Nothing Special   »   [go: up one dir, main page]

JP2012209416A - Solid-state imaging device, method for manufacturing the same, and electronic information equipment - Google Patents

Solid-state imaging device, method for manufacturing the same, and electronic information equipment Download PDF

Info

Publication number
JP2012209416A
JP2012209416A JP2011073661A JP2011073661A JP2012209416A JP 2012209416 A JP2012209416 A JP 2012209416A JP 2011073661 A JP2011073661 A JP 2011073661A JP 2011073661 A JP2011073661 A JP 2011073661A JP 2012209416 A JP2012209416 A JP 2012209416A
Authority
JP
Japan
Prior art keywords
conductivity type
solid
detection unit
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011073661A
Other languages
Japanese (ja)
Other versions
JP5706212B2 (en
Inventor
Hidetsugu Koyama
英嗣 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011073661A priority Critical patent/JP5706212B2/en
Publication of JP2012209416A publication Critical patent/JP2012209416A/en
Application granted granted Critical
Publication of JP5706212B2 publication Critical patent/JP5706212B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve charge voltage conversion ratio to obtain an image signal of higher image quality by reducing capacity of an electronic charge detection part even when a pixel size becomes small.SOLUTION: A P-type well 3 is provided at an upper part of an N-type substrate 2, an embedded photodiode 6 and an electric charge detection part 7 are provided in the P-type well 3, and the P-type well 3 at a lower part of the electric charge detection part 7 is completely depleted. Thus, junction capacity C of the electric charge detection part 7 is sharply reduced by depleting the P-type well 3 sandwiched between the electric charge detection part 7 and the N-type substrate 2.

Description

本発明は、被写体からの画像光を光電変換して撮像する半導体素子で構成された固体撮像素子およびその製造方法、この固体撮像素子を画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器に関する。   The present invention relates to a solid-state imaging device configured by a semiconductor element that photoelectrically converts image light from a subject and images the same, and a manufacturing method thereof, for example, a digital video camera and a digital device using the solid-state imaging device as an image input device in an imaging unit. The present invention relates to an electronic information device such as a digital camera such as a still camera, an image input camera such as a surveillance camera, a scanner device, a facsimile device, a television phone device, and a camera-equipped mobile phone device.

従来、増幅型固体撮像素子としては、増幅機能を持たせた画素部とその画素部の周辺に走査回路を有し、その走査回路により画素データを読み出す増幅型固体撮像素子が提案されている。特に、画素構成を周辺の駆動回路および信号処理回路と一体化するのに有利なCMOS(コンプリメンタリ・メタル・オキサイド・セミコンダクタ)により構成されたAPS(Active Pixel Sensor)型イメージセンサが知られている。   2. Description of the Related Art Conventionally, as an amplification type solid-state imaging device, an amplification type solid-state imaging device has been proposed which has a pixel unit having an amplification function and a scanning circuit around the pixel unit and reads pixel data by the scanning circuit. In particular, there is known an APS (Active Pixel Sensor) type image sensor constituted by CMOS (Complementary Metal Oxide Semiconductor) which is advantageous for integrating a pixel configuration with a peripheral driving circuit and a signal processing circuit.

上記APS型イメージセンサは、通常、1画素部内に光電変換部、リセット部、増幅部および画素選択部を形成する必要がある。このため、APS型イメージセンサには、通常、フォトダイオードからなる光電変換部の他に、3〜4個のMOSトランジスタが用いられている。   In the APS type image sensor, it is usually necessary to form a photoelectric conversion unit, a reset unit, an amplification unit, and a pixel selection unit in one pixel unit. For this reason, in the APS type image sensor, 3 to 4 MOS transistors are usually used in addition to the photoelectric conversion unit made of a photodiode.

ところが、1画素部当たり3〜4個のMOSトランジスタが必要であれば、画素サイズの小型化の制約となるため、1画素部当たりのトランジスタの数を低減する方法が例えば特許文献1などに提案されている。   However, if 3 to 4 MOS transistors are required per pixel portion, it becomes a restriction for downsizing the pixel size. Therefore, a method for reducing the number of transistors per pixel portion is proposed in Patent Document 1, for example. Has been.

図10は、従来の増幅型固体撮像素子の要部構成例を模式的に示す縦断面図である。   FIG. 10 is a longitudinal sectional view schematically showing an example of the configuration of the main part of a conventional amplification type solid-state imaging device.

図10において、従来の増幅型固体撮像素子100は、P型基板101の上部にP型ウェル102が設けられている。P型ウェル102内の各画素部毎に、表面酸化膜103下の表面高濃度拡散層104により埋め込まれ、入射光を光電変換して信号電荷を発生させる埋め込みフォトダイオード105と、この埋め込みフォトダイオード105に蓄積された信号電荷を電荷検出部106に転送するために電荷転送制御電圧が印加されるゲート107aが、埋め込みフォトダイオード105と電荷検出部106間のチャネル領域上に表面酸化膜103を介して設けられた電荷転送トランジスタ107と、電荷検出部106に転送された信号電荷に対応した検出電圧を基準電圧にリセットするためにリセット制御電圧が印加されるゲート108aが、電荷検出部106とVDD電源電位が印加されている拡散層109間のチャネル領域上に表面酸化膜103を介して設けられたリセットトランジスタ108とを有している。これらの表面高濃度拡散層104、埋め込みフォトダイオード105および各トランジスタ107,108の周囲は素子分離酸化膜103(例えばSTIなど)によって画素部毎に素子分離されている。   In FIG. 10, the conventional amplification type solid-state imaging device 100 is provided with a P-type well 102 on a P-type substrate 101. A buried photodiode 105 that is buried in the surface high-concentration diffusion layer 104 under the surface oxide film 103 for each pixel portion in the P-type well 102 and photoelectrically converts incident light to generate a signal charge, and the buried photodiode A gate 107 a to which a charge transfer control voltage is applied in order to transfer the signal charge accumulated in 105 to the charge detection unit 106 is provided on the channel region between the embedded photodiode 105 and the charge detection unit 106 via the surface oxide film 103. The charge transfer transistor 107 and the gate 108a to which a reset control voltage is applied to reset the detection voltage corresponding to the signal charge transferred to the charge detection unit 106 to the reference voltage are connected to the charge detection unit 106 and the VDD A surface oxide film 103 is interposed on the channel region between the diffusion layers 109 to which the power supply potential is applied. And a reset transistor 108 provided. The surface high-concentration diffusion layer 104, the buried photodiode 105, and the periphery of each of the transistors 107 and 108 are element-isolated for each pixel portion by an element isolation oxide film 103 (for example, STI).

ここでは、既存技術のため明記しないが、電荷検出部106からソースフォロワ回路などの増幅器(増幅トランジスタ回路)が接続されており、電荷検出部106に転送された信号電荷に対応した検出電圧に応じて増幅トランジスタが検出電圧を増幅して画素毎の撮像信号を出力する。フォトダイオード105は埋め込み型であり、フォトダイオード105からの信号電荷転送を完全とすれば、極めて低ノイズ化できて、高画質の画像信号を得ることが可能となることが知られている。   Here, although not specified because of the existing technology, an amplifier (amplification transistor circuit) such as a source follower circuit is connected from the charge detection unit 106, and the detection voltage corresponding to the signal charge transferred to the charge detection unit 106 is determined. The amplification transistor amplifies the detection voltage and outputs an image pickup signal for each pixel. It is known that the photodiode 105 is a buried type, and if signal charge transfer from the photodiode 105 is complete, noise can be extremely reduced and a high-quality image signal can be obtained.

この電荷検出部106において、フォトダイオード105からの信号電荷△Qsigを電圧信号△Vsigに変換する電荷電圧変換効率ηは、電荷検出部106の容量をCFDとすると、
η=G・△Vsig/△Qsig=G/CFD
となる。ここで、Gは、増幅器(増幅トランジスタ)のゲインであり、通常、ソースフォロワ回路を用いた場合、1より若干小さい値(〜0.9)を示す。電荷電圧変換効率ηを大きくするには電荷検出部106の容量CFDを小さくする必要がある。この電荷検出部106の容量CFDは、電荷検出部106に接続された電荷転送トランジスタ107のドレイン側接合容量と増幅器(増幅トランジスタ)の入力容量および基板(この場合Pウエル102)とのジャンクション容量、配線間のカップリング容量の総和である。変換電圧信号Vsig=Qsig(信号電荷)/電荷検出部106の容量CFDであるので、電荷検出部106の容量CFDが小さければ小さいほど、変換電圧Vの値が大きくなって電荷電圧変換率ηがよくなる。
In this charge detection unit 106, the charge voltage conversion efficiency η for converting the signal charge ΔQsig from the photodiode 105 into the voltage signal ΔVsig is:
η = G ・ △ Vsig / △ Qsig = G / CFD
It becomes. Here, G is the gain of the amplifier (amplification transistor), and usually shows a value (˜0.9) slightly smaller than 1 when a source follower circuit is used. In order to increase the charge-voltage conversion efficiency η, it is necessary to reduce the capacitance CFD of the charge detection unit 106. The capacitance CFD of the charge detection unit 106 is the junction capacitance between the drain side junction capacitance of the charge transfer transistor 107 connected to the charge detection unit 106, the input capacitance of the amplifier (amplification transistor), and the substrate (in this case, the P well 102), This is the total coupling capacitance between wirings. Since the conversion voltage signal Vsig = Qsig (signal charge) / capacitance CFD of the charge detection unit 106, the smaller the capacitance CFD of the charge detection unit 106, the larger the value of the conversion voltage V and the charge-voltage conversion rate η. Get better.

したがって、共通の信号電荷蓄積部に接続されるフォトダイオード105および電荷転送トランジスタ107の数が多くなるほど、電荷検出部106に接続された電荷転送トランジスタ107のドレイン側接合容量とPウエル102とのジャンクション容量、ならびに配線間のカップリング容量が増加し、これによって、電荷電圧変換率ηが低下するという問題がある。   Therefore, as the number of photodiodes 105 and charge transfer transistors 107 connected to the common signal charge storage unit increases, the junction between the drain-side junction capacitance of the charge transfer transistor 107 connected to the charge detection unit 106 and the P well 102 is increased. There is a problem in that the capacitance and the coupling capacitance between the wirings are increased, thereby reducing the charge-voltage conversion rate η.

特許文献1には、上記電荷検出部106の容量CFDを低減するために、電荷検出部106とPウエル102とのジャンクション容量を下げる方法が提案されている。この事例として、図11に示すように、従来の増幅型固体撮像装置100Aにおいて、電荷検出部106の高濃度拡散層下に連続して直に低濃度拡散層106A(電界緩和層N−)を形成している。   Patent Document 1 proposes a method for reducing the junction capacitance between the charge detection unit 106 and the P well 102 in order to reduce the capacitance CFD of the charge detection unit 106. As an example of this, as shown in FIG. 11, in the conventional amplification type solid-state imaging device 100A, the low-concentration diffusion layer 106A (electric field relaxation layer N−) is continuously and directly below the high-concentration diffusion layer of the charge detection unit 106. Forming.

