JP2012201645A - Method for producing lignin derivative, method for producing lignin secondary derivative, lignin derivative and lignin secondary derivative - Google Patents
Method for producing lignin derivative, method for producing lignin secondary derivative, lignin derivative and lignin secondary derivative Download PDFInfo
- Publication number
- JP2012201645A JP2012201645A JP2011068736A JP2011068736A JP2012201645A JP 2012201645 A JP2012201645 A JP 2012201645A JP 2011068736 A JP2011068736 A JP 2011068736A JP 2011068736 A JP2011068736 A JP 2011068736A JP 2012201645 A JP2012201645 A JP 2012201645A
- Authority
- JP
- Japan
- Prior art keywords
- lignin
- derivative
- producing
- lignin derivative
- polar solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005610 lignin Polymers 0.000 title claims abstract description 235
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 62
- 239000002798 polar solvent Substances 0.000 claims abstract description 40
- 239000002028 Biomass Substances 0.000 claims abstract description 38
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 37
- 238000011282 treatment Methods 0.000 claims abstract description 19
- 239000012046 mixed solvent Substances 0.000 claims abstract description 18
- 150000001875 compounds Chemical class 0.000 claims abstract description 16
- 238000004821 distillation Methods 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 13
- 125000003700 epoxy group Chemical group 0.000 claims abstract description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 42
- 238000009835 boiling Methods 0.000 claims description 8
- 150000002576 ketones Chemical class 0.000 claims description 5
- 150000004292 cyclic ethers Chemical class 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 33
- 230000009257 reactivity Effects 0.000 abstract description 15
- 230000015556 catabolic process Effects 0.000 abstract description 4
- 238000006731 degradation reaction Methods 0.000 abstract description 4
- 230000000593 degrading effect Effects 0.000 abstract 1
- 239000011347 resin Substances 0.000 description 47
- 229920005989 resin Polymers 0.000 description 47
- 239000011342 resin composition Substances 0.000 description 28
- 239000000463 material Substances 0.000 description 23
- 239000002904 solvent Substances 0.000 description 22
- 239000002966 varnish Substances 0.000 description 22
- 239000002585 base Substances 0.000 description 21
- -1 for example Substances 0.000 description 20
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 238000005470 impregnation Methods 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- 239000003431 cross linking reagent Substances 0.000 description 17
- 125000003118 aryl group Chemical group 0.000 description 16
- 239000002994 raw material Substances 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 239000002023 wood Substances 0.000 description 14
- 238000000465 moulding Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 125000001931 aliphatic group Chemical group 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 238000003756 stirring Methods 0.000 description 11
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 10
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- 238000005452 bending Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 239000002655 kraft paper Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 150000002989 phenols Chemical class 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 235000013312 flour Nutrition 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000011888 foil Substances 0.000 description 7
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 6
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000003505 polymerization initiator Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 5
- 241000218645 Cedrus Species 0.000 description 5
- 239000001913 cellulose Substances 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate group Chemical group [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 239000004312 hexamethylene tetramine Substances 0.000 description 5
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 5
- 239000012778 molding material Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000007822 coupling agent Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 4
- IWDCLRJOBJJRNH-UHFFFAOYSA-N p-cresol Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 3
- 239000004342 Benzoyl peroxide Substances 0.000 description 3
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 235000019400 benzoyl peroxide Nutrition 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000012776 electronic material Substances 0.000 description 3
- 238000007336 electrophilic substitution reaction Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 235000016976 Quercus macrolepis Nutrition 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 239000002305 electric material Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 150000002366 halogen compounds Chemical class 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 239000013558 reference substance Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 2
- 230000002463 transducing effect Effects 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- SSUJUUNLZQVZMO-UHFFFAOYSA-N 1,2,3,4,8,9,10,10a-octahydropyrimido[1,2-a]azepine Chemical compound C1CCC=CN2CCCNC21 SSUJUUNLZQVZMO-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- YHEWWEXPVKCVFY-UHFFFAOYSA-N 2,6-Dimethoxy-4-propylphenol Chemical group CCCC1=CC(OC)=C(O)C(OC)=C1 YHEWWEXPVKCVFY-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- CZGCEKJOLUNIFY-UHFFFAOYSA-N 4-Chloronitrobenzene Chemical compound [O-][N+](=O)C1=CC=C(Cl)C=C1 CZGCEKJOLUNIFY-UHFFFAOYSA-N 0.000 description 1
- KLSLBUSXWBJMEC-UHFFFAOYSA-N 4-Propylphenol Chemical group CCCC1=CC=C(O)C=C1 KLSLBUSXWBJMEC-UHFFFAOYSA-N 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- PXIKRTCSSLJURC-UHFFFAOYSA-N Dihydroeugenol Chemical group CCCC1=CC=C(O)C(OC)=C1 PXIKRTCSSLJURC-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- RMXQRHVIUMSGLJ-UHFFFAOYSA-N O.[Bi]=O Chemical compound O.[Bi]=O RMXQRHVIUMSGLJ-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical group BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 150000001913 cyanates Chemical class 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 150000001989 diazonium salts Chemical class 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- JMQGGPRJQOQKRT-UHFFFAOYSA-N diphenyl hydrogen phosphate;azide Chemical compound [N-]=[N+]=[N-].C=1C=CC=CC=1OP(=O)(O)OC1=CC=CC=C1 JMQGGPRJQOQKRT-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000002557 mineral fiber Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- GICWIDZXWJGTCI-UHFFFAOYSA-I molybdenum pentachloride Chemical compound Cl[Mo](Cl)(Cl)(Cl)Cl GICWIDZXWJGTCI-UHFFFAOYSA-I 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical compound CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- CLDVQCMGOSGNIW-UHFFFAOYSA-N nickel tin Chemical compound [Ni].[Sn] CLDVQCMGOSGNIW-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000004843 novolac epoxy resin Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012766 organic filler Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- UEXCJVNBTNXOEH-UHFFFAOYSA-N phenyl acethylene Natural products C#CC1=CC=CC=C1 UEXCJVNBTNXOEH-UHFFFAOYSA-N 0.000 description 1
- OFNHPGDEEMZPFG-UHFFFAOYSA-N phosphanylidynenickel Chemical compound [P].[Ni] OFNHPGDEEMZPFG-UHFFFAOYSA-N 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- IYMSIPPWHNIMGE-UHFFFAOYSA-N silylurea Chemical compound NC(=O)N[SiH3] IYMSIPPWHNIMGE-UHFFFAOYSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical compound S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- BJQWBACJIAKDTJ-UHFFFAOYSA-N tetrabutylphosphanium Chemical compound CCCC[P+](CCCC)(CCCC)CCCC BJQWBACJIAKDTJ-UHFFFAOYSA-N 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- BIKXLKXABVUSMH-UHFFFAOYSA-N trizinc;diborate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]B([O-])[O-].[O-]B([O-])[O-] BIKXLKXABVUSMH-UHFFFAOYSA-N 0.000 description 1
- WIDQNNDDTXUPAN-UHFFFAOYSA-I tungsten(v) chloride Chemical compound Cl[W](Cl)(Cl)(Cl)Cl WIDQNNDDTXUPAN-UHFFFAOYSA-I 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- XAEWLETZEZXLHR-UHFFFAOYSA-N zinc;dioxido(dioxo)molybdenum Chemical compound [Zn+2].[O-][Mo]([O-])(=O)=O XAEWLETZEZXLHR-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Compounds Of Unknown Constitution (AREA)
- Epoxy Resins (AREA)
Abstract
Description
本発明は、リグニン誘導体の製造方法、リグニン二次誘導体の製造方法、リグニン誘導体およびリグニン二次誘導体に関するものである。 The present invention relates to a method for producing a lignin derivative, a method for producing a lignin secondary derivative, a lignin derivative, and a lignin secondary derivative.
樹皮、間伐材、建築廃材等の木質系廃材(バイオマス)は、これまでその多くが廃棄処分されている。しかしながら、地球環境保護が重要課題になりつつあり、その観点から、木質系廃材の再利用、リサイクルが検討され始めている。 Many wood-based waste materials (biomass) such as bark, thinned wood, and building waste have been disposed of so far. However, protection of the global environment is becoming an important issue, and from this point of view, the reuse and recycling of wood-based waste materials are being considered.
一般的な木質の主要成分は、セルロース、ヘミセルロースおよびリグニンである。このうち、約30%の割合で含まれるリグニンは、芳香環や、フェノール性水酸基、アルコール性水酸基を豊富に含む構造を有しているため、樹脂原料としての利用が検討されている(例えば、特許文献1参照。)。 Common woody main components are cellulose, hemicellulose and lignin. Among these, lignin contained at a ratio of about 30% has a structure containing abundant aromatic rings, phenolic hydroxyl groups, and alcoholic hydroxyl groups, and therefore, utilization as a resin raw material has been studied (for example, (See Patent Document 1).
このようにリグニンを樹脂原料として利用するためには、木質系廃材からリグニンを単離する必要がある。 Thus, in order to utilize lignin as a resin raw material, it is necessary to isolate lignin from a wooden waste material.
特許文献1には、木粉に液体状のフェノール誘導体を浸透させ、木粉中のリグニンをフェノール誘導体により溶媒和させ、次いで、濃酸を添加してセルロース成分を溶解することにより、リグニンを溶媒和したフェノール誘導体と、セルロース成分を溶解した濃酸との2相に分離し、このうちフェノール誘導体相からリグニンフェノール誘導体を抽出する方法が開示されている。 In Patent Document 1, a liquid phenol derivative is infiltrated into wood flour, lignin in wood flour is solvated with a phenol derivative, and then concentrated acid is added to dissolve the cellulose component, thereby dissolving lignin as a solvent. A method is disclosed in which a hydrated phenol derivative and a concentrated acid in which a cellulose component is dissolved are separated into two phases, and a lignin phenol derivative is extracted from the phenol derivative phase.
また、特許文献1には、木粉にフェノール誘導体を溶解した溶媒を浸透させた後、溶媒を留去し、その後、残存した木粉に濃酸を添加することにより、フェノール誘導体により溶媒和されたリグニンを得る方法が開示されている。 Further, in Patent Document 1, a solvent in which a phenol derivative is dissolved in wood flour is infiltrated, and then the solvent is distilled off. Thereafter, concentrated acid is added to the remaining wood flour, thereby being solvated by the phenol derivative. A method for obtaining lignin is disclosed.
しかしながら、上記のような方法で製造されたリグニン誘導体では、溶融性および溶解性が低く、また、架橋硬化させても脆く、機械的特性が低いという問題がある。 However, the lignin derivative produced by the method as described above has problems of low meltability and solubility, brittleness even when crosslinked and cured, and low mechanical properties.
本発明の目的は、溶融性および溶解性に優れ、かつ、反応性が高く、硬化させたときの機械的特性に優れたリグニン誘導体およびリグニン二次誘導体、およびこれらを効率よく製造するリグニン誘導体の製造方法およびリグニン二次誘導体の製造方法を提供することにある。 An object of the present invention is to provide a lignin derivative and a lignin secondary derivative that have excellent meltability and solubility, high reactivity, and excellent mechanical properties when cured, and lignin derivatives that efficiently produce them. It is in providing the manufacturing method and the manufacturing method of a lignin secondary derivative.
このような目的は、下記(1)〜(10)の本発明により達成される。
(1) バイオマスを分解して得られるリグニン誘導体の製造方法であって、
バイオマスを水と非プロトン性極性溶媒とを含む混合溶媒存在下におき、これらを高温高圧下で分解処理する分解工程と、
前記分解工程により得られた処理物から非プロトン性極性溶媒を留去し、残存物中の不溶分としてリグニン誘導体を得る留去工程と、を有することを特徴とするリグニン誘導体の製造方法。
Such an object is achieved by the present inventions (1) to (10) below.
(1) A method for producing a lignin derivative obtained by decomposing biomass,
A decomposition step of placing biomass in the presence of a mixed solvent containing water and an aprotic polar solvent and decomposing them under high temperature and high pressure;
And a distillation step of distilling off the aprotic polar solvent from the treated product obtained in the decomposition step to obtain a lignin derivative as an insoluble matter in the residue.
(2) 前記分解工程は、処理温度150〜350℃、処理圧力1〜8MPa、処理時間480分以下で分解処理するものである上記(1)に記載のリグニン誘導体の製造方法。 (2) The said decomposition process is a manufacturing method of the lignin derivative as described in said (1) which decomposes | disassembles by processing temperature 150-350 degreeC, processing pressure 1-8 Mpa, and processing time 480 minutes or less.
(3) 前記分解工程は、水または非プロトン性極性溶媒の亜臨界条件下で行われる上記(1)または(2)に記載のリグニン誘導体の製造方法。 (3) The said decomposition process is a manufacturing method of the lignin derivative as described in said (1) or (2) performed under subcritical conditions of water or an aprotic polar solvent.
