JP2012203083A - Visible and near-infrared light shielding black film, substrate with visible and near-infrared light shielding black film, and solid-state imaging device - Google Patents
Visible and near-infrared light shielding black film, substrate with visible and near-infrared light shielding black film, and solid-state imaging device Download PDFInfo
- Publication number
- JP2012203083A JP2012203083A JP2011065806A JP2011065806A JP2012203083A JP 2012203083 A JP2012203083 A JP 2012203083A JP 2011065806 A JP2011065806 A JP 2011065806A JP 2011065806 A JP2011065806 A JP 2011065806A JP 2012203083 A JP2012203083 A JP 2012203083A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- film
- black
- black film
- visible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Optical Filters (AREA)
Abstract
Description
本発明は、可視光及び近赤外光に対する遮蔽能力を有する可視近赤外光遮蔽黒色膜、可視近赤外光遮蔽黒色膜付き基材、及び固体撮像素子に関する。 The present invention relates to a visible near infrared light shielding black film having a shielding ability against visible light and near infrared light, a substrate with a visible near infrared light shielding black film, and a solid-state imaging device.
固体撮像素子は、通常、光電変換素子であるフォトダイオード(受光部)が二次元配列されたシリコン等の半導体基板と、各フォトダイオードの上方に二次元配列されたレッド(R)色、グリーン(G)色、ブルー(B)色のカラーフィルターと、カラーフィルター上に設けられ、入射光をフォトダイオードに集光させるためのオンチップマイクロレンズとから構成されている。
ここで、固体撮像素子の撮像部(有効画素領域)の周縁領域には、暗電流の低減、ダイナミックレンジの低下防止、周辺回路の動作安定を図るための遮光膜が設けられる。周縁領域に光が入射すると、上記作用のためにノイズが発生し、またイメージセンサとしての画質が低下してしまうことから、この影響を防止するためである。
また、隣接するカラーフィルター間相互の影響を低減し、画質を向上させるために、カラーフィルター上に設けられる遮光膜、いわゆるブラックマトリックスを設けることも行われてきている。
A solid-state imaging device usually includes a semiconductor substrate such as silicon in which photodiodes (light receiving portions) that are photoelectric conversion elements are two-dimensionally arranged, and red (R) and green (two-dimensionally arranged above each photodiode). G) and blue (B) color filters, and an on-chip microlens provided on the color filters for condensing incident light on a photodiode.
Here, a light-shielding film is provided in the peripheral region of the imaging unit (effective pixel region) of the solid-state imaging device in order to reduce dark current, prevent the dynamic range from decreasing, and stabilize the operation of the peripheral circuit. When light enters the peripheral area, noise is generated due to the above-described action, and the image quality as an image sensor is deteriorated, so this effect is prevented.
In addition, in order to reduce the influence between adjacent color filters and improve the image quality, a light shielding film provided on the color filter, a so-called black matrix, has been provided.
近年、固体撮像素子の画素単位(光電変換素子の大きさ)の微小化に伴い遮光膜の薄膜化が求められている。すなわち、画素の微小化に伴い、光電変換素子の受光量を確保するためにはシリコンウエハ等の半導体基板上に形成された光電変換素子の上面(基板表面)からオンチップマイクロレンズの下面までの有効光学機能層の厚さを薄くする必要が生じ、例えば4μmの厚さが要求されるようになってきている。このため、撮像部周縁の遮光膜や、固体撮像素子カラーフィルター用ブラックマトリックスも、薄くする必要に迫られている。 In recent years, with the miniaturization of the pixel unit (size of the photoelectric conversion element) of the solid-state imaging device, it is required to reduce the thickness of the light shielding film. That is, with the miniaturization of pixels, in order to ensure the amount of light received by the photoelectric conversion element, from the upper surface (substrate surface) of the photoelectric conversion element formed on the semiconductor substrate such as a silicon wafer to the lower surface of the on-chip microlens. There is a need to reduce the thickness of the effective optical functional layer, and for example, a thickness of 4 μm has been required. For this reason, it is necessary to reduce the thickness of the light shielding film on the periphery of the imaging unit and the black matrix for the solid-state imaging device color filter.
ここで、画像表示装置用ブラックマトリックスに用いられる遮光膜としては、主に可視域における遮光性が要求されるのに対し、固体撮像素子用遮光膜やブラックマトリックスとしては、可視域における遮光性に加え近赤外域における遮光性をも必要とされている。その理由として、赤外領域光は人の目には見えないために画像表示装置では遮光性があまり問題にならないのに対して、固体撮像素子は赤外領域光にも感度を有するため、赤外領域光も遮光されていないと、ノイズが発生するためである。このように、固体撮像素子用としての遮光膜や固体撮像素子カラーフィルター用ブラックマトリックスには、遮光性の向上と薄膜化の両立が求められている。 Here, the light shielding film used in the black matrix for the image display device is mainly required to have a light shielding property in the visible region, whereas the light shielding film for the solid-state imaging device or the black matrix has a light shielding property in the visible region. In addition, light shielding properties in the near infrared region are also required. The reason for this is that since infrared region light is not visible to the human eye, light shielding is not a problem in image display devices, whereas solid-state imaging devices are sensitive to infrared region light, so This is because noise is generated when the outside region light is not shielded. As described above, the light-shielding film for the solid-state image sensor and the black matrix for the solid-state image sensor color filter are required to satisfy both the light-shielding property and the thin film.
従来、固体撮像素子用遮光膜や固体撮像素子カラーフィルター用ブラックマトリックス(以下、遮光膜とブラックマトリックスを合わせて「遮光膜等」という場合がある)を形成するための黒色材料としては、液晶表示装置用ブラックマトリックス用と同様のカーボンブラックやチタンブラック等が知られていた。しかしながら、カーボンブラックやチタンブラックといった従来の黒色材料では可視光及び近赤外光の遮蔽能力が十分ではない。このため、従来の黒色材料を使って固体撮像素子用遮光膜等の遮光性を向上させる場合には遮光膜等に含まれる黒色材料の含有量を増加させるか、又は遮光膜等の膜厚を増加させることにより、可視光及び近赤外光の遮蔽能力を確保する必要がある。しかしながら、遮光膜等中の黒色材料の含有量を増加させる場合、遮光膜等に含まれる樹脂成分の比率が少なくなるために、パターン形成時に硬化が不十分になり、膜強度が不足したり微細パターンの形成が不十分になってしまうという問題点があった。また、遮光膜等の膜厚を増加させる場合、微細パターンの形成が不十分になったり、何よりも撮像素子の薄型化が難しくなったりするという問題点があった(例えば、特許文献1、2参照)。
さらに、従来も金属微粒子を用いた黒色材料は存在したが、可視域の光遮蔽だけが高いものであり、可視域、近赤外域の両方で高い遮蔽能力を示す金属微粒子含有黒色材料は存在していなかった(例えば、特許文献3、4参照)。
Conventionally, as a black material for forming a light-shielding film for a solid-state image sensor or a black matrix for a solid-state image sensor color filter (hereinafter, the light-shielding film and the black matrix may be collectively referred to as “light-shielding film”), a liquid crystal display Carbon black, titanium black, and the like similar to those for the device black matrix have been known. However, conventional black materials such as carbon black and titanium black do not have sufficient shielding ability against visible light and near infrared light. For this reason, when using a conventional black material to improve the light-shielding property of the light-shielding film for a solid-state imaging device, the content of the black material contained in the light-shielding film or the like is increased or the film thickness of the light-shielding film or the like is increased. It is necessary to ensure the shielding ability of visible light and near infrared light by increasing. However, when the content of the black material in the light-shielding film or the like is increased, the ratio of the resin component contained in the light-shielding film or the like is reduced, so that curing is insufficient during pattern formation, resulting in insufficient film strength or fineness. There is a problem that the pattern formation becomes insufficient. Further, when the film thickness of the light shielding film or the like is increased, there is a problem that the formation of a fine pattern becomes insufficient, and above all, it is difficult to reduce the thickness of the image sensor (for example, Patent Documents 1 and 2). reference).
Furthermore, black materials using metal fine particles have existed in the past, but only the light shielding in the visible range is high, and there are black materials containing metal fine particles that exhibit high shielding ability in both the visible range and the near infrared range. (For example, refer to Patent Documents 3 and 4).
上記に鑑み、本発明は可視光及び近赤外光域にわたる遮蔽能力が従来の黒色膜よりも優れており、固体撮像素子用遮光膜等のような可視光及び近赤外光の遮蔽能力が求められる用途に好適な可視近赤外光遮蔽黒色膜及び可視近赤外光遮蔽黒色膜付き基材を提供することを目的とする。また、上記の可視近赤外光遮蔽黒色膜又は可視近赤外光遮蔽黒色膜付き基材を有する固体撮像素子を提供することを目的とする。 In view of the above, the present invention has a shielding ability over visible light and near-infrared light regions that is superior to conventional black films, and has a shielding ability for visible light and near-infrared light such as a light-shielding film for a solid-state imaging device. It aims at providing the base material with a visible near-infrared light shielding black film and a visible near-infrared light shielding black film suitable for the required use. It is another object of the present invention to provide a solid-state imaging device having the visible / near infrared light shielding black film or the substrate with the visible / near infrared light shielding black film.
上記の課題は下記の本発明により解決される。すなわち本発明は下記の通りである。
[1] 平均一次粒子径が1nm以上かつ300nm以下の金属微粒子を含有してなり、膜中における前記金属微粒子が、略球状粒子と略棒状粒子との混合物、略球状粒子と略板状粒子との混合物、略球状粒子と略棒状粒子と略板状粒子の混合物、のいずれかであることを特徴とする可視近赤外遮蔽黒色膜。
[2] 前記略球状粒子の平均一次粒子径が1nm以上かつ100nm以下であり、かつ略棒状粒子又は略板状粒子の平均一次粒子径が5nm以上かつ300nm以下である[1]に記載の可視近赤外遮蔽黒色膜。
[3] 前記略球状粒子、略棒状粒子、略板状粒子のいずれか又は全てが前記金属微粒子の凝集粒子であって,当該略球状粒子の膜中における平均分散粒子径が1nm以上かつ100nm以下であり、かつ当該略棒状粒子又は当該略板状粒子の膜中における平均分散粒子径が5nm以上かつ300nm以下である[1]又は[2]に記載の可視近赤外遮蔽黒色膜。
[4] 前記金属微粒子が、白金、金、銀、銅、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンタル、チタン、及びビスマスからなる群から選択される1種又は2種以上を含む上記[1]〜[3]のいずれかに記載の可視近赤外光遮蔽黒色膜。
[5] 前記可視近赤外遮蔽黒色膜における波長400nmから1300nmにおける光学濃度の平均が1.0以上、かつ波長555nmにおける光学濃度が1.0以上、かつ波長1300nmにおける光学濃度が0.6以上である上記[1]〜[4]のいずれかに記載の可視近赤外遮蔽黒色膜。
[6] 体積抵抗率が1011Ω・cm以上である上記[1]〜[5]のいずれかに記載の可視近赤外光遮蔽黒色膜。
The above problems are solved by the present invention described below. That is, the present invention is as follows.
[1] Metal fine particles having an average primary particle diameter of 1 nm or more and 300 nm or less, and the metal fine particles in the film are a mixture of substantially spherical particles and substantially rod-like particles, substantially spherical particles and substantially plate-like particles, Or a mixture of substantially spherical particles, substantially rod-like particles and substantially plate-like particles.
[2] The visible particle according to [1], wherein an average primary particle diameter of the substantially spherical particles is 1 nm or more and 100 nm or less, and an average primary particle diameter of the substantially rod-like particles or substantially plate-like particles is 5 nm or more and 300 nm or less. Near infrared shielding black film.
[3] Any or all of the substantially spherical particles, substantially rod-like particles, and substantially plate-like particles are aggregated particles of the metal fine particles, and the average dispersed particle diameter in the film of the substantially spherical particles is 1 nm or more and 100 nm or less. The visible near-infrared shielding black film according to [1] or [2], wherein the average dispersed particle diameter in the film of the substantially rod-like particles or the substantially plate-like particles is 5 nm or more and 300 nm or less.
[4] The metal fine particles include platinum, gold, silver, copper, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, and bismuth. Visible near-infrared light shielding black film in any one of said [1]-[3] containing 1 type, or 2 or more types selected from a group.
[5] The visible optical near-infrared shielding black film has an optical density average of 1.0 or more at a wavelength of 400 nm to 1300 nm, an optical density at a wavelength of 555 nm of 1.0 or more, and an optical density at a wavelength of 1300 nm of 0.6 or more. The visible and near infrared shielding black film according to any one of the above [1] to [4].
[6] The visible near infrared light shielding black film according to any one of [1] to [5], wherein the volume resistivity is 10 11 Ω · cm or more.
[7] 上記[1]〜[6]のいずれかに記載の可視近赤外光遮蔽黒色膜が形成された可視近赤外光遮蔽黒色膜付き基材。
[8] 上記[1]〜[6]のいずれかに記載の可視近赤外光遮蔽黒色膜、又は上記[7]に記載の可視近赤外光遮蔽黒色膜付き基材を有する固体撮像素子。
[7] A substrate with a visible near-infrared light shielding black film on which the visible near-infrared light shielding black film according to any one of [1] to [6] is formed.
[8] The solid-state imaging device having the visible / near infrared light shielding black film according to any one of [1] to [6] or the substrate with the visible / near infrared light shielding black film according to [7]. .
本発明によれば、可視光及び近赤外光域にわたる遮蔽能力が従来の黒色膜よりも優れており、固体撮像素子用遮光膜やブラックマトリックスのような可視光及び近赤外光の遮蔽能力が求められる用途に好適な可視近赤外光遮蔽黒色膜及び視近赤外光遮蔽黒色膜付き基材を提供することができる。また、上記の可視近赤外光遮蔽黒色膜又は可視近赤外光遮蔽黒色膜付き基材を有する固体撮像素子を提供することができる。 According to the present invention, the shielding ability over the visible light and near-infrared light region is superior to the conventional black film, and the shielding ability of visible light and near-infrared light such as a light-shielding film for a solid-state imaging device or a black matrix. Therefore, it is possible to provide a visible near-infrared light-shielding black film and a substrate with a visible near-infrared light-shielding black film that are suitable for applications that require the above. Moreover, the solid-state image sensor which has a base material with said visible near-infrared light shielding black film or visible near-infrared light shielding black film can be provided.
[可視近赤外光遮蔽黒色膜]
本発明の可視近赤外光遮蔽黒色膜(以下、単に「黒色膜」ということがある)は、平均一次粒子径が1nm以上かつ300nm以下の金属微粒子を含んでなり、膜中における該金属微粒子の形態が、略球状粒子と略棒状粒子との混合物、略球状粒子と略板状粒子との混合物、略球状粒子と略棒状粒子と略板状粒子の混合物、のいずれかである。
従来も金属微粒子を用いた黒色膜は存在したが、可視域での光遮蔽だけが高いものであり、可視域、近赤外域の両方で高い遮蔽能力を示す金属微粒子含有黒色材料は存在していなかった。本発明は、金属微粒子の粒子径とその形態を規定することで光を吸収する波長をコントロールし、可視域に加え近赤外域の両方で高い遮蔽能力を示すものである。
[Visible near-infrared light shielding black film]
The visible near-infrared light shielding black film of the present invention (hereinafter sometimes simply referred to as “black film”) comprises metal fine particles having an average primary particle diameter of 1 nm or more and 300 nm or less, and the metal fine particles in the film Is a mixture of substantially spherical particles and substantially rod-like particles, a mixture of substantially spherical particles and substantially plate-like particles, or a mixture of substantially spherical particles, substantially rod-like particles and substantially plate-like particles.
Conventionally, black films using metal fine particles have existed, but only light shielding in the visible range is high, and there are black materials containing metal fine particles that show high shielding ability in both the visible range and the near infrared range. There wasn't. The present invention controls the wavelength of light absorption by defining the particle size and form of the metal fine particles, and exhibits high shielding ability both in the near infrared region in addition to the visible region.
平均一次粒子径を1nm以上かつ300nm以下と限定した理由は、平均一次粒子径を上記の範囲内とすることで所望の可視近赤外光遮蔽黒色膜を容易に形成できるからである。即ち、平均一次粒子径が1nm未満では、可視光や近赤外光の波長と比較して小さすぎるために透過光量が増加して所望の黒色度が得られないおそれがあり、一方、平均一次粒子怪が300nmを超えると、散乱が生じて所望の黒色度を得難くなったり、黒色膜の表面の凹凸が大きくなったりするおそれがある。 The reason why the average primary particle diameter is limited to 1 nm or more and 300 nm or less is that a desired visible / near-infrared light shielding black film can be easily formed by setting the average primary particle diameter within the above range. That is, if the average primary particle diameter is less than 1 nm, the amount of transmitted light may be increased and the desired blackness may not be obtained because it is too small compared to the wavelength of visible light or near infrared light. If the particle monster exceeds 300 nm, scattering may occur and it may be difficult to obtain a desired blackness, or unevenness on the surface of the black film may increase.
平均一次粒子径は3nm以上かつ100nm以下であることが好ましく、3nm以上かつ60nm以下がより好ましく、5nm以上かつ60nm以下がさらに好ましく、10nm以上かつ40nm以下が特に好ましい。
ここで、平均一次粒子径は種々の形状を持つ金属微粒子をTEM(透過型電子顕微鏡)で観察し、得られた微粒子の面積が同じになるような円に相当する直径とする。
The average primary particle size is preferably 3 nm or more and 100 nm or less, more preferably 3 nm or more and 60 nm or less, further preferably 5 nm or more and 60 nm or less, and particularly preferably 10 nm or more and 40 nm or less.
Here, the average primary particle diameter is a diameter corresponding to a circle in which metal fine particles having various shapes are observed with a TEM (transmission electron microscope) and the obtained fine particles have the same area.
また、金属微粒子の黒色膜中における形状は、略球状粒子と略棒状粒子との混合物、略球状粒子と略板状粒子との混合物、略球状粒子と略棒状粒子と略板状粒子の混合物、のいずれかである必要がある。このように、略球状粒子と、略棒状粒子及び/又は略板状粒子とを共に含むことにより、可視光領域から近赤外領域までの遮光性を向上させることができる。 Further, the shape of the metal fine particles in the black film is a mixture of substantially spherical particles and substantially rod-like particles, a mixture of substantially spherical particles and substantially plate-like particles, a mixture of substantially spherical particles, substantially rod-like particles and substantially plate-like particles, Must be one of the following. Thus, by including both substantially spherical particles and substantially rod-like particles and / or substantially plate-like particles, the light shielding property from the visible light region to the near infrared region can be improved.
ここで、略球状粒子、略棒状粒子、略板状粒子は、黒色膜をTEMで観察した画像から、次のように規定した。
先ず、略球状粒子と略板状粒子は、TEM画像で観測される金属微粒子において、その最も長い部分の長さをLとし、Lと直角方向の長さをWとした際に、L/Wで示される値(以下、「アスペクト比」ということがある)が2未満であるものとした。すなわち、略球状粒子と略板状粒子は、TEM画像上(平面に転写された形状)が必ずしも完全な円状である必要はなく、歪んだ円状、楕円状、多角形状、角が取れた多角形状等であってもよい。そして、粒子径が約40nmよりも小さいものについては、TEM画像からは略球状であるか略板状であるかの判定が難しいことと、製法上、数10nmサイズの板状粒子を形成させるのは難しいと考えられることから、略球状粒子とした。また、粒子径が約40nmよりも大きいものについては、TEM画像において粒子中央部の透過率が粒子外周部よりも低いもの(粒子中央部が外周部に比べて黒く写っているもの)は略球状粒子とし、一方、TEM画像において粒子中央部と粒子外周部の透過率がほぼ同等のもの(粒子中央部と外周部が同等の明度で写っているもの)は略板状粒子とした。
次に、略棒状粒子は、TEM画像で観測される金属微粒子において、アスペクト比が2以上のものであるとした。
Here, substantially spherical particles, substantially rod-like particles, and substantially plate-like particles were defined as follows from an image obtained by observing a black film with a TEM.