特開2004−289134号公報JP 2004-289134 A

上記特許文献1に開示されている従来の構成では、上記電荷検出部106の高濃度拡散層のN+濃度1020 /cm3、Pウエル濃度1016 /cm3、低濃度拡散層106AのN−濃度1016/cm3とした場合、図10では電荷検出部106とPウエル102間の空乏層は0.66μmであったのを、図11では0.86μmとなって、空乏層の幅が1.3倍と増え、電荷検出部106とP型基板101とのジャンクション容量は、空乏層の幅に反比例するため、77パーセントに低減できるものの、電荷検出部106とP型基板101とのジャンクション容量が77パーセントにしか低減できない。このときのPN逆バイアス電圧を3.0Vとしている。 In the conventional configuration disclosed in Patent Document 1, the N + concentration of 10 20 / cm 3 of the high concentration diffusion layer, the P well concentration of 10 16 / cm 3 of the charge detection unit 106, and the N− concentration of the low concentration diffusion layer 106 A are used. When the concentration is 10 16 / cm 3 , the depletion layer between the charge detection unit 106 and the P well 102 in FIG. 10 is 0.66 μm, but in FIG. 11, it is 0.86 μm, and the width of the depletion layer is The junction capacitance between the charge detection unit 106 and the P-type substrate 101 is inversely proportional to the width of the depletion layer and can be reduced to 77%, but the junction between the charge detection unit 106 and the P-type substrate 101 is increased by 1.3 times. The capacity can only be reduced to 77 percent. The PN reverse bias voltage at this time is 3.0V.

本発明は、上記従来の問題を解決するもので、画素サイズが小さくなって感度が下がっても上記電荷検出部の容量を更に低減することにより電荷電圧変換率を更に向上させて更なる高画質の画像信号を得ることができる固体撮像素子およびその製造方法、この固体撮像素子を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器を提供することを目的とする。   The present invention solves the above-described conventional problems, and further improves the charge-voltage conversion rate by further reducing the capacitance of the charge detection unit even when the pixel size is reduced and the sensitivity is lowered, thereby further improving the image quality. It is an object of the present invention to provide a solid-state imaging device capable of obtaining the image signal and a manufacturing method thereof, and an electronic information device such as a camera-equipped mobile phone device using the solid-state imaging device as an image input device in an imaging unit.

本発明の固体撮像素子は、入射光を光電変換して撮像する複数の受光部が2次元状に設けられて複数の画素部が構成された固体撮像素子において、該画素部毎に、該受光部の第1導電型光電変換部と、該第1導電型光電変換部から電荷転送された信号電荷を信号電圧に変換する第1導電型信号検出部とを有し、第1導電型基板の上部に第2導電型ウエルが設けられ、該第2導電型ウエル内に該第1導電型光電変換部および該第1導電型信号検出部が設けられており、該第1導電型信号検出部の下方の第2導電型ウエルは完全に空乏化されているものであり、そのことにより上記目的が達成される。   The solid-state imaging device of the present invention is a solid-state imaging device in which a plurality of light-receiving portions that photoelectrically convert incident light to provide an image is provided in a two-dimensional manner to form a plurality of pixel portions. A first conductivity type photoelectric conversion unit, and a first conductivity type signal detection unit that converts a signal charge transferred from the first conductivity type photoelectric conversion unit into a signal voltage. A second conductivity type well is provided in the upper part, and the first conductivity type photoelectric conversion unit and the first conductivity type signal detection unit are provided in the second conductivity type well, and the first conductivity type signal detection unit is provided. The second conductivity type well below is completely depleted, thereby achieving the above object.

また、好ましくは、本発明の固体撮像素子における第1導電型信号検出部の下方位置で、前記第1導電型基板と前記第2導電型ウエルの境界部を含む位置に、該第1導電型信号検出部の不純物濃度よりも低濃度の第1導電型拡散層が設けられている。   Preferably, the first conductivity type is located at a position below the first conductivity type signal detection unit in the solid-state imaging device according to the present invention and including a boundary between the first conductivity type substrate and the second conductivity type well. A first conductivity type diffusion layer having a lower concentration than the impurity concentration of the signal detection unit is provided.

さらに、好ましくは、本発明の固体撮像素子における低濃度の第1導電型拡散層は、前記第1導電型信号検出部との間に前記第2導電型ウエルが介在するように、該第1導電型信号検出部下から深さ方向に離れた位置に深部電界緩和層として設けられている。   Still preferably, in the solid-state imaging device according to the present invention, the first conductivity type diffusion layer having a low concentration has the first conductivity type well so that the second conductivity type well is interposed between the first conductivity type signal detection unit and the first conductivity type signal detection unit. A deep field relaxation layer is provided at a position away from the bottom of the conductivity type signal detection unit in the depth direction.

さらに、好ましくは、本発明の固体撮像素子における第1導電型光電変換部の下方の第2導電型ウエルが完全に空乏化されている。   Further, preferably, the second conductivity type well below the first conductivity type photoelectric conversion unit in the solid-state imaging device of the present invention is completely depleted.

さらに、好ましくは、本発明の固体撮像素子における第1導電型光電変換部の下方の第2導電型ウエルと前記第1導電型基板の間の境界の深さ位置が、当該第2導電型ウエルに中性領域が存在する場合に比べて浅く形成されている。   More preferably, the depth position of the boundary between the second conductivity type well below the first conductivity type photoelectric conversion unit and the first conductivity type substrate in the solid-state imaging device of the present invention is the second conductivity type well. It is formed shallower than the case where the neutral region exists.

さらに、好ましくは、本発明の固体撮像素子における第1導電型信号検出部の下方の第2導電型ウエルは、その周囲の第2導電型ウエルよりも深さが浅く不純物濃度が薄く設定されている。   More preferably, the second conductivity type well below the first conductivity type signal detection unit in the solid-state imaging device of the present invention is set to have a shallower depth and a lower impurity concentration than the surrounding second conductivity type well. Yes.

さらに、好ましくは、本発明の固体撮像素子における第1導電型信号検出部の下方の第2導電型ウエルと前記第1導電型基板との境界において、該第1導電型信号検出部側に平坦部から突出した断面突出部が形成されている。   Further preferably, in the solid-state imaging device according to the present invention, at the boundary between the second conductivity type well below the first conductivity type signal detection unit and the first conductivity type substrate, it is flat on the first conductivity type signal detection unit side. The cross-sectional protrusion part protruded from the part is formed.

さらに、好ましくは、本発明の固体撮像素子における第1導電型光電変換部の下方の第2導電型ウエルと前記第1導電型基板との境界は平坦部から凹んだ段差部になっている。   More preferably, the boundary between the second conductivity type well below the first conductivity type photoelectric conversion portion and the first conductivity type substrate in the solid-state imaging device of the present invention is a stepped portion recessed from a flat portion.

さらに、好ましくは、本発明の固体撮像素子における第1導電型信号検出部に電荷転送された信号電荷に対応した信号電圧に応じて信号を増幅して出力する増幅器をさらに有する。   Further preferably, the solid-state imaging device of the present invention further includes an amplifier that amplifies and outputs a signal according to a signal voltage corresponding to the signal charge transferred to the first conductivity type signal detection unit.

さらに、好ましくは、本発明の固体撮像素子における第1導電型はN型であり、前記第2導電型はP型である。   Further preferably, in the solid-state imaging device of the present invention, the first conductivity type is an N type, and the second conductivity type is a P type.

さらに、好ましくは、本発明の固体撮像素子における第1導電型光電変換部は、該第1導電型光電変換部の表面側に設けられた第2導電型表面高濃度拡散層と、該第1導電型光電変換部の前記第1導電型基板側に設けられた前記第2導電型ウエルとにより囲まれた埋め込み型フォトダイオードで構成されている。   Still preferably, in a solid-state imaging device according to the present invention, the first conductivity type photoelectric conversion unit includes a second conductivity type surface high-concentration diffusion layer provided on the surface side of the first conductivity type photoelectric conversion unit, and the first conductivity type photoelectric conversion unit. It is composed of a buried photodiode surrounded by the second conductivity type well provided on the first conductivity type substrate side of the conductivity type photoelectric conversion unit.

本発明の固体撮像素子の製造方法は、本発明の上記固体撮像素子の製造方法において、入射光を光電変換して撮像する第1導電型光電変換部から電荷転送された信号電荷を信号電圧に変換する第1導電型信号検出部となる領域の下方領域に第1導電型不純物をイオン注入して、前記第1導電型基板と前記第2導電型ウエルの境界部を含む位置に該第1導電型信号検出部の不純物濃度よりも低濃度の第1導電型拡散層を形成する第1導電型拡散層形成ステップを有するものであり、そのことにより上記目的が達成される。   The method for manufacturing a solid-state imaging device according to the present invention is the method for manufacturing a solid-state imaging device according to the present invention, wherein the signal charge transferred from the first conductivity type photoelectric conversion unit that performs photoelectric conversion of incident light to capture an image is used as a signal voltage. A first conductivity type impurity is ion-implanted in a region below the region to be converted to the first conductivity type signal detection unit, and the first conductivity type impurity is ion-implanted at a position including the boundary between the first conductivity type substrate and the second conductivity type well. It has a first conductivity type diffusion layer forming step for forming a first conductivity type diffusion layer having a lower concentration than the impurity concentration of the conductivity type signal detection unit, thereby achieving the above object.

本発明の固体撮像素子の製造方法は、本発明の上記固体撮像素子の製造方法において、入射光を光電変換して撮像する第1導電型光電変換部から電荷転送された信号電荷を信号電圧に変換する第1導電型信号検出部となる領域の下方領域以外の領域に第2導電型不純物をイオン注入した後に熱拡散処理して回路用第2導電型ウェルを形成することにより、該回路用第2導電型ウェルと第1導電型基板との境界の断面構造として該第1導電型信号検出部側に突出した断面突出部を形成する回路用第2導電型ウェル形成ステップと、該第1導電型光電変換部となる領域下に、第2導電型不純物をイオン注入して光電変換部用第2導電型ウェルを形成することにより、該光電変換部用第2導電型ウェルと該第1導電型基板との境界の断面構造として該第1導電型基板側に凹んだ断面段差部を形成する光電変換部用第2導電型ウェル形成ステップとを有するものであり、そのことにより上記目的が達成される。   The method for manufacturing a solid-state imaging device according to the present invention is the method for manufacturing a solid-state imaging device according to the present invention, wherein the signal charge transferred from the first conductivity type photoelectric conversion unit that performs photoelectric conversion of incident light to capture an image is used as a signal voltage. A second conductivity type well for a circuit is formed by ion-implanting a second conductivity type impurity in a region other than a region below the region to be converted into a first conductivity type signal detection unit, and then heat diffusion treatment to form a second conductivity type well for the circuit. A circuit second conductivity type well forming step for forming a cross-sectional protrusion projecting toward the first conductivity type signal detection unit as a cross-sectional structure of a boundary between the second conductivity type well and the first conductivity type substrate; The second conductive type well for the photoelectric conversion unit and the first conductive type well are formed by ion-implanting the second conductive type impurity under the region to be the conductive photoelectric conversion unit to form the second conductive type well for the photoelectric conversion unit. As a cross-sectional structure at the boundary with the conductive substrate Those having a second conductivity type well formation step photoelectric conversion unit for forming the cross-sectional stepped portion recessed on the first conductive type substrate, the object can be achieved.

