor 33). A metal-coated carbon fiber electric wire (coaxial cable) 30 (hereinafter sometimes referred to as cable B) having a thickness 34 was prepared.
In Examples 35 to 39, the inner conductor was composed of 1000 carbon-coated carbon fiber wires 1 and stranded carbon fiber wires twisted by concentric twisting, and the outer conductor was knitted in a net shape with a copper alloy wire having a diameter of 0.1 mm. It consists of copper mesh wire.
In Examples 40 to 44, the inner conductor is composed of a copper stranded wire prepared by combining seven copper alloy wires having a diameter of 0.1 mm, and the outer conductor is a mesh wire obtained by weaving 1000 metal-coated carbon fiber wires. It is composed.
In Examples 45 to 49, both the inner conductor and the outer conductor are made of metal-coated carbon fiber wires. The inner conductor and the outer conductor are the same as those in the above embodiment (see Table 3).

上記の手法により作製した実施例の金属被覆炭素繊維電線に対して、以下の評価を行った。   The following evaluation was performed with respect to the metal-coated carbon fiber electric wire of the example produced by the above method.

ヒートサイクル試験
金属被覆炭素繊維電線に対して、ヒートサイクル試験を行った。
試験は10cm長にカットしたサンプルをヒート試験機に投入し、1サイクル30minで、−20℃/100℃×100(昇温1h、降温2h)の加熱冷却サイクル下に静置して試験前後の電線導体/絶縁樹脂層との密着状態を確認した。
評価は、試験後に樹脂と、銅層間の剥離が見られないものを○、剥離が10%未満を△、剥離が10%以上見られたものには×として結果を表1、2に記載した。
Heat cycle test A heat cycle test was performed on the metal-coated carbon fiber electric wires.
For the test, a sample cut to a length of 10 cm was put into a heat tester, and left in a heating / cooling cycle of −20 ° C./100° C. × 100 (temperature increase 1 h, temperature decrease 2 h) in 30 minutes per cycle, before and after the test. The close contact state with the wire conductor / insulating resin layer was confirmed.
The results are shown in Tables 1 and 2 where the results indicate that no peeling between the resin and the copper layer was observed after the test, that the peeling was less than 10%, and that the peeling was 10% or more. .

引張強度測定
金属被覆炭素繊維線を導体とした撚り線に対して、引張強度の測定は、JIS L 1015に従って測定を行った。金属被覆炭素繊維導体の断面積は、走査型電子顕微鏡(SEM)を用いて電線またはケーブルの樹脂埋め断面観察を行い、直径を4点求め、平均したものをサンプルの直径とすることで計算により求めた。
評価は、金属被覆炭素繊維電線に関しては、1500MPa以上を○、1500MPa未満900Pa以上を△、900Pa以下を×とし、表1、2に記載した。
また、電線ケーブルA・Bに関しては、結果が950MPa以上を○、950MPa未満で850MPa以上を△、850MPa未満を×とし、表3に記載した
Tensile strength measurement Tensile strength was measured according to JIS L 1015 for a stranded wire using a metal-coated carbon fiber wire as a conductor. The cross-sectional area of the metal-coated carbon fiber conductor is calculated by conducting a resin-embedded cross-section observation of an electric wire or cable using a scanning electron microscope (SEM), obtaining four diameters, and taking the average as the sample diameter. Asked.
The evaluation is described in Tables 1 and 2 with respect to the metal-coated carbon fiber electric wire, with 1500 MPa or more being ◯, less than 1500 MPa 900 Pa or more being Δ, and 900 Pa or less being x.
For the electric cables A and B, the results are shown in Table 3, with 950 MPa or more as ◯, less than 950 MPa as 850 MPa or more as Δ, and less than 850 MPa as x.