(4) 前記非プロトン性極性溶媒は、水より低沸点のものである上記(1)ないし(3)のいずれかに記載のリグニン誘導体の製造方法。 (4) The method for producing a lignin derivative according to any one of (1) to (3), wherein the aprotic polar solvent has a boiling point lower than that of water.
(5) 水と前記非プロトン性極性溶媒との沸点の差は、5〜60℃である上記(4)に記載のリグニン誘導体の製造方法。 (5) The method for producing a lignin derivative according to (4), wherein the difference in boiling point between water and the aprotic polar solvent is 5 to 60 ° C.
(6) 前記非プロトン性極性溶媒は、ケトン類および環状エーテル類のうちの少なくとも1種である上記(1)ないし(5)のいずれかに記載のリグニン誘導体の製造方法。 (6) The method for producing a lignin derivative according to any one of (1) to (5), wherein the aprotic polar solvent is at least one of ketones and cyclic ethers.
(7) バイオマスを分解して得られるリグニン誘導体に反応性基を導入してなるリグニン二次誘導体の製造方法であって、
バイオマスを水と非プロトン性極性溶媒とを含む混合溶媒存在下におき、これらを高温高圧下で分解処理する分解工程と、
前記分解工程により得られた処理物から非プロトン性極性溶媒を留去する留去工程と、
前記留去工程により得られた処理物と前記反応性基を含む化合物とを混合する反応性基導入工程と、を有することを特徴とするリグニン二次誘導体の製造方法。
(7) A method for producing a lignin secondary derivative obtained by introducing a reactive group into a lignin derivative obtained by decomposing biomass,
A decomposition step of placing biomass in the presence of a mixed solvent containing water and an aprotic polar solvent and decomposing them under high temperature and high pressure;
A distillation step of distilling off the aprotic polar solvent from the treated product obtained by the decomposition step;
A method for producing a lignin secondary derivative, comprising: a reactive group introducing step of mixing the treated product obtained in the distillation step and the compound containing the reactive group.
(8) 前記反応性基は、エポキシ基である上記(7)に記載のリグニン二次誘導体の製造方法。 (8) The method for producing a lignin secondary derivative according to (7), wherein the reactive group is an epoxy group.
(9) 上記(1)ないし(6)のいずれかに記載のリグニン誘導体の製造方法により製造されたことを特徴とするリグニン誘導体。 (9) A lignin derivative produced by the method for producing a lignin derivative according to any one of (1) to (6) above.
(10) 上記(7)または(8)に記載のリグニン二次誘導体の製造方法により製造されたことを特徴とするリグニン二次誘導体。 (10) A lignin secondary derivative produced by the method for producing a lignin secondary derivative according to (7) or (8) above.
本発明によれば、溶融性および溶解性に優れ、かつ、反応性に優れたリグニン誘導体およびリグニン二次誘導体が得られる。また、基材への含浸性に優れ、機械的特性に優れた樹脂製品を製造し得るリグニン樹脂組成物の製造に好適に用いられ、かつ、樹脂原料として有用な所望の反応性基を容易に導入し得るリグニン誘導体およびリグニン二次誘導体を、高い収率で製造することができる。その結果、特性に優れた樹脂組成物や樹脂基板を安価で提供することが可能になる。 According to the present invention, a lignin derivative and a lignin secondary derivative having excellent meltability and solubility and excellent reactivity can be obtained. Moreover, it is suitable for the production of a lignin resin composition that can produce a resin product having excellent impregnation into a substrate and excellent mechanical properties, and can easily produce a desired reactive group useful as a resin raw material. The lignin derivative and lignin secondary derivative that can be introduced can be produced in high yield. As a result, it becomes possible to provide a resin composition and a resin substrate having excellent characteristics at low cost.
以下、本発明のリグニン誘導体の製造方法、リグニン二次誘導体の製造方法、リグニン誘導体およびリグニン二次誘導体について好適実施形態に基づいて詳細に説明する。 Hereinafter, the manufacturing method of the lignin derivative of the present invention, the manufacturing method of the lignin secondary derivative, the lignin derivative and the lignin secondary derivative will be described in detail based on preferred embodiments.
本発明におけるリグニン誘導体はバイオマスを分解して得られるものであって、樹脂原料となり得るものである。 The lignin derivative in the present invention is obtained by decomposing biomass and can be a resin raw material.
また、本発明におけるリグニン二次誘導体は、上述のリグニン誘導体に反応性基を導入してなるものである。 Moreover, the lignin secondary derivative in the present invention is obtained by introducing a reactive group into the above-described lignin derivative.
<リグニン誘導体およびリグニン二次誘導体>
まず、本発明のリグニン誘導体の製造方法およびリグニン二次誘導体の製造方法の説明に先立って、これらの製造方法により製造される本発明のリグニン誘導体および本発明のリグニン二次誘導体について説明する。
<Lignin derivative and lignin secondary derivative>
First, prior to the description of the method for producing the lignin derivative of the present invention and the method for producing the lignin secondary derivative, the lignin derivative of the present invention and the lignin secondary derivative of the present invention produced by these production methods will be described.
これらのリグニン誘導体およびリグニン二次誘導体は、前述したように、バイオマスを分解して得られるものである。 These lignin derivatives and lignin secondary derivatives are obtained by decomposing biomass as described above.
本発明におけるバイオマスとは、リグニンを含有する植物または植物の加工品である。植物としては、例えば、ブナ、白樺、ナラのような広葉樹、杉、松、桧のような針葉樹、竹、稲わらのようなイネ科植物、椰子殻等が挙げられる。 The biomass in the present invention is a plant containing lignin or a processed product of the plant. Examples of the plant include broad-leaved trees such as beech, birch and oak, conifers such as cedar, pine, and oak, grasses such as bamboo and rice straw, and coconut shells.
リグニン誘導体は、フェノール誘導体を単位構造とする化合物である。この単位構造は、化学的および生物学的に安定な炭素−炭素結合や炭素−酸素−炭素結合を有するため、化学的な劣化や生物的分解を受け難い。このため、リグニン誘導体は、樹脂原料として有用とされる。 A lignin derivative is a compound having a phenol derivative as a unit structure. Since this unit structure has a chemically and biologically stable carbon-carbon bond or carbon-oxygen-carbon bond, it is less susceptible to chemical degradation and biological degradation. For this reason, a lignin derivative is useful as a resin raw material.
リグニン誘導体の具体例としては、下記式(1)で表わされるグアイアシルプロパン構造、下記式(2)で表わされるシリンギルプロパン構造、下記式(3)で表わされる4−ヒドロキシフェニルプロパン構造等が挙げられる。 Specific examples of the lignin derivative include a guaiacylpropane structure represented by the following formula (1), a syringylpropane structure represented by the following formula (2), and a 4-hydroxyphenylpropane structure represented by the following formula (3). Can be mentioned.
また、本発明におけるリグニン誘導体は、水酸基に対して芳香環のオルト位およびパラ位の少なくとも一方が無置換になっているものが好ましい。このようなリグニン誘導体は、芳香環への親電子置換反応により硬化剤が作用する反応サイトを多く含み、水酸基での反応において立体障害が低減できることになるため、反応性に優れたものとなる。 Moreover, the lignin derivative in the present invention is preferably one in which at least one of the ortho-position and para-position of the aromatic ring is unsubstituted with respect to the hydroxyl group. Such a lignin derivative is excellent in reactivity because it contains a large number of reaction sites where a curing agent acts due to electrophilic substitution reaction on the aromatic ring and steric hindrance can be reduced in the reaction with a hydroxyl group.
また、本発明におけるリグニン誘導体は、ゲル浸透クロマトグラフィーにより測定されたポリスチレン換算の数平均分子量が200〜2000であるものが好ましく、300〜1800であるものがより好ましい。このような数平均分子量のリグニン誘導体は、その反応性(硬化性)と溶融性または溶解性とをより高度に両立するものとなる。このため、樹脂原料としての利用性をより高めることができる。 In addition, the lignin derivative in the present invention preferably has a polystyrene-equivalent number average molecular weight of 200 to 2000 as measured by gel permeation chromatography, and more preferably 300 to 1800. Such a lignin derivative having a number average molecular weight has a higher balance between reactivity (curability) and meltability or solubility. For this reason, the utilization as a resin raw material can be improved more.
なお、数平均分子量が前記下限値未満である場合、リグニン誘導体の反応性が低下するおそれがある。一方、数平均分子量が前記上限値超である場合、リグニン誘導体の軟化点が高過ぎて溶融性または溶解性が低下するおそれがある。 In addition, when a number average molecular weight is less than the said lower limit, there exists a possibility that the reactivity of a lignin derivative may fall. On the other hand, when the number average molecular weight exceeds the upper limit, the softening point of the lignin derivative is too high, and the meltability or solubility may be lowered.
また、本発明におけるリグニン誘導体は、1H−NMR分析に供されたとき、得られる化学シフトのスペクトルにおいて、芳香族プロトンに帰属するピークの積分値が、脂肪族プロトンに帰属するピークの積分値の15〜50%程度であるのが好ましく、15〜45%程度であるのがより好ましく、20〜40%程度であるのがさらに好ましく、20〜35%程度であるのが特に好ましい。これにより、リグニン誘導体の硬化樹脂の機械的特性に寄与する反応性と基材等への含浸性に寄与する溶融性または溶媒への溶解性とを高度に両立することができる。その結果、リグニン誘導体の反応性を維持しつつ基材等に対して確実に含浸させることができるようになるため、リグニン誘導体を樹脂原料として有効に利用することができる。すなわち、樹脂原料に適したリグニン誘導体が得られる。なお、本発明によれば、このような特徴を有するリグニン誘導体を効率よく確実に製造することができる。 In addition, the lignin derivative in the present invention, when subjected to 1 H-NMR analysis, in the obtained chemical shift spectrum, the integrated value of the peak attributed to the aromatic proton is the integrated value of the peak attributed to the aliphatic proton. Is preferably about 15 to 50%, more preferably about 15 to 45%, still more preferably about 20 to 40%, and particularly preferably about 20 to 35%. Thereby, the reactivity which contributes to the mechanical characteristic of the cured resin of a lignin derivative and the meltability which contributes to the impregnation property to a base material etc., or the solubility to a solvent can be highly compatible. As a result, the base material or the like can be reliably impregnated while maintaining the reactivity of the lignin derivative, so that the lignin derivative can be effectively used as a resin raw material. That is, a lignin derivative suitable for a resin raw material can be obtained. In addition, according to this invention, the lignin derivative which has such a characteristic can be manufactured efficiently and reliably.
なお、前記比率が前記下限値を下回ると、一般的な硬化剤の作用により架橋反応を生じる反応サイトあるいは反応性基を導入するための反応サイトが脂肪族基で置換されていて基材とのなじみが悪くなるため、リグニン誘導体を樹脂原料として用いたときに、基材への含浸性が低下するおそれがある。一方、前記比率が前記上限値を上回ると、リグニン誘導体の溶融性または溶媒への溶解性が著しく低下し、樹脂原料として利用したときに、曲げ破断時の伸びが低下するなど機械的特性が低下したり、樹脂原料として利用することが困難になるおそれがある。 When the ratio falls below the lower limit, a reaction site that causes a crosslinking reaction by the action of a general curing agent or a reaction site for introducing a reactive group is substituted with an aliphatic group, and Since the familiarity is deteriorated, when the lignin derivative is used as a resin raw material, the impregnation property to the base material may be lowered. On the other hand, when the ratio exceeds the upper limit, the meltability of the lignin derivative or the solubility in the solvent is remarkably reduced, and when used as a resin raw material, the mechanical properties such as elongation at the time of bending fracture are reduced. Or may be difficult to use as a resin raw material.
また、芳香族プロトンおよび脂肪族プロトンは、1H−NMR分析の化学シフトのスペクトルにおいて、離れた位置にピークを生じるため、ピークの分離が可能であり、ピークの同定および積分値の算出を行うことができる。 In addition, since aromatic protons and aliphatic protons have peaks at distant positions in the chemical shift spectrum of 1 H-NMR analysis, peaks can be separated, and peak identification and integral calculation are performed. be able to.
具体的には、分析の基準物質としてテトラメチルシランを用いた場合、一般的には、芳香族プロトンに帰属するピークは6〜8ppm付近に位置する。また、脂肪族プロトンに帰属するピークは0.5〜5ppm付近に位置することとなる。 Specifically, when tetramethylsilane is used as a reference substance for analysis, generally, a peak attributed to an aromatic proton is located in the vicinity of 6 to 8 ppm. In addition, the peak attributed to the aliphatic proton is located in the vicinity of 0.5 to 5 ppm.
一方、本発明のリグニン二次誘導体は、前述したように、本発明のリグニン誘導体に反応性基を導入してなるものである。このようなリグニン二次誘導体は、種々の反応性基を有していることから、高い密度で架橋することができ、樹脂原料として有用である。 On the other hand, the lignin secondary derivative of the present invention is obtained by introducing a reactive group into the lignin derivative of the present invention as described above. Since such a lignin secondary derivative has various reactive groups, it can be crosslinked at a high density and is useful as a resin raw material.