本発明の電子情報機器は、本発明の上記固体撮像素子を画像入力デバイスとして撮像部に用いたものであり、そのことにより上記目的が達成される。   The electronic information device of the present invention uses the solid-state imaging device of the present invention as an image input device in an imaging unit, and thereby achieves the above object.

上記構成により、以下、本発明の作用を説明する。   With the above configuration, the operation of the present invention will be described below.

本発明においては、画素部毎に、受光部の第1導電型光電変換部と、第1導電型光電変換部から電荷転送された信号電荷を信号電圧に変換する第1導電型信号検出部とを有し、第1導電型基板の上部に第2導電型ウエルが設けられ、第2導電型ウエル内に第1導電型光電変換部および第1導電型信号検出部が設けられており、第1導電型信号検出部の下方の第2導電型ウエルは完全に空乏化されている。   In the present invention, for each pixel unit, a first conductivity type photoelectric conversion unit of a light receiving unit, a first conductivity type signal detection unit that converts signal charge transferred from the first conductivity type photoelectric conversion unit into a signal voltage, and A second conductivity type well is provided on the first conductivity type substrate, a first conductivity type photoelectric conversion unit and a first conductivity type signal detection unit are provided in the second conductivity type well, The second conductivity type well below the one conductivity type signal detection unit is completely depleted.

これによって、第1導電型信号検出部の下方の第2導電型ウエルは完全に空乏化されていることにより、第1導電型信号検出部のジャンクション容量Cを大幅に下げることができ、画素サイズが小さくなりかつ、上記第1導電型信号検出部のジャンクション容量Cを更に低減することにより電荷電圧変換率を更に向上させて更なる高画質の画像信号を得ることが可能となる。   As a result, the second conductivity type well below the first conductivity type signal detection unit is completely depleted, so that the junction capacitance C of the first conductivity type signal detection unit can be greatly reduced, and the pixel size is reduced. Further, by further reducing the junction capacitance C of the first conductivity type signal detector, it is possible to further improve the charge-voltage conversion rate and obtain a higher quality image signal.

以上により、本発明によれば、第1導電型信号検出部の下方の第2導電型ウエルは完全に空乏化されていることにより、第1導電型信号検出部のジャンクション容量Cを大幅に下げることができて、画素サイズが小さくなっても、上記第1導電型信号検出部のジャンクション容量Cを更に低減することにより電荷電圧変換率を更に向上させて更なる高画質の画像信号を得ることができる。   As described above, according to the present invention, since the second conductivity type well below the first conductivity type signal detector is completely depleted, the junction capacitance C of the first conductivity type signal detector is greatly reduced. Even if the pixel size is reduced, it is possible to further improve the charge-voltage conversion rate by further reducing the junction capacitance C of the first-conductivity-type signal detection unit to obtain a higher-quality image signal. Can do.

本発明の実施形態1の2次元増幅型固体撮像素子における深部電界緩和層N−のイオン注入平面視パターンを含む要部構成例を模式的に示す平面図である。It is a top view which shows typically the example of a principal part structure containing the ion implantation planar view pattern of the deep electric field relaxation layer N- in the two-dimensional amplification type solid-state image sensor of Embodiment 1 of this invention. 図1のAA’線縦断面図である。FIG. 2 is a longitudinal sectional view taken along line AA ′ of FIG. 1. 図2の2次元増幅型固体撮像素子における電荷検出部からN型基板の深さ方向へのポテンシャル図である。FIG. 3 is a potential diagram from the charge detection unit in the depth direction of the N-type substrate in the two-dimensional amplification type solid-state imaging device of FIG. 2. 本発明の実施形態2の2次元増幅型固体撮像素子における深部電界緩和層N−のイオン注入平面視パターンを含む要部構成例を模式的に示す平面図である。It is a top view which shows typically the principal part structural example containing the ion implantation planar view pattern of the deep part electric field relaxation layer N- in the two-dimensional amplification type solid-state image sensor of Embodiment 2 of this invention. 図1のBB’線縦断面図である。FIG. 2 is a longitudinal sectional view taken along line BB ′ in FIG. 1. 本発明の実施形態3の2次元増幅型固体撮像素子における要部構成例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the example of a principal part structure in the two-dimensional amplification type solid-state image sensor of Embodiment 3 of this invention. (a)〜(c)は、図6の2次元増幅型固体撮像素子を製造する方法を説明するための各工程(その1)までの要部縦断面図である。(A)-(c) is a principal part longitudinal cross-sectional view to each process (the 1) for demonstrating the method to manufacture the two-dimensional amplification type solid-state image sensor of FIG. (a)〜(c)は、図6の2次元増幅型固体撮像素子を製造する方法を説明するための各工程(その2)までの要部縦断面図である。(A)-(c) is a principal part longitudinal cross-sectional view to each process (the 2) for demonstrating the method to manufacture the two-dimensional amplification type solid-state image sensor of FIG. 本発明の実施形態4として、本発明の実施形態1〜3の固体撮像素子のいずれかを撮像部に用いた電子情報機器の概略構成例を示すブロック図である。It is a block diagram which shows the schematic structural example of the electronic information apparatus which used either of the solid-state image sensors of Embodiment 1-3 of this invention for the imaging part as Embodiment 4 of this invention. 従来の増幅型固体撮像素子の要部構成例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the example of a principal part structure of the conventional amplification type solid-state image sensor. 従来の増幅型固体撮像素子の別の要部構成例を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the example of another principal part structure of the conventional amplification type solid-state image sensor.

以下に、本発明の固体撮像素子の実施形態1〜3および、この固体撮像素子の実施形態1〜3を画像入力デバイスとして撮像部に用いた例えばカメラ付き携帯電話装置などの電子情報機器の実施形態3について図面を参照しながら詳細に説明する。なお、各図における構成部材のそれぞれの厚みや長さなどは図面作成上の観点から、図示する構成に限定されるものではない。   Embodiments 1 to 3 of the solid-state imaging device of the present invention and implementation of an electronic information device such as a mobile phone device with a camera using the solid-state imaging device of Embodiments 1 to 3 as an image input device in an imaging unit will be described below. The third embodiment will be described in detail with reference to the drawings. In addition, each thickness, length, etc. of the structural member in each figure are not limited to the structure to illustrate from a viewpoint on drawing preparation.

(実施形態1)
図1は、本発明の実施形態1の2次元増幅型固体撮像素子における深部電界緩和層N−のイオン注入平面視パターンを含む要部構成例を模式的に示す平面図である。図2は、図1のAA’線縦断面図である。
(Embodiment 1)
FIG. 1 is a plan view schematically showing a configuration example of a main part including an ion implantation planar view pattern of a deep electric field relaxation layer N− in the two-dimensional amplification type solid-state imaging device of Embodiment 1 of the present invention. 2 is a longitudinal sectional view taken along line AA ′ of FIG.

図1において、本実施形態1の2次元増幅型固体撮像素子1は、第1導電型(ここではN型)光電変換部としてのフォトダイオード6が複数個、平面視行列方向に2次元状でマトリクス状に配列されている。各フォトダイオード6は、平面視4角形の右下側の1角から1辺に沿って所定幅で突出しており、フォトダイオード6の突出部に、電荷転送トランジスタ8と、電荷検出部7と、リセットトランジスタ9と、VDD電源電位が接続される拡散層10とがこの順に配置されている。これらによって、平面視L字状に形成されている。フォトダイオード6の平面視右側で、電荷転送トランジスタ8と、電荷検出部7と、リセットトランジスタ9と、VDD電源電位が接続される拡散層10との配置の上側に、電荷検出部7に電荷転送された信号電荷に対応した検出電圧に応じて信号を増幅して信号出力する増幅トランジスタを含む増幅器13が配置されている。電荷検出部7の深さ方向下方位置には、ジャンクション容量CFDを低減して、電荷電圧変換率を大幅に向上させるために、電荷検出部7の平面視外形よりも大きく点線で囲った深部電界緩和層12が設けられている。   In FIG. 1, the two-dimensional amplification type solid-state imaging device 1 of Embodiment 1 includes a plurality of photodiodes 6 as first conductivity type (here, N-type) photoelectric conversion units, which are two-dimensionally arranged in a planar view matrix direction. They are arranged in a matrix. Each photodiode 6 protrudes with a predetermined width from one corner on the lower right side of the quadrangle in a plan view along one side, and a charge transfer transistor 8, a charge detection unit 7, The reset transistor 9 and the diffusion layer 10 to which the VDD power supply potential is connected are arranged in this order. Thus, they are formed in an L shape in plan view. On the right side of the photodiode 6 in plan view, charge transfer to the charge detection unit 7 is performed above the arrangement of the charge transfer transistor 8, the charge detection unit 7, the reset transistor 9, and the diffusion layer 10 to which the VDD power supply potential is connected. An amplifier 13 including an amplifying transistor for amplifying a signal and outputting a signal in accordance with a detection voltage corresponding to the signal charge thus arranged is arranged. A deep electric field surrounded by a dotted line larger than the outline of the charge detection unit 7 in plan view is provided at a lower position in the depth direction of the charge detection unit 7 in order to reduce the junction capacitance CFD and greatly improve the charge-voltage conversion rate. A relaxation layer 12 is provided.

図2において、本実施形態1の2次元増幅型固体撮像素子1は、N型基板2の上部側にP型ウェル3を設けている。P型ウェル3内の各画素部毎に、表面酸化膜4下の表面高濃度拡散層5により埋め込まれ、入射光を光電変換して信号電荷を発生させるN型光電変換部としての埋め込みフォトダイオード6と、この埋め込みフォトダイオード6に蓄積された信号電荷を電荷検出部7に転送するために電荷転送制御電圧が印加されるゲート8aが、埋め込みフォトダイオード6と電荷検出部7との間のチャネル領域上に表面酸化膜4を介して設けられた電荷転送トランジスタ8と、電荷検出部7に転送された信号電荷に対応した検出電圧を基準電圧にリセットするためにリセット制御電圧が印加されるゲート9aが、電荷検出部7とVDD電源電位が印加されている拡散層10との間のチャネル領域上に表面酸化膜4を介して設けられたリセットトランジスタ9とを有している。これらの表面高濃度拡散層5、埋め込みフォトダイオード6および各トランジスタ8,9の平面視周囲は素子分離酸化膜11(例えばSTIなど)によって画素部毎に素子分離されている。   In FIG. 2, the two-dimensional amplification type solid-state imaging device 1 of the first embodiment has a P-type well 3 on the upper side of an N-type substrate 2. An embedded photodiode as an N-type photoelectric conversion unit that is buried in the surface high-concentration diffusion layer 5 under the surface oxide film 4 for each pixel unit in the P-type well 3 and photoelectrically converts incident light to generate signal charges. 6 and a gate 8 a to which a charge transfer control voltage is applied to transfer the signal charge accumulated in the embedded photodiode 6 to the charge detection unit 7, is a channel between the embedded photodiode 6 and the charge detection unit 7. A charge transfer transistor 8 provided on the region via the surface oxide film 4 and a gate to which a reset control voltage is applied to reset the detection voltage corresponding to the signal charge transferred to the charge detection unit 7 to the reference voltage 9a is a reset transistor provided on the channel region between the charge detection unit 7 and the diffusion layer 10 to which the VDD power supply potential is applied via the surface oxide film 4 And it has a door. The surface high-concentration diffusion layer 5, the buried photodiode 6, and the transistors 8 and 9 are separated from each other by a device isolation oxide film 11 (for example, STI) for each pixel portion.