First, when the length of the longest portion of the metal fine particle observed in the TEM image is L and the length perpendicular to L is W, the substantially spherical particle and the substantially plate-like particle are L / W. (Hereinafter, also referred to as “aspect ratio”) is less than 2. That is, the substantially spherical particles and the substantially plate-like particles do not necessarily have to be completely circular on the TEM image (the shape transferred to the flat surface), but have a distorted circle, ellipse, polygon, or corner. It may be a polygonal shape or the like. For particles having a particle diameter smaller than about 40 nm, it is difficult to determine whether the particle diameter is substantially spherical or substantially plate-like from a TEM image, and plate-like particles having a size of several tens of nm are formed due to the manufacturing method. Were considered to be difficult, so the particles were made into substantially spherical particles. For particles having a particle diameter larger than about 40 nm, those in which the transmittance at the center of the particle is lower than that at the outer periphery of the particle in the TEM image (the center of the particle appears black compared to the outer periphery) are approximately spherical. On the other hand, in the TEM image, the particles having substantially the same transmittance at the particle central portion and the particle outer peripheral portion (the particle central portion and the outer peripheral portion are reflected with the same brightness) were substantially plate-like particles.
Next, it is assumed that the substantially rod-like particles have an aspect ratio of 2 or more in the metal fine particles observed in the TEM image.
この略球状粒子の、黒色膜中における平均一次粒子径は1nm以上かつ100nm以下であることが好ましく、1nm以上かつ50nm以下がより好ましく、3nm以上かつ40nm以下であることがさらに好ましい。また、略棒状粒子および略板状粒子の、黒色膜中における平均一次粒子径は5nm以上かつ300nm以下であることが好ましく、5nm以上かつ100nm以下であることがより好ましく、10nm以上かつ100nm以下であることがより好ましい。 The average primary particle diameter of the substantially spherical particles in the black film is preferably 1 nm or more and 100 nm or less, more preferably 1 nm or more and 50 nm or less, and further preferably 3 nm or more and 40 nm or less. Moreover, the average primary particle diameter in the black film of the substantially rod-like particles and the substantially plate-like particles is preferably 5 nm or more and 300 nm or less, more preferably 5 nm or more and 100 nm or less, and 10 nm or more and 100 nm or less. More preferably.
さらにまた、略球状粒子、略棒状粒子および略板状粒子は、凝集粒子であってもよい。
粒子径が1nmから数100nm程度の金属微粒子(ナノメートルサイズの金属微粒子)は、金属の表面プラズモン吸収により様々な色調を呈することが知られており、本発明の黒色膜においてもこの表面プラズモン吸収を利用しているが、金属凝集粒子であっても、その凝集粒子径が1nmから数100nm程度であれば、同様の表面プラズモン吸収を起こしうるからである。また、金属微粒子は、その寸法や形状が変わると誘電関数が変化して微粒子が吸収する光の波長が変わるが、一次粒子ではなく、凝集粒子の寸法や形状変化でも誘電関数に影響を与え、吸収する光の波長を変えられる場合があるためである。
なおここで、「凝集粒子」とは、TEM画像において凝集状態を呈していると観測できるものを示す。
Furthermore, the substantially spherical particles, substantially rod-like particles and substantially plate-like particles may be aggregated particles.
It is known that metal fine particles (nanometer-sized metal fine particles) having a particle diameter of about 1 nm to several hundreds of nm exhibit various colors due to metal surface plasmon absorption, and the black film of the present invention also absorbs this surface plasmon. This is because even if the particles are metal agglomerated particles, the same surface plasmon absorption can occur if the agglomerated particle diameter is about 1 nm to several hundreds of nm. In addition, when the size and shape of the metal fine particles change, the dielectric function changes and the wavelength of the light absorbed by the fine particles changes, but not the primary particles, but the size and shape changes of the aggregated particles also affect the dielectric function, This is because the wavelength of light to be absorbed may be changed.
Here, “aggregated particles” refers to those that can be observed as agglomerated in a TEM image.
そして、これら略球状粒子、略棒状粒子および略板状粒子が凝集粒子である場合においても、この略球状粒子の、黒色膜中における平均分散粒子径は1nm以上かつ100nm以下であることが好ましく、1nm以上かつ50nm以下がより好ましく、3nm以上かつ40nm以下であることがさらに好ましい。また、略棒状粒子および略板状粒子の、黒色膜中における平均分散粒子径は5nm以上かつ300nm以下であることが好ましく、5nm以上かつ100nm以下であることがより好ましく、10nm以上かつ100nm以下であることがより好ましい。
なお、「膜中における平均分散粒子径」とは、分散液中における平均分散粒子径と同様の意味である。すなわち、膜中における粒子が凝集粒子のみであれば、当該凝集粒子の粒子径の平均値であり、凝集粒子と一次粒子が混在する場合には、これらを合わせた粒子の粒子径の平均値であり、一次粒子のみ(粒子が凝集していない)であれば、一次粒子の粒子径の平均値である。
And even when these substantially spherical particles, substantially rod-like particles and substantially plate-like particles are agglomerated particles, the average dispersed particle diameter of the substantially spherical particles in the black film is preferably 1 nm or more and 100 nm or less, It is more preferably 1 nm or more and 50 nm or less, and further preferably 3 nm or more and 40 nm or less. Further, the average dispersed particle size of the substantially rod-like particles and substantially plate-like particles in the black film is preferably 5 nm or more and 300 nm or less, more preferably 5 nm or more and 100 nm or less, and more preferably 10 nm or more and 100 nm or less. More preferably.
The “average dispersed particle size in the film” has the same meaning as the average dispersed particle size in the dispersion. That is, if the particles in the film are only aggregated particles, the average value of the particle size of the aggregated particles, and if the aggregated particles and primary particles are mixed, the average value of the particle size of the combined particles If it is only primary particles (particles are not aggregated), it is the average value of the particle diameters of the primary particles.
この凝集粒子を形成する一次粒子には特に形状の限定はなく、略球状金属微粒子、略棒状金属微粒子、略板状金属粒子のいずれでもよく、これら金属微粒子の混合物であってもよい。また、その他の形状、例えば楕円球状や角柱状等であってもよい。
また、凝集略棒状粒子における凝集の形態としては、上記一次粒子が連続して連なってなることが好ましい。例えば、金属微粒子2つ以上が直線状に連なっている形態が挙げられる。これらの存在はTEMで確認することができる。
The primary particles forming the aggregated particles are not particularly limited in shape, and may be any of substantially spherical metal fine particles, substantially rod-like metal fine particles, and substantially plate-like metal particles, or a mixture of these metal fine particles. Also, other shapes such as an elliptical sphere and a prismatic shape may be used.
Moreover, as a form of aggregation in the aggregated substantially rod-shaped particles, it is preferable that the primary particles are continuously connected. For example, a form in which two or more metal fine particles are connected in a straight line can be mentioned. Their presence can be confirmed by TEM.
そして、黒色膜中における略球状粒子の体積≪A≫と、略棒状粒子の体積≪B≫と、略板状粒子の体積≪C≫との比(≪A≫:(≪B≫+≪C≫))は、5:95以上かつ95:5以下であることが好ましく、10:90以上かつ90:10以下であればより好ましい。 Then, the ratio of the volume of substantially spherical particles << A >> in the black film, the volume of substantially rod-like particles << B >>, and the volume of substantially plate-like particles << C >> (<< A >>: (<< B >> + << C >>)) is preferably 5:95 or more and 95: 5 or less, more preferably 10:90 or more and 90:10 or less.
金属微粒子においては、粒子径や粒子形状を制御することで光を吸収する波長を調整することが可能である。従って所望の可視光、近赤外光の遮蔽能力を得るために種種の粒子径や粒子形状の粒子を組み合わせることができる。本発明においては、上記の分散粒子径範囲及び粒子形状の組み合わせにより、可視域、近赤外域の両方で高い遮蔽能力を示す金属微粒子を得ることができ、よって可視域、近赤外域の両方で高い遮蔽能力を示す黒色膜を得ることができる。 In the case of metal fine particles, the wavelength at which light is absorbed can be adjusted by controlling the particle diameter and particle shape. Therefore, in order to obtain desired visible light and near-infrared light shielding ability, particles having various particle sizes and particle shapes can be combined. In the present invention, the combination of the above-mentioned dispersed particle size range and particle shape can provide metal fine particles exhibiting a high shielding ability in both the visible region and the near infrared region, and thus in both the visible region and the near infrared region. A black film showing a high shielding ability can be obtained.
本発明の可視近赤外光遮蔽黒色膜は、波長400nmから1300nmにおける光学濃度の平均が1.0以上であることが好ましい。光学濃度はOD値(Optical Density)とも呼ばれ、光学濃度=−log10T (T:透過率)・・・(式−1)
で表される。
The visible near infrared light shielding black film of the present invention preferably has an average optical density of 1.0 or more at a wavelength of 400 nm to 1300 nm. The optical density is also called an OD value (Optical Density), and the optical density = −log 10 T (T: transmittance) (Formula-1)
It is represented by
波長400nmから1300nmにおける光学濃度の平均は、例えば分光光度計で波長400nmから1300nmの透過率を1nm間隔で測定し、上記(式−1)にしたがって各波長の透過率を光学濃度に換算した後に、波長400nmから1300nmの範囲で換算した光学濃度を平均すればよい。波長400nmから1300nmにおける光学濃度の平均が1.0以上であると、可視近赤外光遮蔽黒色膜の可視光及び近赤外光での光吸収が良好なものとなる。
波長400nmから1300nmにおける光学濃度の平均は1.0以上であることが好ましく、1.4以上であることがより好ましく、1.6以上であることがさらに好ましく、1.8以上であることが特に好ましい。
The average optical density at wavelengths from 400 nm to 1300 nm is obtained by, for example, measuring the transmittance at wavelengths of 400 nm to 1300 nm at 1 nm intervals with a spectrophotometer and converting the transmittance at each wavelength to optical density according to the above (formula-1). The optical density converted in the wavelength range of 400 nm to 1300 nm may be averaged. When the average optical density at wavelengths from 400 nm to 1300 nm is 1.0 or more, the visible and near-infrared light shielding black film absorbs light with visible light and near-infrared light.
The average optical density at wavelengths from 400 nm to 1300 nm is preferably 1.0 or more, more preferably 1.4 or more, further preferably 1.6 or more, and 1.8 or more. Particularly preferred.
本発明の可視近赤外光遮蔽黒色膜は、波長555nmにおける光学濃度が1.0以上であることが好ましい。波長555nmにおける光学濃度が1.0以上であると可視近赤外光遮蔽黒色膜の可視光での光吸収が良好なものとなる。
波長555nmにおける光学濃度は1.4以上であることがより好ましく、1.6以上であることがさらに好ましく、2.0以上であることが特に好ましい。
The visible and near infrared light shielding black film of the present invention preferably has an optical density of 1.0 or more at a wavelength of 555 nm. When the optical density at a wavelength of 555 nm is 1.0 or more, the visible / infrared light shielding black film absorbs light with visible light.
The optical density at a wavelength of 555 nm is more preferably 1.4 or more, further preferably 1.6 or more, and particularly preferably 2.0 or more.
本発明の可視近赤外光遮蔽黒色膜は、波長1300nmにおける光学濃度が0.6以上であることが好ましい。波長1300nmにおける光学濃度が0.6以上であると可視近赤外光遮蔽黒色膜の近赤外光での光吸収が良好なものとなる。
波長1300nmにおける光学濃度は1.0以上であることがより好ましく、1.2以上であることがさらに好ましく、1.5以上であることが特に好ましい。
The visible and near infrared light shielding black film of the present invention preferably has an optical density of 0.6 or more at a wavelength of 1300 nm. When the optical density at a wavelength of 1300 nm is 0.6 or more, the visible near-infrared light shielding black film absorbs light with near-infrared light.
The optical density at a wavelength of 1300 nm is more preferably 1.0 or more, further preferably 1.2 or more, and particularly preferably 1.5 or more.
本発明の可視近赤外光遮蔽黒色膜の膜厚は5μm以下であることが好ましい。例えば固体撮像素子用カラーフィルターでは遮光性の向上と薄膜化の両立が求められており(例えば、特開2010−008655号公報参照)、5μmを上回ることは好ましくない。当該膜厚は3μm以下であることがより好ましく、2μm以下であることがさらに好ましい。
本発明の黒色膜は、可視域及び近赤外域の遮光性が優れているため、膜厚が薄くても、可視域及び近赤外域の遮光性を優れたものにすることができる。
The film thickness of the visible near infrared light shielding black film of the present invention is preferably 5 μm or less. For example, in a color filter for a solid-state imaging device, both improvement in light shielding properties and thinning of the film are required (see, for example, JP-A-2010-008655), and it is not preferable to exceed 5 μm. The film thickness is more preferably 3 μm or less, and further preferably 2 μm or less.
Since the black film of the present invention has excellent light-shielding properties in the visible region and the near-infrared region, the light-shielding properties in the visible region and the near-infrared region can be made excellent even when the film thickness is thin.
本発明における金属微粒子は、白金、金、銀、銅、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンタル、チタン、ビスマスからなる群から選択される1種又は2種以上を含むものであることが好ましく、銀、銅、ニッケル、錫、コバルト、鉄からなる群から選択される1種又は2種以上であることがより好ましく、銀、銅、ニッケル、錫からなる群から選択される1種又は2種以上であることがさらに好ましい。 The fine metal particles in the present invention are selected from the group consisting of platinum, gold, silver, copper, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, and bismuth. It is preferable to include one or more selected, more preferably one or more selected from the group consisting of silver, copper, nickel, tin, cobalt, and iron, and silver, copper More preferably, they are 1 type, or 2 or more types selected from the group consisting of nickel, tin.
上記金属微粒子の中でも、(1)銀又は銀を含む合金及びこれらの混合物が特に好ましい。
銀は可視光、近赤外光で誘電率の実数部が負であり光吸収特性に優れている。また、従来、粒子径が1nmから数100nm程度の金属微粒子(ナノメートルサイズの金属微粒子)は、金属の表面プラズモン吸収により様々な色調を呈することが知られており、また、この色調は微粒子の組成や粒子径により変化することも知られている。銀はナノメートルサイズの金属微粒子で可視光域でのプラズモン吸収が高いことから、銀又は銀を含む合金及びこれらの混合物が好ましい。
Among the metal fine particles, (1) silver or an alloy containing silver and a mixture thereof are particularly preferable.
Silver is visible light and near-infrared light, and the real part of the dielectric constant is negative, and has excellent light absorption characteristics. Conventionally, it has been known that metal fine particles (nanometer-sized metal fine particles) having a particle diameter of about 1 nm to several hundreds of nanometers exhibit various color tones due to metal surface plasmon absorption. It is also known to change depending on the composition and particle size. Since silver is a nanometer-sized metal fine particle and has high plasmon absorption in the visible light region, silver or an alloy containing silver and a mixture thereof are preferable.
また、上記金属微粒子の中でも、(2)銀及び銀錫合金部を含むものが特に好ましい。
銀は単体での吸収特性に優れているが、可視近赤外光遮蔽黒色材料が銀微粒子のみから構成されていると、反射率が高くなって黒色度が低下したり、二百数十度の焼成で吸収スペクトルが変化してOD値が低下したりする場合がある。金属微粒子を合金化することで、合金化により発生した散乱の効果で電子の移動が単体金属の場合よりも阻害されるため、黒色遮光膜の反射率を低下させることができる。
Among the above metal fine particles, (2) those containing silver and a silver tin alloy part are particularly preferable.
Silver has excellent absorption characteristics by itself, but if the visible and near-infrared light-shielding black material is composed only of silver fine particles, the reflectivity will increase and the blackness will decrease, or it will be tens of degrees In some cases, the absorption spectrum may change due to the firing of, and the OD value may decrease. By alloying the metal fine particles, the movement of electrons is hindered by the scattering effect generated by alloying as compared with the case of a single metal, and therefore the reflectance of the black light-shielding film can be lowered.
本発明において、銀錫合金部とは、例えば次のものであって、銀錫金属間化合物の結晶構造を有するもの(以下、「銀錫金属間化合物相」とも言う)だけではなく、銀の結晶構造を有するもの(以下、「銀相」とも言う)を含んでもよい。
まず、銀錫金属間化合物相を有するものとしては、銀錫合金を化学式Ag1-XSnXで表した場合のXの範囲としては、0.118≦X≦0.2285のζ相(空間群P63/mmc)及び0.237≦X≦0.25のε相(空間群Pmmn)が知られている(Binary Alloy Phase Diagram,p.94−97による)。これらの相の組成と空間群を、X線回折のICDDカード(JCPDSカード)と比較すると、ε相のX線回折データがAg3Sn(IDCC 71−0530)、ζ相のX線回折データがAg4Sn(IDCC 29−1151)に相当すると考えられる。従って、斜方晶系であるε相(Ag3Sn)又は六方晶系であるζ相(Ag4Sn)の構造を有する銀錫合金部を有する微粒子であれば、化学的安定性と黒色度とを満足することができる。
In the present invention, the silver-tin alloy part is, for example, the following, which has a crystal structure of silver-tin intermetallic compound (hereinafter also referred to as “silver-tin intermetallic compound phase”), as well as silver Those having a crystal structure (hereinafter also referred to as “silver phase”) may be included.
First, as for having a silver tin intermetallic compound phase, the range of X when the silver tin alloy is represented by the chemical formula Ag 1-X Sn X is ζ phase of 0.118 ≦ X ≦ 0.2285 (space Group P6 3 / mmc) and 0.237 ≦ X ≦ 0.25 epsilon phase (space group Pmmn) are known (according to Binary Alloy Phase Diagram, p. 94-97). Comparing the composition and space group of these phases with the X-ray diffraction ICDD card (JCPDS card), the X-ray diffraction data of the ε phase is Ag 3 Sn (IDCC 71-0530), and the X-ray diffraction data of the ζ phase is It is thought to correspond to Ag 4 Sn (IDCC 29-1151). Therefore, if the fine particles have a silver-tin alloy part having a structure of orthorhombic ε phase (Ag 3 Sn) or hexagonal ζ phase (Ag 4 Sn), chemical stability and blackness And can be satisfied.
次に、銀相、すなわち銀の結晶構造を有するものとしては、銀中に銀の結晶構造を保った状態で錫が固溶したもの、すなわち銀結晶中の銀原子の一部を錫原子が置換したものとなるが、この場合の銀錫合金を化学式Ag1-YSnYで表した場合、0<Y≦0.115であり、前記文献では(Ag)相(以下の表記で示される空間群:立方晶系)で示される。 Next, as for the silver phase, that is, having a silver crystal structure, a solid solution of tin in a state where the silver crystal structure is maintained in silver, that is, a part of silver atoms in the silver crystal is tin atoms. In this case, when the silver tin alloy is represented by the chemical formula Ag 1-Y Sn Y , 0 <Y ≦ 0.115, and in the above literature, the (Ag) phase (shown by the following notation is used) (Space group: cubic system).
この範囲を、AgZSn(Zは実数)で表記すれば、7.70≦Z<∞(無限大)となる。
なお、Y=0(Ag1Sn0)あるいはZ=∞(Ag∞Sn)はAg単独相に相当するため、ここで示す銀錫合金部としての規定範囲からは外してある。ただし、本発明の黒色膜における金属微粒子としては、前記のように銀又は銀を含む合金及びこれらの混合物が特に好ましいことから、黒色膜中にはY=0のものを含んでもかまわない。
If this range is expressed by Ag Z Sn (Z is a real number), 7.70 ≦ Z <∞ (infinity).
Note that Y = 0 (Ag 1 Sn 0 ) or Z = ∞ (Ag ∞ Sn) corresponds to the Ag single phase, and thus is excluded from the specified range as the silver-tin alloy part shown here. However, as the metal fine particles in the black film of the present invention, silver or an alloy containing silver and a mixture thereof are particularly preferable as described above. Therefore, the black film may contain Y = 0.
金属微粒子の粒子径や粒子形状を制御しながら、酸化還元電位が大きく異なる錫と銀との合金を製造する方法は従来見出されていなかったが、本発明者は反応温度、pH、攪拌効率といった反応条件を厳密に制御することで粒子径や粒子形状を制御しながら銀錫合金を生成させることに成功した。
金属微粒子に銀錫合金微粒子を含むことで遮光性、黒色度、吸光度の波長依存性の三者をバランス良く得ることができる。
吸収特性が優れた銀に、黒色度や耐熱性が優れた銀錫合金を加えると、吸収特性と黒色度とを兼ね備えた好ましい可視近赤外光遮蔽黒色材料を得ることができる。
A method for producing an alloy of tin and silver having greatly different oxidation-reduction potentials while controlling the particle diameter and particle shape of metal fine particles has not been found so far. The silver-tin alloy was successfully produced while controlling the particle diameter and particle shape by strictly controlling the reaction conditions.