屈曲性試験
上記の手法によって作製した金属被覆炭素繊維線を導体とした撚り線、電線、ケーブルに対して、屈曲性試験装置を用いた屈曲性試験を行った。試験は金属被覆炭素繊維束の撚り線、金属被覆炭素繊維線を用いた電線をサンプルとし、マンドレルで挟み込み、線束のたわみを抑えるため、下端に100gの分銅を吊るして荷重をかけた。上端部は固定具で固定し、この状態で、マンドレルの外周部に沿って線束を左右に90度ずつ屈曲させ、1往復を1回として毎分100回の速度で試験し、撚り線が断線するまでの回数を計測した。評価は、金属被覆炭素繊維電線については、30000回以上で断線したものを○、30000回未満20000回以上で断線したものを△、20000回未満で断線したものを×とし、表1、2に記載した。また、ケーブルAについては、500000回以上で断線したものを○、500000回未満30000回以上で断線したものを△、30000回未満で断線したものを×とした。またケーブルBについては、100000回以上で断線したものを○、100000回未満10000回以上で断線したものを△、10000回未満で断線したものを×とし、それぞれ、表3に記載した。
Flexibility test A flexibility test using a flexibility test apparatus was performed on a stranded wire, an electric wire, and a cable using a metal-coated carbon fiber wire produced by the above method as a conductor. In the test, a twisted wire of a metal-coated carbon fiber bundle and an electric wire using the metal-coated carbon fiber wire were used as samples, and sandwiched with a mandrel, and a load was applied by hanging a 100 g weight at the lower end to suppress the deflection of the wire bundle. The upper end is fixed with a fixing tool, and in this state, the wire bundle is bent 90 degrees to the left and right along the outer periphery of the mandrel, one reciprocation is performed at a rate of 100 times per minute, and the stranded wire is disconnected. The number of times to do was measured. Evaluation is as follows. For metal-coated carbon fiber electric wires, the ones disconnected at 30000 times or more are indicated as “◯”, the ones disconnected at less than 30000 times at 20000 times or more are indicated as Δ, the ones disconnected at less than 20000 times are indicated as “x”, Described. Moreover, about the cable A, what was cut | disconnected by 500,000 times or more was set to (circle), what was cut | disconnected in less than 500,000 times and 30000 times or more is set to (triangle | delta), and what was disconnected in less than 30000 times was set to x. For cable B, the cable disconnected at 100,000 times or more was marked as “◯”, the cable disconnected at less than 100,000 times at 10000 times or more was Δ, the cable disconnected at less than 10000 times was marked as “x”, and listed in Table 3.

半田試験
炭素繊維上にニッケルめっき、銅めっきを順次施した、金属被覆炭素繊維電線の表面にさらに、銀めっきまたは、スズめっきを施した撚り線に対して、メニスコグラフ法に基づいた半田濡れ性試験(鉛フリー半田、245℃、フラックス ロジン25%、浸漬深さ 1mm、浸漬時間 10s)を行い、ゼロクロスタイムを計測した。評価は、ゼロクロスタイムが2.5s以下のものを良好に半田が濡れたものとして○、2.5s未満のものを×と評価し、その結果を表4に示す。表4から明らかなように全ての実施例で半田濡れ性は良好であった。
Solder test Solder wettability test based on meniscograph method on stranded wire with silver or tin plating on the surface of metal-coated carbon fiber wire with nickel plating and copper plating on carbon fiber. (Lead-free solder, 245 ° C., flux rosin 25%, immersion depth 1 mm, immersion time 10 s) was performed, and the zero cross time was measured. In the evaluation, a case where the zero crossing time was 2.5 s or less was evaluated as “good” when the solder was wet, and a case where the crossing time was less than 2.5 s was evaluated as “poor”. As apparent from Table 4, the solder wettability was good in all examples.