電荷検出部7からソースフォロワ回路などの増幅器(増幅トランジスタ回路)が接続されており、電荷検出部7に転送された信号電荷に対応した検出電圧に応じて増幅トランジスタが撮像信号を増幅して信号出力する。   An amplifier (amplification transistor circuit) such as a source follower circuit is connected from the charge detection unit 7, and the amplification transistor amplifies the imaging signal in accordance with the detection voltage corresponding to the signal charge transferred to the charge detection unit 7. Output.

電荷検出部7下に対応したP型ウェル3の底部を含む位置であって電荷検出部7路の間にP型ウェル3が介在するように深部電界緩和層12が設けられており、これによって、電荷検出部7の容量CFDを大幅に削減することができて電荷電圧変換率ηを向上させて高画質の画像信号を得ることができる。要するに、電荷検出部7下から深さ方向に離れた位置に深部電界緩和層12が設けられている。   A deep electric field relaxation layer 12 is provided at a position including the bottom of the P-type well 3 corresponding to the lower part of the charge detection unit 7 so that the P-type well 3 is interposed between the charge detection unit 7 paths. Therefore, the capacitance CFD of the charge detection unit 7 can be greatly reduced, and the charge-voltage conversion rate η can be improved to obtain a high-quality image signal. In short, the deep electric field relaxation layer 12 is provided at a position away from the bottom of the charge detection unit 7 in the depth direction.

従来例では、P側基板であったが、本実施形態1ではN型基板2を採用し、電荷検出部7の下方位置に深部電界緩和層12としてN−層を高エネルギーでN型不純物をイオン注入することにより形成している。   In the conventional example, the P-side substrate is used. However, in the first embodiment, the N-type substrate 2 is used, and the N-layer is formed as a deep electric field relaxation layer 12 at a lower position of the charge detection unit 7 with high energy. It is formed by ion implantation.

一定のPN逆バイアス電位が電荷検出部7、P型ウエル3およびN型基板2に印加された場合、電荷検出部7とP型ウエル3との間に空乏層が広がり、P型ウエル3と深部電界緩和層12間にも空乏層が広がり、仮に、P型ウエル3内に発生した空乏層によってP型ウエル3内のGND電位を持つ中性領域が消滅すれば、結局、電荷検出部7と中性領域(この場合はN型基板2)との空乏層は、上記に述べたおのおのの空乏層の総和となって、電荷検出部7とN型基板2とのジャンクション容量を大幅に低減できる。   When a constant PN reverse bias potential is applied to the charge detection unit 7, the P-type well 3, and the N-type substrate 2, a depletion layer spreads between the charge detection unit 7 and the P-type well 3, If a depletion layer spreads between the deep electric field relaxation layers 12 and the neutral region having the GND potential in the P-type well 3 disappears due to the depletion layer generated in the P-type well 3, eventually, the charge detection unit 7 And the neutral region (in this case, the N-type substrate 2) are the sum of the respective depletion layers described above, and the junction capacitance between the charge detector 7 and the N-type substrate 2 is greatly reduced. it can.

ここで、例えば各層のP層またはN層の密度をそれぞれ、電荷検出部7のN+濃度1020 /cm3、その下のP型ウエル3の濃度1016 /cm3、深部電界緩和層12のN−濃度1016/cm3とした場合に、電荷検出部7とP型ウエル3との間のPN接合のP型ウエル3側の空乏層は0.6μmである。また、電荷検出部7側は高濃度のため、空乏層の発生は少なく0.06μmである。また、P型ウエル3と深部電界緩和層12のN−層との間のPN接合のP型ウエル3側の空乏層は0.43μm、深部電界緩和層12側の空乏層は0.43μmとなる。ただし、PNの逆バイアス電位は3Vとしている。 Here, for example, the density of the P layer or the N layer of each layer is set such that the N + concentration of the charge detection portion 7 is 10 20 / cm 3 , the concentration of the P-type well 3 is 10 16 / cm 3 , and the deep electric field relaxation layer 12 is When the N− concentration is 10 16 / cm 3 , the depletion layer on the P-type well 3 side of the PN junction between the charge detection unit 7 and the P-type well 3 is 0.6 μm. Further, since the charge detector 7 side has a high concentration, the occurrence of a depletion layer is small and is 0.06 μm. The depletion layer on the P-type well 3 side of the PN junction between the P-type well 3 and the N-layer of the deep field relaxation layer 12 is 0.43 μm, and the depletion layer on the deep field relaxation layer 12 side is 0.43 μm. Become. However, the reverse bias potential of PN is 3V.

電荷検出部7の下方のP型ウエル3は、電荷検出部7からの空乏層と深部電界緩和層12からの空乏層が広がり(この場合、0.6μmと0.43μm)、これにより、P型ウエル3の中性領域が完全になくなると、P型ウエル3は完全に空乏化する。   In the P-type well 3 below the charge detection unit 7, the depletion layer from the charge detection unit 7 and the depletion layer from the deep electric field relaxation layer 12 are expanded (in this case, 0.6 μm and 0.43 μm). When the neutral region of the mold well 3 is completely eliminated, the P-type well 3 is completely depleted.

その条件とは、図2の電荷検出部7と深部電界緩和層12に挟まれたP型ウエル3の深さ方向の距離が約1.0μm以下であることである。この条件下で、第1導電型信号検出部としてのN型の電荷検出部7と、第1導電型基板としてのN型基板2との間に第2導電型ウエルとしてのP型ウエル3が設けられている場合に、電荷検出部7の下方位置で、N型基板2とP型ウエル3の境界部を含む位置に、電荷検出部7のN型不純物濃度よりも低濃度のN−層(第1導電型拡散層)が設けられることにより、P型ウエル3は完全に空乏化されている。   The condition is that the distance in the depth direction of the P-type well 3 sandwiched between the charge detection unit 7 and the deep electric field relaxation layer 12 in FIG. 2 is about 1.0 μm or less. Under this condition, the P-type well 3 as the second conductivity type well is interposed between the N-type charge detection unit 7 as the first conductivity type signal detection unit and the N-type substrate 2 as the first conductivity type substrate. If provided, an N− layer having a lower concentration than the N-type impurity concentration of the charge detection unit 7 at a position below the charge detection unit 7 and including the boundary between the N-type substrate 2 and the P-type well 3. By providing the (first conductivity type diffusion layer), the P-type well 3 is completely depleted.

図3は、図2の2次元増幅型固体撮像素子1における電荷検出部7からN型基板2の深さ方向へのポテンシャル図である。   FIG. 3 is a potential diagram from the charge detection unit 7 in the depth direction of the N-type substrate 2 in the two-dimensional amplification type solid-state imaging device 1 of FIG.

図3に示すように、電荷検出部7と中性領域(この場合はN型基板2)との距離は、電荷検出部7とP型ウエル3との間の空乏層の0.66μmと、P型ウエル3と深部電界緩和層12との間の空乏層の0.86μmの和となり、従来の場合に比べてジャンクション容量Cが、0.66μm / 1.52μm=0.43で43パーセントに低減したことになり、従来より大幅にジャンクション容量Cの低減が可能となり、電荷電圧変換率が大幅に向上する。   As shown in FIG. 3, the distance between the charge detection unit 7 and the neutral region (in this case, the N-type substrate 2) is 0.66 μm of the depletion layer between the charge detection unit 7 and the P-type well 3, The sum of the depletion layer between the P-type well 3 and the deep field relaxation layer 12 is 0.86 μm, and the junction capacitance C is 43% at 0.66 μm / 1.52 μm = 0.43 compared to the conventional case. As a result, the junction capacitance C can be significantly reduced as compared with the prior art, and the charge-voltage conversion rate is greatly improved.

次に、例えば、各層のP層またはN層の密度をそれぞれ、電荷検出部7のN+濃度1020/cm3、その下方のP型ウエル3の濃度1016/cm3、深部電界緩和層12のN−濃度1015/cm3とした場合、電荷検出部7とP型ウエル3との間のPN接合のP型ウエル3側の空乏層は0.6μmである。電荷検出部7側は高濃度のため空乏層発生は少なく0.06μmである。また、P型ウエル3と深部電界緩和層12のN−層との間のPN接合のP型ウエル3側の空乏層は0.18μm、深部電界緩和層12側の空乏層は1.84μmとなる。ただし、PNの逆バイアス電位は3Vとしている。 Next, for example, the density of the P layer or the N layer of each layer is set such that the N + concentration of the charge detection unit 7 is 10 20 / cm 3 , the concentration of the P-type well 3 below it is 10 16 / cm 3 , and the deep electric field relaxation layer 12. When the N concentration is 10 15 / cm 3 , the depletion layer on the P-type well 3 side of the PN junction between the charge detection unit 7 and the P-type well 3 is 0.6 μm. Since the charge detector 7 side has a high concentration, the occurrence of a depletion layer is small and is 0.06 μm. Further, the depletion layer on the P-type well 3 side of the PN junction between the P-type well 3 and the N-layer of the deep field relaxation layer 12 is 0.18 μm, and the depletion layer on the deep field relaxation layer 12 side is 1.84 μm. Become. However, the reverse bias potential of PN is 3V.

電荷検出部7下のP型ウエル3は、電荷検出部7からの空乏層と深部電界緩和層12からの空乏層が広がり(この場合、0.6μmと0.18μm)、これにより、P型ウエル3の中性領域が完全に無くなるとP型ウエル3は完全に空乏化する。その条件とは、図2の電荷検出部7と深部電界緩和層12に挟まれたP型ウエル3の深さ方向の距離が約0.78um以下である。   In the P-type well 3 below the charge detection unit 7, a depletion layer from the charge detection unit 7 and a depletion layer from the deep electric field relaxation layer 12 are expanded (in this case, 0.6 μm and 0.18 μm). When the neutral region of the well 3 is completely eliminated, the P-type well 3 is completely depleted. The condition is that the distance in the depth direction of the P-type well 3 sandwiched between the charge detection unit 7 and the deep electric field relaxation layer 12 in FIG. 2 is about 0.78 μm or less.