リグニン二次誘導体が有する反応性基は、反応性を有する原子団であり、自己反応性を有し、2個以上の同じ反応性基が互いに反応し得るもの、または他の官能基と反応し得るものであれば特に限定されない。具体例としては、炭素−炭素不飽和結合を有するビニル基、エチニル基、マレイミド基の他、エポキシ基、シアネート基、イソシアネート基等が挙げられる。また、好ましくはエポキシ基が用いられる。エポキシ基を有するリグニン二次誘導体は、一般的なエポキシ樹脂を代替し得る樹脂原料として有用なものとなる。 The reactive group possessed by the lignin secondary derivative is a reactive atomic group, is self-reactive, and can react with two or more of the same reactive groups, or react with other functional groups. There is no particular limitation as long as it can be obtained. Specific examples include a vinyl group having a carbon-carbon unsaturated bond, an ethynyl group, and a maleimide group, as well as an epoxy group, a cyanate group, and an isocyanate group. Moreover, an epoxy group is preferably used. The lignin secondary derivative having an epoxy group is useful as a resin raw material that can replace a general epoxy resin.
<リグニン誘導体の製造方法およびリグニン二次誘導体の製造方法>
次に、本発明のリグニン誘導体の製造方法およびリグニン二次誘導体の製造方法について説明する。
<Method for producing lignin derivative and method for producing lignin secondary derivative>
Next, the manufacturing method of the lignin derivative of this invention and the manufacturing method of a lignin secondary derivative are demonstrated.
本発明のリグニン誘導体の製造方法は、バイオマスを一定の大きさに調整し、次いで、これを水と非プロトン性極性溶媒とを含む混合溶媒存在下におき、これらを高温高圧下で分解処理する分解工程と、分解工程により得られた処理物から非プロトン性極性溶媒を留去し、残存物中の不溶分としてリグニン誘導体を得る留去工程と、を有している。 In the method for producing a lignin derivative of the present invention, biomass is adjusted to a certain size, then placed in the presence of a mixed solvent containing water and an aprotic polar solvent, and these are decomposed under high temperature and high pressure. A decomposition step, and a distillation step of distilling off the aprotic polar solvent from the treated product obtained in the decomposition step to obtain a lignin derivative as an insoluble matter in the residue.
以下、各工程について順次説明する。
[1]
まず、バイオマスを溶媒存在下におく。
Hereinafter, each process will be described sequentially.
[1]
First, biomass is placed in the presence of a solvent.
バイオマスとしては、前述したようなものが挙げられるが、その形状は、特に限定されないものの、ブロック状、チップ状、粉末状等とされる。 Although what was mentioned above is mentioned as biomass, Although the shape is not specifically limited, It is set as a block shape, a chip shape, a powder form etc.
また、本発明に用いられるバイオマスは、その大きさが100μm〜1cm程度であるのが好ましく、200〜1000μm程度であるのがより好ましい。このような大きさのバイオマスを用いることにより、液中でのバイオマスの分散性を高めるとともに、バイオマスの分解処理を効率よく行うことができる。 Moreover, it is preferable that the magnitude | size of the biomass used for this invention is about 100 micrometers-1 cm, and it is more preferable that it is about 200-1000 micrometers. By using biomass of such a size, it is possible to improve the dispersibility of the biomass in the liquid and to efficiently perform the biomass decomposition treatment.
分解工程において用いる溶媒としては、水と非プロトン性極性溶媒との混合溶媒が用いられる。このうち、水としては、例えば、超純水、純水、蒸留水、イオン交換水等が用いられる。 As a solvent used in the decomposition step, a mixed solvent of water and an aprotic polar solvent is used. Among these, as water, for example, ultrapure water, pure water, distilled water, ion exchange water, or the like is used.
一方、非プロトン性極性溶媒としては、例えば、メチルエチルケトンのようなケトン類、テトラヒドロフラン、ジオキサンのような環状エーテル類、アセトニトリルのようなニトリル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、n−メチルピロリドンのようなアミド類、塩化メチレン、クロロホルムのようなハロゲン化アルキル類等が挙げられ、これらのうちの1種または2種以上を組み合わせたものが用いられる。このうち、バイオマスの分解効率等の観点から、ケトン類および環状エーテル類のうちの少なくとも一方が好ましく用いられる。 On the other hand, examples of the aprotic polar solvent include ketones such as methyl ethyl ketone, cyclic ethers such as tetrahydrofuran and dioxane, nitriles such as acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, Examples include amides such as n-methylpyrrolidone, alkyl halides such as methylene chloride and chloroform, and a combination of one or more of these is used. Among these, at least one of ketones and cyclic ethers is preferably used from the viewpoint of biomass decomposition efficiency and the like.
また、非プロトン性極性溶媒は水に対して相溶性を有していることから、上記混合溶媒は、均質性の高いものとなり、分解処理を効率よく行うことができる。 In addition, since the aprotic polar solvent is compatible with water, the mixed solvent has high homogeneity and can be efficiently decomposed.
なお、水と非プロトン性極性溶媒とを併用することで分解処理の効率を高め得る理由は、未だ明らかになっていないが、水および非プロトン性極性溶媒のいずれか一方のみでは、十分な効率を得ることはできない。すなわち、双方を併用することで初めて高効率が得られるのである。この結果からして、水と非プロトン性極性溶媒とが高温高圧下で相乗的に作用してバイオマスを分解していると考えられる。 The reason why the efficiency of the decomposition treatment can be improved by using water and an aprotic polar solvent in combination has not been clarified yet, but only one of water and the aprotic polar solvent is sufficient for efficiency. Can't get. That is, high efficiency can be obtained only when both are used together. From this result, it is considered that water and aprotic polar solvent act synergistically under high temperature and high pressure to decompose biomass.
また、従来では複数回の分解処理が必要であったのに対し、水と非プロトン性極性溶媒とを併用することで、1回の分解処理であってもリグニン誘導体の収率を十分に高めることができる。これにより、分解処理の低コスト化を図ることができる。 In addition, in the past, multiple decomposition treatments were required, but by using water and an aprotic polar solvent in combination, the yield of the lignin derivative was sufficiently increased even with a single decomposition treatment. be able to. Thereby, cost reduction of a decomposition process can be achieved.
ここで、非プロトン性極性溶媒には、水より低沸点のものが好ましく用いられる。このような非プロトン性極性溶媒を用いることにより、水との混合溶媒中から非プロトン性極性溶媒のみを容易に留去することができ、後述する留去工程を容易に行うことができる。 Here, the aprotic polar solvent preferably has a boiling point lower than that of water. By using such an aprotic polar solvent, only the aprotic polar solvent can be easily distilled off from the mixed solvent with water, and the later-described distillation step can be easily performed.
この場合、水と非プロトン性極性溶媒との沸点の差は、特に限定されないが、5〜60℃程度であるのが好ましく、10〜50℃程度であるのがより好ましく、20〜50℃程度であるのがさらに好ましい。沸点の差が前記範囲内であれば、相溶性を維持しつつ、後述する留去工程における水と非プロトン性極性溶媒との分離を確実に行うことができ、最終的に単離されるリグニン誘導体を高度に精製することができる。 In this case, the difference in boiling point between water and the aprotic polar solvent is not particularly limited, but is preferably about 5 to 60 ° C, more preferably about 10 to 50 ° C, and about 20 to 50 ° C. More preferably. If the difference in boiling points is within the above range, the lignin derivative that is finally isolated can be reliably separated from water and the aprotic polar solvent in the distillation step described later while maintaining compatibility. Can be highly purified.
混合溶媒の使用量としては、バイオマスに対して多いほどよいが、好ましくはバイオマスに対して1〜20質量倍程度であるのが好ましく、2〜10質量倍程度であるのがより好ましい。これにより、バイオマスの分解処理に際して必要かつ十分な混合溶媒の量となる。 The amount of the mixed solvent used is preferably as much as possible with respect to biomass, but is preferably about 1 to 20 times by mass, more preferably about 2 to 10 times by mass with respect to biomass. Thus, the amount of the mixed solvent necessary and sufficient for the biomass decomposition treatment is obtained.
また、混合溶媒における水と非プロトン性極性溶媒との混合比は、特に限定されないものの、水の量を1としたとき、非プロトン性極性溶媒の量が質量比で0.2〜5程度となる比率であるのが好ましく、0.3〜3程度となる比率であるのがより好ましい。これにより、バイオマスからリグニン誘導体を効率よく確実に単離することができる。 Further, the mixing ratio of water and aprotic polar solvent in the mixed solvent is not particularly limited, but when the amount of water is 1, the amount of aprotic polar solvent is about 0.2 to 5 by mass ratio. The ratio is preferably about 0.3 to 3, and more preferably about 0.3 to 3. Thereby, a lignin derivative can be efficiently and reliably isolated from biomass.
また、混合溶媒中には、水および非プロトン性極性溶媒以外にその他の溶媒を含んでいてもよい。混合溶媒におけるその他の溶媒の含有量は、水および非プロトン性極性溶媒の各々より少なく、かつ、混合溶媒の10質量%以下とされ、5質量%以下であるのが好ましい。 Further, the mixed solvent may contain other solvents in addition to water and the aprotic polar solvent. The content of the other solvent in the mixed solvent is less than each of water and the aprotic polar solvent, and is 10% by mass or less of the mixed solvent, and is preferably 5% by mass or less.
その他の溶媒としては、例えば、メタノール、エタノールのようなアルコール類、フェノール、クレゾールのようなフェノール類等が挙げられ、これらのうちの1種または2種以上を組み合わせたものが用いられる。 Examples of the other solvent include alcohols such as methanol and ethanol, phenols such as phenol and cresol, and the like, or a combination of one or more of these is used.
次に、溶媒存在下においたバイオマスを高温高圧下で分解処理する(分解工程)。これにより、バイオマスは、リグニン、セルロース、ヘミセルロース、およびその他の反応物等に分解される。 Next, the biomass placed in the presence of the solvent is decomposed under high temperature and pressure (decomposition process). Thereby, biomass is decomposed into lignin, cellulose, hemicellulose, and other reactants.
高温高圧環境の生成においては、オートクレーブのような耐圧容器が用いられる。また、この耐圧容器としては、加熱手段や撹拌手段を備えているものが好ましく用いられ、高温高圧下でバイオマスを撹拌するようにするのが好ましい。また、必要に応じて容器内の温度など圧力に影響を与える要因とは独立に加圧する手段を備えていてもよい。かかる手段としては、例えば、容器内にアルゴンガス等の不活性ガスを導入する手段等が挙げられる。 In the generation of a high temperature and high pressure environment, a pressure vessel such as an autoclave is used. Moreover, as this pressure vessel, what is equipped with a heating means and a stirring means is used preferably, and it is preferable to stir biomass under high temperature and pressure. Moreover, you may provide the means to pressurize independently from the factor which influences pressure, such as the temperature in a container, as needed. Examples of such means include means for introducing an inert gas such as argon gas into the container.
分解処理における条件は、処理温度が150〜350℃であるのが好ましく、200〜300℃であるのがより好ましい。処理温度が前記範囲内であれば、分解後に得られるリグニン誘導体の分子量が反応性と溶融性または溶解性とを両立し得るものとなる。なお、処理温度が前記下限値未満である場合、リグニン誘導体の分子量が必要以上に高くなり、溶解性・溶融性に劣るおそれがある。一方、処理温度が前記上限値を超える場合、リグニン誘導体の分子量が必要以上に低くなり、樹脂原料として用いたときに反応性が低下するおそれがある。 As for the conditions in the decomposition treatment, the treatment temperature is preferably 150 to 350 ° C, more preferably 200 to 300 ° C. When the treatment temperature is within the above range, the molecular weight of the lignin derivative obtained after decomposition can achieve both reactivity and meltability or solubility. In addition, when processing temperature is less than the said lower limit, the molecular weight of a lignin derivative becomes higher than necessary, and there exists a possibility that it may be inferior to solubility and a meltability. On the other hand, when the treatment temperature exceeds the upper limit, the molecular weight of the lignin derivative becomes unnecessarily low, and the reactivity may decrease when used as a resin raw material.
また、分解処理における処理時間は、480分以下であるのが好ましく、30〜120分であるのがより好ましい。処理時間が前記範囲内であれば、分解後に得られるリグニン誘導体の芳香族プロトンと脂肪族プロトンの比率が適切な値となり、反応性と溶融性または溶解性との両立の観点から最適化することができる。 Moreover, it is preferable that the processing time in a decomposition process is 480 minutes or less, and it is more preferable that it is 30 to 120 minutes. If the treatment time is within the above range, the ratio of aromatic protons and aliphatic protons of the lignin derivative obtained after decomposition is an appropriate value, and optimization is performed from the viewpoint of compatibility between reactivity and meltability or solubility. Can do.