Figure 2012216526
Figure 2012216526

表1には、下地金属層にニッケル(Ni)、ニッケル合金(Ni−Zn)、パラジウム(Pd)、またはコバルト(Co)を用い、下地金属層上に銅層を設けた金属被覆炭素繊維束を、単繊維束、同心撚り、ユニレイ撚り、集合撚り、ロープ撚りの手法により撚り合わせて撚り線とし、その上にフッ素樹脂をコーティングすることで作製した電線に対して、各種評価を行った結果を示す(ただし、銅皮膜/炭素繊維間の密着性の評価に関してはフッ素樹脂をコーティングする前に評価)。
表1より、下地金属層を設けずに銅層を直接めっきした従来例1〜5は、炭素繊維と銅層間の密着性が非常に悪く、密着性確認試験において銅皮膜が容易に剥がれ好ましくない結果となっている。
これに対して、ニッケル、ニッケル合金、パラジウム、コバルトの金属を下地金属として用いた実施例では、何れの金属を下地とした場合も特性評価結果は良好であり、これらの金属は下地金属として好ましいことが実証された。また、単繊維束、または、同心撚り、ユニレイ撚り、集合撚り、ロープ撚りのどの撚り方によって作製した撚り線に関しても、各種評価において良好な結果を示している。この結果、本発明における金属被覆炭素繊維電線では、これらの種々の撚り方を好ましく用いることができる。
Table 1 shows a metal-coated carbon fiber bundle in which nickel (Ni), nickel alloy (Ni—Zn), palladium (Pd), or cobalt (Co) is used for the base metal layer, and a copper layer is provided on the base metal layer. As a result of various evaluations on the electric wire produced by coating a fluorinated resin on a stranded wire by twisting together with a single fiber bundle, concentric twisting, unilay twisting, collective twisting, and rope twisting (However, the evaluation of the adhesion between the copper film and the carbon fiber is evaluated before coating with the fluororesin).
From Table 1, the conventional examples 1 to 5 in which the copper layer is directly plated without providing the base metal layer have very poor adhesion between the carbon fiber and the copper layer, and the copper film is easily peeled off in the adhesion confirmation test, which is not preferable. It is the result.
On the other hand, in the example using nickel, nickel alloy, palladium, and cobalt as the base metal, the property evaluation results are good when any metal is used as the base metal, and these metals are preferable as the base metal. It was proved. In addition, regarding a single fiber bundle or a stranded wire produced by any twisting method of concentric twisting, unilay twisting, collective twisting, and rope twisting, favorable results are shown in various evaluations. As a result, in the metal-coated carbon fiber electric wire in the present invention, these various twisting methods can be preferably used.

Figure 2012216526
Figure 2012216526

表2は、下地金属層にニッケルを用いて、同心撚りにより作製した撚り線を導体とし、ニッケル層の厚さ、銅めっき層の厚さを変更して作製した実施例につき各種評価結果を示す。表2には、炭素繊維径を1とした際のそれぞれの厚さの比を併記して示している。
この結果より、炭素繊維の直径に対しニッケル層厚比が0.004未満であると、銅めっき皮膜の密着性が十分に得られず、ニッケルめっき厚が、0.071より厚いと、屈曲性が乏しくなる結果となっている。
また、銅層の厚さについては、銅厚比が0.005未満であるとヒートサイクル試験後に絶縁樹脂と電線導体(金属表面)間の剥がれが生じ易く、また、1.314より厚いと屈曲性に乏しくなるため、やはり好ましくない結果となっている。
この評価結果より、銅皮膜/炭素繊維間と絶縁樹脂被覆層と導体線間の密着性を考慮すると、下地金属めっき厚は炭素繊維の直径に対して、0.004〜0.071、銅めっき厚は炭素繊維の直径に対して0.005〜1.314であるときに好ましい特性が得られる。
表2では△と評価された項目が2つ以上ある金属被覆炭素繊維線を総合評価△と判断して比較例1〜8とした。しかし、この比較例1〜8の金属被覆炭素繊維線は使用方法によっては十分に実用性のあるものである。
Table 2 shows various evaluation results for Examples prepared by changing the thickness of the nickel layer and the thickness of the copper plating layer using a twisted wire manufactured by concentric twisting using nickel for the base metal layer as a conductor. . Table 2 also shows the ratio of the thicknesses when the carbon fiber diameter is 1.
From this result, if the nickel layer thickness ratio is less than 0.004 with respect to the diameter of the carbon fiber, sufficient adhesion of the copper plating film cannot be obtained, and if the nickel plating thickness is greater than 0.071, the flexibility The result is poor.
As for the thickness of the copper layer, if the copper thickness ratio is less than 0.005, peeling between the insulating resin and the electric wire conductor (metal surface) is likely to occur after the heat cycle test, and if the copper layer is thicker than 1.314, the copper layer is bent. The result is also unfavorable because it is poor in nature.
From this evaluation result, considering the adhesion between the copper film / carbon fiber, the insulating resin coating layer, and the conductor wire, the base metal plating thickness is 0.004 to 0.071 with respect to the diameter of the carbon fiber, copper plating Preferred properties are obtained when the thickness is 0.005 to 1.314 relative to the diameter of the carbon fiber.
In Table 2, metal-coated carbon fiber wires having two or more items evaluated as Δ were judged as comprehensive evaluation Δ, and were designated as Comparative Examples 1-8. However, the metal-coated carbon fiber wires of Comparative Examples 1 to 8 are sufficiently practical depending on the method of use.