電荷検出部7と中性領域(この場合はN型基板2)との距離は、電荷検出部7とP型ウエル3との間の空乏層の0.66μmと、P型ウエル3と深部電界緩和層12との間の空乏層の2.02umの和となり、従来の場合に比べてジャンクション容量Cが、0.66μm / 2.68μm=0.25で25パーセントに低減したことになり、従来の場合よりも大幅にジャンクション容量Cの低減が可能となって、電荷電圧変換率ηを大幅に向上させることができる。   The distance between the charge detector 7 and the neutral region (in this case, the N-type substrate 2) is 0.66 μm of the depletion layer between the charge detector 7 and the P-type well 3, and the P-type well 3 and the deep electric field. This is the sum of 2.02 μm of the depletion layer between the relaxation layer 12 and the junction capacitance C is reduced to 25% at 0.66 μm / 2.68 μm = 0.25 compared to the conventional case. As a result, the junction capacitance C can be significantly reduced as compared with the above case, and the charge-voltage conversion rate η can be greatly improved.

また、電荷検出部7の下以外は深部電界緩和層12を不純物イオン注入をしないため、P型ウエル3の中性領域が十分に確保され、従来の場合と変わらない動作が保証され得ることになる。   In addition, since the deep field relaxation layer 12 is not implanted with impurity ions except under the charge detection unit 7, the neutral region of the P-type well 3 is sufficiently secured, and the same operation as in the conventional case can be guaranteed. Become.

以上により、本実施形態1によれば、N型基板2の上部にP型ウエル3が設けられ、P型ウエル3内に埋め込みフォトダイオード6および電荷検出部7が設けられており、電荷検出部7の下方のP型ウエル3は完全に空乏化されている。   As described above, according to the first embodiment, the P-type well 3 is provided on the N-type substrate 2, and the embedded photodiode 6 and the charge detection unit 7 are provided in the P-type well 3. The P-type well 3 below 7 is completely depleted.

このように、電荷検出部7とN型基板2に挟まれたP型ウエル3を空乏化することにより、電荷検出部7のジャンクション容量Cを大幅に下げ、ひいては画素サイズが小さくかつ電荷電圧変換率ηを向上させて高画質の画像信号を得ることができる。   In this way, by depleting the P-type well 3 sandwiched between the charge detection unit 7 and the N-type substrate 2, the junction capacitance C of the charge detection unit 7 is greatly reduced, and the pixel size is small and the charge-voltage conversion is performed. It is possible to improve the rate η and obtain a high-quality image signal.

(実施形態2)
図4は、本発明の実施形態2の2次元増幅型固体撮像素子における深部電界緩和層N−のイオン注入平面視パターンを含む要部構成例を模式的に示す平面図である。図5は、図4のBB’線縦断面図である。なお、図4および図5では、図1および図2の構成部材と同一の作用効果を奏する部材には同一の符号を付して説明する。
(Embodiment 2)
FIG. 4 is a plan view schematically showing a configuration example of a main part including an ion implantation planar view pattern of the deep electric field relaxation layer N− in the two-dimensional amplification type solid-state imaging device according to the second embodiment of the present invention. 5 is a longitudinal sectional view taken along line BB ′ of FIG. 4 and FIG. 5, members having the same operational effects as the constituent members of FIG. 1 and FIG. 2 are described with the same reference numerals.

図4および図5において、本実施形態2の2次元増幅型固体撮像素子1Aは、光電変換部としてのフォトダイオード6が複数個、平面視行列方向に2次元状でマトリクス状に配列されている。各フォトダイオード6は、平面視4角形の右下側の1角から1辺に沿って所定幅で突出しており、フォトダイオード6の突出部に、電荷転送トランジスタ8と、電荷検出部7と、リセットトランジスタ9と、VDD電源電位が接続される拡散層10とがこの順に配置されている。これによって、平面視L字状に形成されている。フォトダイオード6の平面視右側で、電荷転送トランジスタ8と、電荷検出部7と、リセットトランジスタ9と、VDD電源電位が接続される拡散層10との配置の上側に、電荷検出部7に転送された信号電荷に対応した検出電圧に応じて信号を増幅して信号出力する増幅トランジスタを含む増幅器13が配置されている。電荷検出部7の深さ方向下方位置には、ジャンクション容量Cを低減して、電荷電圧変換率を大幅に向上させるために、電荷検出部7の平面視外形と略同一サイズの深部電界緩和層12Aが設けられている。   4 and 5, in the two-dimensional amplification type solid-state imaging device 1 </ b> A according to the second embodiment, a plurality of photodiodes 6 as photoelectric conversion units are arranged in a two-dimensional matrix in the matrix direction in plan view. . Each photodiode 6 protrudes with a predetermined width from one corner on the lower right side of the quadrangle in a plan view along one side, and a charge transfer transistor 8, a charge detection unit 7, The reset transistor 9 and the diffusion layer 10 to which the VDD power supply potential is connected are arranged in this order. Thus, it is formed in an L shape in plan view. On the right side of the photodiode 6 in plan view, the charge transfer transistor 8, the charge detection unit 7, the reset transistor 9, and the diffusion layer 10 to which the VDD power supply potential is connected are transferred to the charge detection unit 7. An amplifier 13 including an amplifying transistor that amplifies a signal according to a detection voltage corresponding to the signal charge and outputs the signal is disposed. In the lower position in the depth direction of the charge detection unit 7, in order to reduce the junction capacitance C and greatly improve the charge-voltage conversion rate, a deep electric field relaxation layer having substantially the same size as the plan view outline of the charge detection unit 7 12A is provided.

上記実施形態1では、埋め込みフォトダイオード6下のP型ウエル3には中性領域が存在したが、本実施形態2では、埋め込みフォトダイオード6下のP型ウエル3Aは完全に空乏化している。要するに、上記実施形態1のP型ウエル3とN型基板2との境界位置が、本実施形態2のP型ウエル3AとN型基板2との境界位置よりも深く形成されている。即ち、本実施形態2のP型ウエル3AとN型基板2との境界位置が、上記実施形態1のようにP型ウエル3に中性領域が存在する場合に比べて上記実施形態1のP型ウエル3とN型基板2との境界位置よりも圧倒的に浅く形成されている。これによって、隣接した画素部間のクロストーク低減に効果がある。このように、P型ウエル3AとN型基板2の境界が上記実施形態1の場合よりも浅いため、深部電界緩和層12Aのイオン注入位置が浅く制御もし易く、イオン注入エネルギーも低エネルギーで済み、電荷検出部7と深部電界緩和層12Aに挟まれたP型ウエル3の深さ方向の距離も上記実施形態1の場合よりも少なく、完全空乏化させるのにプロセス的に有利である。要するに、上記実施形態1でのイオン注入が2段必要な場合であっても、深部電界緩和層12Aの深さ位置が浅い分だけ1段のイオン注入で済む。   In the first embodiment, the neutral region exists in the P-type well 3 below the embedded photodiode 6, but in the second embodiment, the P-type well 3A below the embedded photodiode 6 is completely depleted. In short, the boundary position between the P-type well 3 and the N-type substrate 2 in the first embodiment is formed deeper than the boundary position between the P-type well 3A and the N-type substrate 2 in the second embodiment. That is, the boundary position between the P-type well 3A and the N-type substrate 2 according to the second embodiment is higher than that when the neutral region exists in the P-type well 3 as in the first embodiment. It is formed to be overwhelmingly shallower than the boundary position between the mold well 3 and the N-type substrate 2. This is effective in reducing crosstalk between adjacent pixel portions. As described above, since the boundary between the P-type well 3A and the N-type substrate 2 is shallower than in the first embodiment, the ion implantation position of the deep field relaxation layer 12A is shallow and easy to control, and the ion implantation energy is low. The distance in the depth direction of the P-type well 3 sandwiched between the charge detection unit 7 and the deep electric field relaxation layer 12A is smaller than that in the first embodiment, which is advantageous in terms of complete depletion. In short, even when two stages of ion implantation are required in the first embodiment, only one stage of ion implantation is required because the depth of the deep electric field relaxation layer 12A is shallow.

以上により、本実施形態2によれば、第1導電型光電変換部としての埋め込みフォトダイオード6と第1導電型基板としてのN型基板2との間の第2導電型ウエルとしてのP型ウェル3Aが完全に空乏化されるように、本実施形態2のP型ウエル3AとN型基板2との境界位置が設定されているため、本実施形態2のP型ウエル3AとN型基板2との境界位置は、上記実施形態1のP型ウエル3とN型基板2との境界位置に比べて圧倒的に浅く形成されている。これによって、隣接した画素部間のクロストークが低減すると共に、深部電界緩和層12Aの深さ位置が浅く、そのイオン注入エネルギーも少なくて済み、深部電界緩和層12Aのサイズも平面視で狭くても良く、上記実施形態1の場合よりもP型ウエル3Aを完全空乏化させるのに有利である。   As described above, according to the second embodiment, the P-type well as the second conductivity type well between the embedded photodiode 6 as the first conductivity type photoelectric conversion unit and the N-type substrate 2 as the first conductivity type substrate. Since the boundary position between the P-type well 3A and the N-type substrate 2 of the second embodiment is set so that 3A is completely depleted, the P-type well 3A and the N-type substrate 2 of the second embodiment are set. Is formed to be overwhelmingly shallower than the boundary position between the P-type well 3 and the N-type substrate 2 in the first embodiment. As a result, the crosstalk between adjacent pixel portions is reduced, the depth position of the deep field relaxation layer 12A is shallow, and the ion implantation energy is small, and the size of the deep field relaxation layer 12A is also narrow in plan view. This is more advantageous than the case of the first embodiment in that the P-type well 3A is completely depleted.

したがって、電荷検出部7とN型基板2に挟まれたP型ウエル3Aをより確実に空乏化することにより、電荷検出部7のジャンクション容量Cを大幅に下げることができて、ひいては画素サイズが小さくかつ電荷電圧変換率ηを向上させて高画質の画像信号を得ることができる。   Therefore, by depleting the P-type well 3A sandwiched between the charge detection unit 7 and the N-type substrate 2 more reliably, the junction capacitance C of the charge detection unit 7 can be greatly reduced, and the pixel size can be reduced. A high-quality image signal can be obtained with a small charge-voltage conversion rate η.

なお、上記実施形態1、2では、固体撮像素子の製造方法については特に説明しなかったが、入射光を光電変換して撮像する第1導電型光電変換部としての埋め込みフォトダイオード6から電荷転送された信号電荷を信号電圧に変換する第1導電型信号検出部としての電荷検出部7となる領域の下方領域に、第2導電型ウエルとしてのP型ウエル3または3Aが完全に空乏化するように所定距離だけ離間して第1導電型不純物をイオン注入して、第1導電型基板としてのN型基板2または2AとP型ウエル3または3Aとの境界部を含む位置に電荷検出部7の不純物濃度よりも低濃度の第1導電型拡散層としての深部電界緩和層12または12Aを形成する第1導電型拡散層形成ステップを有している。   In the first and second embodiments, the manufacturing method of the solid-state imaging device is not particularly described. However, charge transfer is performed from the embedded photodiode 6 serving as a first conductivity type photoelectric conversion unit that performs photoelectric conversion of incident light and images it. The P-type well 3 or 3A as the second conductivity type well is completely depleted in a region below the region that becomes the charge detection unit 7 as the first conductivity type signal detection unit that converts the signal charge that has been converted into a signal voltage. In this way, the first conductivity type impurity is ion-implanted at a predetermined distance, and the charge detection unit is located at a position including the boundary between the N type substrate 2 or 2A as the first conductivity type substrate and the P type well 3 or 3A. A first conductivity type diffusion layer forming step of forming the deep electric field relaxation layer 12 or 12A as the first conductivity type diffusion layer having a lower concentration than the impurity concentration of 7.