By including silver tin alloy fine particles in the metal fine particles, it is possible to obtain a good balance between light shielding properties, blackness, and wavelength dependency of absorbance.
When a silver tin alloy having excellent blackness and heat resistance is added to silver having excellent absorption characteristics, a preferable visible near-infrared light shielding black material having both absorption characteristics and blackness can be obtained.
可視近赤外光遮蔽黒色材料を構成する金属元素中の銀元素の含有量は、30質量%以上かつ100質量%以下であることが好ましい。この金属微粒子中の銀元素の含有量は、例えばEPMA(電子線マイクロアナライザー)で測定することができる。金属微粒子中の銀元素の含有量はEPMAの測定値から銀元素の重量/金属元素の重量の総和で算出することができる。前式の分母には例えば金属微粒子の周囲に付着している分散剤等に起因する炭素や金属微粒子の表面の酸化で等に起因する酸素等、金属以外の元素は含まない。
なお、銀元素含有量は、通常はICP発光分析等の湿式化学分析で求めることが多いが、金属元素のみの分析であれば、EPMAを用いても問題なく測定できる。
The content of the silver element in the metal element constituting the visible near infrared light shielding black material is preferably 30% by mass or more and 100% by mass or less. The content of silver element in the metal fine particles can be measured by, for example, EPMA (electron beam microanalyzer). The content of silver element in the metal fine particles can be calculated from the measured value of EPMA by the sum of the weight of silver element / weight of metal element. The denominator of the previous formula does not contain elements other than metals, such as carbon caused by a dispersant or the like adhering to the periphery of metal fine particles, oxygen caused by oxidation of the surface of metal fine particles, and the like.
The silver element content is usually often obtained by wet chemical analysis such as ICP emission analysis. However, if only the metal element is analyzed, it can be measured without problems even if EPMA is used.
上記金属微粒子中の銀元素の含有量は45質量%以上かつ100質量%以下が好ましく、60質量%以上かつ100質量%以下がより好ましく、70質量%以上かつ100質量%以下がさらに好ましく、70質量%以上かつ95質量%以下が特に好ましい。 The content of the silver element in the metal fine particles is preferably 45% by mass or more and 100% by mass or less, more preferably 60% by mass or more and 100% by mass or less, further preferably 70% by mass or more and 100% by mass or less, and 70 A mass% or more and 95 mass% or less is particularly preferable.
本発明の可視近赤外光遮蔽黒色膜には、さらに樹脂成分を含むことが好ましい。
本実施形態における樹脂成分としては、前記金属微粒子が前記分散粒子径及び粒子形状を有する状態で均一に分散された状態で硬化するものであって、形成された黒色膜に要求される特性に適したものを選択すればよい。このような樹脂成分としては、電離放射線硬化性樹脂、熱硬化性樹脂、熱可塑性樹脂等が各種使用可能である。
The visible near infrared light shielding black film of the present invention preferably further contains a resin component.
As the resin component in the present embodiment, the metal fine particles are cured in a state of being uniformly dispersed in a state having the dispersed particle size and particle shape, and are suitable for characteristics required for the formed black film. You can select the one you want. As such a resin component, various kinds of ionizing radiation curable resins, thermosetting resins, thermoplastic resins and the like can be used.
電離放射線硬化性樹脂とは、電磁波又は荷電粒子線、例えば紫外線又は電子線等を照射することにより、架橋又は重合反応にて硬化する樹脂を意味するものであって、ラジカル重合型のアクリル系樹脂、不飽和ポリエステル樹脂や、カチオン重合型のエポキシ樹脂、ビニルエーテル系樹脂、オキセタン類、グリシジルエーテル類を例示することができる。
なお、アクリル系樹脂としては、ポリエステル(メタ)アクリレート系、エポキシ(メタ)アクリレート系、ウレタン(メタ)アクリレート系、ポリオール(メタ)アクリレート系、シリコーン(メタ)アクリレート系等を例示することができる。
また、ポリメチル(メタ)アクリレート、ポリシクロヘキシル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリ−トリメチロールプロパントリ(メタ)アクリレート、及びポリ−ペンタエリスリトールテトラ(メタ)アクリレート等のポリ(メタ)アクリル酸エステル樹脂等を挙げることができる。
なお、ここで、「(メタ)アクリレート」とは「アクリレート又はメタクリレート」を意味する。以下同様である。
The ionizing radiation curable resin means a resin that is cured by crosslinking or polymerization reaction by irradiation with electromagnetic waves or charged particle beams such as ultraviolet rays or electron beams, and is a radical polymerization type acrylic resin. And unsaturated polyester resins, cationic polymerization type epoxy resins, vinyl ether resins, oxetanes, and glycidyl ethers.
Examples of the acrylic resin include polyester (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, polyol (meth) acrylate, and silicone (meth) acrylate.
Also, poly (meth) such as polymethyl (meth) acrylate, polycyclohexyl (meth) acrylate, polyethylene glycol di (meth) acrylate, poly-trimethylolpropane tri (meth) acrylate, and poly-pentaerythritol tetra (meth) acrylate Acrylic ester resins and the like can be mentioned.
Here, “(meth) acrylate” means “acrylate or methacrylate”. The same applies hereinafter.
熱硬化性樹脂としては、フェノール樹脂、フェノール−ホルマリン樹脂、尿素樹脂、尿素−ホルマリン樹脂、メラミン樹脂、ポリエステル−メラミン樹脂、メラミン−ホルマリン樹脂、アルキッド樹脂、エポキシ樹脂、エポキシ−メラミン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、アクリル樹脂、ポリシロキサン樹脂、ポリウレタン樹脂、汎用の2液硬化型アクリル樹脂(アクリルポリオール硬化物)等を例示することができる。
これらのうち、エポキシ樹脂としては、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールジグリシジルエーテル、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリスヘノールメタン型エポキシ樹脂、グリシジル(メタ)アクリレートとスチレンの共重合体エポキシ樹脂、グリシジル(メタ)アクリレートとスチレンとメチル(メタ)アクリレートの共重合体エポキシ樹脂、グリシジル(メタ)アクリレートとシクロヘキシルマレイミドの共重合体エポキシ樹脂、及びフルオレン系エポキシ樹脂等を挙げることができる。
Thermosetting resins include phenolic resin, phenol-formalin resin, urea resin, urea-formalin resin, melamine resin, polyester-melamine resin, melamine-formalin resin, alkyd resin, epoxy resin, epoxy-melamine resin, unsaturated polyester. Examples thereof include resins, polyimide resins, acrylic resins, polysiloxane resins, polyurethane resins, general-purpose two-component curable acrylic resins (acrylic polyol cured products), and the like.
Among these, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol diglycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, bisphenol epoxy resin, tris Henolmethane type epoxy resin, glycidyl (meth) acrylate and styrene copolymer epoxy resin, glycidyl (meth) acrylate, styrene and methyl (meth) acrylate copolymer epoxy resin, glycidyl (meth) acrylate and cyclohexylmaleimide Examples thereof include a copolymer epoxy resin and a fluorene epoxy resin.
さらに、前記熱可塑性樹脂としては、ポリエステル樹脂、アルキド樹脂、ポリウレタン、ポリビニルピロリドン、ポリビニルアルコール等が好適に用いられる。
これらのうち、ポリエステル樹脂としては、塗料に一般的に用いられているものなら限定はされないが、例えば、アジピン酸、セバシン酸、イソフタル酸等の多価カルボン酸とエチレングリコール、トリメチロールプロパン等の多価アルコールの重縮合物等が挙げられる。また、ポリウレタン樹脂も、塗料に一般的に用いられているものなら限定はされず、例えば、イソシアネート基とポリオールを反応させて鎖延長されたポリウレタン樹脂が好ましい。上記ポリオールとしては、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール等が挙げられる。
また、本発明の黒色膜をブラックマトリクス等とする場合には、樹脂成分の原料である樹脂形成成分としてアルカリ可溶性樹脂を選択し、この樹脂形成成分を用いて形成される樹脂を樹脂成分とすることが好ましい。
Furthermore, as the thermoplastic resin, polyester resin, alkyd resin, polyurethane, polyvinyl pyrrolidone, polyvinyl alcohol and the like are preferably used.
Among these, the polyester resin is not limited as long as it is generally used in paints. For example, polyvalent carboxylic acids such as adipic acid, sebacic acid, isophthalic acid, and ethylene glycol, trimethylolpropane, etc. Examples include polycondensates of polyhydric alcohols. Also, the polyurethane resin is not limited as long as it is generally used in paints. For example, a polyurethane resin obtained by reacting an isocyanate group with a polyol to extend the chain is preferable. Examples of the polyol include polyester polyol, polyether polyol, and acrylic polyol.
When the black film of the present invention is used as a black matrix or the like, an alkali-soluble resin is selected as a resin forming component that is a raw material of the resin component, and a resin formed using this resin forming component is used as the resin component. It is preferable.
本発明の黒色膜においては、少なくとも平均一次粒子径が1nm以上かつ300nm以下の金属微粒子を含有している。この金属微粒子は可視域及び近赤外域での光吸収性能が高く、樹脂中での分散性にも優れている。
本発明に示される波長400nmから1300nmの光学濃度の平均が1.0以上、波長555nmにおける光学濃度が1.0以上かつ波長における光学濃度が1300nmのOD値が0.6以上の可視近赤外光遮蔽黒色膜を得るためには、黒色膜中の金属微粒子の体積分率が2体積%以上かつ50体積%以下であることが好ましい。
The black film of the present invention contains at least metal fine particles having an average primary particle diameter of 1 nm or more and 300 nm or less. The metal fine particles have high light absorption performance in the visible region and near infrared region, and are excellent in dispersibility in the resin.
Visible near-infrared having an optical density average of 1.0 or more, wavelength 555 nm of optical density of 1.0 or more, and optical density at wavelength of 1300 nm of 0.6 or more. In order to obtain a light shielding black film, the volume fraction of the metal fine particles in the black film is preferably 2% by volume or more and 50% by volume or less.
黒色膜中の金属微粒子の体積分率が2体積%以上とすることで、可視域及び近赤外域において十分な光遮蔽性が得られやすくなる。50体積%以下とすることで、金属微粒子による反射率が高くなることによる黒色度の低下を抑制し、かつ樹脂成分の含有比率が低下することによる膜の硬度低下や現像パターンの精度不良を防ぐことができる。 When the volume fraction of the metal fine particles in the black film is 2% by volume or more, sufficient light shielding properties can be easily obtained in the visible region and the near infrared region. By controlling the volume to 50% by volume or less, a decrease in blackness due to an increase in reflectance due to metal fine particles is suppressed, and a decrease in film hardness and a development pattern accuracy failure due to a decrease in the resin component content ratio are prevented. be able to.
黒色膜中の金属微粒子の体積分率は、既述の通り2体積%以上かつ50体積%以下が好ましく、2体積%以上かつ30体積%以下がより好ましく、2体積%以上かつ20体積%以下がさらに好ましく、5体積%以上かつ15体積%以下が特に好ましい。
本実施形態の黒色膜中における金属微粒子の体積分率は、黒色材料及び樹脂成分それぞれの比重が既知であることから、原料として使用する黒色材料及び樹脂形成成分の質量より求めることができる。
As described above, the volume fraction of the metal fine particles in the black film is preferably 2% by volume or more and 50% by volume or less, more preferably 2% by volume or more and 30% by volume or less, and more preferably 2% by volume or more and 20% by volume or less. Is more preferable, and 5 volume% or more and 15 volume% or less are especially preferable.
The volume fraction of the metal fine particles in the black film of the present embodiment can be determined from the masses of the black material and the resin forming component used as raw materials since the specific gravity of each of the black material and the resin component is known.
また、黒色膜中における金属微粒子の体積分率により、黒色膜の導電性を制御することができる。金属微粒子自体は導電性を有するが、黒色膜中において金属微粒子間に樹脂成分が存在し、樹脂成分が金属微粒子間の導電経路を阻害する。さらに、黒色膜中の金属微粒子は分散性がよく均一に分散しているため、例えばカーボンブラックのように金属微粒子同士が連続的につながり導電パスを形成するようなことがない。従って、黒色膜中の金属微粒子と樹脂成分の比率を変化させると、樹脂による金属微粒子間の導電経路を阻害する程度が変わるため、黒色膜の導電性が変化する。導電性の黒色膜を得たい場合には膜中の金属微粒子の体積分率を高く、絶縁性の黒色膜を得たい場合には膜中の金属微粒子の体積分率を低くすればよい。 Further, the conductivity of the black film can be controlled by the volume fraction of the metal fine particles in the black film. Although the metal fine particles themselves have conductivity, a resin component exists between the metal fine particles in the black film, and the resin component inhibits a conductive path between the metal fine particles. Furthermore, since the metal fine particles in the black film have a good dispersibility and are uniformly dispersed, the metal fine particles are not continuously connected to form a conductive path as in carbon black, for example. Therefore, when the ratio between the metal fine particles and the resin component in the black film is changed, the degree of inhibition of the conductive path between the metal fine particles by the resin is changed, so that the conductivity of the black film is changed. When it is desired to obtain a conductive black film, the volume fraction of the metal fine particles in the film is increased, and when it is desired to obtain an insulating black film, the volume fraction of the metal fine particles in the film may be decreased.
例えば、固体撮像素子の反射防止膜には絶縁性を求められる場合がある。この場合、黒色膜中の金属微粒子の体積分率を2体積%以上かつ30体積%以下にすれば、可視域及び近赤外域の遮光性を保ちながら、例えば体積抵抗率で1011Ω・cm以上、より好ましくは1013Ω・cm以上の黒色膜を得ることができる。本発明に係る金属微粒子は、可視域及び近赤外域の遮光性が優れているため、膜中の金属微粒子の体積分率が低くても、膜厚の増加を図ることなく、可視域及び近赤外域の遮光性に優れた黒色膜、すなわち前記光学濃度を有する黒色膜を得ることができる。 For example, the antireflection film of the solid-state imaging device may be required to have insulating properties. In this case, if the volume fraction of the metal fine particles in the black film is 2% by volume or more and 30% by volume or less, the volume resistivity is, for example, 10 11 Ω · cm while maintaining the light shielding property in the visible region and the near infrared region. As described above, a black film of 10 13 Ω · cm or more can be obtained more preferably. Since the metal fine particles according to the present invention have excellent light-shielding properties in the visible region and near-infrared region, even if the volume fraction of the metal fine particles in the film is low, without increasing the film thickness, A black film having excellent light shielding properties in the infrared region, that is, a black film having the optical density can be obtained.
また、絶縁性の黒色膜を得るためには、金属微粒子の膜中の平均粒子径は1nm以上200nm以下であることが好ましい。本発明においては、用いられる金属微粒子の平均一次粒子径を1nm以上としているから、平均粒子径が1nm未満では粒子として存在することが難しく、一方、平均粒子径が200nmを超えると黒色膜中での黒色材料微粒子の凝集による導電パスが生じやすくなるために、所望の体積抵抗率の確保が困難となる上、黒色材料微粒子の凝集が著しい場合には、遮光性も低下する。
ゆえに、絶縁性の黒色膜を得るためには、上記膜中の平均粒子径は2nm以上200nm以下であることが好ましく、5nm以上200nm以下であることがより好ましい。
In order to obtain an insulating black film, the average particle diameter in the metal fine particle film is preferably 1 nm or more and 200 nm or less. In the present invention, since the average primary particle diameter of the metal fine particles used is 1 nm or more, it is difficult to exist as particles if the average particle diameter is less than 1 nm, while in the black film if the average particle diameter exceeds 200 nm. Therefore, it is difficult to secure a desired volume resistivity, and when the black material fine particles are agglomerated, the light shielding property is also lowered.
Therefore, in order to obtain an insulating black film, the average particle diameter in the film is preferably 2 nm or more and 200 nm or less, and more preferably 5 nm or more and 200 nm or less.
また、黒色膜における金属微粒子の膜中の粒度分布指標D90%は、600nm以下であることが好ましく、500nm以下であることがより好ましい。膜中の粒度分布指標D90%が600nm以下であることで粒子径のばらつきが大きくならず、所望の体積抵抗率を維持しつつ十分な遮光性を確保することができる。
ここで、前記膜中の粒度分布指標D90%とは、粒度を累積分布で示した場合に、累積値90%に対応する粒子径(累積90%径)のことであり、膜中に存在する黒色材料粒子の粒子径の均一性を示す指標となるものである。
なお、D90%の下限値は特に規定されないが、金属微粒子の平均粒子径の下限値が1nmであることから、D90%を5nm未満とすることは実際の製造工程上困難である。
Moreover, the particle size distribution index D90% in the film of the metal fine particles in the black film is preferably 600 nm or less, and more preferably 500 nm or less. When the particle size distribution index D90% in the film is 600 nm or less, variation in particle diameter does not increase, and sufficient light shielding properties can be ensured while maintaining a desired volume resistivity.
Here, the particle size distribution index D90% in the film means a particle diameter (cumulative 90% diameter) corresponding to an accumulated value of 90% when the particle size is represented by a cumulative distribution, and exists in the film. This is an index indicating the uniformity of the particle diameter of the black material particles.
The lower limit value of D90% is not particularly defined, but since the lower limit value of the average particle diameter of the metal fine particles is 1 nm, it is difficult to make D90% less than 5 nm in the actual manufacturing process.
上記金属微粒子の膜中の平均粒子径は、例えば膜試料を、FIB(集束イオンビーム)を用いて断面方向に切断して薄片化し、切断面をTEMにより観察することにより測定することができる。
本発明においては、観察視野から一定数の任意の粒子(例えば50ないし100個)を選び、それぞれの粒子像を円で近似し、当該円の直径を該粒子の粒子径とした上で、粒子径の累積分布を求め、累積値50%に対応する粒子径(メジアン径)を膜中の平均粒子径とする。また、粒度分布指標D90%は選択した粒子の粒子径の累積90%径として求めることができる。
The average particle diameter of the metal fine particles in the film can be measured, for example, by cutting a film sample in a cross-sectional direction using FIB (focused ion beam) to make a thin piece, and observing the cut surface with a TEM.
In the present invention, a certain number of arbitrary particles (for example, 50 to 100 particles) are selected from the observation field, each particle image is approximated by a circle, and the diameter of the circle is defined as the particle diameter of the particle. The cumulative distribution of the diameter is obtained, and the particle diameter (median diameter) corresponding to the cumulative value of 50% is defined as the average particle diameter in the film. The particle size distribution index D90% can be obtained as a cumulative 90% diameter of the particle diameter of the selected particles.
本発明の可視近赤外光遮蔽黒色膜は、例えば、下記のようにして作製することができる。
まず、本発明の黒色膜において使用される金属微粒子の製造方法としては、上記の組成及び分散粒子径と分散粒子形状が得られるものであれば特に制限はなく、気相反応法、噴霧熱分解法、液相反応法、凍結乾燥法、水熱合成法等の金属微粒子合成法を適用することができるが、特に金属微粒子として、銀錫合金微粒子、もしくは銀錫合金微粒子及び銀微粒子の混合微粒子を選択する場合においては、これらの微粒子が容易に得られる液相反応法を用いることが好ましい。
The visible near-infrared light shielding black film of the present invention can be produced, for example, as follows.
First, the method for producing fine metal particles used in the black film of the present invention is not particularly limited as long as the above composition, dispersed particle size and dispersed particle shape can be obtained. Gas phase reaction method, spray pyrolysis Metal fine particle synthesis methods such as the method, liquid phase reaction method, freeze-drying method, hydrothermal synthesis method, etc. can be applied. Especially, as the metal fine particles, silver tin alloy fine particles, or mixed fine particles of silver tin alloy fine particles and silver fine particles In the case of selecting, it is preferable to use a liquid phase reaction method in which these fine particles can be easily obtained.