Figure 2012216526
Figure 2012216526

表3には、下地金属層をニッケルとした金属被覆炭素繊維電線を用いて作製した電線の屈曲性および、引張強度を調査した結果を示した。ケーブルBにおいては、内部導体、または、外部導体、内部・外部の両導体に使用した場合の結果を示した。
これより、ケーブルA、Bのどのような構成においても屈曲性、引張強度は良好な結果を示した。また、使用する金属被覆炭素繊維線導体の撚り方についても、単繊維束、または、同心撚り、ユニレイ撚り、集合撚り、ロープ撚り等の様々な撚り方を好ましく用いることができることが実証された。
Table 3 shows the results of investigating the bendability and tensile strength of an electric wire produced using a metal-coated carbon fiber electric wire with a base metal layer made of nickel. In cable B, the results when used for the inner conductor, the outer conductor, and both the inner and outer conductors are shown.
As a result, the flexibility and tensile strength were satisfactory in any configuration of the cables A and B. Moreover, it was demonstrated that various twisting methods such as single fiber bundles, concentric twisting, unilay twisting, collective twisting, and rope twisting can be preferably used for twisting the metal-coated carbon fiber wire conductor to be used.

Figure 2012216526
Figure 2012216526

表4に示す実施例50〜59は、下地金属をニッケルとして作製した金属被覆炭素繊維線の表面(銅めっき層上)に、さらに、銀めっきまたはスズめっきを(0.5μm厚以下)施して作製した撚り線を用いて、各種評価を行った結果を示す。これより、二層以上の金属皮膜層を形成した場合であっても、各種特性において良好な結果を示し、さらに、表面に銀、または、スズめっき層を形成することで、良好な半田濡れ性を示すことが実証された。したがって、炭素繊維上に、二層以上の金属層を形成することによって、各種特性を低下させずに半田接合性や環境耐性を付与することができることが示された。   In Examples 50 to 59 shown in Table 4, silver plating or tin plating (0.5 μm thickness or less) was further applied to the surface (on the copper plating layer) of the metal-coated carbon fiber wire produced using nickel as the base metal. The result of having performed various evaluation using the produced strand wire is shown. From this, even when two or more metal film layers are formed, good results in various properties are shown, and furthermore, by forming a silver or tin plating layer on the surface, good solder wettability It was demonstrated to show. Therefore, it was shown that by forming two or more metal layers on the carbon fiber, it is possible to impart solderability and environmental resistance without degrading various characteristics.

本発明は、引張強度、耐熱性に優れ、かつ非常に軽量である炭素繊維の表面に良導電率の銅層を形成し、必要により該銅層の上に銀層又はスズ層を設けて電線としたもので、導電性を満足しながら、高強度化、軽量化が図られ、屈曲性、半田濡れ性に優れる金属被覆炭素繊維電線を提供することができる。   In the present invention, a copper layer having a good conductivity is formed on the surface of a carbon fiber which is excellent in tensile strength and heat resistance and is very light, and if necessary, a silver layer or a tin layer is provided on the copper layer. Therefore, it is possible to provide a metal-coated carbon fiber electric wire that is high in strength and light weight while satisfying conductivity, and is excellent in flexibility and solder wettability.