さらに、分解処理における圧力は、1〜8MPaであるのが好ましく、1.5〜5MPaであるのがより好ましい。圧力が前記範囲内であれば、バイオマスの分解効率を格段に高めることができ、その分、処理時間の短縮化を図ることができる。なお、必要に応じて、アルゴンガス等により耐圧容器内を加圧して圧力を高めるようにしてもよい。 Furthermore, the pressure in the decomposition treatment is preferably 1 to 8 MPa, and more preferably 1.5 to 5 MPa. When the pressure is within the above range, the biomass decomposition efficiency can be significantly increased, and the processing time can be shortened accordingly. If necessary, the pressure inside the pressure vessel may be increased with argon gas or the like to increase the pressure.
なお、溶媒中には、必要に応じて、分解処理を促進する触媒を添加するようにしてもよい。この触媒としては、例えば、炭酸ナトリウムのような無機塩基類等が挙げられる。 In addition, you may make it add the catalyst which accelerates | stimulates a decomposition process to a solvent as needed. Examples of the catalyst include inorganic bases such as sodium carbonate.
さらに、上記分解工程の前処理として、バイオマスと前記溶媒とを十分に撹拌し、両者をなじませる工程を行うのが好ましい。これにより、バイオマスの分解を特に最適化することができる。 Furthermore, as a pretreatment for the decomposition step, it is preferable to perform a step in which the biomass and the solvent are sufficiently agitated to allow them to blend. Thereby, the decomposition of biomass can be particularly optimized.
なお、撹拌温度としては、0〜150℃程度であるのが好ましく、10〜130℃程度であるのがより好ましい。 In addition, as stirring temperature, it is preferable that it is about 0-150 degreeC, and it is more preferable that it is about 10-130 degreeC.
また、撹拌時間としては、1〜120分程度であるのが好ましく、5〜60分程度であるのがより好ましい。 Moreover, as stirring time, it is preferable that it is about 1 to 120 minutes, and it is more preferable that it is about 5 to 60 minutes.
さらに、撹拌方法としては、ボールミル、ビーズミル等の各種ミル、撹拌翼を備えた撹拌機等を用いた方法、ホモジナイザー、ジェットポンプなどによる水流攪拌を用いた方法等が挙げられる。 Further, examples of the stirring method include various mills such as a ball mill and a bead mill, a method using a stirrer equipped with a stirring blade, a method using water flow stirring using a homogenizer, a jet pump, and the like.
また、分解工程において用いる溶媒は、亜臨界または超臨界の状態(条件)で用いられるのが好ましい。亜臨界または超臨界の状態にある溶媒は、バイオマスの分解処理の促進に寄与すると考えられる。このため、分解処理の効率をより高めることができ、リグニン誘導体の製造コストの低減および製造工程の簡略化を図ることができる。 The solvent used in the decomposition step is preferably used in a subcritical or supercritical state (condition). It is considered that the solvent in the subcritical or supercritical state contributes to the acceleration of the biomass decomposition process. For this reason, the efficiency of a decomposition process can be improved more, the manufacturing cost of a lignin derivative can be reduced, and the manufacturing process can be simplified.
さらに、分解工程において用いる溶媒は、前述したように水と非プロトン性極性溶媒との混合溶媒であるので、水と非プロトン性極性溶媒の双方が亜臨界または超臨界の状態であるのが好ましいが、いずれか一方が亜臨界または超臨界の状態であっても十分な効果が得られる。 Furthermore, since the solvent used in the decomposition step is a mixed solvent of water and an aprotic polar solvent as described above, it is preferable that both the water and the aprotic polar solvent are in a subcritical or supercritical state. However, a sufficient effect can be obtained even if either one is in a subcritical or supercritical state.
なお、一例として、水の臨界温度は約374℃、臨界圧力は約22.1MPaであり、アセトニトリルの臨界温度は約272℃、臨界圧力は約4.8MPaである。 As an example, the critical temperature of water is about 374 ° C., the critical pressure is about 22.1 MPa, the critical temperature of acetonitrile is about 272 ° C., and the critical pressure is about 4.8 MPa.
[2]
次に、分解工程により得られた処理物を濾過により、濾液とセルロース由来の分解残渣とに分離する(濾過工程)。さらに、得られた濾液から非プロトン性極性溶媒を留去する(留去工程)。非プロトン性極性溶媒の留去による残存物は、水と不溶分とに分離する。この不溶分がリグニン誘導体である。よって、残存物から不溶分を回収することにより、回収物としてリグニン誘導体を得ることができる。不溶分の回収には、濾過、加熱脱水、真空脱水等の方法が用いられる。
以上のような方法により、高い収率でリグニン誘導体を製造することができる。
[2]
Next, the processed product obtained in the decomposition step is separated by filtration into a filtrate and a decomposition residue derived from cellulose (filtration step). Further, the aprotic polar solvent is distilled off from the obtained filtrate (distillation step). The residue resulting from the distillation of the aprotic polar solvent is separated into water and insoluble matter. This insoluble matter is a lignin derivative. Therefore, a lignin derivative can be obtained as a recovered product by recovering insolubles from the residue. A method such as filtration, heat dehydration, or vacuum dehydration is used to recover the insoluble matter.
By the above method, a lignin derivative can be produced with high yield.
[3]
また、本発明のリグニン二次誘導体の製造方法は、留去工程の後に、バイオマスの処理物と反応性基を含む化合物とを混合することにより、リグニン誘導体に反応性基を導入する反応性基導入工程を有している。
[3]
In addition, the method for producing a lignin secondary derivative of the present invention includes a reactive group that introduces a reactive group into a lignin derivative by mixing a processed biomass and a compound containing a reactive group after the distillation step. It has an introduction process.
反応性基を導入する方法としては、例えば、リグニン誘導体と反応性基を含む化合物とを混合する方法が用いられる。そして、混合後、必要に応じて触媒等を添加することにより、リグニン誘導体に反応性基が導入される。 As a method for introducing a reactive group, for example, a method of mixing a lignin derivative and a compound containing a reactive group is used. And after mixing, a reactive group is introduce | transduced into a lignin derivative by adding a catalyst etc. as needed.
具体的には、エポキシ基を導入する場合、リグニン誘導体とエピクロロヒドリンと溶媒とを混合し、これに減圧還流下で水酸化ナトリウム等の塩基触媒を添加することで導入することができる。 Specifically, when introducing an epoxy group, it can be introduced by mixing a lignin derivative, epichlorohydrin and a solvent, and adding a base catalyst such as sodium hydroxide to the mixture under reflux under reduced pressure.
また、ビニル基を導入する場合、リグニン誘導体とハロゲン化アリルまたはハロゲン化ビニルベンジル等のビニル基を含むハロゲン化合物と溶媒とを混合し、これに加熱攪拌下で水酸化ナトリウム等の塩基触媒を添加することで導入することができる。 In addition, when introducing a vinyl group, a lignin derivative, a halogen compound containing a vinyl group such as an allyl halide or a vinylbenzyl halide, and a solvent are mixed, and a base catalyst such as sodium hydroxide is added to the mixture under heating and stirring. Can be introduced.
また、エチニル基を導入する場合、リグニン誘導体とハロゲン化プロパルギルまたはハロゲン化フェニルアセチレン等のエチニル基を含むハロゲン化合物と溶媒とを混合し、これに加熱攪拌下で水酸化ナトリウム等の塩基触媒を添加することで導入することができる。 In addition, when introducing an ethynyl group, a lignin derivative, a halogen compound containing an ethynyl group such as a propargyl halide or a phenylacetylene halide, and a solvent are mixed, and a base catalyst such as sodium hydroxide is added to the mixture with heating and stirring. Can be introduced.
また、シアネート基を導入する場合、リグニン誘導体とハロゲン化シアネートと溶媒とを混合し、これに加熱攪拌下で水酸化ナトリウム等の塩基触媒を添加することで導入することができる。 Moreover, when introduce | transducing a cyanate group, it can introduce | transduce by mixing a lignin derivative, halogenated cyanate, and a solvent, and adding a base catalyst, such as sodium hydroxide, to this under heating stirring.
また、マレイミド基を導入する場合、リグニン誘導体とパラクロロニトロベンゼンとを混合する。これにより、リグニン誘導体のフェノール性水酸基にマレイミド基が反応し、エーテル結合を介して結合したポリニトロ化リグニンが得られる。次いで、ポリニトロ化リグニンを還元することで、ポリアミノ化リグニンに変換され、さらに無水マレイン酸と反応させることで、マレイミド基が導入されたリグニン二次誘導体が得られる。 When introducing a maleimide group, a lignin derivative and parachloronitrobenzene are mixed. As a result, the maleimide group reacts with the phenolic hydroxyl group of the lignin derivative to obtain a polynitrated lignin bonded via an ether bond. Subsequently, polynitrated lignin is reduced to be converted to polyaminated lignin, and further reacted with maleic anhydride to obtain a lignin secondary derivative having a maleimide group introduced.
また、イソシアネート基を導入する場合、リグニン誘導体と無水マレイン酸とを混合することで、リグニン誘導体中の水酸基がカルボキシル基に変換される。その後、混合物をジフェニルリン酸アジド存在下で加熱することにより、イソシアネート基が導入されたリグニン二次誘導体で得られる。
以上のようにしてリグニン誘導体およびリグニン二次誘導体を製造することができる。
Moreover, when introduce | transducing an isocyanate group, the hydroxyl group in a lignin derivative is converted into a carboxyl group by mixing a lignin derivative and maleic anhydride. Thereafter, the mixture is heated in the presence of diphenyl phosphate azide to obtain a lignin secondary derivative having an introduced isocyanate group.
A lignin derivative and a lignin secondary derivative can be produced as described above.
<リグニン樹脂組成物>
上述したリグニン誘導体およびリグニン二次誘導体を用いることにより、樹脂原料となるリグニン樹脂組成物が得られる。
<Lignin resin composition>
By using the above lignin derivative and lignin secondary derivative, a lignin resin composition as a resin raw material can be obtained.
以下、リグニン樹脂組成物について説明する。
リグニン樹脂組成物は、リグニン誘導体およびリグニン二次誘導体の少なくとも一方と架橋剤とを含むものである。リグニン誘導体およびリグニン二次誘導体には架橋剤の作用により架橋反応が生じ、硬化する。その結果、リグニン樹脂組成物から樹脂製品を製造することができる。
Hereinafter, the lignin resin composition will be described.
The lignin resin composition contains at least one of a lignin derivative and a lignin secondary derivative and a crosslinking agent. The lignin derivative and the lignin secondary derivative are cured by a crosslinking reaction caused by the action of the crosslinking agent. As a result, a resin product can be produced from the lignin resin composition.
架橋剤としては、リグニン誘導体およびリグニン二次誘導体のフェノール性水酸基または反応性基に架橋反応を生じさせる架橋剤であれば、特に限定されない。 The crosslinking agent is not particularly limited as long as it is a crosslinking agent that causes a crosslinking reaction in the phenolic hydroxyl group or reactive group of the lignin derivative and lignin secondary derivative.
具体的には、フェノール性水酸基に架橋反応を生じさせる架橋剤としては、例えば、オルソクレゾールノボラックエポキシ樹脂、ビスフェノールA型エポキシ樹脂のようなエポキシ樹脂、ヘキサメチレンジイソシアネート、トルエンジイソシアネートのようなウレタン樹脂、リグニン誘導体の芳香環に対し親電子置換反応して架橋し得る化合物としては、ホルムアルデヒド、アセトアルデヒド、パラホルムアルデヒドのようなアルデヒド類、ポリオキシメチレンのようなアルデヒド源、ヘキサメチレンテトラミンの他、レゾール型フェノール樹脂等の通常のフェノール樹脂で公知の架橋剤、リグニン誘導体の芳香環に対し親電子置換反応して架橋し得る化合物等を挙げることができる。なお、反応性、入手の容易さからヘキサメチレンテトラミンが好ましく用いられる。 Specifically, as a crosslinking agent that causes a crosslinking reaction to a phenolic hydroxyl group, for example, an orthocresol novolac epoxy resin, an epoxy resin such as a bisphenol A type epoxy resin, a urethane resin such as hexamethylene diisocyanate, toluene diisocyanate, Compounds that can be cross-linked by electrophilic substitution reaction on the aromatic ring of lignin derivatives include aldehydes such as formaldehyde, acetaldehyde and paraformaldehyde, aldehyde sources such as polyoxymethylene, hexamethylenetetramine, and resol type phenol. Examples of the conventional phenol resin such as a resin include a known crosslinking agent and a compound that can be crosslinked by electrophilic substitution reaction on the aromatic ring of the lignin derivative. In addition, hexamethylenetetramine is preferably used from the viewpoint of reactivity and availability.