液相反応法としては、水系の反応系を用いることが好ましく、例えば、錫コロイド分散液中に銀化合物溶液を滴下し、錫と銀とを合金化させる方法、あるいは、銀コロイドと錫コロイドとが共存する分散液中に酸化剤や還元剤を添加することで、銀と錫とを合金化させる方法等を用いて、銀錫合金微粒子と銀微粒子とを生成させることができる。この製造方法であれば、反応条件(例えば、錫と銀(銀イオン)との比率、反応液のpH、反応温度、反応時間、酸化剤や還元剤の種類や量等)を適宜調整することにより、銀錫合金微粒子の生成量、銀微粒子の生成量(実質的に生成されない場合、すなわち銀錫合金微粒子のみが生成される場合を含む)、銀錫合金微粒子と銀微粒子との生成量比、さらに粒子の形状を、必要に応じて制御することができる。 As the liquid phase reaction method, it is preferable to use an aqueous reaction system. For example, a method of dropping a silver compound solution into a tin colloid dispersion and alloying tin and silver, or silver colloid and tin colloid By adding an oxidizing agent or a reducing agent to the dispersion in which silver coexists, silver tin alloy fine particles and silver fine particles can be generated using a method of alloying silver and tin. In this production method, the reaction conditions (for example, the ratio of tin and silver (silver ions), the pH of the reaction solution, the reaction temperature, the reaction time, the type and amount of the oxidizing agent and the reducing agent, etc.) are appropriately adjusted. The production amount of silver tin alloy fine particles, the production amount of silver fine particles (including the case where substantially no silver tin alloy fine particles are produced, that is, the case where only silver tin alloy fine particles are produced), the production amount ratio of silver tin alloy fine particles and silver fine particles Furthermore, the shape of the particles can be controlled as necessary.
本発明において、得られる金属微粒子の粒子径や形状が前記範囲、すなわち平均一次粒子径が1nm以上かつ300nm以下であり、該金属微粒子の膜中における形状が、略球状粒子と略棒状粒子との混合物、略球状粒子と略板状粒子との混合物、略球状粒子と略棒状粒子と略板状粒子の混合物となるような金属微粒子を得る方法としては、次のような方法がある。
まず、金属微粒子自体の粒子径や形状を制御する方法としては、液相反応法における前記各種条件(製造条件)を調整することにより、略球状粒子と略棒状粒子、略球状粒子と略板状粒子、略球状粒子と略棒状粒子と略板状粒子、のいずれかを同時に形成する方法が挙げられる。ただし、同時に複数形状の粒子を形成させるためには、製造条件を厳密に制御する必要がある。そこで、より容易な方法としては、液相反応法で略棒状粒子及び/又は略板状粒子を生成させた後、さらに略球状粒子を生成させる条件で金属イオンと還元剤等を添加して略球状粒子を生成させる方法が挙げられる。先に略球状粒子を生成させて後、略棒状粒子及び/又は略板状粒子を生成させてもよい。
さらに、略球状粒子と略棒状粒子と略板状粒子とを別々に製造した後に、略球状粒子に対して略棒状粒子及び/又は略板状粒子を混合して目的の金属微粒子を得ることもできる。
In the present invention, the particle diameter and shape of the obtained metal fine particles are in the above-mentioned range, that is, the average primary particle diameter is 1 nm or more and 300 nm or less, and the shape of the metal fine particles in the film is substantially spherical particles and substantially rod-shaped particles. There are the following methods for obtaining metal fine particles that are a mixture, a mixture of substantially spherical particles and substantially plate-like particles, or a mixture of substantially spherical particles, substantially rod-like particles and substantially plate-like particles.
First, as a method for controlling the particle diameter and shape of the metal fine particles themselves, by adjusting the various conditions (manufacturing conditions) in the liquid phase reaction method, substantially spherical particles and substantially rod-like particles, and substantially spherical particles and substantially plate-like shapes. Examples thereof include a method of simultaneously forming any one of particles, substantially spherical particles, substantially rod-like particles, and substantially plate-like particles. However, in order to form particles having a plurality of shapes at the same time, it is necessary to strictly control the production conditions. Therefore, an easier method is to form a substantially rod-like particle and / or a substantially plate-like particle by a liquid phase reaction method, and then add a metal ion and a reducing agent under the conditions for further producing a substantially spherical particle. A method for producing spherical particles is mentioned. The substantially spherical particles may be first generated, and then the substantially rod-like particles and / or the substantially plate-like particles may be generated.
Furthermore, after substantially spherical particles, substantially rod-like particles and substantially plate-like particles are produced separately, substantially rod-like particles and / or substantially plate-like particles are mixed with the substantially spherical particles to obtain target metal fine particles. it can.
次に、略棒状粒子や略板状粒子が凝集粒子である場合には、略球状粒子が得られる条件であれば、他の金属微粒子自体の粒子径や形状の制御は必ずしも必要ではない。その理由としては、略球状粒子を凝集させて略棒状粒子や略板状粒子を形成すればよいからである。
同様に、略球状粒子が凝集粒子である場合には、略棒状粒子及び/又は略板状粒子が得られる条件であれば、略球状粒子自体の粒子径や形状の制御は必ずしも必要ではない。略棒状粒子や略板状粒子を凝集させて略球状粒子を形成すればよいからである。
さらに、略球状粒子、略棒状粒子、略板状粒子の全てが凝集粒子である場合には、これらの凝集粒子を構成する一次粒子である金属微粒子が得られる条件であれば、金属微粒子自体の粒子径や形状の制御は必ずしも必要ではない。金属微粒子(一次粒子)を凝集させて、略球状粒子、略棒状粒子、略板状粒子を形成すればよいからである。
Next, when the substantially rod-like particles or the substantially plate-like particles are aggregated particles, it is not always necessary to control the particle diameter and shape of the other metal fine particles themselves as long as the substantially spherical particles are obtained. The reason is that substantially spherical particles may be aggregated to form substantially rod-like particles or substantially plate-like particles.
Similarly, when the substantially spherical particles are aggregated particles, it is not always necessary to control the particle diameter and shape of the substantially spherical particles themselves as long as the substantially rod-like particles and / or the substantially plate-like particles are obtained. This is because substantially rod-like particles or substantially plate-like particles may be aggregated to form substantially spherical particles.
Further, when all of the substantially spherical particles, substantially rod-like particles, and substantially plate-like particles are aggregated particles, the metal fine particles themselves can be used as long as the metal fine particles that are primary particles constituting these aggregated particles are obtained. It is not always necessary to control the particle size and shape. This is because the metal fine particles (primary particles) may be aggregated to form substantially spherical particles, substantially rod-like particles, and substantially plate-like particles.
また、この金属微粒子を樹脂成分中に分散させるとともに、金属微粒子の分散状態を制御することで略球状、略棒状、略板状の凝集粒子を形成させるためや、金属微粒子と樹脂成分との親和性を高めるために、金属微粒子の表面を表面処理剤や分散剤(以下、「分散剤等」と表記する場合がある。)により表面処理しておくことが好ましい。これらの表面処理剤や分散剤は、樹脂成分の材質や、樹脂成分中に金属微粒子を分散させる方法に合わせて、公知のものの中から選択すればよいが、後述のように、表面処理剤や分散剤の種類とともに、分散方法や分散条件を併せて調整し、金属微粒子を樹脂成分に良好に分散させることにより、本発明の可視近赤外光遮蔽黒色膜を得ることができる。 In addition, the fine metal particles are dispersed in the resin component, and the dispersion state of the fine metal particles is controlled to form substantially spherical, substantially rod-like, substantially plate-like aggregate particles, and the affinity between the fine metal particles and the resin component. In order to improve the properties, it is preferable that the surface of the metal fine particles is surface-treated with a surface treatment agent or a dispersant (hereinafter, sometimes referred to as “dispersant etc.”). These surface treatment agents and dispersants may be selected from known materials in accordance with the material of the resin component and the method of dispersing the metal fine particles in the resin component. The visible near infrared light shielding black film of the present invention can be obtained by adjusting the dispersion method and dispersion conditions together with the type of the dispersant, and dispersing the metal fine particles in the resin component.
上記分散剤としては、高分子分散剤が好ましく、例えば、ウレタン系分散剤、変性ポリエステル系分散剤、ポリカルボン酸塩、ポリアルキル硫酸塩、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリアクリルアミド等を挙げることができる。また、高分子分散剤の構造としては、ランダムコポリマー、櫛型コポリマー、ABA型コポリマー、BAB型コポリマー、両末端親水基含有ポリマー、片末端親水基含有ポリマー等を選択することができ、特に金属微粒子の分散性が高いことを考慮すると、ランダムコポリマー、ならびに櫛型コポリマーが好ましい。
上記分散剤の具体例としては、EFKA(エフカーケミカルズビーブイ(EFKA)社製)、Disperbyk(ビックケミー社製)、ディスパロン(楠本化成社製)、SOLSPERSE(ゼネカ社製)、KP(信越化学社製)、ポリフロー(共栄社化学社製)等を挙げることができる。
As the dispersant, a polymer dispersant is preferable. For example, urethane dispersant, modified polyester dispersant, polycarboxylate, polyalkyl sulfate, polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), polyacrylamide. Etc. In addition, as the structure of the polymer dispersant, a random copolymer, a comb copolymer, an ABA copolymer, a BAB copolymer, a polymer having a hydrophilic group at both ends, a polymer having a hydrophilic group at one end, etc. can be selected. In view of the high dispersibility, random copolymers and comb copolymers are preferred.
Specific examples of the dispersant include EFKA (manufactured by EFKA Chemicals Beebuy (EFKA)), Disperbyk (manufactured by Big Chemie), Disparon (manufactured by Enomoto Kasei Co., Ltd.), SOLPERSE (manufactured by GENEKA), and KP (manufactured by Shin-Etsu Chemical). ), Polyflow (manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
また、前記表面処理剤としては、シランカップリング剤、チタンカップリング剤等のカップリング剤等を挙げることができる。 Examples of the surface treatment agent include coupling agents such as a silane coupling agent and a titanium coupling agent.
上記表面処理において、金属微粒子表面に結合する分散剤等の量は、金属微粒子量に対して2〜30質量%の範囲であることが好ましい。さらに、金属微粒子の組成や一次粒子径、金属微粒子を分散混合させる樹脂成分原料の組成により、より好適な範囲が存在する。その理由として、この金属微粒子を用いて形成された黒色塗料から、塗膜を形成し、さらに可視近赤外光遮蔽黒色膜を形成する場合において、塗膜中や可視近赤外光遮蔽黒色膜中における金属微粒子の分散性を確保するとともに、場合によっては本発明を満たす範囲での金属微粒子の凝集粒子を得るためには、金属微粒子に対する分散剤等の添加量を厳密に調整しておく必要があるためである。
すなわち、分散剤等の量が少なすぎる場合には、金属微粒子表面の一部に分散剤等の被覆量が少ない部分ができてしまい、その部分における樹脂成分原料や溶剤への親和性が低下する一方で金属微粒子同士の親和性が残存するために、金属微粒子を樹脂成分原料又は溶剤分散後に、この高分子分散剤等の被覆量が少ない部分から金属微粒子同士が凝集し、粗大な凝集粒子を形成してしまうおそれがある。
In the surface treatment, the amount of the dispersant or the like that binds to the surface of the metal fine particles is preferably in the range of 2 to 30% by mass with respect to the amount of metal fine particles. Further, there are more suitable ranges depending on the composition of the metal fine particles, the primary particle diameter, and the composition of the resin component raw material in which the metal fine particles are dispersed and mixed. The reason for this is that in the case of forming a coating film from a black paint formed using this metal fine particle, and further forming a visible near-infrared light shielding black film, in the coating film or in the visible near-infrared light shielding black film In order to ensure the dispersibility of the metal fine particles in the interior and, in some cases, to obtain the agglomerated particles of the metal fine particles within the range satisfying the present invention, it is necessary to strictly adjust the amount of the dispersant added to the metal fine particles. Because there is.
That is, when the amount of the dispersant or the like is too small, a portion with a small coating amount of the dispersant or the like is formed on a part of the surface of the metal fine particles, and the affinity for the resin component raw material or solvent in the portion is reduced. On the other hand, since the affinity between the metal fine particles remains, after the metal fine particles are dispersed in the resin component raw material or the solvent, the metal fine particles are aggregated from a portion where the coating amount of the polymer dispersant or the like is small. There is a risk of forming.
一方、高分子分散剤等の量が過多である場合、分散剤自体が分散性を低下させる因子となるおそれがある。さらに、樹脂成分原料を硬化させて可視近赤外光遮蔽黒色膜を形成する場合において、過剰の高分子分散剤等が樹脂成分原料の重合による硬化を阻害してしまい、十分な膜強度が得られなくなるおそれがある。また、フォトレジスト等を硬化樹脂に用いた場合、光による露光後の現像工程において、現像性が悪くなることも挙げられる。
なお、本発明に係る略球状粒子、略棒状粒子や略板状粒子が単独の粒子である場合には、金属微粒子表面に結合する分散剤等の量は、金属微粒子量に対して5〜30質量%の範囲であることがより好ましく、一方、略球状粒子、略棒状粒子や略板状粒子の少なくとも一部が凝集粒子である場合には、2〜25質量%の範囲であることがより好ましい。
On the other hand, when the amount of the polymer dispersant or the like is excessive, the dispersant itself may be a factor for reducing the dispersibility. Furthermore, when the resin component raw material is cured to form a visible near-infrared light-shielding black film, an excessive polymer dispersant or the like inhibits the curing due to the polymerization of the resin component raw material, thereby obtaining sufficient film strength. There is a risk of being lost. In addition, when a photoresist or the like is used for the cured resin, developability may be deteriorated in the development step after exposure with light.
In addition, when the substantially spherical particles, substantially rod-like particles, or substantially plate-like particles according to the present invention are single particles, the amount of the dispersant or the like that binds to the surface of the metal fine particles is 5 to 30 with respect to the amount of the metal fine particles. More preferably, it is in the range of 2% by mass. On the other hand, when at least a part of the substantially spherical particles, the substantially rod-like particles and the substantially plate-like particles are agglomerated particles, it is more preferably in the range of 2 to 25% by mass. preferable.
このように、金属微粒子に対する分散剤等の添加量を厳密に調整するためには、親水性表面を有する金属微粒子を分散させた水系溶媒中に分散剤等を加えて攪拌等を行うことで金属微粒子の表面に分散剤等を被覆処理させた後、溶媒のみを除去する方法、例えばエバポレーター等を用いて金属微粒子の乾燥を行うことが好ましい。このようにすれば、金属微粒子に対して設計量の分散剤等を用いることができる。
さらに、分散剤等による表面処理時点においては分散剤の処理が不均一であっても、当該表面処理された金属微粒子を樹脂成分原料や樹脂成分原料と相溶性の高い溶剤に分散させた後において、金属微粒子に対する分散剤等の吸脱着平衡により、各粒子に対する分散剤等の被覆を均一にすることができるので、金属微粒子の均一な分散性も確保されることになる。
As described above, in order to strictly adjust the addition amount of the dispersant and the like to the metal fine particles, the metal is added by adding the dispersant and the like to the aqueous solvent in which the metal fine particles having a hydrophilic surface are dispersed and stirring the metal. After the surface of the fine particles is coated with a dispersant or the like, it is preferable to dry the metal fine particles using a method of removing only the solvent, for example, an evaporator or the like. In this way, a designed amount of dispersant or the like can be used for the metal fine particles.
Furthermore, even if the treatment of the dispersant is not uniform at the time of the surface treatment with the dispersant or the like, after the surface-treated metal fine particles are dispersed in the resin component raw material or a solvent highly compatible with the resin component raw material, Since the adsorption and desorption equilibrium of the dispersant and the like with respect to the metal fine particles can make the coating of the dispersant and the like with respect to each particle uniform, uniform dispersibility of the metal fine particles is also ensured.
次に、分散剤等により表面処理を行なった金属微粒子と、樹脂成分原料とを含む黒色塗料を作製する。ここで、樹脂成分原料とは、液状であり、硬化や溶剤留去等により前記樹脂成分を形成するものであって、前記樹脂成分のモノマー、オリゴマー、プレポリマーのほか、樹脂成分を溶剤に溶解したもの、さらには樹脂成分のモノマー、オリゴマー、プレポリマーを溶剤に溶解したものも含まれる。
上記樹脂成分のモノマー、オリゴマー、プレポリマーが液状の場合には、この樹脂成分モノマー、オリゴマー、プレポリマーをそのまま樹脂成分原料とし、この中に金属微粒子を混合分散させ、黒色塗料を作製してもよい。また、適当な溶剤中に樹脂成分又は固体状の樹脂成分モノマー、オリゴマー、プレポリマーを溶解させて液状とした溶液や、液状の樹脂成分のモノマー、オリゴマー、プレポリマーを溶媒中に希釈させた溶液を樹脂成分原料として、この中に金属微粒子を混合分散させ、黒色塗料を作製してもよい。
また、この黒色塗料中は、後述の添加剤を含んでもよい。
Next, a black paint containing metal fine particles subjected to surface treatment with a dispersant or the like and a resin component raw material is prepared. Here, the resin component raw material is liquid and forms the resin component by curing, solvent distillation, etc. In addition to the resin component monomer, oligomer, prepolymer, the resin component is dissolved in the solvent. In addition, a resin component monomer, oligomer or prepolymer dissolved in a solvent is also included.
When the resin component monomer, oligomer, and prepolymer are in liquid form, the resin component monomer, oligomer, and prepolymer can be directly used as the resin component raw material, and metal fine particles can be mixed and dispersed therein to produce a black paint. Good. Also, a solution in which a resin component or solid resin component monomer, oligomer, or prepolymer is dissolved in an appropriate solvent to obtain a liquid, or a solution in which a liquid resin component monomer, oligomer, or prepolymer is diluted in a solvent. As a resin component raw material, metal fine particles may be mixed and dispersed therein to produce a black paint.
Further, the black paint may contain an additive described later.
本発明では、上記高分子分散剤等により表面処理を行なった金属微粒子を微粒子の状態で樹脂成分原料中に混合して分散させ黒色塗料を形成してもよく、またあらかじめ樹脂成分原料と相溶性の高い溶剤中に金属微粒子を分散させた金属微粒子分散液を作製し、この分散液と樹脂成分原料とを混合することで、黒色塗料を形成してもよい。なお、この金属微粒子分散液中には、後述の添加剤をあらかじめ溶解させておいてもよい。 In the present invention, the metal fine particles that have been surface-treated with the above polymer dispersant or the like may be mixed and dispersed in the resin component raw material in the form of fine particles to form a black paint, or compatible with the resin component raw material in advance. A black paint may be formed by preparing a metal fine particle dispersion in which metal fine particles are dispersed in a high solvent and mixing the dispersion and the resin component raw material. In addition, you may dissolve the below-mentioned additive beforehand in this metal fine particle dispersion.
本発明では、樹脂成分原料に紫外線感光性を持たせることにより、塗布乾燥膜に対して露光、現像を行って複雑なデザインや意匠性を高めた形状とした黒色膜を形成することができる点で好ましい。また、紫外線感光性を有する樹脂成分原料を用いることにより、黒色パターン形成用のブラックレジストとしても使用することもできる。
ここで、紫外線感光性としてはネガ型(現像により感光部が残留する)とポジ型(現像により感光部が除去される)があるが、本発明の黒色膜は、両者ともに適用することができる。但し、この可視近赤外光遮蔽黒色膜や膜中の金属微粒子は紫外線に対しても遮光性を有するため、黒色膜が厚くなる場合には、露光部(紫外線照射部)において膜の底部が十分に感光されない状態となる場合があり、この影響を防ぐためにはネガ型のほうが好ましい場合がある。
In the present invention, by imparting UV sensitivity to the resin component raw material, it is possible to form a black film having a complicated design and improved design by exposing and developing the coated and dried film. Is preferable. Moreover, it can also be used as a black resist for black pattern formation by using the resin component raw material which has ultraviolet photosensitivity.
Here, there are two types of ultraviolet photosensitivity: a negative type (the photosensitive part remains by development) and a positive type (the photosensitive part is removed by development). Both of the black films of the present invention can be applied. . However, the visible near-infrared light-shielding black film and the metal fine particles in the film have a light-shielding property against ultraviolet rays. Therefore, when the black film becomes thick, the bottom of the film is exposed at the exposure part (ultraviolet irradiation part). In some cases, the film is not sufficiently exposed. In order to prevent this influence, the negative type may be preferable.