1 金属被覆炭素繊維線
2 炭素繊維
3 下地層
4 銅層
5 スズ層または銀層
10 金属被覆炭素繊維電線
11 電線導体
12 絶縁層
20 金属被覆炭素繊維電線
21 保護被覆層
30 金属被覆炭素繊維電線
31 内部導体
32 絶縁層
33 外部導体
34 保護被覆層
DESCRIPTION OF SYMBOLS 1 Metal-coated carbon fiber wire 2 Carbon fiber 3 Underlayer 4 Copper layer 5 Tin layer or silver layer 10 Metal-coated carbon fiber electric wire 11 Electric wire conductor 12 Insulating layer 20 Metal-coated carbon fiber electric wire 21 Protective coating layer 30 Metal-coated carbon fiber electric wire 31 Inner conductor 32 Insulating layer 33 Outer conductor 34 Protective coating layer

Claims (9)

炭素繊維の表面に設けたニッケル、ニッケル合金、パラジウム、コバルトより選択される一種からなる下地金属層上に、1乃至複数層の金属層が設けられた金属被覆炭素繊維線を導体とし、該導体の周囲に絶縁被覆層が設けられている金属被覆炭素繊維電線。   A metal-coated carbon fiber wire in which one or more metal layers are provided on a base metal layer made of one selected from nickel, nickel alloy, palladium, and cobalt provided on the surface of carbon fiber is used as a conductor. A metal-coated carbon fiber electric wire provided with an insulating coating layer around it. 前記導体が、金属被服炭素繊維線の単線、或いは複数本を束ねた束線、同心撚り、ユニレイ撚り、集合撚り又はロープ撚りで撚った撚線のいずれかである請求項1に記載の金属被覆炭素繊維電線。   2. The metal according to claim 1, wherein the conductor is one of a metal-coated carbon fiber wire, a bundle of a plurality of bundles, a concentric twist, a unilay twist, a collective twist, or a twisted twisted rope. Coated carbon fiber wire. 内部導体、該内部導体の外周に絶縁層、外部導体、保護絶縁層がこの順に設けられている電線であって、前記内部導体と前記外部導体のいずれか一方または両方が、炭素繊維の表面に設けたニッケル、ニッケル合金、パラジウム、コバルトより選択される一種からなる下地金属層上に1乃至複数層の金属層が設けられた金属被覆炭素繊維線からなる金属被覆炭素繊維電線。   An inner conductor, an electric wire in which an outer layer, an outer conductor, and a protective insulating layer are provided in this order on the outer periphery of the inner conductor, and either or both of the inner conductor and the outer conductor are on the surface of the carbon fiber A metal-coated carbon fiber electric wire comprising a metal-coated carbon fiber wire in which one or more metal layers are provided on a base metal layer made of one selected from nickel, nickel alloy, palladium and cobalt. 前記内部導体が、金属被服炭素繊維線の単線、あるいは複数本を束ねた束線、同心撚り、ユニレイ撚り、集合撚り又はロープ撚りで撚った撚線のいずれかである請求項3に記載の金属被覆炭素繊維電線。   The said internal conductor is either the single wire of a metal-coated carbon fiber wire, or the bundle wire which bundled two or more, the concentric twist, the unilay twist, the collective twist, or the twisted wire twisted by the rope twist. Metal-coated carbon fiber wire. 前記外部導体が、金属被服炭素繊維線の単線、あるいは複数本を束ねた束線、同心撚り、ユニレイ撚り、集合撚り又はロープ撚りで撚った撚線のいずれかである請求項3に記載の金属被覆炭素繊維電線。   The said outer conductor is either the single wire of a metal-coated carbon fiber wire, or the bundle wire which bundled two or more, the concentric twist, the unilay twist, the collective twist, or the twisted wire twisted by the rope twist. Metal-coated carbon fiber wire. 請求項1または2に記載の金属被覆炭素繊維電線を複数本束ね、その周囲に保護絶縁層を設けた金属被覆炭素繊維電線。   A metal-coated carbon fiber electric wire in which a plurality of the metal-coated carbon fiber electric wires according to claim 1 or 2 are bundled and a protective insulating layer is provided around the bundle. 請求項3乃至5のいずれかに記載の金属被覆炭素繊維電線を複数本束ね、その周囲に保護絶縁層を設けた金属被覆炭素繊維電線。   A metal-coated carbon fiber electric wire in which a plurality of the metal-coated carbon fiber electric wires according to any one of claims 3 to 5 are bundled and a protective insulating layer is provided around the bundle. 前記金属層が銅層または銅層の上に設けた銀層または銅層の上に設けたスズ層である請求項1乃至7のいずれかに記載の金属被覆炭素繊維電線。   The metal-coated carbon fiber electric wire according to any one of claims 1 to 7, wherein the metal layer is a copper layer or a silver layer provided on the copper layer or a tin layer provided on the copper layer. 前記炭素繊維は直径が3μm以上、20μm以下であり、該炭素繊維線の直径Xと下地金属層の厚さYと金属層の厚さZとの比が
X:Y:Z=1:(0.004〜0.071):(0.005〜1.314)
であることを特徴とする請求項1乃至8のいずれかに記載の金属被覆炭素繊維電線。
The carbon fiber has a diameter of 3 μm or more and 20 μm or less, and the ratio of the diameter X of the carbon fiber wire to the thickness Y of the base metal layer and the thickness Z of the metal layer is X: Y: Z = 1: (0 .004-0.071): (0.005-1.314)
The metal-coated carbon fiber electric wire according to any one of claims 1 to 8, wherein
JP2012074178A 2011-03-30 2012-03-28 Metal-coated carbon fiber wire Pending JP2012216526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074178A JP2012216526A (en) 2011-03-30 2012-03-28 Metal-coated carbon fiber wire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011074754 2011-03-30
JP2011074754 2011-03-30
JP2012074178A JP2012216526A (en) 2011-03-30 2012-03-28 Metal-coated carbon fiber wire