一方、リグニン二次誘導体の反応性基に架橋反応を生じさせる架橋剤としては、前記反応性基と反応する架橋剤または自己架橋性の反応性基を有する架橋剤であればよく、具体的には、リグニン二次誘導体中の反応性基がエポキシ基である場合、例えば、ノボラック型フェノール樹脂のようなフェノール樹脂、フェノール性水酸基を有するリグニン化合物、ジエチレントリアミン、m−キシリレンジアミン、N−アミノエチルピペラジンのようなアミン系化合物、無水フタル酸、無水コハク酸、無水マレイン酸のような酸無水物、ジシアンジアミド、グアニジン類、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール等の一般的なエポキシ樹脂用硬化剤が挙げられる。また、自己架橋性の反応性基を有する架橋剤としては、例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾールのようなイミダゾール類、1,8−ジアザビシクロ(5,4,0)ウンデセン−7のようなアニオン系重合開始剤、トリフェニルスルホニウムヘキサフルオロポスフェート、ジフェニルスルホニウムテトラフルオロボレートのようなスルホニウム塩、フェニルジアゾニウムヘキサフルオロポスフェート、フェニルジアゾニウムテトラフルオロボレートのようなジアゾニウム塩といったカチオン系重合開始剤等が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。これらの中でも、反応性等の観点からリグニン化合物が好ましく用いられる。 On the other hand, the cross-linking agent that causes a cross-linking reaction to the reactive group of the lignin secondary derivative may be any cross-linking agent that reacts with the reactive group or has a self-crosslinking reactive group. When the reactive group in the lignin secondary derivative is an epoxy group, for example, a phenol resin such as a novolak type phenol resin, a lignin compound having a phenolic hydroxyl group, diethylenetriamine, m-xylylenediamine, N-aminoethyl General epoxy compounds such as amine compounds such as piperazine, acid anhydrides such as phthalic anhydride, succinic anhydride and maleic anhydride, dicyandiamide, guanidines, 2-methylimidazole and 2-ethyl-4-methylimidazole Examples include a curing agent for resin. Examples of the crosslinking agent having a self-crosslinkable reactive group include imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole, 1,8-diazabicyclo (5,4,0) undecene. Anionic polymerization initiators such as -7, cationic systems such as triphenylsulfonium hexafluorophosphate, sulfonium salts such as diphenylsulfonium tetrafluoroborate, phenyldiazonium hexafluorophosphate, diazonium salts such as phenyldiazonium tetrafluoroborate A polymerization initiator etc. are mentioned, Among these, the 1 type, or 2 or more types of mixture is used. Among these, lignin compounds are preferably used from the viewpoint of reactivity and the like.
また、リグニン二次誘導体中の反応性基がイソシアネート基である場合、架橋剤としては、例えば、フェノール樹脂、リグニン分解物、ポリビニルアルコール、ポリアミン系化合物等の一般的なイソシアネート樹脂用硬化剤が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。 Further, when the reactive group in the lignin secondary derivative is an isocyanate group, examples of the crosslinking agent include general curing agents for isocyanate resins such as phenol resins, lignin degradation products, polyvinyl alcohol, and polyamine compounds. One or a mixture of two or more of these is used.
また、リグニン二次誘導体中の反応性基がビニル基である場合、架橋剤としては、例えば、ブチルリチウム、ナトリウムエトキシドのようなアニオン系重合開始剤、アゾビスイソブチロニトリル(AIBN)、過酸化ベンゾイル(BPO)のようなラジカル重合開始剤等の一般的なビニル基含有化合物の重合開始剤が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。 When the reactive group in the lignin secondary derivative is a vinyl group, examples of the crosslinking agent include anionic polymerization initiators such as butyl lithium and sodium ethoxide, azobisisobutyronitrile (AIBN), Examples thereof include polymerization initiators of general vinyl group-containing compounds such as radical polymerization initiators such as benzoyl peroxide (BPO), and one or a mixture of two or more of these are used.
また、リグニン二次誘導体中の反応性基がエチニル基である場合、架橋剤としては、例えば、5塩化モリブデン、5塩化タングステン、ノルボルナジエンロジウムクロリドダイマー等の一般的なエチニル基含有化合物の重合触媒が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。 Further, when the reactive group in the lignin secondary derivative is an ethynyl group, as a crosslinking agent, for example, a polymerization catalyst of a general ethynyl group-containing compound such as molybdenum pentachloride, tungsten pentachloride, norbornadiene rhodium chloride dimer or the like can be used. Among them, one or a mixture of two or more of these is used.
また、リグニン二次誘導体中の反応性基がマレイミド基である場合、架橋剤としては、例えば、BPOのようなパーオキサイド、前述したアニオン系重合開始剤等の一般的なマレイミド基含有化合物の重合開始剤が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。 In addition, when the reactive group in the lignin secondary derivative is a maleimide group, examples of the crosslinking agent include polymerization of general maleimide group-containing compounds such as peroxides such as BPO and the aforementioned anionic polymerization initiators. An initiator is mentioned, The mixture of 1 type, or 2 or more types of these is used.
また、リグニン二次誘導体中の反応性基がシアネート基である場合、架橋剤としては、例えば、ナフテン酸コバルトのような金属触媒等の一般的なシアネート基含有化合物の重合触媒が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。 Further, when the reactive group in the lignin secondary derivative is a cyanate group, examples of the crosslinking agent include polymerization catalysts for general cyanate group-containing compounds such as metal catalysts such as cobalt naphthenate, and the like. Among them, one kind or a mixture of two or more kinds is used.
なお、リグニン樹脂組成物において、リグニン誘導体またはリグニン二次誘導体の含有量は40〜95重量部であるのが好ましく、50〜90重量部であるのがより好ましい。また、架橋剤の含有量は5〜60重量部であるのが好ましく、10〜50重量部であるのがより好ましい。 In the lignin resin composition, the content of the lignin derivative or lignin secondary derivative is preferably 40 to 95 parts by weight, and more preferably 50 to 90 parts by weight. Moreover, it is preferable that content of a crosslinking agent is 5-60 weight part, and it is more preferable that it is 10-50 weight part.
また、リグニン樹脂組成物は、上記の成分以外に、必要に応じて、メトキシナトリウム、t−ブトキシカリウムのようなアルカリ金属塩、酢酸カルシウムのようなアルカリ土類金属塩、Na2O、K3O2のようなアルカリ金属酸化物、CaO、BaOのようなアルカリ土類金属酸化物といった硬化促進剤を含んでいてもよい。 In addition to the above-mentioned components, the lignin resin composition may contain an alkali metal salt such as methoxy sodium or t-butoxy potassium, an alkaline earth metal salt such as calcium acetate, Na 2 O, K 3 , if necessary. A hardening accelerator such as an alkali metal oxide such as O 2 or an alkaline earth metal oxide such as CaO or BaO may be included.
また特に、反応性基としてエポキシ基を有するリグニン二次誘導体を含む場合には、例えば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾールのようなイミダゾール類、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミンのような3級アミン類、トリフェニルホスフィン、テトラ−n−ブチルホスホニウムテトラフェニルボレート等を含んでいてもよい。 In particular, when a lignin secondary derivative having an epoxy group as a reactive group is included, for example, imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole, 1,8-diazabicyclo (5, 4,0) undecene-7, tris (dimethylaminomethyl) phenol, tertiary amines such as benzyldimethylamine, triphenylphosphine, tetra-n-butylphosphonium tetraphenylborate and the like may be contained.
また、反応性基として、ビニル基、エチニル基、マレイミド基、シアネ−ト基等を有するリグニン二次誘導体を含む場合には、例えば、前記重合開始剤を含んでいてもよい。
さらには、その他の成分として、後述する添加剤を含んでいてもよい。
Moreover, when the lignin secondary derivative which has a vinyl group, an ethynyl group, a maleimide group, a cyanate group etc. as a reactive group is included, the said polymerization initiator may be included, for example.
Furthermore, the additive mentioned later may be included as other components.
かかる添加剤としては、例えば、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシランのようなシランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤のような各種カップリング剤、カーボンブラック、ベンガラのような着色剤、ポリエチレンワックス、高級脂肪酸エステル、脂肪酸アミド、ケトン・アミン類、水素硬化油のような合成ワックス、パラフィンワックス、モンタンワックスのような天然ワックス、ステアリン酸、ステアリン酸亜鉛のような高級脂肪酸およびその金属塩類、パラフィンのような離型剤、シリコーンオイル、シリコーンゴムのような低応力化成分、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛、フォスファゼンのような難燃剤、酸化ビスマス水和物のような無機イオン交換体等が挙げられ、これらのうちの1種または2種以上を組み合わせたものが用いられる。 Examples of such additives include silane coupling agents such as epoxy silane, mercapto silane, amino silane, alkyl silane, ureido silane, and vinyl silane, titanate coupling agents, aluminum coupling agents, and aluminum / zirconium coupling agents. Various coupling agents, colorants such as carbon black, bengara, polyethylene wax, higher fatty acid esters, fatty acid amides, ketones and amines, synthetic waxes such as hydrogenated oils, natural waxes such as paraffin wax and montan wax, Higher fatty acids such as stearic acid and zinc stearate and metal salts thereof, mold release agents such as paraffin, silicone oil, low stress components such as silicone rubber, antimony trioxide, aluminum hydroxide, Examples include magnesium oxide, zinc borate, zinc molybdate, flame retardants such as phosphazene, inorganic ion exchangers such as bismuth oxide hydrate, and a combination of one or more of these is used. It is done.
また、リグニン樹脂組成物が離型剤を含む場合、離型剤の含有量は、リグニン誘導体またはリグニン二次誘導体100重量部に対して0.01〜10重量部であるのが好ましく、0.1〜5重量部であるのがより好ましい。なお、離型剤の含有量が前記未満である場合、リグニン樹脂組成物を成形型に充填して成形したとき、離型性が不十分となるおそれがあり、一方、離型剤の含有量が前記上限値を上回る場合、リグニン樹脂組成物の硬化性が低下するおそれがある。 When the lignin resin composition contains a release agent, the content of the release agent is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the lignin derivative or lignin secondary derivative. More preferably, it is 1 to 5 parts by weight. In addition, when the content of the release agent is less than the above, when the lignin resin composition is filled in a mold and molded, the mold release property may be insufficient, whereas the content of the release agent If the value exceeds the upper limit, the curability of the lignin resin composition may be reduced.
このようなリグニン樹脂組成物は、例えば、リグニン誘導体およびリグニン二次誘導体の少なくとも一方と、架橋剤と、必要に応じて添加されるその他の成分と、を混合機により均一に混合することで得られる。なお、必要に応じて、得られた混合物を、熱板や、加圧ニーダー、ロール、コニーダー、二軸押し出し機等の混練機等を用い、混合物が硬化する温度未満で加熱溶融融合してもよい。具体的な加熱温度は、選択する組成に応じて若干異なるが、好ましくは50〜100℃程度とされる。 Such a lignin resin composition can be obtained, for example, by uniformly mixing at least one of a lignin derivative and a lignin secondary derivative, a crosslinking agent, and other components added as necessary with a mixer. It is done. If necessary, the obtained mixture may be heated, melted and fused at a temperature lower than the temperature at which the mixture is cured using a hot plate, a kneader such as a pressure kneader, a roll, a kneader, or a twin screw extruder. Good. The specific heating temperature varies slightly depending on the composition to be selected, but is preferably about 50 to 100 ° C.
また、リグニン樹脂組成物を成形して成形体を得る場合、リグニン樹脂組成物に充填剤を添加した成形材料を調製し、これを用いて成形するのが好ましい。 Further, when a molded body is obtained by molding a lignin resin composition, it is preferable to prepare a molding material in which a filler is added to the lignin resin composition and to mold it using this.
充填剤としては、例えば、溶融シリカ、結晶シリカ、クレー、アルミナ、マイカ、ガラス繊維のような無機充填剤、木粉、パルプ、粉砕布、熱硬化性樹脂硬化物粉のような有機充填剤等が挙げられ、これらの1種類以上を用いることができるが、これらに限定されない。 Examples of the filler include inorganic fillers such as fused silica, crystalline silica, clay, alumina, mica, and glass fiber, and organic fillers such as wood powder, pulp, pulverized cloth, and thermosetting resin cured powder. One or more of these can be used, but is not limited thereto.
この場合、充填剤の含有量は、リグニン樹脂組成物100重量部に対して、10〜900重量部であるのが好ましく、20〜500重量部であるのがより好ましい。 In this case, the content of the filler is preferably 10 to 900 parts by weight and more preferably 20 to 500 parts by weight with respect to 100 parts by weight of the lignin resin composition.
このような成形材料は、例えば、リグニン樹脂組成物と、充填剤と、必要に応じて添加されるその他の成分と、を混合機により均一に混合することで得られる。なお、必要に応じて、得られた混合物に加熱混合、混練等を施し、冷却後に粉砕するようにして顆粒状の成形材料としてもよい。 Such a molding material can be obtained, for example, by uniformly mixing a lignin resin composition, a filler, and other components added as necessary with a mixer. If necessary, the obtained mixture may be heated and mixed, kneaded, etc., and crushed after cooling to form a granular molding material.