上記紫外線感光性を有する樹脂成分原料としては、市販のレジスト材料を用いることができるほか、前記のアクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂に、光反応化剤を添加しても良い。前記市販のレジスト材料としては液晶用やMEMS用のものを用いることが好ましいが、この理由としては、これらのレジスト材料により形成された膜に対して熱硬化等の処理を行うことにより、永久膜としての形成が可能となるからである。 As the resin component raw material having ultraviolet photosensitivity, a commercially available resist material can be used, and a photoreactive agent may be added to the acrylic resin, epoxy resin, polyester resin, and polyurethane resin. As the commercially available resist material, those for liquid crystal or MEMS are preferably used. The reason for this is that a permanent film is obtained by performing a treatment such as thermosetting on a film formed of these resist materials. This is because it becomes possible to form.
また、黒色塗料にはこれらの樹脂成分原料を硬化させるための反応開始剤として、熱や光によりラジカルを発生させて樹脂成分の重合を開始/促進させる物質を添加しても良い。このように、樹脂成分原料に光硬化性を持たせることにより、樹脂成分原料をネガ型レジストとしても扱うことができる。 Further, as a reaction initiator for curing these resin component raw materials, a material that initiates / accelerates polymerization of the resin component by generating radicals by heat or light may be added to the black paint. Thus, by giving photocurability to the resin component raw material, the resin component raw material can be handled as a negative resist.
樹脂成分原料に用いられる溶剤や、金属微粒子分散液に用いられる溶剤としては、使用する樹脂成分(原料)の溶解性及び金属微粒子の分散性を保つことができるものであれば特に限定はされないが、例えば、メタノール、エタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、メチルエチルケトン、及びメチルイソブチルケトン等を挙げることができる。 The solvent used for the resin component raw material and the solvent used for the metal fine particle dispersion are not particularly limited as long as the solubility of the resin component (raw material) used and the dispersibility of the metal fine particles can be maintained. For example, methanol, ethanol, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, and methyl isobutyl A ketone etc. can be mentioned.
前記黒色塗料や金属微粒子分散液を得るための混合分散は、金属微粒子と樹脂成分原料や溶剤等を含む混合液を、超音波分散機、ペイントシェーカー、ボールミル、ビーズミル、アイガーミル等の公知の混合分散機を用いて分散処理することにより行うことができる。特に、分散性の点からビーズミルが好ましい。
さらに金属微粒子の混合時には、粘度や分散状態を調整するための溶剤の追加や、前記硬化剤の添加のほか、膜の硬度を向上させるための低分子量の架橋剤の添加や、形成する可視近赤外光遮蔽黒色膜と塗布基材との密着性を向上させるためのシランカップリング剤等を、形成する可視近赤外光遮蔽黒色膜の特性を劣化させない範囲で添加してもかまわない。
The mixed dispersion for obtaining the black paint or the metal fine particle dispersion is a known mixed dispersion such as an ultrasonic disperser, a paint shaker, a ball mill, a bead mill, an Eiger mill, etc. This can be done by performing distributed processing using a machine. In particular, a bead mill is preferable from the viewpoint of dispersibility.
Furthermore, when mixing fine metal particles, in addition to the addition of a solvent for adjusting the viscosity and dispersion state, the addition of the curing agent, the addition of a low molecular weight crosslinking agent for improving the hardness of the film, and the formation of visible A silane coupling agent or the like for improving the adhesion between the infrared light shielding black film and the coating substrate may be added within a range that does not deteriorate the characteristics of the visible near infrared light shielding black film to be formed.
このようにして得られた黒色塗料を基板上に塗布して塗布膜を形成する。
使用する基板としては、可視近赤外光遮蔽黒色膜の使用方法や使用形態に合わせて選択すればよく、特に限定はされないが、例えばシリコンウェハー等の半導体基板、ガラス等の無機基板のほか、アクリル基板、ポリカーボネート基板のように硬度の高い基板を使用すれば、可視近赤外光遮蔽黒色膜を有する構造体を得ることができる。また、ポリエチレンテレフタレート(PET)や、ポリエチレンナフタレート(PEN)、ポリエチレンサルフォン(PES)、トリアセチルセルロース(TAC)等の高分子フィルム等を使用すれば、可撓性を有する可視近赤外光遮蔽黒色膜を得ることもできる。
The black paint thus obtained is applied onto a substrate to form a coating film.
As a substrate to be used, it may be selected according to the method of use and usage form of the visible and near infrared light shielding black film, and is not particularly limited.For example, in addition to a semiconductor substrate such as a silicon wafer, an inorganic substrate such as glass, If a substrate having high hardness such as an acrylic substrate or a polycarbonate substrate is used, a structure having a visible and near-infrared light shielding black film can be obtained. In addition, if a polymer film such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene sulfone (PES), or triacetyl cellulose (TAC) is used, flexible visible near infrared light A shielding black film can also be obtained.
また、黒色塗料の塗布方法(塗布膜形成方法)も特に限定されるものではないが、スピンコート法、フローコート法、スプレーコート法、ディップコート法、ダイコート法、グラビアコート法、ナイフコート法、バーコート法、スリットコート法、スリット&スピンコート法、インクジェット法等を挙げることができる。 The coating method (coating film forming method) of the black paint is not particularly limited, but spin coating, flow coating, spray coating, dip coating, die coating, gravure coating, knife coating, Examples thereof include a bar coating method, a slit coating method, a slit & spin coating method, and an ink jet method.
得られた塗布膜を硬化あるいは溶剤を揮発除去させること等により、可視近赤外光遮蔽黒色膜を得ることができる。なお、上記硬化により黒色膜を得るに際し、黒色塗料中に溶剤を含む場合には、初めに塗布膜中の溶剤を除去して塗布乾燥膜(溶媒が除去されることにより固体の膜状になっているが、樹脂成分の重合硬化はほとんど起こっておらず、溶剤と接触させることにより再度溶剤中への溶解が可能な状態の膜)を形成後、塗布膜を硬化させる。
硬化方法としては、樹脂成分原料のモノマー、オリゴマー、プレポリマーが熱重合を開始する温度で加熱してもよく、また反応開始剤を添加した場合には、反応開始剤に対応した熱や光の印加を行えばよい。また、両方を併用してもかまわない。なお、上記塗布膜中の溶剤除去をより完全に行う(具体的には溶媒除去をより高温で行う)ことにより、溶媒への再溶解性を減じることで、硬化に代えることもある。
A visible / near-infrared light-shielding black film can be obtained by curing the applied film or removing the solvent by volatilization. In addition, when obtaining a black film by the above-described curing, if a solvent is included in the black paint, the solvent in the coating film is first removed to form a coating dry film (a solid film is formed by removing the solvent). However, the polymerization and curing of the resin component hardly occur, and the coating film is cured after forming a film in a state where it can be dissolved in the solvent again by contacting with the solvent.
As a curing method, the monomer, oligomer, and prepolymer of the resin component raw material may be heated at a temperature at which thermal polymerization starts, and when a reaction initiator is added, heat or light corresponding to the reaction initiator is added. Application may be performed. Moreover, you may use both together. In addition, it may replace with hardening by reducing the re-solubility to a solvent by performing the solvent removal in the said coating film more completely (specifically solvent removal is performed at higher temperature).
次に、前記紫外線感光性を有する樹脂成分原料を含む黒色塗料を用いた塗布膜に対して、紫外線照射(露光)、現像を行って、複雑な形状を得る方法について、簡単に説明する。
露光方式には特段の制限はないが、平面形状のものであれば、市販の紫外線露光装置とフォトマスクとを使用することで、容易に露光を行うことができる。また、光源として紫外線レーザーを用い、微細なレーザービームをスキャンすることで塗布乾燥膜に直接パターンを書き込む、いわゆる直接描画(直描)を行うこともできる。
現像方式にも特段の制限はなく、ディップ式やパドル式等の通常の方法を用いればよい。また、これら露光や現像の条件は、使用する樹脂成分原料や要求する形状に合わせて、適宜選択・調整すればよい。
上記プロセスにしたがって、樹脂成分原料に例えばレジスト材料を用い、塗布乾燥膜に対して露光、現像を行って複雑形状を得るものの好例としては、後述の固体撮像素子用遮光膜や画像表示装置用ブラックマトリックスを挙げることができる。
Next, a method for obtaining a complicated shape by performing ultraviolet irradiation (exposure) and development on a coating film using a black paint containing a resin component material having ultraviolet sensitivity will be briefly described.
There is no particular limitation on the exposure method, but exposure can be easily performed by using a commercially available ultraviolet exposure device and a photomask as long as it has a planar shape. In addition, so-called direct drawing (direct drawing) can be performed in which an ultraviolet laser is used as the light source and a fine laser beam is scanned to directly write a pattern on the coated and dried film.
There is no particular limitation on the developing method, and a normal method such as a dip method or a paddle method may be used. These exposure and development conditions may be appropriately selected and adjusted according to the resin component raw material to be used and the required shape.
According to the above process, for example, a resist material is used as a resin component raw material, and a complex shape is obtained by exposing and developing a coated dry film, and a light shielding film for a solid-state imaging device described later and a black for an image display device are preferable. Mention may be made of matrices.
[可視近赤外光遮蔽黒色膜付き基材]
本発明の可視近赤外光遮蔽黒色膜付き基材は、既述の本発明の可視近赤外光遮蔽黒色膜が基材上に形成されてなる。可視近赤外光遮蔽黒色膜付き基材は、例えば固体撮像素子を形成する場合であればシリコンウェハー等の半導体基板等の上に、画像表示装置用ブラックマトリックスを形成する場合であれば光透過性基板等の上に、公知の方法により本発明の可視近赤外光遮蔽黒色膜を形成し、必要に応じてパターニングすることで作製される。
[Substrate with visible near infrared light shielding black film]
The base material with a visible near infrared light shielding black film of the present invention is formed by forming the visible near infrared light shielding black film of the present invention on the base material. The base material with a visible / near-infrared light-shielding black film is light transmissive if a black matrix for an image display device is formed on a semiconductor substrate such as a silicon wafer if a solid-state imaging device is formed. The visible near-infrared light shielding black film of the present invention is formed on a conductive substrate or the like by a known method and is patterned as necessary.
基材としては、特に限定されるものではないが、シリコンウェハー、ガラス基材、プラスチック基材(有機高分子基材)等を挙げることができる。また、その形状としては、平板、フィルム状、シート状等が挙げられる。また、上記のプラスチック基材としては、プラスチックシート、プラスチックフィルム等が好適である。 Although it does not specifically limit as a base material, A silicon wafer, a glass base material, a plastic base material (organic polymer base material) etc. can be mentioned. Moreover, as the shape, a flat plate, a film form, a sheet form, etc. are mentioned. Moreover, as said plastic base material, a plastic sheet, a plastic film, etc. are suitable.
ガラス基材の材質としては、特に限定されるものではないが、例えば、ソーダガラス、アルカリガラス、無アルカリガラス等から適宜選択することができる。
プラスチック基材の材質としては、特に限定されるものではないが、例えば、セルロースアセテート、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテル、ポリイミド、エポキシ樹脂、フェノキシ樹脂、ポリカーボネート(PC)、ポリフッ化ビニリデン、トリアセチルセルロース(TAC)、ポリエーテルサルフォン(PES)、ポリアクリレート等から、用途や使用条件に基づいて適宜選択することができる。
The material of the glass substrate is not particularly limited, but can be appropriately selected from soda glass, alkali glass, non-alkali glass, and the like.
The material of the plastic substrate is not particularly limited. For example, cellulose acetate, polystyrene (PS), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether, polyimide, epoxy resin, phenoxy resin , Polycarbonate (PC), polyvinylidene fluoride, triacetylcellulose (TAC), polyethersulfone (PES), polyacrylate, and the like, which can be appropriately selected based on the use and use conditions.
また、パターニングして複雑な形状を得る方法は、特に限定はされないが、前記のように樹脂成分原料に紫外線感光性を持たせ、露光、現像等の工程を行えばよい。
上記露光、現像等のパターニング工程を、例えば画像表示装置用のブラックマトリックスとして適用する場合には、特開2006−251095号公報の段落番号0096から0106に記載の方法や、特開2006−251237号公報の段落番号0116から0126に記載の遮光画像の形成方法が、本実施形態においても好適に用いることができる。
本発明の黒色膜は、含まれる金属微粒子(黒色材料)の黒色度が高いことから、黒色膜中の黒色材料粒子量を減ずることができる。すなわち、黒色膜中の樹脂成分比率を低下させることがない。従って、パターニングして複雑な形状を得る場合においても、形成した黒色膜の硬化が不十分になったり、膜強度が不足したり、微細パターンの形成が不十分になってしまうという問題が発生することがない。
The method of obtaining a complicated shape by patterning is not particularly limited, but the resin component raw material may be UV-sensitive as described above, and steps such as exposure and development may be performed.
When the patterning process such as exposure and development is applied as a black matrix for an image display device, for example, the method described in paragraphs 0096 to 0106 of JP-A-2006-251095, or JP-A-2006-251237. The method for forming a light-shielded image described in paragraph numbers 0116 to 0126 of the publication can also be suitably used in this embodiment.
The black film of the present invention can reduce the amount of black material particles in the black film because the blackness of the contained metal fine particles (black material) is high. That is, the resin component ratio in the black film is not reduced. Therefore, even when a complicated shape is obtained by patterning, there arises a problem that the formed black film is not sufficiently cured, the film strength is insufficient, or the fine pattern is not sufficiently formed. There is nothing.
また、黒色塗料を使用し、インクジェット法を用いて、基材上に直接パターンが形成された層を作製する方法もある。この場合、黒色塗料の塗膜には光感光性を与える必要は無いが、黒色塗料においては、微小なインクジェットノズルからの吐出性(吐出量や吐出方向の安定性)に優れるとともに、吐出され基材に付着した塗料は、流出や変形しないように高粘度状態となるようにする必要がある。このため、黒色塗料の粘度を調整したり、チクソトロピーを与えるための助剤を添加したりする等の方法が用いられる。
この工程についても公知の方法を使用できるが、例えば画像表示装置用のブラックマトリックスとして適用する場合には、特開2008−116895号公報の段落番号0029から0031に記載の方法を用いることができる。
There is also a method for producing a layer in which a pattern is directly formed on a substrate by using an ink jet method using a black paint. In this case, it is not necessary to give photosensitivity to the black paint film, but the black paint is excellent in dischargeability (discharge volume and stability in the discharge direction) from a minute ink jet nozzle and is not discharged. The paint adhering to the material must be in a highly viscous state so that it does not flow out or deform. For this reason, methods such as adjusting the viscosity of the black paint or adding an auxiliary agent for giving thixotropy are used.
Although a known method can be used for this step, for example, when it is applied as a black matrix for an image display device, the method described in paragraph numbers 0029 to 0031 of JP-A-2008-116895 can be used.
本発明の可視近赤外光遮蔽黒色膜付き基材は、可視光域および近赤外光域の両範囲に渡って遮蔽性を有することから、固体撮像素子用カラーフィルターに用いられるブラックマトリクス(遮光膜)が設けられたブラックマトリクス基板としても、好適に用いることができる。
固体撮像素子用カラーフィルター用ブラックマトリクス基板としたときの、可視近赤外光遮蔽黒色膜の膜厚は0.2μm以上かつ5.0μm以下が好ましく、0.2μm以上かつ4.0μm以下がより好ましい。また、ブラックマトリクス基板における黒色膜は、本発明の黒色膜を使用しているので、薄膜でも高い光学濃度を有する。
Since the substrate with a visible near-infrared light-shielding black film of the present invention has shielding properties over both the visible light region and the near-infrared light region, a black matrix (used for a color filter for a solid-state imaging device) A black matrix substrate provided with a light-shielding film can also be suitably used.
When used as a black matrix substrate for a color filter for a solid-state imaging device, the film thickness of the visible / near infrared light shielding black film is preferably 0.2 μm or more and 5.0 μm or less, more preferably 0.2 μm or more and 4.0 μm or less. preferable. Moreover, since the black film in the black matrix substrate uses the black film of the present invention, even a thin film has a high optical density.
[固体撮像素子]
本発明の固体撮像素子は、前記本発明の可視近赤外遮蔽黒色膜を有するか、又は前記本発明の可視近赤外光遮蔽黒色膜付き基材を有してなる。
固体撮像素子としては、CCD(Charge Coupled Device)素子、CMOS(Complementary Metal Oxide Semiconductor)素子が代表的であるが、本発明の可視近赤外光遮蔽黒色膜及び可視近赤外光遮蔽黒色膜付き基材は、これらの固体撮像素子を始めとする各種固体撮像素子において、好適に用いることができる。
[Solid-state imaging device]
The solid-state imaging device of the present invention has the visible / near-infrared shielding black film of the present invention or the substrate with the visible / near-infrared light shielding black film of the present invention.
Typical solid-state imaging devices include CCD (Charge Coupled Device) devices and CMOS (Complementary Metal Oxide Semiconductor) devices, but with the visible and near infrared light shielding black film and the visible near infrared light shielding black film of the present invention. The base material can be suitably used in various solid-state image sensors including these solid-state image sensors.
固体撮像素子は、通常、光電変換素子であるフォトダイオード(受光部)が二次元配列されたシリコン等の半導体基板と、各フォトダイオードの上方に二次元配列されたレッド(R)色、グリーン(G)色、ブルー(B)色のカラーフィルターと、カラーフィルター上に設けられ、入射光をフォトダイオードに集光させるためのオンチップマイクロレンズとから構成されている。
そして、固体撮像素子の撮像部(有効画素領域)の周縁領域には、暗電流の低減、ダイナミックレンジの低下防止、周辺回路の動作安定を図ることで、ノイズの発生やイメージセンサとしての画質低下を防止るための遮光膜が設けられている。また、隣接するカラーフィルター間相互の影響を低減し、画質を向上させるため、カラーフィルターにブラックマトリックスを設けられる場合もある。
A solid-state imaging device usually includes a semiconductor substrate such as silicon in which photodiodes (light receiving portions) that are photoelectric conversion elements are two-dimensionally arranged, and red (R) and green (two-dimensionally arranged above each photodiode). G) and blue (B) color filters, and an on-chip microlens provided on the color filters for condensing incident light on a photodiode.
In the peripheral area of the imaging unit (effective pixel area) of the solid-state imaging device, noise is reduced and image quality is lowered as an image sensor by reducing the dark current, preventing the dynamic range from being lowered, and stabilizing the operation of the peripheral circuit. A light-shielding film is provided to prevent this. In some cases, a black matrix may be provided in the color filter in order to reduce the influence between adjacent color filters and improve the image quality.
本発明の黒色膜は、黒色度が高く可視領域から近赤外領域の光に対して遮光性が高いこと、その高い遮光性ゆえに薄膜化が可能なことから、固体撮像素子用の遮光膜、すなわち撮像部の周縁領域に設けられる遮光膜や、カラーフィルターのブラックマトリックスとして、好適に用いることができる。すなわち、画素の微小化に伴う、光電変換素子の上面からオンチップマイクロレンズの下面までの有効光学機能層の厚さを薄くすることに対応して遮光膜やブラックマトリックスを薄くしても、十分な遮光性を確保することができる。また、含まれる金属微粒子(黒色粒子)の粒径が小さくかつ分散性が良いことにより、膜の均質性が高く、表面の平坦性も良好であるから、遮光膜やブラックマトリックスを薄くしても遮光むらや膜表面荒れによる画質の低下が生じることもなく、固体撮像素子用の遮光膜として用いることに対してより好適である。 The black film of the present invention has a high blackness and a high light-shielding property for light from the visible region to the near-infrared region, and because of its high light-shielding property, it can be thinned. That is, it can be suitably used as a light-shielding film provided in the peripheral region of the imaging unit or a black matrix of a color filter. That is, even if the light shielding film and the black matrix are made thin in response to the reduction in the thickness of the effective optical functional layer from the upper surface of the photoelectric conversion element to the lower surface of the on-chip microlens due to pixel miniaturization A good light-shielding property. In addition, since the metal fine particles (black particles) contained therein have a small particle size and good dispersibility, the film has high homogeneity and good surface flatness. It is more suitable for use as a light-shielding film for a solid-state image pickup device without causing deterioration of image quality due to light-shielding unevenness or film surface roughness.