Publications (1)

Publication Number Publication Date
JP2012216526A true JP2012216526A (en) 2012-11-08

Family

ID=47269095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074178A Pending JP2012216526A (en) 2011-03-30 2012-03-28 Metal-coated carbon fiber wire

Country Status (1)

Country Link
JP (1) JP2012216526A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002812A1 (en) * 2014-06-30 2016-01-07 矢崎総業株式会社 Multiple-circuit cable
JP2016012496A (en) * 2014-06-30 2016-01-21 矢崎総業株式会社 Multiple circuit cable
CN106498717A (en) * 2016-11-08 2017-03-15 长春工业大学 A kind of method that carbon fiber surface plates multiple layer metal
JP2017142960A (en) * 2016-02-09 2017-08-17 日立金属株式会社 Cable for movable part wiring and flat cable for movable part wiring
JP2018200820A (en) * 2017-05-29 2018-12-20 名古屋メッキ工業株式会社 Fiber conductor, fiber electric wire and method for manufacturing the same
KR101940770B1 (en) * 2018-07-31 2019-01-21 주식회사 비에스엠신소재 Method for manufacturing detection wires using carbon fiber and buried piping in which detection wires are integrated
JP2019183178A (en) * 2018-03-31 2019-10-24 名古屋メッキ工業株式会社 Plating fiber and electric wire
JP2020113471A (en) * 2019-01-15 2020-07-27 日立金属株式会社 Conductive fiber, cable, and manufacturing method of conductive fiber
EP4002393A1 (en) 2020-11-18 2022-05-25 Delta Plus Co., Ltd. Composite electric wire and method for manufacturing composite electric wire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189811A (en) * 1989-01-17 1990-07-25 Opt D D Meruko Lab:Kk Conductor
JPH0374008A (en) * 1989-08-14 1991-03-28 Furukawa Electric Co Ltd:The Aerial transmission line
JPH08279312A (en) * 1995-04-05 1996-10-22 Tokyo Seiko Co Ltd Wire cable for instrumentation
JP2002538581A (en) * 1999-02-23 2002-11-12 ユーロコプター・ドイッチェランド・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Cable shield made of fiber composite material
JP2007194084A (en) * 2006-01-19 2007-08-02 Asahi Electronics:Kk Cable with shield
JP2010106316A (en) * 2008-10-30 2010-05-13 Du Pont Toray Co Ltd Method for producing electroconductive fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189811A (en) * 1989-01-17 1990-07-25 Opt D D Meruko Lab:Kk Conductor
JPH0374008A (en) * 1989-08-14 1991-03-28 Furukawa Electric Co Ltd:The Aerial transmission line
JPH08279312A (en) * 1995-04-05 1996-10-22 Tokyo Seiko Co Ltd Wire cable for instrumentation
JP2002538581A (en) * 1999-02-23 2002-11-12 ユーロコプター・ドイッチェランド・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Cable shield made of fiber composite material
JP2007194084A (en) * 2006-01-19 2007-08-02 Asahi Electronics:Kk Cable with shield
JP2010106316A (en) * 2008-10-30 2010-05-13 Du Pont Toray Co Ltd Method for producing electroconductive fiber