得られた成形材料は、所望の成形方法により成形され、これを硬化させることで樹脂製品を製造することができる。成形方法としては、例えば、トランスファー成形、インジェクション成形、圧縮成形等が挙げられる。 The obtained molding material is molded by a desired molding method, and a resin product can be produced by curing the molding material. Examples of the molding method include transfer molding, injection molding, and compression molding.
また、成形時の温度は150〜220℃程度、成形時間は1〜5分程度であるのが好ましい。なお、これらの条件は、目的に応じて適宜調整される。 The molding temperature is preferably about 150 to 220 ° C., and the molding time is preferably about 1 to 5 minutes. These conditions are appropriately adjusted according to the purpose.
得られる樹脂製品としては、例えば、半導体部品、航空機部品、自動車部品、産業用機械部品、電子部品、電気部品、機構部品等が挙げられる。 Examples of the resin product obtained include semiconductor parts, aircraft parts, automobile parts, industrial machine parts, electronic parts, electrical parts, mechanical parts, and the like.
<プリプレグ>
次に、上述したリグニン樹脂組成物を用いて製造されるプリプレグについて説明する。
プリプレグは、リグニン樹脂組成物を基材に含浸してなるものである。
<Prepreg>
Next, the prepreg manufactured using the lignin resin composition described above will be described.
The prepreg is obtained by impregnating a base material with a lignin resin composition.
基材としては、例えば、ガラス織布、ガラス不繊布のようなガラス繊維基材、クラフト紙、リンター紙のような紙材、綿繊維、麻繊維、アラミド繊維、ポリエステル繊維、アクリル繊維のような天然繊維または合成繊維等の織布や不織布からなる有機合成繊維基材、金属繊維、カーボン繊維、鉱物繊維のような織布や不織布からなる無機繊維基材、またはこれらのマット類等が挙げられる。なお、これらの基材の原料繊維は単独または混合して用いるようにしてもよい。 Examples of the base material include glass fiber base materials such as glass woven fabric and glass non-woven fabric, paper materials such as kraft paper and linter paper, cotton fibers, hemp fibers, aramid fibers, polyester fibers, acrylic fibers, etc. Examples include organic synthetic fiber base materials composed of woven or non-woven fabrics such as natural fibers or synthetic fibers, inorganic fiber base materials composed of woven or non-woven fabrics such as metal fibers, carbon fibers and mineral fibers, or mats thereof. . In addition, you may make it use the raw material fiber of these base materials individually or in mixture.
このようなプリプレグは、例えば、基材にリグニン樹脂組成物を含浸させた後、乾燥させることにより製造される。このとき、リグニン樹脂組成物は、有機溶媒に溶解させたワニスとして用いられるが、無溶媒の粉末状等の状態で溶融含浸などによる方法で用いるようにしてもよい。 Such a prepreg is manufactured, for example, by impregnating a base material with a lignin resin composition and then drying. At this time, the lignin resin composition is used as a varnish dissolved in an organic solvent, but may be used by a method such as melt impregnation in a solvent-free powder state.
リグニン樹脂組成物を基材に含浸させる方法は、例えば、基材をワニスに浸漬する方法、各種コーターによりワニスを塗布する方法、スプレーによりワニスを吹き付ける方法等が挙げられる。 Examples of the method of impregnating the base material with the lignin resin composition include a method of immersing the base material in the varnish, a method of applying the varnish with various coaters, and a method of spraying the varnish by spraying.
なお、乾燥により得られるプリプレグにおいては、ワニスに使用した有機溶媒の80質量%以上が揮発しているのが好ましい。 In addition, in the prepreg obtained by drying, it is preferable that 80 mass% or more of the organic solvent used for the varnish is volatilized.
上記乾燥では、乾燥条件は特に限定されないが、乾燥温度が80〜180℃程度であるのが好ましく、乾燥時間はワニスのゲル化時間を考慮して、目的のプリプレグ特性に合わせて自由に選択される。 In the above drying, the drying conditions are not particularly limited, but the drying temperature is preferably about 80 to 180 ° C., and the drying time is freely selected according to the desired prepreg characteristics in consideration of the gelation time of the varnish. The
また、プリプレグにおける樹脂含浸率は、プリプレグの全質量に対するリグニン誘導体およびリグニン二次誘導体と架橋剤との合計質量の割合で表わされるが、好ましくは30〜80質量%程度であるのが好ましく、40〜70質量%程度であるのがより好ましい。なお、これらの割合は、プリプレグの目的とする性能、プリプレグを積層して得られる基板における絶縁層の厚さ等に応じて適宜調整される。また、ワニスの含浸量は、ワニス中の固形分の量と基材との総量に対して、ワニス中の固形分が35〜75質量%を占めるように設定されるのが好ましい。 Further, the resin impregnation rate in the prepreg is represented by the ratio of the total mass of the lignin derivative and the lignin secondary derivative and the crosslinking agent with respect to the total mass of the prepreg, and is preferably about 30 to 80% by mass, It is more preferable that the amount is about 70% by mass. These ratios are appropriately adjusted according to the intended performance of the prepreg, the thickness of the insulating layer in the substrate obtained by laminating the prepreg, and the like. The amount of impregnation of the varnish is preferably set so that the solid content in the varnish occupies 35 to 75% by mass with respect to the total amount of the solid content in the varnish and the base material.
<樹脂板>
次に、樹脂板(複合構造体)について説明する。
<Resin plate>
Next, the resin plate (composite structure) will be described.
樹脂板は、上記のようなプリプレグを1枚または2枚以上積層してなる積層体を硬化させることにより製造される。 The resin plate is manufactured by curing a laminate formed by laminating one or two or more prepregs as described above.
具体的には、プリプレグまたはその積層体を、加熱加圧成形により基板状に成形しつつ、リグニン誘導体およびリグニン二次誘導体を硬化させることにより製造される。 Specifically, it is produced by curing a lignin derivative and a lignin secondary derivative while forming a prepreg or a laminate thereof into a substrate by heat and pressure molding.
加熱加圧時の温度は、100〜280℃程度であるのが好ましく、120〜250℃程度であるのがより好ましい。また、圧力は、0.5〜20MPa程度であるのが好ましく、1〜8MPa程度であるのがより好ましい。 The temperature at the time of heating and pressing is preferably about 100 to 280 ° C, more preferably about 120 to 250 ° C. Further, the pressure is preferably about 0.5 to 20 MPa, and more preferably about 1 to 8 MPa.
また、このような方法であれば、成形時の金型により任意の形に形成することができ、得られた樹脂板(複合構造体)は、プリント回路基板などの電気・電子材料、構造材、建材、絶縁材等として好ましく用いられる。 Moreover, if it is such a method, it can form in arbitrary shapes with the metal mold | die at the time of shaping | molding, and the obtained resin board (composite structure) is electric / electronic materials, structural materials, such as a printed circuit board. It is preferably used as a building material or an insulating material.
前記プリント回路基板などの電気・電子材料用途としては、加熱加圧成形の前に、プリプレグまたはその積層体の片面または両面に金属箔を積層し、これらを加熱加圧成形することにより、金属張基板(金属張積層板)を製造することができる。さらに、この金属張基板において、金属層を所定の形状に加工することにより、回路を備えたプリント配線基板を製造することができる。 As an electric / electronic material application such as the printed circuit board, metal foil is laminated on one side or both sides of a prepreg or a laminate thereof before heat and pressure molding, and these are heat and pressure molded to form a metal tension. A substrate (metal-clad laminate) can be manufactured. Furthermore, in this metal-clad substrate, a printed wiring board provided with a circuit can be manufactured by processing the metal layer into a predetermined shape.
金属箔としては、銅箔やアルミニウム箔が一般的に用いられる。また、その平均厚さは5〜200μm程度とされる。 As the metal foil, copper foil or aluminum foil is generally used. Moreover, the average thickness shall be about 5-200 micrometers.
また、上記金属箔としては、ニッケル、ニッケル−リン、ニッケル−スズ合金、ニッケル−鉄合金、鉛、鉛−スズ合金等の金属材料からなる中間層と、その両面に設けられた、平均厚さ0.5〜15μmの銅層および平均厚さ10〜300μmの銅層とを有する3層構造の複合箔、あるいは、アルミニウム箔と銅箔とを複合した2層構造複合箔等を用いるようにしてもよい。 The metal foil includes an intermediate layer made of a metal material such as nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, and an average thickness provided on both surfaces thereof. A composite foil having a three-layer structure having a copper layer having a thickness of 0.5 to 15 μm and a copper layer having an average thickness of 10 to 300 μm, or a two-layer structure composite foil in which an aluminum foil and a copper foil are combined is used. Also good.
このようにして得られた樹脂板は、例えば、プリント配線板、マザーボード、半導体用プラスチックパッケージ等に適用される。 The resin plate thus obtained is applied to, for example, a printed wiring board, a mother board, a semiconductor plastic package, and the like.
一方、前記プリント配線板、マザーボード、半導体用プラスチックパッケージ等の電気・電子材料用基板以外の用途としては、自動車用内装材などの構造材、住宅・オフィスビル等の内装材などの建材、配電盤などに使用される絶縁材に適用される。 On the other hand, as applications other than the printed wiring boards, motherboards, and substrates for electrical and electronic materials such as plastic packages for semiconductors, structural materials such as automobile interior materials, building materials such as interior materials for houses and office buildings, switchboards, etc. Applies to insulation materials used in
以上、本発明について説明したが、本発明はこれに限定されるものではなく、例えばリグニン誘導体の製造方法およびリグニン二次誘導体の製造方法では、任意の目的の工程が追加されていてもよい。 Although the present invention has been described above, the present invention is not limited to this. For example, in the method for producing a lignin derivative and the method for producing a lignin secondary derivative, any desired process may be added.
次に、本発明の具体的実施例について説明する。
1.積層板の製造
(サンプルNo.1)
<リグニン誘導体の製造>
スギ木粉(60メッシュアンダー)15gと、純水とメチルエチルケトンとを1:1の質量比で混合してなる混合溶媒80gとを、300mlオートクレーブに導入し、内容物を300rpmで攪拌しながら、前処理として室温で15分間撹拌を行い、スギ木粉と混合溶媒とを十分になじませた後、3MPa、200℃で60分間処理して、スギ木粉を分解した。なお、圧力の調整はアルゴンガスの吹き込みによる加圧により行った。分解物はろ過により残渣を除去した。次いで、処理物からメチルエチルケトン(沸点80℃)を留去した後、残存物をろ過し、純水で洗浄することで不溶部を分離した。この不溶部を乾燥することで、リグニン誘導体3gを得た。
Next, specific examples of the present invention will be described.
1. Manufacture of laminate (Sample No. 1)
<Production of lignin derivative>
15 g of cedar wood flour (60 mesh under) and 80 g of a mixed solvent obtained by mixing pure water and methyl ethyl ketone at a mass ratio of 1: 1 were introduced into a 300 ml autoclave and the contents were stirred while stirring at 300 rpm. As a treatment, the mixture was stirred at room temperature for 15 minutes to sufficiently blend the cedar wood powder and the mixed solvent, and then treated at 3 MPa and 200 ° C. for 60 minutes to decompose the cedar wood powder. The pressure was adjusted by pressurization by blowing argon gas. The decomposition product removed the residue by filtration. Subsequently, after methyl ethyl ketone (boiling point 80 ° C.) was distilled off from the treated product, the residue was filtered and washed with pure water to separate the insoluble part. This insoluble part was dried to obtain 3 g of a lignin derivative.
ここで得られたものについて、1H−NMR分析に供したところ、テトラメチルシランを0ppmの基準物質とした化学シフトのスペクトルにおいて、6〜8ppmに芳香族プロトンに帰属する複数のピークが、0.5〜3ppmに脂肪族プロトンに帰属する複数のピークがそれぞれ認められた。 About what was obtained here, when it used for the 1 H-NMR analysis, in the spectrum of the chemical shift which used tetramethylsilane as the reference substance of 0 ppm, a plurality of peaks attributed to the aromatic proton at 6 to 8 ppm are 0 A plurality of peaks attributed to aliphatic protons were observed at 5 to 3 ppm.
そこで、検出された各ピークについて、芳香族プロトンに帰属する複数のピークの積分値を1としたところ、脂肪族プロトンに帰属する複数のピークの積分値は3.97であった。すなわち、芳香族プロトンに帰属する複数のピークの積分値は、脂肪族プロトンに帰属する複数のピークの積分値の25%であった。 Therefore, for each detected peak, the integrated value of the plurality of peaks attributed to the aromatic proton was set to 1, and the integrated value of the plurality of peaks attributed to the aliphatic proton was 3.97. That is, the integrated value of the plurality of peaks attributed to the aromatic protons was 25% of the integrated value of the plurality of peaks attributed to the aliphatic protons.