(実施形態3)
図6は、本発明の実施形態3の2次元増幅型固体撮像素子における要部構成例を模式的に示す縦断面図である。なお、図6では、図2の構成部材と同一の作用効果を奏する部材には同一の符号を付して説明する。
(Embodiment 3)
FIG. 6 is a vertical cross-sectional view schematically showing an example of the configuration of the main part of the two-dimensional amplification type solid-state imaging device according to Embodiment 3 of the present invention. In FIG. 6, the same reference numerals are given to members having the same operational effects as the constituent members of FIG. 2.

図6に示すように、本実施形態3の2次元増幅型固体撮像素子1BにおけるP型ウェル3Bにおいて、回路用Pウエル14Aとフォトダイオード用Pウエル15の形成を別々に行っている。このP型ウェル3Bのウェル構造も各画素部のクロストーク低減に効果がある。   As shown in FIG. 6, in the P-type well 3B of the two-dimensional amplification type solid-state imaging device 1B of Embodiment 3, the circuit P-well 14A and the photodiode P-well 15 are separately formed. The well structure of the P-type well 3B is also effective in reducing crosstalk in each pixel portion.

第1導電型信号検出部としての信号検出部7の下方の第2導電型ウエルとしての回路用Pウエル14Aは、その周囲の第2導電型ウエルとしてのフォトダイオード用Pウエル15よりも深さが浅く不純物濃度が薄く設定されている。信号検出部7の下方の第2導電型ウエルとしての回路用Pウエル14AとN型基板2Bの境界が信号検出部7側に突出している。要するに、回路用Pウエル14Aにおいて、N型基板2Bの領域が、電荷検出部7側の上方に平坦部22Bから突出した突出部21Bが形成される。また、フォトダイオード用P型ウェル15において、N型基板2Bとの境界の平坦部22Bから凹んで段差部23Bが生じて深くなっている。これらの場合に、信号検出部7と突出部21B間のP型ウエル3Bの回路用Pウエル14Aは完全に空乏化されている。また、埋め込みフォトダイオード6とN型基板2Bとの間の第2導電型ウエル3Bのフォトダイオード用Pウエル15も完全に空乏化されている。   The circuit P well 14A as the second conductivity type well below the signal detection unit 7 as the first conductivity type signal detection unit is deeper than the photodiode P well 15 as the second conductivity type well around it. Is shallow and the impurity concentration is set thin. The boundary between the circuit P-well 14A as the second conductivity type well below the signal detection unit 7 and the N-type substrate 2B protrudes to the signal detection unit 7 side. In short, in the circuit P-well 14A, a protruding portion 21B is formed so that the region of the N-type substrate 2B protrudes from the flat portion 22B above the charge detecting portion 7 side. Further, in the P-type well 15 for the photodiode, a stepped portion 23B is formed to be deep from the flat portion 22B at the boundary with the N-type substrate 2B. In these cases, the circuit P-well 14A of the P-type well 3B between the signal detection unit 7 and the protrusion 21B is completely depleted. Also, the photodiode P-well 15 in the second conductivity type well 3B between the embedded photodiode 6 and the N-type substrate 2B is completely depleted.

これによれば、上記実施形態1,2のような深部電界緩和層12,12Aの形成のために深い部分へのN型不純物のイオン注入の必要性がなくなって、製造工程がより容易になる。   This eliminates the need for ion implantation of N-type impurities into deep portions for the formation of the deep electric field relaxation layers 12 and 12A as in the first and second embodiments, and makes the manufacturing process easier. .

ここで、本実施形態3の2次元増幅型固体撮像素子1Bの製造方法について説明する。   Here, a manufacturing method of the two-dimensional amplification type solid-state imaging device 1B of Embodiment 3 will be described.

図7(a)〜図7(c)および図8(a)〜図8(c)は、図6の2次元増幅型固体撮像素子1Bを製造する方法を説明するための各工程までの要部縦断面図である。   7 (a) to 7 (c) and FIGS. 8 (a) to 8 (c) show the essential steps up to each step for explaining the method of manufacturing the two-dimensional amplification type solid-state imaging device 1B of FIG. FIG.

まず、図7(a)に示すように、N型基板2Bの表面側に素子分離用酸化膜11(例えばSTIなど)を表面酸化膜と共に形成する。素子分離用酸化膜11は、前述した表面高濃度拡散層5、埋め込みフォトダイオード6および各トランジスタ8,9などの平面視周囲を各画素部(単位画素部)毎に素子分離する。   First, as shown in FIG. 7A, an element isolation oxide film 11 (for example, STI) is formed on the surface side of the N-type substrate 2B together with the surface oxide film. The element isolating oxide film 11 isolates the surroundings of the surface high-concentration diffusion layer 5, the buried photodiode 6, the transistors 8 and 9, and the like in plan view for each pixel unit (unit pixel unit).

次に、図7(b)に示すように、各トランジスタ8,9の下方の回路用P型ウェル14を形成するためにP型不純物をイオン注入する。この場合のイオン注入領域は、電荷検出部7となる領域の下方領域2a以外の領域にイオン注入する。即ち、電荷検出部7となる領域およびその下方領域2aには、P型不純物のイオン注入は行わない。   Next, as shown in FIG. 7B, P-type impurities are ion-implanted to form a circuit P-type well 14 below the transistors 8 and 9. In this case, the ion implantation region is ion-implanted into a region other than the lower region 2 a of the region serving as the charge detection unit 7. That is, ion implantation of P-type impurities is not performed in the region to be the charge detection unit 7 and the lower region 2a.

続いて、図7(c)に示すように、電荷検出部7となる領域の下方領域2a以外に薄く形成された回路用P型ウェル14に対して熱処理を行って回路用P型ウェル14を拡散処理する。これによって、両側の回路用P型ウェル14間の下方領域2aが無くなって互いに一体化して回路用P型ウェル14Aを形成する。この回路用P型ウェル14Aの下方領域2aに対応する位置において、N型基板2Bの領域が、電荷検出部7となる領域側に平坦部22Bから突出した突出部21Bが形成される。   Subsequently, as shown in FIG. 7C, the circuit P-type well 14 is thinly formed in a region other than the lower region 2 a of the region serving as the charge detection unit 7, so that the circuit P-type well 14 is formed. Diffusion processing. As a result, the lower region 2a between the circuit P-type wells 14 on both sides is eliminated, and the circuit P-type wells 14A are formed integrally with each other. At a position corresponding to the lower region 2a of the circuit P-type well 14A, a protruding portion 21B is formed so that the region of the N-type substrate 2B protrudes from the flat portion 22B on the region side to be the charge detecting portion 7.

その後、図8(a)に示すように、前述した表面高濃度拡散層5および埋め込みフォトダイオード6を形成する領域下にフォトダイオード用P型ウェル15を形成するためにP型不純物を更にイオン注入する。このフォトダイオード用P型ウェル15において、N型基板2Bとの境界の平坦部22Bから凹んで段差部23Bが生じて深くなる。   Thereafter, as shown in FIG. 8A, further ion implantation of P-type impurities is performed in order to form the P-type well 15 for the photodiode under the region where the surface high-concentration diffusion layer 5 and the buried photodiode 6 are formed. To do. In the P-type well 15 for the photodiode, a stepped portion 23B is formed deeper by being recessed from the flat portion 22B at the boundary with the N-type substrate 2B.

さらに、図8(b)に示すように、電荷転送トランジスタ8のゲート8aおよびリセットトランジスタ9のゲート9a、その他、ここでは図示していないが、増幅トランジスタのゲートを所定位置に形成する。   Further, as shown in FIG. 8B, the gate 8a of the charge transfer transistor 8, the gate 9a of the reset transistor 9, and the gate of the amplifying transistor, which are not shown here, are formed at predetermined positions.

最後に、図8(c)に示すように、イオン注入により、表面高濃度拡散層5、埋め込みフォトダイオード6、電荷検出部7および拡散層10を形成する。これによって、本実施形態3の2次元増幅型固体撮像素子1Bを製造することができる。   Finally, as shown in FIG. 8C, the surface high-concentration diffusion layer 5, the buried photodiode 6, the charge detection unit 7, and the diffusion layer 10 are formed by ion implantation. As a result, the two-dimensional amplification type solid-state imaging device 1B of Embodiment 3 can be manufactured.

要するに、本実施形態3の2次元増幅型固体撮像素子1Bの製造方法は、入射光を光電変換して撮像する第1導電型光電変換部としての埋め込みフォトダイオード6から電荷転送された信号電荷を信号電圧に変換する第1導電型信号検出部としての電荷検出部7となる領域直下の下方領域以外の領域に第2導電型不純物をイオン注入した後に熱拡散処理して回路用第2導電型ウェルとしての回路用P型ウェル14Aを形成することにより、回路用第2導電型ウェル14AとN型基板2Bとの境界の断面構造として電荷検出部7側に突出した断面突出部21Bを形成する回路用第2導電型ウェル形成ステップと、埋め込みフォトダイオード6となる領域下に、第2導電型不純物をイオン注入して光電変換部用第2導電型ウェルとしてのフォトダイオード用P型ウェル15を形成することにより、フォトダイオード用P型ウェル15とN型基板2Bとの境界の断面構造としてN型基板2B側に凹んだ断面段差部23Bを形成する光電変換部用第2導電型ウェル形成ステップとを有している。   In short, the manufacturing method of the two-dimensional amplification type solid-state imaging device 1B of Embodiment 3 uses the signal charge transferred from the embedded photodiode 6 as the first conductivity type photoelectric conversion unit that performs photoelectric conversion of incident light and images it. The second conductivity type for circuit is formed by ion-implanting a second conductivity type impurity into a region other than the lower region immediately below the region that becomes the charge detection unit 7 as the first conductivity type signal detection unit that converts the signal voltage into a second voltage. By forming the circuit P-type well 14A as a well, a cross-sectional protrusion 21B protruding toward the charge detection unit 7 is formed as a cross-sectional structure of the boundary between the circuit second conductivity type well 14A and the N-type substrate 2B. A second conductivity type well forming step for the circuit and a second conductivity type impurity ion-implanted under the region to be the buried photodiode 6 to photo-diode as the second conductivity type well for the photoelectric conversion unit By forming the P-type well 15 for Aode, a cross-sectional step portion 23B recessed toward the N-type substrate 2B is formed as a cross-sectional structure of the boundary between the P-type well 15 for photodiode and the N-type substrate 2B. A second conductivity type well formation step.

以上により、本実施形態3によれば、上記実施形態1,2のように深部電界緩和層12,12Aを形成せずに、電荷検出部7とN型基板2Bに挟まれたP型ウエル3Bを空乏化することができる。これによって、電荷検出部7のジャンクション容量Cを大幅に下げ、ひいては画素サイズが小さくかつ電荷電圧変換率ηを向上させて高画質の画像信号を得ることができる。   As described above, according to the third embodiment, the deep field relaxation layers 12 and 12A are not formed as in the first and second embodiments, but the P-type well 3B sandwiched between the charge detection unit 7 and the N-type substrate 2B. Can be depleted. As a result, the junction capacitance C of the charge detection unit 7 can be greatly reduced, and the pixel size can be reduced and the charge-voltage conversion rate η can be improved to obtain a high-quality image signal.

(実施形態4)
図9は、本発明の実施形態4として、本発明の実施形態1〜3の固体撮像素子のいずれかを撮像部に用いた電子情報機器の概略構成例を示すブロック図である。
(Embodiment 4)
FIG. 9 is a block diagram illustrating a schematic configuration example of an electronic information device using any of the solid-state imaging devices according to Embodiments 1 to 3 of the present invention as an imaging unit as Embodiment 4 of the present invention.

図9において、本実施形態3の電子情報機器90は、上記実施形態1〜3の固体撮像素子のいずれかの撮像信号を所定の信号処理をしてカラー画像信号を得る固体撮像装置91と、この固体撮像装置91からのカラー画像信号を記録用に所定の信号処理した後にデータ記録可能とする記録メディアなどのメモリ部92と、この固体撮像装置91からのカラー画像信号を表示用に所定の信号処理した後に液晶表示画面などの表示画面上に表示可能とする液晶表示装置などの表示部93と、この固体撮像装置91からのカラー画像信号を通信用に所定の信号処理をした後に通信処理可能とする送受信装置などの通信部94と、この固体撮像装置91からのカラー画像信号を印刷用に所定の印刷信号処理をした後に印刷処理可能とするプリンタなどの画像出力部95とを有している。なお、この電子情報機器90として、これに限らず、固体撮像装置91の他に、メモリ部92と、表示部93と、通信部94と、プリンタなどの画像出力部95とのうちの少なくともいずれかを有していてもよい。   In FIG. 9, the electronic information device 90 of the third embodiment includes a solid-state imaging device 91 that obtains a color image signal by performing predetermined signal processing on the imaging signal of any of the solid-state imaging devices of the first to third embodiments. A memory unit 92 such as a recording medium that enables data recording after the color image signal from the solid-state image pickup device 91 is processed for a predetermined signal for recording, and the color image signal from the solid-state image pickup device 91 for a predetermined display. A display unit 93 such as a liquid crystal display device that can be displayed on a display screen such as a liquid crystal display screen after signal processing, and a color image signal from the solid-state imaging device 91 is subjected to predetermined signal processing for communication and then communication processing is performed. A communication unit 94 such as a transmission / reception device that can be enabled, a printer that can perform print processing after performing a predetermined print signal processing for color image signals from the solid-state imaging device 91 for printing, and the like And an image output unit 95. The electronic information device 90 is not limited to this, but in addition to the solid-state imaging device 91, at least one of a memory unit 92, a display unit 93, a communication unit 94, and an image output unit 95 such as a printer. You may have.

この電子情報機器90としては、前述したように例えばデジタルビデオカメラ、デジタルスチルカメラなどのデジタルカメラや、監視カメラ、ドアホンカメラ、車載用後方監視カメラなどの車載用カメラおよびテレビジョン電話用カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、カメラ付き携帯電話装置および携帯端末装置(PDA)などの画像入力デバイスを有した電子機器が考えられる。   As described above, the electronic information device 90 includes, for example, a digital camera such as a digital video camera and a digital still camera, an in-vehicle camera such as a surveillance camera, a door phone camera, and an in-vehicle rear surveillance camera, and a video phone camera. An electronic device having an image input device such as an image input camera, a scanner device, a facsimile device, a camera-equipped mobile phone device, and a portable terminal device (PDA) is conceivable.

したがって、本実施形態3によれば、この固体撮像装置91からのカラー画像信号に基づいて、これを表示画面上に良好に表示したり、これを紙面にて画像出力部95により良好にプリントアウト(印刷)したり、これを通信データとして有線または無線にて良好に通信したり、これをメモリ部92に所定のデータ圧縮処理を行って良好に記憶したり、各種データ処理を良好に行うことができる。   Therefore, according to the third embodiment, based on the color image signal from the solid-state imaging device 91, it can be displayed on the display screen, or can be printed out on the paper by the image output unit 95. (Printing), communicating this as communication data in a wired or wireless manner, performing a predetermined data compression process in the memory unit 92 and storing it in a good manner, or performing various data processings satisfactorily Can do.

なお、本実施形態1〜3では、特に詳細には説明しなかったがが、入射光を光電変換して撮像する複数の受光部が2次元状に設けられて複数の画素部が構成された固体撮像素子において、画素部毎に、該受光部の第1導電型光電変換部と、第1導電型光電変換部から電荷転送された信号電荷を信号電圧に変換する第1導電型信号検出部とを有し、第1導電型基板の上部に第2導電型ウエルが設けられ、第2導電型ウエル内に第1導電型光電変換部および第1導電型信号検出部が設けられており、第1導電型信号検出部の下方の第2導電型ウエルは完全に空乏化されていることによって、画素サイズが小さくなりかつ上記電荷検出部の容量を更に低減することにより電荷電圧変換率を更に向上させて更なる高画質の画像信号を得ることができる本発明の目的を達成することができる。   Although not described in detail in Embodiments 1 to 3, a plurality of light receiving units that photoelectrically convert incident light to provide an image is provided in a two-dimensional manner to form a plurality of pixel units. In the solid-state imaging device, for each pixel unit, a first conductivity type photoelectric conversion unit of the light receiving unit, and a first conductivity type signal detection unit that converts a signal charge transferred from the first conductivity type photoelectric conversion unit into a signal voltage. A second conductivity type well is provided above the first conductivity type substrate, and a first conductivity type photoelectric conversion unit and a first conductivity type signal detection unit are provided in the second conductivity type well, Since the second conductivity type well below the first conductivity type signal detection unit is completely depleted, the pixel size is reduced and the capacitance of the charge detection unit is further reduced, thereby further increasing the charge-voltage conversion rate. It is possible to improve and obtain a higher quality image signal. It can achieve the object of the invention.

以上のように、本発明の好ましい実施形態1〜4を用いて本発明を例示してきたが、本発明は、この実施形態1〜4に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1〜4の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。   As mentioned above, although this invention has been illustrated using preferable Embodiment 1-4 of this invention, this invention should not be limited and limited to this Embodiment 1-4. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range from the description of specific preferred embodiments 1 to 4 of the present invention based on the description of the present invention and the common general technical knowledge. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.

本発明は、被写体からの画像光を光電変換して撮像する半導体素子で構成された固体撮像素子およびその製造方法、この固体撮像素子を画像入力デバイスとして撮像部に用いた例えばデジタルビデオカメラおよびデジタルスチルカメラなどのデジタルカメラや、監視カメラなどの画像入力カメラ、スキャナ装置、ファクシミリ装置、テレビジョン電話装置、カメラ付き携帯電話装置などの電子情報機器の分野において、画素サイズが小さくなっても、上記電荷検出部の容量を更に低減することにより電荷電圧変換率を更に向上させて更なる高画質の画像信号を得ることができる。   The present invention relates to a solid-state imaging device configured by a semiconductor element that photoelectrically converts image light from a subject and images the same, and a manufacturing method thereof, for example, a digital video camera and a digital device using the solid-state imaging device as an image input device in an imaging unit. In the field of electronic information equipment such as digital cameras such as still cameras, image input cameras such as surveillance cameras, scanner devices, facsimile devices, television telephone devices, and mobile phone devices with cameras, even if the pixel size is reduced, the above By further reducing the capacity of the charge detection unit, the charge-voltage conversion rate can be further improved and an image signal with higher image quality can be obtained.

1、1A、1B 2次元増幅型固体撮像素子
2、2A、2B N型基板
3、3A、3B P型ウェル
4 表面酸化膜
5 表面高濃度拡散層
6 埋め込みフォトダイオード
7 電荷検出部
8 電荷転送トランジスタ
8a、9a ゲート
9 リセットトランジスタ
10 拡散層
11 素子分離酸化膜
12、12A 深部電界緩和層
13 増幅トランジスタを含む増幅器
14,14A 回路用P型ウェル
15 フォトダイオード用P型ウェル
DESCRIPTION OF SYMBOLS 1, 1A, 1B Two-dimensional amplification type solid-state image sensor 2, 2A, 2B N-type substrate 3, 3A, 3B P-type well 4 Surface oxide film 5 Surface high concentration diffusion layer 6 Embedded photodiode 7 Charge detection part 8 Charge transfer transistor 8a, 9a Gate 9 Reset transistor 10 Diffusion layer 11 Element isolation oxide film 12, 12A Deep field relaxation layer 13 Amplifier including amplification transistor 14, 14A P-type well for circuit 15 P-type well for photodiode

Claims (14)

入射光を光電変換して撮像する複数の受光部が2次元状に設けられて複数の画素部が構成された固体撮像素子において、
該画素部毎に、該受光部の第1導電型光電変換部と、該第1導電型光電変換部から電荷転送された信号電荷を信号電圧に変換する第1導電型信号検出部とを有し、
第1導電型基板の上部に第2導電型ウエルが設けられ、該第2導電型ウエル内に該第1導電型光電変換部および該第1導電型信号検出部が設けられており、該第1導電型信号検出部の下方の第2導電型ウエルは完全に空乏化されている固体撮像素子。
In a solid-state imaging device in which a plurality of light receiving units that photoelectrically convert incident light to provide an image are two-dimensionally provided and a plurality of pixel units are configured.
Each pixel unit includes a first conductivity type photoelectric conversion unit of the light receiving unit and a first conductivity type signal detection unit that converts the signal charge transferred from the first conductivity type photoelectric conversion unit into a signal voltage. And
A second conductivity type well is provided on the first conductivity type substrate, and the first conductivity type photoelectric conversion unit and the first conductivity type signal detection unit are provided in the second conductivity type well. A solid state imaging device in which the second conductivity type well below the one conductivity type signal detection unit is completely depleted.
前記第1導電型信号検出部の下方位置で、前記第1導電型基板と前記第2導電型ウエルの境界部を含む位置に、該第1導電型信号検出部の不純物濃度よりも低濃度の第1導電型拡散層が設けられている請求項1に記載の固体撮像素子。   A lower concentration than the impurity concentration of the first conductivity type signal detector at a position below the first conductivity type signal detector at a position including the boundary between the first conductivity type substrate and the second conductivity type well. The solid-state imaging device according to claim 1, wherein a first conductivity type diffusion layer is provided. 前記低濃度の第1導電型拡散層は、前記第1導電型信号検出部との間に前記第2導電型ウエルが介在するように、該第1導電型信号検出部下から深さ方向に離れた位置に深部電界緩和層として設けられている請求項2に記載の固体撮像素子。   The low-concentration first conductivity type diffusion layer is separated from the first conductivity type signal detector in the depth direction so that the second conductivity type well is interposed between the first conductivity type signal detector and the first conductivity type signal detector. The solid-state imaging device according to claim 2, wherein the solid-state imaging device is provided as a deep electric field relaxation layer at a certain position. 前記第1導電型光電変換部の下方の第2導電型ウエルが完全に空乏化されている請求項2に記載の固体撮像素子。   The solid-state imaging device according to claim 2, wherein the second conductivity type well below the first conductivity type photoelectric conversion unit is completely depleted. 前記第1導電型光電変換部の下方の第2導電型ウエルと前記第1導電型基板の間の境界の深さ位置が、当該第2導電型ウエルに中性領域が存在する場合に比べて浅く形成されている請求項4に記載の固体撮像素子。   The depth position of the boundary between the second conductivity type well below the first conductivity type photoelectric conversion portion and the first conductivity type substrate is compared with the case where the neutral region exists in the second conductivity type well. The solid-state imaging device according to claim 4, which is formed shallow. 前記第1導電型信号検出部の下方の第2導電型ウエルは、その周囲の第2導電型ウエルよりも深さが浅く不純物濃度が薄く設定されている請求項1に記載の固体撮像素子。   2. The solid-state imaging device according to claim 1, wherein the second conductivity type well below the first conductivity type signal detection unit is set to have a shallower depth and a lower impurity concentration than the surrounding second conductivity type well. 前記第1導電型信号検出部の下方の第2導電型ウエルと前記第1導電型基板との境界において、該第1導電型信号検出部側に平坦部から突出した断面突出部が形成されている請求項6に記載の固体撮像素子。   At the boundary between the second conductivity type well below the first conductivity type signal detection unit and the first conductivity type substrate, a cross-sectional protrusion that protrudes from the flat portion is formed on the first conductivity type signal detection unit side. The solid-state imaging device according to claim 6. 前記第1導電型光電変換部の下方の第2導電型ウエルと前記第1導電型基板との境界は平坦部から凹んだ段差部になっている請求項6または7に記載の固体撮像素子。   8. The solid-state imaging device according to claim 6, wherein a boundary between the second conductivity type well below the first conductivity type photoelectric conversion portion and the first conductivity type substrate is a stepped portion recessed from a flat portion. 前記第1導電型信号検出部に電荷転送された信号電荷に対応した信号電圧に応じて信号を増幅して出力する増幅器をさらに有する請求項1に記載の固体撮像素子。   The solid-state imaging device according to claim 1, further comprising an amplifier that amplifies and outputs a signal in accordance with a signal voltage corresponding to the signal charge transferred to the first conductivity type signal detection unit. 前記第1導電型はN型であり、前記第2導電型はP型である請求項1に記載の固体撮像素子。   The solid-state imaging device according to claim 1, wherein the first conductivity type is an N type, and the second conductivity type is a P type. 前記第1導電型光電変換部は、
該第1導電型光電変換部の表面側に設けられた第2導電型表面高濃度拡散層と、該第1導電型光電変換部の前記第1導電型基板側に設けられた前記第2導電型ウエルとにより囲まれた埋め込み型フォトダイオードで構成されている請求項1に記載の固体撮像素子。
The first conductivity type photoelectric conversion unit includes:
A second conductivity type surface high-concentration diffusion layer provided on the surface side of the first conductivity type photoelectric conversion unit; and the second conductivity provided on the first conductivity type substrate side of the first conductivity type photoelectric conversion unit. The solid-state imaging device according to claim 1, comprising a buried photodiode surrounded by a mold well.
請求項1に記載の固体撮像素子の製造方法において、
入射光を光電変換して撮像する第1導電型光電変換部から電荷転送された信号電荷を信号電圧に変換する第1導電型信号検出部となる領域の下方領域に第1導電型不純物をイオン注入して、前記第1導電型基板と前記第2導電型ウエルの境界部を含む位置に該第1導電型信号検出部の不純物濃度よりも低濃度の第1導電型拡散層を形成する第1導電型拡散層形成ステップを有する固体撮像素子の製造方法。
In the manufacturing method of the solid-state image sensing device according to claim 1,
The first conductivity type impurity is ionized in a region below the region serving as the first conductivity type signal detection unit that converts the signal charge transferred from the first conductivity type photoelectric conversion unit that performs photoelectric conversion of incident light to image the signal voltage. The first conductivity type diffusion layer having a concentration lower than the impurity concentration of the first conductivity type signal detection unit is formed at a position including the boundary between the first conductivity type substrate and the second conductivity type well by implantation. A method for manufacturing a solid-state imaging device, comprising a step of forming one conductivity type diffusion layer.
請求項1に記載の固体撮像素子の製造方法において、
入射光を光電変換して撮像する第1導電型光電変換部から電荷転送された信号電荷を信号電圧に変換する第1導電型信号検出部となる領域の下方領域以外の領域に第2導電型不純物をイオン注入した後に熱拡散処理して回路用第2導電型ウェルを形成することにより、該回路用第2導電型ウェルと第1導電型基板との境界の断面構造として該第1導電型信号検出部側に突出した断面突出部を形成する回路用第2導電型ウェル形成ステップと、
該第1導電型光電変換部となる領域下に、第2導電型不純物をイオン注入して光電変換部用第2導電型ウェルを形成することにより、該光電変換部用第2導電型ウェルと該第1導電型基板との境界の断面構造として該第1導電型基板側に凹んだ断面段差部を形成する光電変換部用第2導電型ウェル形成ステップとを有する固体撮像素子の製造方法。
In the manufacturing method of the solid-state image sensing device according to claim 1,
The second conductivity type is formed in a region other than the region below the region serving as the first conductivity type signal detection unit that converts the signal charge transferred from the first conductivity type photoelectric conversion unit that photoelectrically converts incident light to image the signal voltage. The impurity is ion-implanted and then thermally diffused to form a circuit second conductivity type well, thereby forming the first conductivity type as a cross-sectional structure at the boundary between the circuit second conductivity type well and the first conductivity type substrate. A second conductivity type well forming step for forming a cross-sectional protruding portion protruding to the signal detecting portion side;
A second conductive type well for a photoelectric conversion unit is formed by ion-implanting a second conductive type impurity under a region to be the first conductive type photoelectric conversion unit, thereby forming a second conductive type well for the photoelectric conversion unit and A method of manufacturing a solid-state imaging device, comprising: a step of forming a second conductive type well for a photoelectric conversion unit that forms a stepped portion of a cross section recessed toward the first conductive type substrate as a cross-sectional structure at a boundary with the first conductive type substrate.
請求項1〜11のいずれかに記載の固体撮像素子を画像入力デバイスとして撮像部に用いた電子情報機器。   The electronic information apparatus which used the solid-state image sensor in any one of Claims 1-11 as an image input device for the imaging part.
JP2011073661A 2011-03-29 2011-03-29 Solid-state imaging device, manufacturing method thereof, and electronic information device Expired - Fee Related JP5706212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011073661A JP5706212B2 (en) 2011-03-29 2011-03-29 Solid-state imaging device, manufacturing method thereof, and electronic information device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011073661A JP5706212B2 (en) 2011-03-29 2011-03-29 Solid-state imaging device, manufacturing method thereof, and electronic information device

Publications (2)

Publication Number Publication Date
JP2012209416A true JP2012209416A (en) 2012-10-25
JP5706212B2 JP5706212B2 (en) 2015-04-22

Family

ID=47188920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011073661A Expired - Fee Related JP5706212B2 (en) 2011-03-29 2011-03-29 Solid-state imaging device, manufacturing method thereof, and electronic information device

Country Status (1)

Country Link
JP (1) JP5706212B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029643A (en) * 2017-07-31 2019-02-21 パナソニックIpマネジメント株式会社 Imaging apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233463A (en) * 1985-08-06 1987-02-13 Nec Corp Charge coupled device and driving method thereof
JPH03296227A (en) * 1990-04-14 1991-12-26 Nec Corp Charge transfer device
WO2005083790A1 (en) * 2004-02-27 2005-09-09 Texas Instruments Japan Limited Solid-state imagine device, line sensor, optical sensor, and method for operating solid-state imaging device
JP2008091788A (en) * 2006-10-04 2008-04-17 Sony Corp Solid state image pickup device and its manufacturing method
JP2009302349A (en) * 2008-06-13 2009-12-24 Sharp Corp Amplification type solid-state imaging element, and electronic information apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233463A (en) * 1985-08-06 1987-02-13 Nec Corp Charge coupled device and driving method thereof
JPH03296227A (en) * 1990-04-14 1991-12-26 Nec Corp Charge transfer device
WO2005083790A1 (en) * 2004-02-27 2005-09-09 Texas Instruments Japan Limited Solid-state imagine device, line sensor, optical sensor, and method for operating solid-state imaging device
JP2008091788A (en) * 2006-10-04 2008-04-17 Sony Corp Solid state image pickup device and its manufacturing method
JP2009302349A (en) * 2008-06-13 2009-12-24 Sharp Corp Amplification type solid-state imaging element, and electronic information apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029643A (en) * 2017-07-31 2019-02-21 パナソニックIpマネジメント株式会社 Imaging apparatus

Also Published As

Publication number Publication date
JP5706212B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
US20240047504A1 (en) Solid-state imaging device, drive method thereof and electronic apparatus
JP4832541B2 (en) Solid-state imaging device and electronic information device
JP6215246B2 (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic apparatus
US8957357B2 (en) Solid-state imaging device, manufacturing method of the same, and electronic apparatus
JP5215963B2 (en) Solid-state imaging device and driving method thereof, manufacturing method of solid-state imaging device, and electronic information device
JP4859045B2 (en) Solid-state imaging device and electronic information device
JP4480033B2 (en) Solid-state imaging device and electronic information device
JP2008060476A (en) Solid state imaging apparatus, and electronic information apparatus
JP2008140942A (en) Solid-state image pickup device and its manufacturing method, and electronic information equipment
US20130050552A1 (en) Solid-state imaging apparatus, method of manufacturing solid-state imaging apparatus, and electronic apparatus
JP2010073906A (en) Solid-state imaging element, and electronic information apparatus
WO2010134147A1 (en) Solid state imaging element
JP5319965B2 (en) Amplification type solid-state imaging device and electronic information device
JP5706212B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
JP2011108824A (en) Solid-state image pickup element
JP2012084748A (en) Solid state image sensor and electronic information apparatus
JP5134853B2 (en) Semiconductor device manufacturing method, solid-state imaging device, and electronic information device
JP6610033B2 (en) Image sensor, imaging device, and electronic apparatus
JP5697961B2 (en) Solid-state imaging device, manufacturing method thereof, and electronic information device
JP5693871B2 (en) Solid-state imaging device and electronic information device
JP2009182047A (en) Solid-state imaging device and electronic information apparatus
JP4863517B2 (en) Photoelectric conversion device and camera
JP2011071756A (en) Solid-state imaging element, manufacturing method thereof, and imaging device
JP2011155072A (en) Solid-state image pickup element and electronic information equipment
JP2008211006A (en) Solid imaging device and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150226

R150 Certificate of patent or registration of utility model

Ref document number: 5706212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

LAPS Cancellation because of no payment of annual fees