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002812A1 (en) * 2014-06-30 2016-01-07 矢崎総業株式会社 Multiple-circuit cable
JP2016012496A (en) * 2014-06-30 2016-01-21 矢崎総業株式会社 Multiple circuit cable
JP2017142960A (en) * 2016-02-09 2017-08-17 日立金属株式会社 Cable for movable part wiring and flat cable for movable part wiring
CN106498717A (en) * 2016-11-08 2017-03-15 长春工业大学 A kind of method that carbon fiber surface plates multiple layer metal
CN106498717B (en) * 2016-11-08 2018-12-28 长春工业大学 A kind of method of carbon fiber surface plating multiple layer metal
JP2018200820A (en) * 2017-05-29 2018-12-20 名古屋メッキ工業株式会社 Fiber conductor, fiber electric wire and method for manufacturing the same
JP2019183178A (en) * 2018-03-31 2019-10-24 名古屋メッキ工業株式会社 Plating fiber and electric wire
JP7014414B2 (en) 2018-03-31 2022-02-01 名古屋メッキ工業株式会社 Plating fiber and electric wire
KR101940770B1 (en) * 2018-07-31 2019-01-21 주식회사 비에스엠신소재 Method for manufacturing detection wires using carbon fiber and buried piping in which detection wires are integrated
JP2020113471A (en) * 2019-01-15 2020-07-27 日立金属株式会社 Conductive fiber, cable, and manufacturing method of conductive fiber
EP4002393A1 (en) 2020-11-18 2022-05-25 Delta Plus Co., Ltd. Composite electric wire and method for manufacturing composite electric wire

Similar Documents

Publication Publication Date Title
JP2012216526A (en) Metal-coated carbon fiber wire
EP3367390A1 (en) Electrically conductive carbon nanotube wire having a metallic coating and methods of forming same
KR20180096525A (en) Metallic/carbon nanotube composite wire
US20200024764A1 (en) Plated wire rod material, method for producing same, and cable, electric wire, coil and spring member, each of which is formed using same
JP2009004256A (en) Compound conductor and cable for cabling using it
JP5377767B2 (en) Automotive wire
WO2015109060A1 (en) High strength, light weight, high conductivity hybrid cable conductor
JP6535136B2 (en) SURFACE TREATMENT MATERIAL AND PARTS PRODUCED BY USING THE SAME
CN205247952U (en) High temperature resistant electromagnetic shield copper line
US9412483B2 (en) Composite wire and contact element
JP2014150022A (en) Insulated wire
CN207068490U (en) One kind plating carbon fiber core wire
CN211427863U (en) Electric wire and cable
CN117157432A (en) Wire and cable for space applications
JP2014086390A (en) Insulated wire
CN102306514A (en) Super-soft light wire cable with rated voltage of 250V and preparation technology thereof
CN202034090U (en) High temperature resistant and light LVDS data bus cable
JP6746445B2 (en) coaxial cable
CN219512862U (en) Ultra-light cable for aerospace
CN112908536B (en) High-performance copper-clad aluminum wire
JP2019114447A (en) Compression stranded wire conductor and production method thereof
US11013158B1 (en) Electrical shielding material composed of metallized stainless steel or low carbon steel monofilament yarns
US20220013253A1 (en) Cable with improved corrosion resistance
CN219497411U (en) Heat-conducting anti-adhesion coaxial cable
CN213150410U (en) High-temperature-resistant flexible cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160823