また、上記で得られたリグニン誘導体の分子量は、テトラヒドロフランを溶離液として、ポリスチレン換算のゲル浸透クロマトグラフィーにより測定したところ、数平均分子量(Mn)=600、分子量分布(Mw/Mn)=1.3であった。 The molecular weight of the lignin derivative obtained above was measured by gel permeation chromatography in terms of polystyrene using tetrahydrofuran as an eluent. The number average molecular weight (Mn) = 600 and the molecular weight distribution (Mw / Mn) = 1. 3.
<リグニン樹脂組成物の製造>
次に、得られたリグニン誘導体90質量部に、ヘキサメチレンテトラミン10質量部を常温で添加し、リグニン樹脂組成物を得た。
<Manufacture of lignin resin composition>
Next, 10 parts by mass of hexamethylenetetramine was added to 90 parts by mass of the obtained lignin derivative at room temperature to obtain a lignin resin composition.
<基材含浸用ワニスの製造>
そして、上記で得られたリグニン樹脂組成物をメタノールで希釈して樹脂分50質量%の基材含浸用の樹脂ワニスを得た。
<Manufacture of varnish for substrate impregnation>
And the lignin resin composition obtained above was diluted with methanol, and the resin varnish for base-material impregnation with a resin content of 50 mass% was obtained.
<プリプレグおよび樹脂板の製造>
次に、上記で得られた基材含浸用の樹脂ワニスを樹脂含浸率55質量%(プリプレグ全体に対する割合)となるように、クラフト紙(坪量135g/m2)に対してディップコーター装置で塗工し、その後、160℃で5分間乾燥してプリプレグを得た。このようにして製造したプリプレグ8枚を重ね合わせ、200℃、5MPaで10分間の加熱加圧成形を行った。これにより平均厚さ1.6mmの積層板(樹脂板)を得た。
<Manufacture of prepreg and resin plate>
Next, the varnish for impregnating the base material obtained above with a dip coater device with respect to kraft paper (basis weight 135 g / m 2 ) so that the resin impregnation rate is 55 mass% (ratio to the whole prepreg). It was coated and then dried at 160 ° C. for 5 minutes to obtain a prepreg. Eight prepregs thus produced were stacked and subjected to heat and pressure molding at 200 ° C. and 5 MPa for 10 minutes. Thereby, a laminated plate (resin plate) having an average thickness of 1.6 mm was obtained.
(サンプルNo.2〜13)
バイオマスの種類、分解処理における溶媒、温度、圧力および時間を、表1に示すように変更した以外は、それぞれ、サンプルNo.1の場合と同様にしてリグニン誘導体を得るとともに、積層板を得た。
(Sample Nos. 2 to 13)
Except for changing the type of biomass, solvent, temperature, pressure, and time in the decomposition treatment as shown in Table 1, sample No. A lignin derivative was obtained in the same manner as in Example 1, and a laminate was obtained.
また、各サンプルNo.のリグニン誘導体について、1H−NMR分析による化学シフトのスペクトルを取得し、脂肪族プロトンに帰属する複数のピークの積分値に対する芳香族プロトンに帰属する複数のピークの積分値の割合を表1に示した。 In addition, each sample No. For the lignin derivative, the chemical shift spectrum by 1 H-NMR analysis was obtained, and the ratio of the integrated value of the plurality of peaks belonging to the aromatic proton to the integrated value of the plurality of peaks belonging to the aliphatic proton is shown in Table 1. Indicated.
さらに、各サンプルNo.のリグニン誘導体について、数平均分子量(Mn)を測定し、表1に示した。 Further, each sample No. The number average molecular weight (Mn) of the lignin derivative was measured and shown in Table 1.
(サンプルNo.14)
<リグニン誘導体の製造>
スギ木粉10gを500mlビーカーにとり、p−クレゾールのメタノール溶液(リグニン構成単位当たり3モル倍量のフェノール誘導体を含む。)を加え、ガラス棒で撹拌し、24時間静置した。その後、メタノールを完全に留去して、p−クレゾール収着木粉を得た。この木粉に対して、72質量%硫酸100mlを加え、30℃で1時間激しく撹拌した後、混合物を大過剰の水に投入し、不溶解分を回収、脱酸し、乾燥させてリグニン誘導体を得た。
(Sample No. 14)
<Production of lignin derivative>
10 g of cedar wood flour was placed in a 500 ml beaker, methanol solution of p-cresol (containing 3 mol times of phenol derivative per lignin constituent unit) was added, stirred with a glass rod, and allowed to stand for 24 hours. Thereafter, methanol was completely distilled off to obtain p-cresol sorption wood flour. To this wood flour, 100 ml of 72 mass% sulfuric acid was added and stirred vigorously at 30 ° C. for 1 hour, and then the mixture was poured into a large excess of water, the insoluble matter was recovered, deacidified and dried to give a lignin derivative. Got.
得られたリグニン誘導体について、1H−NMR分析による化学シフトのスペクトルを取得し、脂肪族プロトンに帰属する複数のピークの積分値に対する芳香族プロトンに帰属する複数のピークの積分値の割合を表2に示した。
また、得られたリグニン誘導体の数平均分子量(Mn)を測定し、表2に示した。
About the obtained lignin derivative, the spectrum of the chemical shift by 1 H-NMR analysis was acquired, and the ratio of the integrated value of the plurality of peaks attributed to the aromatic proton to the integrated value of the plurality of peaks attributed to the aliphatic proton was expressed. It was shown in 2.
The number average molecular weight (Mn) of the obtained lignin derivative was measured and shown in Table 2.
<リグニン樹脂組成物の製造>
次に、得られたリグニン誘導体90質量部に、ヘキサメチレンテトラミン10質量部を常温で添加し、リグニン樹脂組成物を得た。
<Manufacture of lignin resin composition>
Next, 10 parts by mass of hexamethylenetetramine was added to 90 parts by mass of the obtained lignin derivative at room temperature to obtain a lignin resin composition.
<基材含浸用ワニスの製造>
次に、上記で得られたリグニン樹脂組成物をメタノールで希釈して樹脂分50質量%の基材含浸用の樹脂ワニスを得た。
<Manufacture of varnish for substrate impregnation>
Next, the lignin resin composition obtained above was diluted with methanol to obtain a resin varnish for substrate impregnation having a resin content of 50% by mass.
<プリプレグおよび樹脂板の製造>
次に、上記で得られた基材含浸用の樹脂ワニスを樹脂含有率55質量%(プリプレグ全体に対する割合)となるように、クラフト紙に対してディップコーター装置で塗工し、その後、160℃で5分間乾燥してプリプレグを得た。このようにして製造したプリプレグ8枚を重ね合わせ、200℃、5MPaで10分間の加熱加圧成形を行った。しかしながら、溶融が不十分で積層板を形成することができなかった。
<Manufacture of prepreg and resin plate>
Next, the resin varnish for impregnating the base material obtained above was applied to kraft paper with a dip coater so that the resin content was 55% by mass (ratio to the whole prepreg), and then 160 ° C. And dried for 5 minutes to obtain a prepreg. Eight prepregs thus produced were stacked and subjected to heat and pressure molding at 200 ° C. and 5 MPa for 10 minutes. However, the laminated board could not be formed due to insufficient melting.
(サンプルNo.15)
バイオマスの種類を表2に示すように変更した以外は、サンプルNo.14の場合と同様にしてリグニン誘導体を得るとともに、プリプレグを得た。しかしながら、成形時の溶融が不十分で積層板を形成することができなかった。
(Sample No. 15)
Sample No. was changed except that the type of biomass was changed as shown in Table 2. In the same manner as in the case of 14, a lignin derivative was obtained and a prepreg was obtained. However, the laminated sheet could not be formed due to insufficient melting during molding.
(サンプルNo.16〜23)
バイオマスの種類、分解
処理における溶媒、温度、圧力および時間を、表2に示すように変更した以外は、それぞれ、サンプルNo.1の場合と同様にしてリグニン誘導体を得るとともに、積層板を得た。
(Sample No. 16-23)
Except for changing the type of biomass, the solvent, the temperature, the pressure and the time in the decomposition treatment as shown in Table 2, sample No. A lignin derivative was obtained in the same manner as in Example 1, and a laminate was obtained.
また、各サンプルNo.のリグニン誘導体について、1H−NMR分析による化学シフトのスペクトルを取得し、脂肪族プロトンに帰属する複数のピークの積分値に対する芳香族プロトンに帰属する複数のピークの積分値の割合を表2に示した。 In addition, each sample No. The chemical shift spectrum obtained by 1 H-NMR analysis was obtained for the lignin derivative, and the ratio of the integrated value of the plurality of peaks belonging to the aromatic proton to the integrated value of the plurality of peaks belonging to the aliphatic proton is shown in Table 2. Indicated.
さらに、各サンプルNo.のリグニン誘導体について、数平均分子量(Mn)を測定し、表2に示した。 Further, each sample No. The number average molecular weight (Mn) of the lignin derivative was measured and shown in Table 2.
(サンプルNo.24)
以下の工程によりリグニン誘導体にエポキシ基を導入し、リグニン二次誘導体を製造し、これを用いて積層板を製造するようにした以外は、サンプルNo.1と同様にした。
(Sample No. 24)
Except that the epoxy group was introduced into the lignin derivative by the following steps to produce a lignin secondary derivative and a laminate was produced using this, sample No. Same as 1.
<リグニン二次誘導体の製造>
まず、撹拌機および冷却管を備えた3つ口フラスコに、サンプルNo.1のリグニン誘導体と、エピクロロヒドリン100gとを導入し、100mmHg(1.3×104Pa)の圧力下で減圧還流しながら、20質量%の濃度の水酸化ナトリウム水溶液2gを30分かけて滴下した。その後、90分間減圧還流状態を保持して反応処理物を得た。
<Production of secondary lignin derivative>
First, in a three-necked flask equipped with a stirrer and a cooling pipe, a sample No. 1 lignin derivative and 100 g of epichlorohydrin were introduced and refluxed under reduced pressure under a pressure of 100 mmHg (1.3 × 10 4 Pa), 2 g of a 20% strength by weight aqueous sodium hydroxide solution was added over 30 minutes. And dripped. Thereafter, the reaction mixture was obtained by maintaining the reduced-pressure reflux state for 90 minutes.
次いで、反応処理物から不溶分を濾過して取り除き、エピクロロヒドリン可溶部を単離した。そして、このエピクロロヒドリン可溶部からエピクロロヒドリンを留去し、乾燥することで、リグニン二次誘導体0.8gを得た。 Next, the insoluble matter was removed from the reaction product by filtration, and the epichlorohydrin soluble portion was isolated. And epichlorohydrin was distilled off from this epichlorohydrin soluble part, and 0.8g of lignin secondary derivatives were obtained by drying.
<基材含浸用ワニスの製造>
次いで、上記で得られたリグニン二次誘導体をメタノールで希釈して樹脂分50質量%のリグニン二次誘導体ワニス790gを得た。
<Manufacture of varnish for substrate impregnation>
Subsequently, the lignin secondary derivative obtained above was diluted with methanol to obtain 790 g of a lignin secondary derivative varnish having a resin content of 50% by mass.
そして、リグニン二次誘導体ワニス100質量部と、2−メチルイミダゾール2質量部とを加え、基材含浸用の樹脂ワニスを得た。 And 100 mass parts of lignin secondary derivative varnishes and 2 mass parts of 2-methylimidazole were added, and the resin varnish for base material impregnation was obtained.
<プリプレグおよび樹脂板の製造>
次に、上記で得られた基材含浸用の樹脂ワニスを樹脂含浸率55質量%(プリプレグ全体に対する割合)となるように、クラフト紙(坪量135g/m2)に対してディップコーター装置で塗工し、その後、160℃で5分間乾燥してプリプレグを得た。このようにして製造したプリプレグ8枚を重ね合わせ、200℃、5MPaで10分間の加熱加圧成形を行った。これにより平均厚さ1.6mmの積層板を得た。
<Manufacture of prepreg and resin plate>
Next, the varnish for impregnating the base material obtained above with a dip coater device with respect to kraft paper (basis weight 135 g / m 2 ) so that the resin impregnation rate is 55 mass% (ratio to the whole prepreg). It was coated and then dried at 160 ° C. for 5 minutes to obtain a prepreg. Eight prepregs thus produced were stacked and subjected to heat and pressure molding at 200 ° C. and 5 MPa for 10 minutes. As a result, a laminate having an average thickness of 1.6 mm was obtained.