さらに、含まれる金属微粒子(黒色材料)の黒色度が高いことから、黒色膜中の黒色材料粒子量を減ずることができ、また粒径が小さく分散性が良いことにより、高い体積抵抗率を示すことから、黒色膜を設けるために新たに絶縁層を形成させる必要がない。また、例えばブラックマトリックスと撮像素子自体が直接接した場合でも、撮像素子間の短絡等による動作不良といった問題が発生することもない。
さらにまた、黒色膜中の黒色材料粒子量が少ない、すなわち、黒色膜中の樹脂成分比率を低下させることがないことから、パターニングにより得られる複雑な形状の黒色膜においても、膜硬化が不十分であったり、膜強度が不足したり、微細パターンの形成が不十分になることがない。従って、微細で正確な形状の固体撮像素子カラーフィルター用ブラックマトリックスを得ることができるから、固体撮像素子の特性をより高めることができる。
Furthermore, since the blackness of the contained metal fine particles (black material) is high, the amount of black material particles in the black film can be reduced, and since the particle size is small and the dispersibility is good, high volume resistivity is exhibited. Therefore, it is not necessary to newly form an insulating layer in order to provide the black film. For example, even when the black matrix and the image sensor itself are in direct contact with each other, there is no problem of malfunction due to a short circuit between the image sensors.
Furthermore, since the amount of black material particles in the black film is small, that is, the ratio of the resin component in the black film is not reduced, film curing is not sufficient even in a complex-shaped black film obtained by patterning. And the film strength is not insufficient, and the formation of the fine pattern is not insufficient. Therefore, since the black matrix for a solid-state image sensor color filter having a fine and accurate shape can be obtained, the characteristics of the solid-state image sensor can be further improved.
[画像表示装置]
本発明の可視近赤外光遮蔽黒色膜及び可視近赤外光遮蔽黒色膜付き基材は、可視領域の光に対する遮光性も良好であることから、固体撮像素子用としてだけではなく、各種画像表示装置において好適に用いることができる。画像表示装置としては、プラズマディスプレイ表示装置、EL表示装置等の自発光型表示装置、CRT表示装置、液晶表示装置等が挙げられ、中でも液晶表示装置やEL表示装置に用いた場合に、本発明の可視近赤外光遮蔽黒色膜及び可視近赤外光遮蔽黒色膜付き基材の黒色膜の効果が顕著に発揮される。ここで、液晶表示装置の種類としては、STN、TN、VA、IPS、OCS、及びR−OCB等が挙げられる。
[Image display device]
Since the visible / near-infrared light-shielding black film and the substrate with visible / near-infrared light shielding black film of the present invention have good light-shielding properties against light in the visible region, they are not only for solid-state imaging devices but also for various images. It can be suitably used in a display device. Examples of the image display device include a self-luminous display device such as a plasma display display device and an EL display device, a CRT display device, a liquid crystal display device, and the like. In particular, the present invention is applied to a liquid crystal display device or an EL display device. The visible and near infrared light-shielding black film and the black film of the substrate with the visible and near infrared light shielding black film are remarkably exhibited. Here, examples of the liquid crystal display device include STN, TN, VA, IPS, OCS, and R-OCB.
本発明の黒色膜は、黒色度が高くかつ高い体積抵抗率を有していることから、その遮光性(光の無反射性)と抵抗率を利用した画像表示装置用部材として、好適に用いることができる。これらの部材としては、液晶表示素子や自発光型表示装置におけるブラックマトリックスとそれを用いたカラーフィルターやブラックストライプ、液晶表示装置や自発光型表示装置において各色の画素間を分離する遮光壁、液晶表示装置において液晶を充填する基板間のスペーサー等を挙げることができる。 Since the black film of the present invention has high blackness and high volume resistivity, it is suitably used as a member for an image display device utilizing its light shielding property (non-reflecting property of light) and resistivity. be able to. These members include black matrixes in liquid crystal display elements and self-luminous display devices, color filters and black stripes using the same, light-shielding walls that separate pixels of each color in liquid crystal display devices and self-luminous display devices, liquid crystals Examples include a spacer between substrates filled with liquid crystal in a display device.
ここで、ブラックマトリックスとそれを用いたカラーフィルターへの適用においては、黒色度が高いことからブラックマトリックスの厚さを減じることができ、結果として得られるカラーフィルターの平坦性が高いため、このカラーフィルターを備えた液晶表示装置は、カラーフィルターと基板との間にセルギャップムラが発生せず、色ムラ等の表示不良の発生が改善される。
さらに体積抵抗率が高いことから、COA方式やBOA方式の液晶表示素子や自発光型表示装置のように、ブラックマトリックスと画素駆動用の配線とが接触する場合においても、配線の短絡等による素子の駆動不良をおこすおそれがない。
Here, in black matrix and its application to color filters, it is possible to reduce the thickness of the black matrix due to its high blackness, and the resulting flatness of the color filter is high. In a liquid crystal display device provided with a filter, cell gap unevenness does not occur between the color filter and the substrate, and the occurrence of display defects such as color unevenness is improved.
Further, since the volume resistivity is high, even when the black matrix and the pixel driving wiring are in contact with each other, such as a COA type or BOA type liquid crystal display element or a self-luminous display device, an element due to a short circuit of the wiring or the like There is no risk of driving failure.
また、遮光壁やスペーサーへの適用においても、体積抵抗率が高いことから、各画素間の配線が短絡する虞がなく、従って素子の駆動不良をおこすことがない。さらに黒色度が高いことから、遮光壁の厚さを減じることができ、各画素における発光領域の拡大によるコントラストの向上、あるいは画素間隔の減少に伴う発光素子の高密度化等をはかることができる。
さらには、高い光吸収性を利用して、コントラスト増強フィルム等へ応用することも可能である。
Further, even when applied to a light shielding wall or a spacer, since the volume resistivity is high, there is no possibility that the wiring between the pixels is short-circuited, and therefore, the driving failure of the element is not caused. Furthermore, since the blackness is high, the thickness of the light shielding wall can be reduced, and the contrast can be improved by expanding the light emitting region in each pixel, or the density of the light emitting elements can be increased due to the decrease in the pixel spacing. .
Furthermore, it can be applied to a contrast enhancement film or the like by utilizing high light absorption.
以下、実施例によって本発明を具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.
<各測定・評価方法>
以下に、実施例又は比較例において採用した、材料及びシートの特性等の各測定方法、評価方法を示す。
<Measurement and evaluation methods>
Below, each measuring method and evaluation methods, such as the characteristic of a material and a sheet | seat which were employ | adopted in the Example or the comparative example, are shown.
・黒色材料
後述する黒色微粒子の水分散液から粒子を分離、乾燥して粉末試料とし、以下の評価を行った。
(含まれる微粒子種の同定)
粉末試料について、X線回折装置(XRD)により結晶相を同定するとともに、圧粉体を電子線マイクロアナライザー(EPMA)で定性及び定量分析することにより、結晶相と組成比(含有比率)から含まれる金属粒子種を確認した。
-Black material Particles were separated from an aqueous dispersion of black fine particles, which will be described later, and dried to obtain a powder sample, which was evaluated as follows.
(Identification of contained fine particle species)
The powder phase is identified from the crystal phase and composition ratio (content ratio) by identifying the crystal phase with an X-ray diffractometer (XRD) and qualitatively and quantitatively analyzing the green compact with an electron beam microanalyzer (EPMA). The metal particle species to be confirmed was confirmed.
[XRD測定による結晶相同定]
粉末試料をガラス製試料ホルダーに詰め、X線回折装置(PANalytical製、X'Pert PRO)により、CuKα線を用いて測定した。得られたXRDプロファイルの回折角2θ=38°付近および44°付近のピークを銀、2θ=34.7°付近および39.7°付近のピークを銀錫金属間化合物(Ag3Sn及び/又はAg4Sn)、2θ=30.7°付近および32°付近のピークを錫の結晶相ピークとして同定することにより、含まれる金属粒子種の結晶相を確認した。
[Identification of crystal phase by XRD measurement]
The powder sample was packed in a glass sample holder and measured using CuKα rays with an X-ray diffractometer (manufactured by PANalytical, X′Pert PRO). In the obtained XRD profile, diffraction peaks at around 2θ = 38 ° and around 44 ° are silver, and peaks near 2θ = 34.7 ° and 39.7 ° are silver-tin intermetallic compounds (Ag3Sn and / or Ag4Sn). By identifying peaks near 2θ = 30.7 ° and near 32 ° as the crystal phase peak of tin, the crystal phase of the contained metal particle species was confirmed.
[EPMA測定による定性・定量分析]
黒色材料粉末の圧粉体を電子線マイクロアナライザー(EPMA、日本電子社製、JXA8800)にて分析し、波長分散型X線分光器を用いた定性ならびに定量分析によって粉末中の錫及び銀の存在及び含有比率(質量比)を測定した。
[Qualitative and quantitative analysis by EPMA measurement]
The presence of tin and silver in the powder by analyzing the green compact powder using an electron beam microanalyzer (EPMA, JEOL Ltd., JXA8800) and qualitative and quantitative analysis using a wavelength dispersive X-ray spectrometer. And the content ratio (mass ratio) was measured.
[XRD測定とEPMA測定からの微粒子種の同定]
XRD測定で同定された結晶相に対して、その結晶相を構成する元素が十分な量存在することをEPMA測定で確認することにより、微粒子種を同定した。
すなわち、XRD測定で銀錫金属間化合物の結晶相が確認された試料については、EPMA測定で銀及び錫の存在を確認することで、微粒子種が銀錫金属間化合物を含むと同定し、XRD測定で錫の結晶相が確認された試料については、EPMA測定で錫の存在を確認することで、微粒子種が錫を含むと同定し、XRD測定で銀の結晶相が確認された試料については、EPMA測定で銀の存在を確認することで、微粒子種が銀を含むと同定した。
[Identification of fine particle species from XRD measurement and EPMA measurement]
By confirming that the crystal phase identified by the XRD measurement has a sufficient amount of elements constituting the crystal phase by EPMA measurement, the fine particle species was identified.
That is, for a sample in which the crystal phase of the silver-tin intermetallic compound was confirmed by XRD measurement, the presence of silver and tin was confirmed by EPMA measurement, whereby the fine particle species was identified as containing a silver-tin intermetallic compound, and XRD About the sample in which the crystalline phase of tin was confirmed by the measurement, the presence of tin was confirmed by the EPMA measurement to identify the fine particle species as containing tin, and the sample in which the crystalline phase of silver was confirmed by the XRD measurement By confirming the presence of silver by EPMA measurement, it was identified that the fine particle species contained silver.
・黒色膜
(光学濃度(膜の遮光性))
黒色膜付き基板の透過率を分光光度計(ジャスコエンジニアリング製、V−570)を用いて1nm間隔で測定した。測定した透過率を、
光学濃度=−log10T (T:透過率)の式によって光学濃度に換算した。
1nm間隔で換算した400nmから1300nmの光学濃度を平均し、400nmから1300nmまでの平均光学濃度とした。555nm、1300nmにおける光学濃度を記録した。
・ Black film (optical density (film shading))
The transmittance of the substrate with the black film was measured at 1 nm intervals using a spectrophotometer (V-570, manufactured by Jusco Engineering). The measured transmittance is
Optical density was converted to optical density by the formula: -log 10 T (T: transmittance).
The optical densities from 400 nm to 1300 nm converted at 1 nm intervals were averaged to obtain an average optical density from 400 nm to 1300 nm. The optical density at 555 nm and 1300 nm was recorded.
(黒色膜中の黒色材料粒子の平均一次粒子径、平均分散粒子径、粒度分布指標)
作製した黒色膜試料を、FIB(集束イオンビーム)を用いて断面方向に切断して薄片化し、切断面を透過型電子顕微鏡(TEM:日本電子社製、JEM−2010)により観察した。観察視野像から微粒子の形状およびアスペクト比を求めた。観察視野から任意の一次粒子100個を選び、それぞれの粒子像を円で近似し、当該円の直径を該粒子の粒子径として平均一次粒子径と粒度分布を算出した。
また、観察視野から任意の粒子100個を選び、それぞれの粒子像を円で近似し、当該円の直径を該粒子の粒子径として平均分散粒子径と粒度分布を算出した。なおここで「任意の粒子」とは、凝集粒子と、凝集をおこしていない一次粒子とを含むものとする。すなわち、黒色膜中における粒子が凝集粒子のみであれば当該凝集粒子、凝集粒子と一次粒子が混在する場合にはこれらを合わせた粒子、一次粒子のみ(粒子が凝集していない)であれば当該一次粒子、のことを示す。
(Average primary particle size, average dispersed particle size, particle size distribution index of black material particles in black film)
The prepared black film sample was cut into thin sections by cutting in the cross-sectional direction using FIB (focused ion beam), and the cut surface was observed with a transmission electron microscope (TEM: JEM-2010, JEM-2010). The shape and aspect ratio of the fine particles were determined from the observation field image. 100 arbitrary primary particles were selected from the observation field, each particle image was approximated by a circle, and the average primary particle size and particle size distribution were calculated using the diameter of the circle as the particle size of the particle.
In addition, 100 arbitrary particles were selected from the observation field, each particle image was approximated by a circle, and the average dispersed particle size and particle size distribution were calculated using the diameter of the circle as the particle size of the particle. Here, “arbitrary particles” include aggregated particles and primary particles that are not aggregated. That is, if the particles in the black film are only agglomerated particles, the agglomerated particles, if the agglomerated particles and the primary particles coexist, the combined particles, if the only primary particles (particles are not agglomerated) Primary particles are shown.
(黒色膜の体積抵抗率)
成膜基板としてITO膜をスパッタ法により表面に成膜したガラス基板を選択し、この基板上に成膜した黒色膜について、絶縁抵抗計(エーディーシー社製、超高抵抗/微小電流計R8340A)を用いて体積抵抗率を測定した。なお、体積抵抗率測定はDC5Vにて実施した。
(Volume resistivity of black film)
A glass substrate having an ITO film formed on the surface by sputtering is selected as the film forming substrate, and an insulation resistance meter (Ultra High Resistance / Microammeter R8340A, manufactured by ADC) is used for the black film formed on the substrate. Was used to measure the volume resistivity. The volume resistivity measurement was performed at DC 5V.
<実施例1>
(略球状粒子の合成)
硝酸銀56gを純水に溶解し1500gの硝酸銀水溶液(A1−1液)を調製した。また、クエン酸3ナトリウム2水和物314g及び1質量%に希釈したポリビニルピロリドン360gを純水に溶解し、2500gのクエン酸3ナトリウム水溶液(B1−1液)を調製した。次いで、B1−1液中にA1−1液を滴下して混合したのち、これに水素化ホウ素ナトリウム10gを純水に溶解した500gの水溶液を滴下して混合してC1−1液を得た。
<Example 1>
(Synthesis of nearly spherical particles)
Silver nitrate 56g was melt | dissolved in the pure water, and 1500 g of silver nitrate aqueous solution (A1-1 liquid) was prepared. In addition, 314 g of trisodium citrate dihydrate and 360 g of polyvinylpyrrolidone diluted to 1% by mass were dissolved in pure water to prepare 2500 g of a trisodium citrate aqueous solution (B1-1 solution). Next, the A1-1 solution was dropped into and mixed with the B1-1 solution, and then 500 g of an aqueous solution in which 10 g of sodium borohydride was dissolved in pure water was dropped and mixed to obtain a C1-1 solution. .
次いで、錫コロイド(平均粒子径:20nm、固形分:10質量%、住友大阪セメント社製)150g及び純水を混合した4000gの錫微粒子分散液中に、上記C1−1液を滴下、混合した。さらに酒石酸180gを純水2000gに溶解した水溶液を錫微粒子分散液とC1−1液との混合液中に滴下、攪拌し、過剰の錫コロイドを溶解させた。その後、遠心分離により洗浄を行い、黒色微粒子の水分散液(D1−1液、固形分:25質量%)を調製した。 Next, the C1-1 solution was added dropwise to 4000 g of tin fine particle dispersion obtained by mixing 150 g of tin colloid (average particle size: 20 nm, solid content: 10% by mass, manufactured by Sumitomo Osaka Cement Co., Ltd.) and pure water. . Further, an aqueous solution in which 180 g of tartaric acid was dissolved in 2000 g of pure water was dropped into the mixed liquid of the tin fine particle dispersion and the C1-1 liquid and stirred to dissolve excess tin colloid. Thereafter, washing was performed by centrifugal separation to prepare an aqueous dispersion of black fine particles (D1-1 solution, solid content: 25% by mass).
(略棒状粒子の合成)
硝酸銀56gを純水に溶解し1500gの硝酸銀水溶液(A2−1液)を調製した。また、クエン酸3ナトリウム2水和物78g及び1質量%に希釈したポリビニルピロリドン60gを純水に溶解し、2500gのクエン酸3ナトリウム水溶液(B2−1液)を調製した。次いで、B2−1液中にA2−1液を滴下して混合したのち、これに水素化ホウ素ナトリウム0.1gを純水に溶解した500gの水溶液を滴下して混合し、さらにアスコルビン酸18gを純水に溶解した500gの水溶液を滴下、混合してC2−1液を得た。
(Synthesis of substantially rod-shaped particles)
Silver nitrate 56g was melt | dissolved in the pure water, and 1500 g of silver nitrate aqueous solution (A2-1 liquid) was prepared. Further, 78 g of trisodium citrate dihydrate and 60 g of polyvinylpyrrolidone diluted to 1% by mass were dissolved in pure water to prepare 2500 g of an aqueous solution of trisodium citrate (B2-1 solution). Next, after the A2-1 solution was dropped into the B2-1 solution and mixed, 500 g of an aqueous solution obtained by dissolving 0.1 g of sodium borohydride in pure water was dropped and mixed, and 18 g of ascorbic acid was further added. 500 g of an aqueous solution dissolved in pure water was dropped and mixed to obtain a C2-1 solution.
次いで、錫コロイド(平均粒子径:20nm、固形分:10質量%、住友大阪セメント社製)150g及び純水を混合した4000gの錫微粒子分散液中に、上記C2−1液を滴下、混合した。さらに酒石酸180gを純水2000gに溶解した水溶液を錫微粒子分散液とC2−1液との混合液中に滴下、攪拌し、過剰の錫コロイドを溶解させた。その後、遠心分離により洗浄を行い、黒色微粒子の水分散液(D2−1液、固形分:25質量%)を調製した。 Next, the C2-1 solution was dropped and mixed in 4000 g of tin fine particle dispersion obtained by mixing 150 g of tin colloid (average particle size: 20 nm, solid content: 10% by mass, manufactured by Sumitomo Osaka Cement Co., Ltd.) and pure water. . Further, an aqueous solution in which 180 g of tartaric acid was dissolved in 2000 g of pure water was dropped into a mixed liquid of the tin fine particle dispersion and the C2-1 liquid and stirred to dissolve excess tin colloid. Thereafter, washing was performed by centrifugation to prepare an aqueous dispersion of black fine particles (D2-1 solution, solid content: 25% by mass).
(黒色材料分散液の作製)
次いで、上記D1−1液30g、D2−1液70g、櫛形ウレタン系高分子分散剤3.75g及びメチルエチルケトン34gを混合した後、エバポレーターを用いて混合物から水分及びメチルエチルケトンを蒸発させて、乾燥粉(E−1粉)を得た。
次いで、上記E−1粉29gと、プロピレングリコールモノメチルエーテルアセテート(PGMEA)71gとを混合し、これをビーズミルを用いて分散させ、黒色材料分散液(F−1液、固形分:25質量%)を得た。
(Preparation of black material dispersion)
Next, after mixing 30 g of the D1-1 solution, 70 g of the D2-1 solution, 3.75 g of the comb-shaped urethane polymer dispersant, and 34 g of methyl ethyl ketone, water and methyl ethyl ketone were evaporated from the mixture using an evaporator, and dried powder ( E-1 powder) was obtained.
Next, 29 g of the above E-1 powder and 71 g of propylene glycol monomethyl ether acetate (PGMEA) were mixed and dispersed using a bead mill to obtain a black material dispersion (F-1 solution, solid content: 25% by mass). Got.
(黒色膜の作製)
黒色材料分散液(F−1液)、多官能性アクリレートを樹脂形成成分とするレジスト(分散媒:PGMEA)及び溶媒としてのPGMEAを、固形分体積比(黒色微粒子:レジスト)が7.5:92.5となるように混合し、超音波処理により分散して黒色塗料(G−1塗料)とした。なお、上記固形分体積比は仕込比である。
次いで、厚さ0.7mmのガラス基板上に、前記調製したG−1塗料をスピンコーターを用いて塗布し、ホットプレート上で120℃にて2分間プリベークし、さらに230℃で30分間ポストベークし、実施例1の黒色膜(H−1膜)付きガラス基板を得た。黒色膜の膜厚は1μmであった。なお、図1に、実施例1の黒色膜の一部を、FIBを用いて断面方向に切断して薄片化し、TEM(日本電子社製、JEM−2010)で観察した結果(40万倍)を示す。
(Production of black film)
A black material dispersion (F-1 solution), a resist (dispersion medium: PGMEA) containing polyfunctional acrylate as a resin-forming component, and PGMEA as a solvent have a solid content volume ratio (black fine particles: resist) of 7.5: It mixed so that it might become 92.5, and was disperse | distributed by the ultrasonic treatment and it was set as the black coating material (G-1 coating material). In addition, the said solid content volume ratio is a preparation ratio.
Next, the G-1 paint prepared above was applied onto a 0.7 mm thick glass substrate using a spin coater, pre-baked on a hot plate at 120 ° C. for 2 minutes, and further post-baked at 230 ° C. for 30 minutes. And the glass substrate with a black film (H-1 film) of Example 1 was obtained. The film thickness of the black film was 1 μm. In addition, in FIG. 1, a part of the black film of Example 1 was cut into thin sections by cutting in the cross-sectional direction using FIB, and observed with TEM (manufactured by JEOL Ltd., JEM-2010) (400,000 times) Indicates.
(評価)
上記で得られた黒色材料、黒色膜について、前記の条件にしたがって微粒子の組成、膜中の粒子形状、アスペクト比、分散粒子径、光学濃度等の測定を行った。結果を表1に示す。
(Evaluation)
The black material and black film obtained above were measured for the composition of the fine particles, the particle shape in the film, the aspect ratio, the dispersed particle diameter, the optical density and the like according to the above conditions. The results are shown in Table 1.
[実施例2]
実施例1で用いたD1−1液30g、D2−1液70g、櫛形ウレタン系高分子分散剤2.5g及びメチルエチルケトン22.5gを混合した後、エバポレーターを用いて混合物から水分及びメチルエチルケトンを蒸発させて、乾燥粉(E−2粉)を得た。
次いで、上記E−2粉29gと、プロピレングリコールモノメチルエーテルアセテート(PGMEA)71gとを混合し、これをビーズミルを用いて分散させ、黒色材料分散液(F−2液、固形分:25質量%)を得た。
以降の工程は実施例1と同様にして、実施例2の黒色膜(H−2膜)を作製した。なお、図2に、実施例2の黒色膜の一部を、実施例1と同様にしてTEMで観察した結果(40万倍)を示す。
作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Example 2]
After mixing 30 g of D1-1 solution, 70 g of D2-1 solution, 2.5 g of comb urethane polymer dispersant and 22.5 g of methyl ethyl ketone used in Example 1, water and methyl ethyl ketone were evaporated from the mixture using an evaporator. As a result, dry powder (E-2 powder) was obtained.
Next, 29 g of the E-2 powder and 71 g of propylene glycol monomethyl ether acetate (PGMEA) were mixed and dispersed using a bead mill, and a black material dispersion (F-2 solution, solid content: 25 mass%) Got.
Subsequent steps were performed in the same manner as in Example 1, and a black film (H-2 film) in Example 2 was produced. FIG. 2 shows the result (400,000 times) of observation of a part of the black film of Example 2 by TEM in the same manner as in Example 1.
The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例3]
実施例1で用いた黒色金属微粒子分散液F−1液(固形分:25質量%)、多官能性アクリレートを樹脂形成成分とするレジスト(分散媒:PGMEA)、溶媒としてのPGMEAを、固形分体積比(黒色微粒子:レジスト)が10:90となるように添加し、超音波処理により分散して黒色塗料(G−3塗料)とした。なお、上記固形分体積比は仕込比である。
以降の工程は実施例1と同様にして、実施例3の黒色膜(H−3膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Example 3]
The black metal fine particle dispersion F-1 solution (solid content: 25% by mass) used in Example 1, a resist (dispersion medium: PGMEA) having a polyfunctional acrylate as a resin-forming component, and PGMEA as a solvent were used as a solid content. It added so that volume ratio (black fine particle: resist) might be set to 10:90, and it disperse | distributed by ultrasonic treatment, and was set as the black coating material (G-3 coating material). In addition, the said solid content volume ratio is a preparation ratio.
Subsequent steps were performed in the same manner as in Example 1, and a black film (H-3 film) in Example 3 was produced. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例4]
実施例1で用いた黒色金属微粒子分散液F−1液(固形分:25質量%)、多官能性アクリレートを樹脂形成成分とするレジスト(分散媒:PGMEA)、溶媒としてのPGMEAを、固形分体積比(黒色微粒子:レジスト)が30:70となるように添加し、超音波処理により分散して黒色塗料(G−4塗料)とした。なお、上記固形分体積比は仕込比である。
以降の工程は実施例1と同様にして、実施例4の黒色膜(H−4膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Example 4]
The black metal fine particle dispersion F-1 solution (solid content: 25% by mass) used in Example 1, a resist (dispersion medium: PGMEA) having a polyfunctional acrylate as a resin-forming component, and PGMEA as a solvent were used as a solid content. It added so that volume ratio (black fine particle: resist) might be set to 30:70, and it disperse | distributed by ultrasonic treatment, and was set as the black coating material (G-4 coating material). In addition, the said solid content volume ratio is a preparation ratio.
Subsequent steps were carried out in the same manner as in Example 1, and a black film (H-4 film) in Example 4 was produced. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例5]
実施例1で用いた黒色金属微粒子分散液F−1液(固形分:25質量%)、多官能性アクリレートを樹脂形成成分とするレジスト(分散媒:PGMEA)、溶媒としてのPGMEAを、固形分体積比(黒色微粒子:レジスト)が3:97となるように添加し、超音波処理により分散して黒色塗料(G−5塗料)とした。なお、上記固形分体積比は仕込比である。
以降の工程は実施例1と同様にして、実施例5の黒色膜(H−5膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Example 5]
The black metal fine particle dispersion F-1 solution (solid content: 25% by mass) used in Example 1, a resist (dispersion medium: PGMEA) having a polyfunctional acrylate as a resin-forming component, and PGMEA as a solvent were used as a solid content. It added so that volume ratio (black fine particle: resist) might be set to 3:97, and it disperse | distributed by ultrasonic treatment, and was set as the black coating material (G-5 coating material). In addition, the said solid content volume ratio is a preparation ratio.
Subsequent steps were carried out in the same manner as in Example 1, and a black film (H-5 film) of Example 5 was produced. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例6]
実施例5のG−5塗料を用い、膜厚を2μmとした他は実施例1と同様にして、実施例6の黒色膜(H−6膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Example 6]
A black film (H-6 film) of Example 6 was produced in the same manner as in Example 1 except that the G-5 paint of Example 5 was used and the film thickness was changed to 2 μm. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例7]
実施例5のG−5塗料を用い、膜厚を5μmとした他は実施例1と同様にして、実施例7の黒色膜(H−7膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Example 7]
A black film (H-7 film) of Example 7 was produced in the same manner as in Example 1 except that the G-5 paint of Example 5 was used and the film thickness was changed to 5 μm. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例8]
実施例1で用いたD1−1液10g、D2−1液90g、櫛形ウレタン系高分子分散剤3.75g及びメチルエチルケトン34gを混合した後、エバポレーターを用いて混合物から水分及びメチルエチルケトンを蒸発させて、乾燥粉(E−8粉)を得た。
次いで、上記E−8粉29gと、プロピレングリコールモノメチルエーテルアセテート(PGMEA)71gとを混合し、これをビーズミルを用いて分散させ、黒色材料分散液(F−8液、固形分:25質量%)を得た。
以降の工程は実施例1と同様にして、実施例8の黒色膜(H−8膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Example 8]
After mixing D1-1 liquid 10g, D2-1 liquid 90g, comb-shaped urethane polymer dispersant 3.75g and methyl ethyl ketone 34g used in Example 1, water and methyl ethyl ketone were evaporated from the mixture using an evaporator, Dry powder (E-8 powder) was obtained.
Next, 29 g of the E-8 powder and 71 g of propylene glycol monomethyl ether acetate (PGMEA) were mixed and dispersed using a bead mill, and a black material dispersion (F-8 liquid, solid content: 25 mass%) Got.
Subsequent steps were performed in the same manner as in Example 1, and a black film (H-8 film) of Example 8 was produced. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例9]
実施例1で用いたD1−1液50g、D2−1液50g、櫛形ウレタン系高分子分散剤3.75g及びメチルエチルケトン34gを混合した後、エバポレーターを用いて混合物から水分及びメチルエチルケトンを蒸発させて、乾燥粉(E−9粉)を得た。
次いで、上記E−9粉29gと、プロピレングリコールモノメチルエーテルアセテート(PGMEA)71gとを混合し、これをビーズミルを用いて分散させ、黒色材料分散液(F−9液、固形分:25質量%)を得た。
以降の工程は実施例1と同様にして、実施例9の黒色膜(H−9膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Example 9]
After mixing 50 g of D1-1 solution, 50 g of D2-1 solution, 3.75 g of comb urethane polymer dispersant and 34 g of methyl ethyl ketone used in Example 1, water and methyl ethyl ketone were evaporated from the mixture using an evaporator. Dry powder (E-9 powder) was obtained.
Next, 29 g of the above E-9 powder and 71 g of propylene glycol monomethyl ether acetate (PGMEA) were mixed and dispersed using a bead mill, and a black material dispersion (F-9 solution, solid content: 25 mass%) Got.
Subsequent steps were performed in the same manner as in Example 1, and a black film (H-9 film) of Example 9 was produced. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例10]
実施例1で用いたD1−1液90g、D2−1液10g、櫛形ウレタン系高分子分散剤3.75g及びメチルエチルケトン34gを混合した後、エバポレーターを用いて混合物から水分及びメチルエチルケトンを蒸発させて、乾燥粉(E−10粉)を得た。
[Example 10]
After mixing D1-1 liquid 90g, D2-1 liquid 10g, comb-shaped urethane polymer dispersing agent 3.75g and methyl ethyl ketone 34g used in Example 1, water and methyl ethyl ketone were evaporated from the mixture using an evaporator, Dry powder (E-10 powder) was obtained.
次いで、上記E−10粉29gと、プロピレングリコールモノメチルエーテルアセテート(PGMEA)71gとを混合し、これをビーズミルを用いて分散させ、黒色材料分散液(F−10液、固形分:25質量%)を得た。
以降の工程は実施例1と同様にして、実施例10の黒色膜(H−10膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
Next, 29 g of the above E-10 powder and 71 g of propylene glycol monomethyl ether acetate (PGMEA) were mixed and dispersed using a bead mill to obtain a black material dispersion (F-10 solution, solid content: 25 mass%). Got.
Subsequent steps were carried out in the same manner as in Example 1, and a black film (H-10 film) of Example 10 was produced. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例11]
(略棒状粒子の合成)
硝酸銀56gを純水に溶解し1500gの硝酸銀水溶液(A2−11液)を調製した。また、クエン酸3ナトリウム2水和物78gを純水に溶解し、2500gのクエン酸3ナトリウム水溶液(B2−11液)を調製した。次いで、B2−11液中にA2−11液を滴下して混合したのち、これに水素化ホウ素ナトリウム0.025gを純水に溶解した500gの水溶液を滴下して混合し、さらにアスコルビン酸18gを純水に溶解した500gの水溶液を滴下、混合してC2−11液を得た。
[Example 11]
(Synthesis of substantially rod-shaped particles)
Silver nitrate 56g was melt | dissolved in the pure water, and 1500 g of silver nitrate aqueous solution (A2-11 liquid) was prepared. Moreover, 78 g of trisodium citrate dihydrate was dissolved in pure water to prepare 2500 g of an aqueous solution of trisodium citrate (solution B2-11). Next, the A2-11 solution was dropped into and mixed with the B2-11 solution, and then 500 g of an aqueous solution in which 0.025 g of sodium borohydride was dissolved in pure water was dropped and mixed, and 18 g of ascorbic acid was further added. 500 g of an aqueous solution dissolved in pure water was added dropwise and mixed to obtain a C2-11 solution.
次いで、錫コロイド(平均粒子径:20nm、固形分:10質量%、住友大阪セメント社製)150g及び純水を混合した4000gの錫微粒子分散液中に、上記C2−11液を滴下、混合した。さらに酒石酸180gを純水2000gに溶解した水溶液を錫微粒子分散液とC3液との混合液中に滴下、攪拌し、過剰の錫コロイドを溶解させた。その後、遠心分離により洗浄を行い、黒色微粒子の水分散液(D2−11液、固形分:25質量%)を調製した。 Subsequently, the above-mentioned C2-11 solution was dropped and mixed in 4000 g of tin fine particle dispersion obtained by mixing 150 g of tin colloid (average particle size: 20 nm, solid content: 10% by mass, manufactured by Sumitomo Osaka Cement Co., Ltd.) and pure water. . Further, an aqueous solution obtained by dissolving 180 g of tartaric acid in 2000 g of pure water was dropped into a mixed liquid of the tin fine particle dispersion and the C3 liquid and stirred to dissolve excess tin colloid. Thereafter, washing was performed by centrifugation to prepare an aqueous dispersion of black fine particles (D2-11 solution, solid content: 25% by mass).
(黒色材料分散液の作製)
次いで、実施例1で用いたD1−1液30g、上記D2−11液70g、櫛形ウレタン系高分子分散剤3.75g及びメチルエチルケトン34gを混合した後、エバポレーターを用いて混合物から水分及びメチルエチルケトンを蒸発させて、乾燥粉(E−11粉)を得た。
次いで、上記E−11粉29gと、プロピレングリコールモノメチルエーテルアセテート(PGMEA)71gとを混合し、これをビーズミルを用いて分散させ、黒色材料分散液(F−11液、固形分:25質量%)を得た。
(Preparation of black material dispersion)
Next, 30 g of the D1-1 solution used in Example 1, 70 g of the D2-11 solution, 3.75 g of the comb-shaped urethane polymer dispersant, and 34 g of methyl ethyl ketone were mixed, and then water and methyl ethyl ketone were evaporated from the mixture using an evaporator. And dried powder (E-11 powder) was obtained.
Next, 29 g of the E-11 powder and 71 g of propylene glycol monomethyl ether acetate (PGMEA) were mixed and dispersed using a bead mill, and a black material dispersion (F-11 liquid, solid content: 25 mass%) Got.
(黒色膜の作製)
以降の工程は実施例1と同様にして、実施例11の黒色膜(H−11膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
(Production of black film)
Subsequent steps were carried out in the same manner as in Example 1, and a black film (H-11 film) of Example 11 was produced. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例12]
実施例1で用いたD1−1液10g、実施例11で用いたD2−11液90g、櫛形ウレタン系高分子分散剤3.75g及びメチルエチルケトン34gを混合した後、エバポレーターを用いて混合物から水分及びメチルエチルケトンを蒸発させて、乾燥粉(E−12粉)を得た。
[Example 12]
After mixing 10 g of the D1-1 solution used in Example 1, 90 g of the D2-11 solution used in Example 11, 3.75 g of the comb-shaped urethane polymer dispersant and 34 g of methyl ethyl ketone, water and water were removed from the mixture using an evaporator. Methyl ethyl ketone was evaporated to obtain a dry powder (E-12 powder).
次いで、上記E−12粉29gと、プロピレングリコールモノメチルエーテルアセテート(PGMEA)71gとを混合し、これをビーズミルを用いて分散させ、黒色材料分散液(F−12液、固形分:25質量%)を得た。
以降の工程は実施例1と同様にして、実施例12の黒色膜(H−12膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
Next, 29 g of the above E-12 powder and 71 g of propylene glycol monomethyl ether acetate (PGMEA) were mixed and dispersed using a bead mill to obtain a black material dispersion (F-12 solution, solid content: 25% by mass). Got.
Subsequent steps were carried out in the same manner as in Example 1, and a black film (H-12 film) of Example 12 was produced. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例13]
(略球状粒子の合成)
硝酸銀56gを純水に溶解し1500gの硝酸銀水溶液(A1−13液)を調製した。また、クエン酸3ナトリウム2水和物314g及び1質量%に希釈したポリビニルピロリドン360gを純水に溶解し、2500gのクエン酸3ナトリウム水溶液(B1−13液)を調製した。次いで、B1−13液中にA1−13液を滴下して混合したのち、これに水素化ホウ素ナトリウム25gを純水に溶解した500gの水溶液を滴下して混合してC1−13液を得た。
その後、遠心分離により洗浄を行い、黒色微粒子の水分散液(D1−13液、固形分:25質量%)を調製した。
[Example 13]
(Synthesis of nearly spherical particles)
Silver nitrate 56g was melt | dissolved in the pure water, and 1500 g of silver nitrate aqueous solution (A1-13 liquid) was prepared. In addition, 314 g of trisodium citrate dihydrate and 360 g of polyvinylpyrrolidone diluted to 1% by mass were dissolved in pure water to prepare 2500 g of a trisodium citrate aqueous solution (B1-13 solution). Next, the A1-13 solution was dropped into and mixed with the B1-13 solution, and then 500 g of an aqueous solution in which 25 g of sodium borohydride was dissolved in pure water was dropped and mixed to obtain a C1-13 solution. .
Then, it wash | cleaned by centrifugation and prepared the black particle aqueous dispersion (D1-13 liquid, solid content: 25 mass%).
(略棒状粒子の合成)
硝酸銀56gを純水に溶解し1500gの硝酸銀水溶液(A2−13液)を調製した。また、クエン酸3ナトリウム2水和物78g及び1質量%に希釈したポリビニルピロリドン60gを純水に溶解し、2500gのクエン酸3ナトリウム水溶液(B2−13液)を調製した。次いで、B2−13液中にA2−13液を滴下して混合したのち、これに水素化ホウ素ナトリウム0.1gを純水に溶解した500gの水溶液を滴下して混合し、さらにアスコルビン酸36gを純水に溶解した500gの水溶液を滴下、混合してC2−13液を得た。
その後、遠心分離により洗浄を行い、黒色微粒子の水分散液(D2−13液、固形分:25質量%)を調製した。
(Synthesis of substantially rod-shaped particles)
Silver nitrate 56g was melt | dissolved in the pure water, and 1500 g of silver nitrate aqueous solution (A2-13 liquid) was prepared. In addition, 78 g of trisodium citrate dihydrate and 60 g of polyvinylpyrrolidone diluted to 1% by mass were dissolved in pure water to prepare 2500 g of a trisodium citrate aqueous solution (B2-13 solution). Next, the A2-13 solution was dropped into and mixed with the B2-13 solution, and then 500 g of an aqueous solution in which 0.1 g of sodium borohydride was dissolved in pure water was dropped and mixed, and 36 g of ascorbic acid was further added. 500 g of an aqueous solution dissolved in pure water was dropped and mixed to obtain a C2-13 solution.
Thereafter, washing was performed by centrifugation to prepare an aqueous dispersion of black fine particles (D2-13 solution, solid content: 25% by mass).
(黒色材料分散液及び黒色膜の作製)
次いで、黒色微粒子の水分散液として上記D1−13液30g及び上記D2−13液70gを用いたことを除いては実施例1と同様にして、乾燥粉(E−13粉)及び黒色材料分散液(F−13液、固形分:25質量%)を得た。
さらに実施例1と同様にして、F−13液より実施例13の黒色膜(H−13膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
(Preparation of black material dispersion and black film)
Next, dry powder (E-13 powder) and black material dispersion were the same as in Example 1 except that 30 g of the D1-13 solution and 70 g of the D2-13 solution were used as the aqueous dispersion of black fine particles. A liquid (F-13 liquid, solid content: 25% by mass) was obtained.
Further, in the same manner as in Example 1, a black film (H-13 film) of Example 13 was produced from the F-13 solution. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例14]
実施例1で用いたD1−1液17g、D2−1液38g、錫コロイド(平均粒子径:20nm、固形分:10質量%、住友大阪セメント社製)112g、櫛形ウレタン系高分子分散剤3.75g及びメチルエチルケトン34gを混合した後、エバポレーターを用いて混合物から水分及びメチルエチルケトンを蒸発させて、乾燥粉(E−14粉)を得た。
次いで、上記E−14粉29gと、プロピレングリコールモノメチルエーテルアセテート(PGMEA)71gとを混合し、これをビーズミルを用いて分散させ、黒色材料分散液(F−14液、固形分:25質量%)を得た。
以降の工程は実施例1と同様にして、実施例14の黒色膜(H−14膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Example 14]
17 g of D1-1 liquid, 38 g of D2-1 liquid used in Example 1, 112 g of tin colloid (average particle size: 20 nm, solid content: 10% by mass, manufactured by Sumitomo Osaka Cement Co., Ltd.), comb-shaped urethane polymer dispersant 3 After mixing .75 g and methyl ethyl ketone 34 g, water and methyl ethyl ketone were evaporated from the mixture using an evaporator to obtain a dry powder (E-14 powder).
Next, 29 g of the E-14 powder and 71 g of propylene glycol monomethyl ether acetate (PGMEA) were mixed and dispersed using a bead mill, and a black material dispersion (F-14 liquid, solid content: 25% by mass) Got.
Subsequent steps were carried out in the same manner as in Example 1, and a black film (H-14 film) of Example 14 was produced. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[実施例15]
(略板状粒子の合成)
硝酸銀56gを純水に溶解し1500gの硝酸銀水溶液(A2−15液)を調製した。また、クエン酸3ナトリウム2水和物39g及び1質量%に希釈したポリビニルピロリドン60gを純水に溶解し、2500gのクエン酸3ナトリウム水溶液(B2−15液)を調製した。次いで、臭化n−ヘキサデシルトリメチルアンモニウム3600gを40℃の純水に溶解してB2−15液に加えた。次いで、臭化n−ヘキサデシルトリメチルアンモニウムを加えたB2−15液中にA2−15液を滴下して混合したのち、これに水素化ホウ素ナトリウム0.1gを純水に溶解した500gの水溶液を滴下して混合し、さらにアスコルビン酸18gを純水に溶解した500gの水溶液を滴下、混合してC2−15液を得た。
[Example 15]
(Synthesis of substantially plate-like particles)
Silver nitrate 56g was melt | dissolved in the pure water, and 1500 g of silver nitrate aqueous solution (A2-15 liquid) was prepared. In addition, 39 g of trisodium citrate dihydrate and 60 g of polyvinylpyrrolidone diluted to 1% by mass were dissolved in pure water to prepare 2500 g of a trisodium citrate aqueous solution (B2-15 solution). Next, 3600 g of n-hexadecyltrimethylammonium bromide was dissolved in 40 ° C. pure water and added to the B2-15 solution. Next, A2-15 solution was dropped into and mixed with B2-15 solution to which n-hexadecyltrimethylammonium bromide was added, and 500 g of an aqueous solution in which 0.1 g of sodium borohydride was dissolved in pure water was then added. Dropped and mixed, 500 g of an aqueous solution prepared by dissolving 18 g of ascorbic acid in pure water was dropped and mixed to obtain a C2-15 solution.
次いで、錫コロイド(平均粒子径:20nm、固形分:10質量%、住友大阪セメント社製)150g及び純水を混合した4000gの錫微粒子分散液中に、上記C2−15液を滴下、混合した。さらに酒石酸180gを純水2000gに溶解した水溶液を錫微粒子分散液とC2−15液との混合液中に滴下、攪拌し、過剰の錫コロイドを溶解させた。その後、遠心分離により洗浄を行い、黒色微粒子の水分散液(D2−15液、固形分:25質量%)を調製した。 Subsequently, the above-mentioned C2-15 solution was dropped and mixed in 4000 g of tin fine particle dispersion obtained by mixing 150 g of tin colloid (average particle size: 20 nm, solid content: 10% by mass, manufactured by Sumitomo Osaka Cement Co., Ltd.) and pure water. . Further, an aqueous solution in which 180 g of tartaric acid was dissolved in 2000 g of pure water was dropped into a mixed liquid of the tin fine particle dispersion and the C2-15 liquid and stirred to dissolve excess tin colloid. Then, it wash | cleaned by centrifugation and prepared the black particle aqueous dispersion (D2-15 liquid, solid content: 25 mass%).
(黒色材料分散液及び黒色膜の作製)
次いで、黒色微粒子の水分散液として実施例1で用いたD1−1液30g及び上記D2−15液70gを用いたことを除いては実施例1と同様にして、乾燥粉(E−15粉)及び黒色材料分散液(F−15液、固形分:25質量%)を得た。
さらに実施例1と同様にして、F−15液より実施例15の黒色膜(H−15膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。
黒色膜の断面を観察したところ、略球状粒子と略板状粒子(三角板状粒子)が混在していた。これらの結果を表1に示す。
(Preparation of black material dispersion and black film)
Next, dry powder (E-15 powder) was used in the same manner as in Example 1 except that 30 g of D1-1 solution used in Example 1 and 70 g of D2-15 solution were used as the aqueous dispersion of black fine particles. ) And a black material dispersion (F-15 solution, solid content: 25% by mass).
Further, in the same manner as in Example 1, a black film (H-15 film) of Example 15 was produced from the F-15 solution. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1.
When the cross section of the black film was observed, substantially spherical particles and substantially plate-like particles (triangular plate-like particles) were mixed. These results are shown in Table 1.
[実施例16]
実施例1で用いたD1−1液30g、D2−1液70g、櫛形ウレタン系高分子分散剤1.88g及びメチルエチルケトン17gを混合した後、エバポレーターを用いて混合物から水分及びメチルエチルケトンを蒸発させて、乾燥粉(E−16粉)を得た。
次いで、上記E−16粉29gと、プロピレングリコールモノメチルエーテルアセテート(PGMEA)71gとを混合し、これをビーズミルを用いて分散させ、黒色材料分散液(F−16液、固形分:25質量%)を得た。
以降の工程は実施例1と同様にして、実施例16の黒色膜(H−16膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Example 16]
After mixing D1-1 solution 30g, D2-1 solution 70g, comb-shaped urethane polymer dispersant 1.88g and methyl ethyl ketone 17g used in Example 1, water and methyl ethyl ketone were evaporated from the mixture using an evaporator, Dry powder (E-16 powder) was obtained.
Next, 29 g of the E-16 powder and 71 g of propylene glycol monomethyl ether acetate (PGMEA) were mixed and dispersed using a bead mill, and a black material dispersion (F-16 solution, solid content: 25 mass%) Got.
Subsequent steps were performed in the same manner as in Example 1, and a black film (H-16 film) of Example 16 was produced. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[比較例1]
実施例13で用いたD1−13液100g、櫛形ウレタン系高分子分散剤3.75g及びメチルエチルケトン34gを混合した後、エバポレーターを用いて混合物から水分及びメチルエチルケトンを蒸発させて、乾燥粉(E−21粉)を得た。
次いで、上記E−21粉29gと、プロピレングリコールモノメチルエーテルアセテート(PGMEA)71gとを混合し、これをビーズミルを用いて分散させ、黒色材料分散液(F−21液、固形分:25質量%)を得た。
以降の工程は実施例1と同様にして、比較例1の黒色膜(H−21膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Comparative Example 1]
After mixing 100 g of the D1-13 solution used in Example 13, 3.75 g of the comb-shaped urethane polymer dispersant and 34 g of methyl ethyl ketone, water and methyl ethyl ketone were evaporated from the mixture using an evaporator to obtain dry powder (E-21 Powder).
Next, 29 g of the above E-21 powder and 71 g of propylene glycol monomethyl ether acetate (PGMEA) were mixed and dispersed using a bead mill, and a black material dispersion (F-21 liquid, solid content: 25 mass%) Got.
Subsequent steps were carried out in the same manner as in Example 1, and a black film (H-21 film) of Comparative Example 1 was produced. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[比較例2]
実施例1で用いたD1−1液100g、櫛形ウレタン系高分子分散剤3.75g及びメチルエチルケトン34gを混合した後、エバポレーターを用いて混合物から水分及びメチルエチルケトンを蒸発させて、乾燥粉(E−22粉)を得た。
次いで、上記E−22粉29gと、プロピレングリコールモノメチルエーテルアセテート(PGMEA)71gとを混合し、これをビーズミルを用いて分散させ、黒色材料分散液(F−22液、固形分:25質量%)を得た。
以降の工程は実施例1と同様にして、比較例2の黒色膜(H−22膜)を作製した。作製した黒色微粒子、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Comparative Example 2]
After mixing 100 g of the D1-1 solution used in Example 1, 3.75 g of the comb-shaped urethane polymer dispersant and 34 g of methyl ethyl ketone, water and methyl ethyl ketone were evaporated from the mixture using an evaporator to obtain dry powder (E-22 Powder).
Next, 29 g of the E-22 powder and 71 g of propylene glycol monomethyl ether acetate (PGMEA) were mixed and dispersed using a bead mill, and a black material dispersion (F-22 liquid, solid content: 25% by mass) Got.
Subsequent steps were performed in the same manner as in Example 1, and a black film (H-22 film) of Comparative Example 2 was produced. The physical properties of the produced black fine particles and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[比較例3]
カーボンブラック(Nipex35、デグサ社製)30g、ウレタン系分散剤3g、プロピレングリコールモノメチルエーテルアセテート(PGMEA)67gを混合し、次いでビーズミルを用いて分散させ、黒色微粒子分散液F−23液(固形分:30質量%)を得た。
以降の工程は実施例1と同様にして比較例3の黒色膜(H−23膜)を作製した。作製した黒色微粒子分散液、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Comparative Example 3]
30 g of carbon black (Nipex 35, manufactured by Degussa), 3 g of urethane-based dispersant, 67 g of propylene glycol monomethyl ether acetate (PGMEA) are mixed, and then dispersed using a bead mill, and the black fine particle dispersion F-23 (solid content: 30% by mass) was obtained.
Subsequent steps were performed in the same manner as in Example 1 to produce a black film (H-23 film) of Comparative Example 3. The physical properties of the prepared black fine particle dispersion and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
[比較例4]
チタンブラック(13M−T、ジェムコ製)30g、ウレタン系分散剤6.67g、プロピレングリコールモノメチルエーテルアセテート(PGMEA)63.33gを混合し、次いでビーズミルを用いて分散させ、黒色微粒子分散液F−24液(固形分:30質量%)を得た。
以降の工程は実施例1と同様にして、比較例4の黒色膜(H−24膜)を作製した。作製した黒色微粒子分散液、黒色膜の物性を実施例1と同様に評価した。これらの結果を表1に示す。
[Comparative Example 4]
30 g of titanium black (13M-T, manufactured by Gemco), 6.67 g of urethane-based dispersant, 63.33 g of propylene glycol monomethyl ether acetate (PGMEA) are mixed, and then dispersed using a bead mill, and black fine particle dispersion F-24 A liquid (solid content: 30% by mass) was obtained.
Subsequent steps were performed in the same manner as in Example 1, and a black film (H-24 film) of Comparative Example 4 was produced. The physical properties of the prepared black fine particle dispersion and black film were evaluated in the same manner as in Example 1. These results are shown in Table 1.
Claims (8)
膜中における前記金属微粒子が、略球状粒子と略棒状粒子との混合物、略球状粒子と略板状粒子との混合物、略球状粒子と略棒状粒子と略板状粒子の混合物、のいずれかであることを特徴とする可視近赤外遮蔽黒色膜。 Containing metal fine particles having an average primary particle diameter of 1 nm or more and 300 nm or less,
The metal fine particles in the film are either a mixture of substantially spherical particles and substantially rod-like particles, a mixture of substantially spherical particles and substantially plate-like particles, or a mixture of substantially spherical particles, substantially rod-like particles and substantially plate-like particles. A visible near-infrared shielding black film characterized by being.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011065806A JP2012203083A (en) | 2011-03-24 | 2011-03-24 | Visible and near-infrared light shielding black film, substrate with visible and near-infrared light shielding black film, and solid-state imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011065806A JP2012203083A (en) | 2011-03-24 | 2011-03-24 | Visible and near-infrared light shielding black film, substrate with visible and near-infrared light shielding black film, and solid-state imaging device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012203083A true JP2012203083A (en) | 2012-10-22 |
Family
ID=47184190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011065806A Pending JP2012203083A (en) | 2011-03-24 | 2011-03-24 | Visible and near-infrared light shielding black film, substrate with visible and near-infrared light shielding black film, and solid-state imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012203083A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101436552B1 (en) | 2013-03-12 | 2014-09-02 | 한국생산기술연구원 | Molybdenum dioxide dispersion sol composition and insulating film using thereof |
US9045897B2 (en) | 2012-03-23 | 2015-06-02 | Korea Institute Of Industrial Technology | Infrared ray blocking multi-layered structure insulating film having thermal anisotropy |
JP2015207638A (en) * | 2014-04-18 | 2015-11-19 | キヤノン株式会社 | Photoelectric conversion element and method for manufacturing the same |
WO2017159479A1 (en) * | 2016-03-16 | 2017-09-21 | 富士フイルム株式会社 | Curable composition, light-blocking film, color filter, pattern formation method, color filter production method, solid-state imaging element, and infrared sensor |
CN107966877A (en) * | 2012-12-27 | 2018-04-27 | 富士胶片株式会社 | Colored filter composition |
JP2022044653A (en) * | 2017-05-29 | 2022-03-17 | ソニーセミコンダクタソリューションズ株式会社 | Imaging apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10282484A (en) * | 1997-04-07 | 1998-10-23 | Toppan Printing Co Ltd | Manufacture of liquid crystal driving element |
JP2007115921A (en) * | 2005-10-20 | 2007-05-10 | Fujifilm Electronic Materials Co Ltd | Lightproof film forming composition, lightproof film for solid state imaging element using it, and solid state imaging element |
JP2007113060A (en) * | 2005-10-19 | 2007-05-10 | Fujifilm Corp | Method for producing shape-anisotropic metal particulate, colored composition, photosensitive transfer material, black image-fitted substrate, color filter and liquid crystal display device |
JP2008001844A (en) * | 2006-06-23 | 2008-01-10 | Fujifilm Corp | Metal fine particle-containing composition, ink for forming colored film for display, photosensitive material, photosensitive transfer material, substrate with shading image, color filter, liquid crystal display element and liquid crystal display |
JP2010106268A (en) * | 2008-10-03 | 2010-05-13 | Fujifilm Corp | Dispersed composition, polymerizable composition, light-shielding color filter, solid-state imaging element, liquid crystal display device, wafer-level lens, and imaging unit |
-
2011
- 2011-03-24 JP JP2011065806A patent/JP2012203083A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10282484A (en) * | 1997-04-07 | 1998-10-23 | Toppan Printing Co Ltd | Manufacture of liquid crystal driving element |
JP2007113060A (en) * | 2005-10-19 | 2007-05-10 | Fujifilm Corp | Method for producing shape-anisotropic metal particulate, colored composition, photosensitive transfer material, black image-fitted substrate, color filter and liquid crystal display device |
JP2007115921A (en) * | 2005-10-20 | 2007-05-10 | Fujifilm Electronic Materials Co Ltd | Lightproof film forming composition, lightproof film for solid state imaging element using it, and solid state imaging element |
JP2008001844A (en) * | 2006-06-23 | 2008-01-10 | Fujifilm Corp | Metal fine particle-containing composition, ink for forming colored film for display, photosensitive material, photosensitive transfer material, substrate with shading image, color filter, liquid crystal display element and liquid crystal display |
JP2010106268A (en) * | 2008-10-03 | 2010-05-13 | Fujifilm Corp | Dispersed composition, polymerizable composition, light-shielding color filter, solid-state imaging element, liquid crystal display device, wafer-level lens, and imaging unit |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9045897B2 (en) | 2012-03-23 | 2015-06-02 | Korea Institute Of Industrial Technology | Infrared ray blocking multi-layered structure insulating film having thermal anisotropy |
CN107966877A (en) * | 2012-12-27 | 2018-04-27 | 富士胶片株式会社 | Colored filter composition |
CN107966877B (en) * | 2012-12-27 | 2022-04-12 | 富士胶片株式会社 | Composition for color filter |
KR101436552B1 (en) | 2013-03-12 | 2014-09-02 | 한국생산기술연구원 | Molybdenum dioxide dispersion sol composition and insulating film using thereof |
JP2015207638A (en) * | 2014-04-18 | 2015-11-19 | キヤノン株式会社 | Photoelectric conversion element and method for manufacturing the same |
WO2017159479A1 (en) * | 2016-03-16 | 2017-09-21 | 富士フイルム株式会社 | Curable composition, light-blocking film, color filter, pattern formation method, color filter production method, solid-state imaging element, and infrared sensor |
JPWO2017159479A1 (en) * | 2016-03-16 | 2018-12-20 | 富士フイルム株式会社 | Curable composition, light shielding film, color filter, pattern forming method, color filter manufacturing method, solid-state imaging device, infrared sensor |
US11156754B2 (en) | 2016-03-16 | 2021-10-26 | Fujifilm Corporation | Curable composition, light-shielding film, color filter, pattern forming method, method for manufacturing color filter, solid-state imaging element, and infrared sensor |
JP2022044653A (en) * | 2017-05-29 | 2022-03-17 | ソニーセミコンダクタソリューションズ株式会社 | Imaging apparatus |
US11810935B2 (en) | 2017-05-29 | 2023-11-07 | Sony Semiconductor Solutions Corporation | Imaging device, solid state image sensor, and electronic device |
JP7449317B2 (en) | 2017-05-29 | 2024-03-13 | ソニーセミコンダクタソリューションズ株式会社 | Imaging device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101800344B1 (en) | Black film, substrate provided with black film, image display device, black resin composition, and black material dispersion liquid | |
US9261633B2 (en) | Black resin composition, resin black matrix substrate, and touch panel | |
TWI483999B (en) | Black composite fine particle, black resin composition, color filter substrate and liquid crystal display | |
JP2012203083A (en) | Visible and near-infrared light shielding black film, substrate with visible and near-infrared light shielding black film, and solid-state imaging device | |
TWI425042B (en) | Black resin composition, resin black matrices, color filter, and liquid crystal display device | |
JP6119104B2 (en) | Photosensitive black resin composition, resin black matrix substrate and touch panel using the same | |
CN111511680B (en) | Powder for forming black light-shielding film and method for producing same | |
JP6891265B2 (en) | Colored film and its manufacturing method, solid-state image sensor | |
TWI702473B (en) | Resin film, colored photosensitive composition, method for producing resin film, color filter, shielding film, solid state image sensor, image display device | |
TW201920200A (en) | Organic el display device and method for forming pixel division layer and planarizing layer | |
TW201734630A (en) | Composition, method for producing composition, cured film, color filter, light-blocking film, solid-state imaging element, and image display device | |
JP5258155B2 (en) | Composition, ink for forming colored film for display device, light shielding film for display device, light shielding material, substrate with light shielding film, color filter, liquid crystal display element, and liquid crystal display device | |
TW200946607A (en) | Resin composition used to forming color filter by inkjet method, color filter and liquid crystal display device | |
KR101969151B1 (en) | Pigment dispersion and colored photosensitive resin composition comprising same | |
JP6056369B2 (en) | Black material, black material dispersion, black resin composition, black film, substrate with black film, and solid-state imaging device | |
JP5429114B2 (en) | Infrared transmitting black film, substrate with film using infrared transmitting black film, and image display device | |
JP2013257493A (en) | Black material, black material fluid dispersion, black resin composition, black film and base material with black film | |
JP5742383B2 (en) | Black film, substrate with black film, and image display device | |
KR102421036B1 (en) | Pigment dispersion and colored photosensitive resin composition comprising same | |
JP2012167194A (en) | Black material, black material dispersed liquid, black resin composition, black film, and base material coated with the black film | |
JP2018104775A (en) | Light-shielding material, light-shielding material dispersion, light-shielding resin composition, light-shielding film, substrate with light-shielding film, and solid-state image sensor | |
JP2008248117A (en) | Method for producing fine particle-containing composition, ink for forming colored film for display device, light-shielding film for display device, light-shielding material, substrate with light-shielding film, color filter, liquid crystal display element and liquid crystal display device | |
JP2009030096A (en) | Black material, black material dispersion liquid, black light-shielding film, and base material with black light-shielding film | |
JP2008107530A (en) | Photosensitive colored composition and optical member using the same | |
WO2021177027A1 (en) | Photosensitive composition, cured film, color filter, light-blocking film, optical element, solid-state imaging element, infrared sensor, and headlight unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140618 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140624 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141104 |