(サンプルNo.25〜29)
リグニン誘導体の種類、および導入する反応性基の種類を、表3に示すように変更した以外は、それぞれ、サンプルNo.24の場合と同様にしてリグニン二次誘導体を得るとともに、積層板を得た。なお、No.27については、成形時の溶融が不十分で積層板を形成することができなかった。
(Sample No. 25-29)
Except for changing the type of lignin derivative and the type of reactive group to be introduced as shown in Table 3, sample No. In the same manner as in the case of 24, a lignin secondary derivative was obtained and a laminate was obtained. In addition, No. Regarding No. 27, the laminated plate could not be formed due to insufficient melting during molding.
また、反応性基としてビニル基を用いたサンプルについては、エピクロロヒドリンに代えてアリルブロミドを用い、2−メチルイミダゾールに代えてアゾビスイソブチロニトリルを用いるようにした。 Moreover, about the sample which used the vinyl group as a reactive group, it replaced with epichlorohydrin and allyl bromide was used, and it replaced with 2-methylimidazole and used azobisisobutyronitrile.
2.リグニン誘導体の評価
2.1 ゲルタイムの評価
各サンプルNo.のリグニン誘導体100gに対してヘキサメチレンテトラミン15gを添加し、この試料についてJIS K 6910に規定の方法に準じて150℃におけるゲルタイム(ゲル化時間)を測定し、その結果を表1、2に示した。
2. 2. Evaluation of lignin derivative 2.1 Evaluation of gel time 15 g of hexamethylenetetramine was added to 100 g of the lignin derivative, and the gel time (gelation time) at 150 ° C. was measured for this sample in accordance with the method specified in JIS K 6910. The results are shown in Tables 1 and 2 It was.
表1、2から明らかなように、各実施例では、各比較例に比べてゲルタイムの値が低すぎずかつ高すぎないリグニン誘導体(好ましくは30〜190程度)が得られることが認められた。したがって、本発明のリグニン誘導体の製造方法によれば、反応性と溶融性または溶解性とを高度に両立するリグニン誘導体を製造し得ることが明らかとなった。 As is clear from Tables 1 and 2, it was recognized that in each example, a lignin derivative (preferably about 30 to 190) having a gel time value not too low and not too high as compared with each comparative example was obtained. . Therefore, according to the manufacturing method of the lignin derivative of this invention, it became clear that the lignin derivative which can make reactivity and meltability or solubility highly compatible can be manufactured.
3.積層板の評価
3.1 基材含浸性の評価
各サンプルNo.に使用した樹脂ワニス1mlをスポイトでクラフト紙表面に滴下した。室温で風乾した後、クラフト紙の裏面まで浸透しているかを確認した。
3. Evaluation of laminated board 3.1 Evaluation of substrate impregnation 1 ml of the resin varnish used in the above was dropped onto the kraft paper surface with a dropper. After air-drying at room temperature, it was confirmed whether it penetrated to the back of the kraft paper.
<基材含浸性の評価基準>
○:クラフト紙の裏面まで浸透している
×:クラフト紙の裏面への浸透が不十分
<Evaluation criteria for substrate impregnation>
○: Penetrating to the back of the kraft paper ×: Insufficient penetration of the back of the kraft paper
3.2 曲げ破断時伸びの評価
各サンプルNo.の積層板について、JIS−C6481に規定の方法に準じて、破断するまでの曲げ試験を行った。そして、試験前寸法に対する試験後寸法の変化の割合(曲げ破断時伸び)を、以下の評価基準に従って評価した。
3.2 Evaluation of elongation at bending fracture Sample No. The laminated plate was subjected to a bending test until it broke according to the method defined in JIS-C6481. And the ratio (elongation at the time of bending fracture | rupture) of the change of the dimension after a test with respect to the dimension before a test was evaluated according to the following evaluation criteria.
<曲げ破断時伸びの評価基準>
○:曲げ破断時伸びが1%以上である
×:曲げ破断時伸びが1%未満である
以上、3.1、3.2の評価結果を表1〜3に示す。
<Evaluation criteria for elongation at bending fracture>
○: Elongation at bending fracture is 1% or more ×: Elongation at bending fracture is less than 1% Above, the evaluation results of 3.1, 3.2 are shown in Tables 1-3.
各実施例で得られた積層板は、基材含浸性、すなわちクラフト紙に対する樹脂ワニスの均一性が高く、かつ、曲げ破断時の伸びに優れていることが認められた。これは、積層板の製造に用いた各サンプルNo.のリグニン誘導体が、本発明の製造方法により製造され、その結果、リグニン誘導体の芳香族プロトンの含有比率が所定の範囲内にあるため、リグニン誘導体の反応性および溶融性または溶解性が最適化されているためであると考えられる。 The laminates obtained in each example were found to have high substrate impregnation properties, that is, high uniformity of the resin varnish with respect to kraft paper, and excellent elongation at the time of bending fracture. This is because each sample No. used in the production of the laminated plate was obtained. The lignin derivative is produced by the production method of the present invention. As a result, the content of aromatic protons in the lignin derivative is within a predetermined range, so that the reactivity and meltability or solubility of the lignin derivative are optimized. It is thought that this is because.
一方、各比較例で得られた積層板には、基材含浸性に劣るものや、曲げ破断時の伸びに劣る(脆い)ものが含まれていた。 On the other hand, the laminates obtained in the respective comparative examples included those inferior in substrate impregnation properties and those inferior in elongation at the time of bending fracture (brittle).
Claims (10)
バイオマスを水と非プロトン性極性溶媒とを含む混合溶媒存在下におき、これらを高温高圧下で分解処理する分解工程と、
前記分解工程により得られた処理物から非プロトン性極性溶媒を留去し、残存物中の不溶分としてリグニン誘導体を得る留去工程と、を有することを特徴とするリグニン誘導体の製造方法。 A method for producing a lignin derivative obtained by decomposing biomass,
A decomposition step of placing biomass in the presence of a mixed solvent containing water and an aprotic polar solvent and decomposing them under high temperature and high pressure;
And a distillation step of distilling off the aprotic polar solvent from the treated product obtained in the decomposition step to obtain a lignin derivative as an insoluble matter in the residue.
バイオマスを水と非プロトン性極性溶媒とを含む混合溶媒存在下におき、これらを高温高圧下で分解処理する分解工程と、
前記分解工程により得られた処理物から非プロトン性極性溶媒を留去する留去工程と、
前記留去工程により得られた処理物と前記反応性基を含む化合物とを混合する反応性基導入工程と、を有することを特徴とするリグニン二次誘導体の製造方法。 A method for producing a lignin secondary derivative obtained by introducing a reactive group into a lignin derivative obtained by decomposing biomass,
A decomposition step of placing biomass in the presence of a mixed solvent containing water and an aprotic polar solvent and decomposing them under high temperature and high pressure;
A distillation step of distilling off the aprotic polar solvent from the treated product obtained by the decomposition step;
A method for producing a lignin secondary derivative, comprising: a reactive group introducing step of mixing the treated product obtained in the distillation step and the compound containing the reactive group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011068736A JP6181347B2 (en) | 2011-03-25 | 2011-03-25 | Method for producing lignin derivative and method for producing lignin secondary derivative |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011068736A JP6181347B2 (en) | 2011-03-25 | 2011-03-25 | Method for producing lignin derivative and method for producing lignin secondary derivative |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012201645A true JP2012201645A (en) | 2012-10-22 |
JP6181347B2 JP6181347B2 (en) | 2017-08-16 |
Family
ID=47182995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011068736A Expired - Fee Related JP6181347B2 (en) | 2011-03-25 | 2011-03-25 | Method for producing lignin derivative and method for producing lignin secondary derivative |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6181347B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013035969A (en) * | 2011-08-09 | 2013-02-21 | Kyoto Univ | Method for producing lignin derivative, method for producing lignin second derivative, and method for producing natural organic compound |
WO2014142289A1 (en) * | 2013-03-15 | 2014-09-18 | 出光興産株式会社 | Method for manufacturing lignin degradation product |
WO2017051911A1 (en) * | 2015-09-25 | 2017-03-30 | 出光興産株式会社 | Method for producing purified lignin, purified lignin, resin composition and molded body |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5470444A (en) * | 1977-08-17 | 1979-06-06 | Puroiekuchiirungu Chem Fuerufu | Treatment of vegetable material |
JP2009084320A (en) * | 2007-09-27 | 2009-04-23 | Sumitomo Bakelite Co Ltd | Lignin derivative and secondary derivative thereof |
JP2012201828A (en) * | 2011-03-25 | 2012-10-22 | Sumitomo Bakelite Co Ltd | Method for producing lignin derivative, method for producing lignin secondary derivative, lignin derivative, and lignin secondary derivative |
-
2011
- 2011-03-25 JP JP2011068736A patent/JP6181347B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5470444A (en) * | 1977-08-17 | 1979-06-06 | Puroiekuchiirungu Chem Fuerufu | Treatment of vegetable material |
JP2009084320A (en) * | 2007-09-27 | 2009-04-23 | Sumitomo Bakelite Co Ltd | Lignin derivative and secondary derivative thereof |
JP2012201828A (en) * | 2011-03-25 | 2012-10-22 | Sumitomo Bakelite Co Ltd | Method for producing lignin derivative, method for producing lignin secondary derivative, lignin derivative, and lignin secondary derivative |
Non-Patent Citations (1)
Title |
---|
JPN6015037854; 岩波 理化学辞典 第5版 , 19980220, p.18 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013035969A (en) * | 2011-08-09 | 2013-02-21 | Kyoto Univ | Method for producing lignin derivative, method for producing lignin second derivative, and method for producing natural organic compound |
WO2014142289A1 (en) * | 2013-03-15 | 2014-09-18 | 出光興産株式会社 | Method for manufacturing lignin degradation product |
JPWO2014142289A1 (en) * | 2013-03-15 | 2017-02-16 | 出光興産株式会社 | Method for producing lignin degradation product |
US9951189B2 (en) | 2013-03-15 | 2018-04-24 | Idemitsu Kosan Co., Ltd. | Method for manufacturing lignin degradation product |
US10155853B2 (en) | 2013-03-15 | 2018-12-18 | Idemitsu Kosan Co., Ltd. | Method for manufacturing lignin degradation product |
WO2017051911A1 (en) * | 2015-09-25 | 2017-03-30 | 出光興産株式会社 | Method for producing purified lignin, purified lignin, resin composition and molded body |
CN108026227A (en) * | 2015-09-25 | 2018-05-11 | 出光兴产株式会社 | Method for producing purified lignin, resin composition, and molded article |
JPWO2017051911A1 (en) * | 2015-09-25 | 2018-07-12 | 出光興産株式会社 | Process for producing purified lignin, purified lignin, resin composition and molded article |
Also Published As
Publication number | Publication date |
---|---|
JP6181347B2 (en) | 2017-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101735562B (en) | Epoxy resin composition, preparation method thereof, laminated material and copper-clad laminated board manufactured by adopting epoxy resin composition | |
CN102838864B (en) | Resin composition and prepreg and laminate manufactured by using same | |
CN102361903B (en) | Epoxy resin composition, prepreg, metal foil with resin, resin sheet, laminate and multi-layer board | |
JP5885960B2 (en) | Method for producing lignin derivative, method for producing lignin secondary derivative, and method for producing natural organic compound | |
JP2012201828A (en) | Method for producing lignin derivative, method for producing lignin secondary derivative, lignin derivative, and lignin secondary derivative | |
JP5348113B2 (en) | Method for producing lignin resin composition | |
JP2009227890A (en) | Lignin resin composition, and molding material | |
JP2000264986A5 (en) | ||
JP5750336B2 (en) | Lignin resin composition, prepreg and composite structure | |
JP5396747B2 (en) | Prepreg and substrate using the same | |
JP6181347B2 (en) | Method for producing lignin derivative and method for producing lignin secondary derivative | |
JP6217064B2 (en) | Resin composition and resin molded body | |
JP5397361B2 (en) | Manufacturing method of prepreg | |
JP5920069B2 (en) | Lignin resin composition and lignin resin molding material | |
JP5754169B2 (en) | Lignin derivative, lignin secondary derivative, lignin resin composition, prepreg and composite structure | |
JP2013227469A (en) | Lignin resin composition, lignin resin molding material and method for producing lignin derivative | |
JP6163761B2 (en) | Resin composition and resin molded body | |
JP2015048361A (en) | Lignin resin composition, resin molded article, prepreg, and molding material | |
JP5641101B2 (en) | Method for producing lignin resin composition | |
JP2014133817A (en) | Method for manufacturing a lignin derivative and lignin resin molded article | |
JP2014062051A (en) | Method for producing organic compound, lignin derivative, and lignin secondary derivative | |
JP2014193977A (en) | Resin composition, prepreg including the resin composition, laminate sheet, and molding material | |
JP2015048359A (en) | Lignin resin composition, resin molded article, and molding material | |
JP5822596B2 (en) | Lignin resin molding material | |
JPH01131273A (en) | Epoxy resin composition for laminated board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150331 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150529 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151214 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20151222 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20160226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170310 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170720 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6181347 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |