JP2012251542A - Variable cycle engine - Google Patents
Variable cycle engine Download PDFInfo
- Publication number
- JP2012251542A JP2012251542A JP2011136746A JP2011136746A JP2012251542A JP 2012251542 A JP2012251542 A JP 2012251542A JP 2011136746 A JP2011136746 A JP 2011136746A JP 2011136746 A JP2011136746 A JP 2011136746A JP 2012251542 A JP2012251542 A JP 2012251542A
- Authority
- JP
- Japan
- Prior art keywords
- increase
- core
- engine
- speed
- thrust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
この発明は、小型SST(Supersonic Transport)、SSBJ(Super Sonic Business Jet)に搭載される小型可変サイクルエンジン(VCE:Variable Cycle Engine)に関するものである。 The present invention relates to a small variable cycle engine (VCE) mounted on a small SST (Supersonic Transport) or SSBJ (Super Sonic Business Jet).
拡大する航空需要を支えるために、大量・低運賃輸送の亜音速旅客機と高速・高利便性輸送である次世代SSTの相互補完による多様性のある航空輸送システムの発展が望まれている。高速・高利便性輸送では、大型SSTより、環境影響の少ないSSBJないしは小型SSTが大型SSTに先駆けて実現する可能性が高いとされている。 In order to support expanding aviation demand, it is desired to develop a variety of air transportation systems by mutually complementing subsonic passenger aircraft for mass / low freight transportation and next-generation SST, which is high-speed / high-convenient transportation. In high-speed and highly convenient transportation, it is said that SSBJ or small SST, which has less environmental impact than large SST, is more likely to be realized prior to large SST.
SSBJは都市間を直行し都市近郊の飛行場から発着するので、空港騒音低減問題はSSBJ成立の鍵となる。一方で、SSBJのエンジンは開発のリスクを避けるため、現用戦闘機エンジンの改良型で対応することが考えられている。従って簡単な改造で、バイパス比(BPR:Bypass Ratio)を可変にする必要があり、従来提案されている方式とは異なる新たなコンセプトに基づいた改良でなければならない。 Since SSBJ goes straight between cities and arrives and departs from airfields near the city, airport noise reduction is the key to establishing SSBJ. On the other hand, in order to avoid the development risk, it is considered that the SSBJ engine is supported by an improved version of the current fighter engine. Therefore, it is necessary to make the bypass ratio (BPR) variable by simple modification, and the improvement must be based on a new concept different from the conventionally proposed method.
BPRを可変にする可変サイクルエンジンの方式は、各種考えられているが、BPRを変化させるための流量制御を圧縮機側で行うものと、タービン側で行うものに大別でき、何れもコア流量を増減することでBPRを変化させている。圧縮機側で流量を制御する方式の代表にタービンバイパスエンジンを選ぶとVCEにとって一つの難題が明白になる。ターボジェットの圧縮機出口から抽気し、これを排気ダクトに再導入するとターボファンになるが、抽気とコア排気の全圧差が大き過ぎ、大きな混合損失が生じる。そのためvariable area bypass injector或いはdiverter valveを装備しなければならず、改良型小型エンジンには複雑すぎる。 Various types of variable cycle engines that make the BPR variable are considered, but the flow rate control for changing the BPR can be broadly divided into those that are performed on the compressor side and those that are performed on the turbine side. The BPR is changed by increasing or decreasing. When a turbine bypass engine is selected as a representative method for controlling the flow rate on the compressor side, one challenge for VCE becomes apparent. When air is extracted from the compressor outlet of the turbojet and reintroduced into the exhaust duct, it becomes a turbo fan. However, the total pressure difference between the extracted air and the core exhaust is too large, resulting in a large mixing loss. Therefore, it must be equipped with a variable area bypass injector or a diverter valve, which is too complicated for an improved small engine.
タービン側で流量制御する方式には、低圧タービン可変静翼(LPT−VG:Low Pressure Turbine Variable Geometries)を採用し、バイパス流とコア流の混合時に圧力バランスを取るため可変ファンバイパスインジェクター(R−VABI:Rear−Variable Area Bypass Injector)と組み合せたVCEがある。この方式はVCEのもう一つの難問を明らかにする。超音速機のエンジン内は何所も高温であり、低圧タービン(LPT:Low Pressure Turbine)の静翼も冷却しなければならない、その上、静翼の角度を可変にするため高温下で潤滑せねばならず、これは極めて難しい技術であり改良型小型エンジンには不向きである。 Low-pressure turbine variable stator blades (LPT-VG: Low Pressure Turbine Variable Geometry) are used for the flow rate control on the turbine side, and a variable fan bypass injector (R--) is used to balance the pressure when the bypass flow and the core flow are mixed. There is VCE combined with VABI: Real-Variable Area Bypass Injector). This scheme reveals another challenge for VCE. The supersonic engine is hot at many locations, and the low pressure turbine (LPT) stationary blades must also be cooled, and lubricated at high temperatures to vary the angle of the stationary blades. This is an extremely difficult technology and unsuitable for improved small engines.
解決しようとする問題点は2点ある。第1点は、LPT−VGの冷却と潤滑が困難な点であり、且つバイパス流とコア排気の混合における圧力調整機構の複雑さである。 There are two problems to be solved. The first point is that LPT-VG is difficult to cool and lubricate, and the pressure adjustment mechanism is complicated in the mixing of the bypass flow and the core exhaust.
第2点は、従来のVCEは、前述の如くコア流量の増減によってBPRを変化させた。離陸時はBPRを高めるためにコア流量を減らし、超音速では比推力を高めるためにコア流量を正常に戻してBPRを下げた。しかしながら空港騒音規制が厳しい今日、騒音低減化デバイスを装着せねばならず、例えばミキサエジェクタノズルを用い、外部空気を導入し、エンジン排気と混合して排気速度を下げると、大きな推力損失を生じる。HYPRはミキサエジェクタノズルで15dBの騒音を低減するため、7.5%推力を失う。これに対し本発明では、離陸時はコア流量を減らさずにファン流量を増すことによって、BPRを高めて排気速度を下げ、同時に推力を高める。また超音速ではBPRを低めるという考え方ではなく、全圧力比(OPR:Overall Pressure Ratio)を高めて推力を増加し、同時にファンが過回転にならないよう簡単な手段でLPTを制御するという、小型VCEに適したコンセプトを樹立し、VCEがもつ問題点を解決しようとするものである。 Second, the conventional VCE changed the BPR by increasing or decreasing the core flow rate as described above. At take-off, the core flow rate was reduced to increase the BPR, and at supersonic speed, the core flow rate was returned to normal and the BPR was lowered to increase the specific thrust. However, today, when airport noise regulations are strict, a noise reduction device must be installed. For example, if a mixer ejector nozzle is used and external air is introduced and mixed with engine exhaust to reduce exhaust speed, a large thrust loss occurs. HYPR loses 7.5% thrust because it reduces the 15 dB noise at the mixer ejector nozzle. On the other hand, in the present invention, at the time of takeoff, by increasing the fan flow rate without reducing the core flow rate, the BPR is increased to lower the exhaust speed, and at the same time the thrust is increased. In addition, the supersonic speed is not based on the idea of lowering the BPR, but increases the total pressure ratio (OPR: Overall Pressure Ratio) to increase the thrust, and at the same time controls the LPT with simple means so that the fan does not overspeed. It is intended to establish a concept suitable for the VCE and to solve the problems of VCE.
本発明の概念図を図1に示す。図においてFANはファン、HPCは圧縮機、CVSVは圧縮機可変静翼、CCは燃焼器、HPTは高圧タービン、LPTは低圧タービン、TCは前後に移動可能なテールコーン或いはプラグでもよい、A7Bはエンジン位置7におけるバイパス流路断面積、A7Cはコアダクト出口断面積、RMはローブミキサー、ENはエジェクタノズルである。図示する如く、本発明は容易に改造できる、より簡単な可変機構とするため、LPT−VGを廃し、より低温となる下流に配置されるテールコーンTCを前後に移動可能とした。TCの移動によってコアダクト出口面積A7Cを変化させると、LPT膨張比を増減し、ファン回転数を制御できる。 A conceptual diagram of the present invention is shown in FIG. In the figure, FAN is a fan, HPC is a compressor, CVSV is a compressor variable stator vane, CC is a combustor, HPT is a high pressure turbine, LPT is a low pressure turbine, TC may be a tail cone or a plug that can move back and forth, A7B is Bypass passage sectional area at engine position 7, A7C is a core duct outlet sectional area, RM is a lobe mixer, EN is an ejector nozzle. As shown in the figure, in order to make the present invention a simple variable mechanism that can be easily modified, the LPT-VG is eliminated and the tail cone TC disposed downstream at a lower temperature can be moved back and forth. When the core duct outlet area A7C is changed by the movement of TC, the LPT expansion ratio can be increased or decreased, and the fan speed can be controlled.
単位時間、単位面積当たりの無次元空気流量を質量流束パラメータ(MFP:massflux parameter)として、数式1で定義する。 The dimensionless air flow rate per unit time and unit area is defined by
ここでmは質量流量、Mはマッハ数、Aは流路断面積、Cpは定圧比熱、Tは全温、Pは全圧、κは比熱比である。MFP(κ,M)を一定とすれば、流路断面積Aを広げると数式1から修正流量が増加する。LPT入口とコアダクト出口の状態を、MFPを用いて表すと、質量保存則からm5=m7C、よって数式2を得る。Here, m is the mass flow rate, M is the Mach number, A is the cross-sectional area of the channel, Cp is the constant pressure specific heat, T is the total temperature, P is the total pressure, and κ is the specific heat ratio. If MFP (κ, M) is constant, the corrected flow rate increases from
LPTがチョークしているときA5、MFP(M5)一定から数式2の左辺P5/P7C、T5/T7Cは、コアダクト出口のマッハ数M7Cと面積比A7C/A5の関数となる。燃料流量一定でコアダクト出口面積A7Cを広げるとコアダクト出口マッハ数M7Cが低下MFP(M7C)が減少するが、面積比A7C/A5の増加の割合の方が大きく、数式2の左辺が増加する。膨張比P5/P7Cが上昇すれば温度比の逆数T5/T7Cも増加するが、分母は温度の平方根であるため分子の増加の割合が大きくなる。When LPT is choked, A 5 , MFP (M 5 ) constant, left side P 5 / P 7C and T 5 / T 7C in Equation 2 are Mach number M 7C at the core duct outlet and area ratio A 7C / A 5 It becomes a function. If the core duct outlet area A 7C is increased at a constant fuel flow rate, the core duct outlet Mach number M 7C decreases, and the MFP (M 7C ) decreases. However, the rate of increase in the area ratio A 7C / A 5 is larger. Will increase. If the expansion ratio P 5 / P 7C increases, the reciprocal T 5 / T 7C of the temperature ratio also increases. However, since the denominator is the square root of the temperature, the rate of increase of the numerator increases.
断熱流れにおいては、全エンタルピの変化は、その間になされる外部仕事に対応するので、TCの移動によってコアダクト出口面積A7Cを広げ、LPTの全エンタルピ降下量を増すと、作動ガスからLPTに供与されるエネルギーが増加して出力が上昇する。LPT直下のコアダクト出口面積A7Cを絞ると、まったく逆にLPT背圧の低下が抑えられ、LPTの仕事が減少する。よって本VCEはTCの前後移動によりファン回転数が増減しBPRが変化する。In adiabatic flow, change in total enthalpy, it corresponds to the external work done during broaden the core duct exit area A 7C by the movement of the TC, Increasing the total enthalpy drop amount of LPT, donor from the working gas to the LPT Increased energy increases output. If the core duct outlet area A 7C just below the LPT is reduced, the decrease in the LPT back pressure can be suppressed, and the work of the LPT is reduced. Therefore, in this VCE, the number of fan rotations increases / decreases due to the TC moving back and forth, and the BPR changes.
エンジン位置7でコアダクト出口排気とファンバイパス流を混合する時、コア側の静圧p7Cとバイパス側の静圧p7Bは数式3に示す如く等しくなければならない。When mixing the core duct outlet exhaust and the fan bypass flow at engine position 7, the core side static pressure p 7C and the bypass side static pressure p 7B must be equal as shown in
従って位置7におけるバイパス流のマッハ数M7B、コア流のマッハ数M7Cは数式4で得られる。Accordingly, the Mach number M 7B of the bypass flow and the Mach number M 7C of the core flow at the position 7 are obtained by
ここでPは全圧、pは静圧、m=(κ−1)/κ、添え字cは圧縮側、tはタービン側である。コアダクト出口面積A7Cとバイパスダクト面積A7Bの比は、数式5で与えられる。Here, P is the total pressure, p is the static pressure, m = (κ−1) / κ, the suffix c is the compression side, and t is the turbine side. The ratio of the core duct outlet area A 7C and the bypass duct area A 7B is given by Equation 5.
ここでρは密度、Vは流速、fは燃料空気混合比、tは静温である。コアダクト出口面積A7CとLPT膨張比の関係を表す数式2と、直上の数式5を同時に満たす作動点では、コア流とバイパス流を等しい静圧で混合し、同時にLPT膨張比を変化させることができる。即ち可動式TCによるコアダクト出口面積A7Cの可変機構は、HYPRのLPT−VGとR−VABIを兼ね合わせた機能をもっていると言える。Here, ρ is the density, V is the flow velocity, f is the fuel-air mixing ratio, and t is the static temperature. At the operating point satisfying both the
可動コーンはジェットエンジン黎明期のJumo004に既に用いられていた。但し、Jumo004はターボファンではなくターボジェットであり、その可変排気コーンは高圧軸と低圧軸の速度比を変えBPRを変化させる機構ではない。このエンジンの可変排気コーンは飛行中の推力を制御する際に、タービン入口温度(TIT:Turbine inlet Temperature)を一定に保つために工夫されたものである。本発明の可動コーンは排気ノズルではなくコアダクト出口に設置し、これを前後に移動することにより、高低二つの軸の速度比を変化させ、同時にバイパス流れとコア流れの混合時の静圧を等しく保つ。故に本エンジンの可動コーンとターボジェットの可変排気コーンとは技術上の思想を全く異にする。 The movable cone was already used for the Jumo004 in the early days of the jet engine. However, Jumo004 is not a turbofan but a turbojet, and its variable exhaust cone is not a mechanism that changes the speed ratio between the high pressure shaft and the low pressure shaft and changes the BPR. The variable exhaust cone of this engine is devised in order to keep the turbine inlet temperature (TIT) constant when controlling the thrust during flight. The movable cone of the present invention is installed not at the exhaust nozzle but at the core duct outlet, and by moving it back and forth, the speed ratio between the two axes is changed, and at the same time, the static pressure when mixing the bypass flow and the core flow is made equal. keep. Therefore, the technical idea of the movable cone of this engine and the variable exhaust cone of the turbojet are completely different.
コアダクト出口面積の増減により得られる離陸時と遷音速での効果を表1に示す。 Table 1 shows the effect at takeoff and transonic speed obtained by increasing or decreasing the core duct exit area.
先ず離陸時における効果は、コアダクト出口面積A7Cを設計点の約1.29倍に広げると、エンジン流量が7.8%、コア流量が2.4%増加し、BPRが高まって排気ジェット速度が減少するにも関らず推力が5.8%増加、しかも燃料消費率(sfc)が4.3%減少する。従って騒音低減化デバイスにおける推力損失を補うことができる。ジェット騒音低減上の問題点は、騒音低減量/1%ジェット推力損失の比であり、ESPRのミキサエジェクタノズルにおけるこの目標値は4dBである。従ってこの目標値を達成できれば、本エンジンでは、推力増加分の百分率5.837%と4dBの積、23.35dBのジェット騒音を、設計点推力を維持したまま低減できることになる。First, the effect at the time of takeoff is that when the core duct exit area A 7C is expanded to about 1.29 times the design point, the engine flow rate increases by 7.8%, the core flow rate increases by 2.4%, the BPR increases, and the exhaust jet speed increases. However, the thrust increases by 5.8% and the fuel consumption rate (sfc) decreases by 4.3%. Therefore, the thrust loss in the noise reduction device can be compensated. The problem in reducing jet noise is the ratio of noise reduction /% jet thrust loss. This target value for the ESPR mixer ejector nozzle is 4 dB. Therefore, if this target value can be achieved, this engine can reduce the product of 5.837% of the thrust increase and 4 dB, and the jet noise of 23.35 dB while maintaining the design point thrust.
次に遷音速上昇時における効果は、音の壁を突破し超音速飛行に移るとき、TITを高めOPRを上昇させて、同時にA7Cを設計点の約0.98倍に僅かに絞ってファン相対修正回転数の上昇を約110%に抑えると、コア流量の増加(10.97%)の方が、エンジン流量の増加(6.0%)の割合より大きく、BPRが下がると同時に、推力は18.8%上昇する。従って音速を超える高推力をアフターバーナーなしで確保できるので、燃費が大幅に改善される。Effect during transonic rise Next, when topped wall of the sound moves to supersonic flight, at elevated OPR enhance TIT, squeezed slightly to about 0.98 times the design point A 7C simultaneously fan When the increase in the relative correction speed is suppressed to about 110%, the increase in core flow rate (10.97%) is larger than the rate of increase in engine flow rate (6.0%), and at the same time the BPR decreases, thrust Will rise 18.8%. Therefore, high thrust exceeding the speed of sound can be ensured without an afterburner, so that fuel efficiency is greatly improved.
超音速巡航時では、TITは最高温度になり、固定サイクルの場合上昇してしまうBPRを抑えるためA7Cを設計点の0.91倍に絞ると、ファン機械回転数を100%に保つことができる(表2参照)。このような運転が可能なのは、飛行マッハ数が1.8前後のSSBJではラム圧力の影響によってCDT(圧縮機出口温度)が材料許容温度を越えることはないからである。At the time of supersonic cruise, TIT becomes maximum temperature and squeeze A 7C in order to suppress the BPR which rises when a fixed cycle 0.91 times the design point, to keep the fan machine rotation speed to 100% Yes (see Table 2). This operation is possible because the STBJ having a flight Mach number of around 1.8 does not cause the CDT (compressor outlet temperature) to exceed the allowable material temperature due to the influence of the ram pressure.
SSBJ用小型エンジンとして、低バイパス比ターボファンのBPRを出来るだけ簡単な改造で可変化するという目的を、テールコーンを前後移動することによってLPT膨張比を変化させ、従来のVCEのようにコア流量を増減するのではなく、ファン回転数(ファン吸込み空気流量)を制御することによって実現した。 As a small engine for SSBJ, the LPT expansion ratio is changed by moving the tail cone back and forth with the aim of changing the BPR of the low bypass ratio turbofan with the simplest possible modification. This is achieved by controlling the fan speed (fan suction air flow rate) instead of increasing or decreasing the value.
実施例として行ったサイクル計算に用いたファン特性マップを図2に、圧縮機特性マップを図3に示す。実際の超音速戦闘機のマップやデータは入手できないため、両マップは仮想のものであり、実物のマップではない。 The fan characteristic map used for the cycle calculation performed as an example is shown in FIG. 2, and the compressor characteristic map is shown in FIG. Since maps and data of actual supersonic fighters are not available, both maps are virtual and not real maps.
図において、1は離陸時(設計点)、1−1は離陸時にコアダクト出口面積A7Cを開いた作動点。2はマッハ0.95の遷音速、2−1は遷音速上昇で面積A7Cを絞った作動点(2および2−1は白丸で表示)、3は飛行高度16km、飛行マッハ数1.8の超音速巡航時の作動点である。図2、図3に示した作動条件におけるエンジン性能を表2に示す。In FIG, 1 is at takeoff (design point), 1-1 operating point that opened the core duct exit area A 7C during takeoff. 2 is the transonic speed of Mach 0.95, 2-1 is the operating point where the area A 7C is reduced by increasing the transonic speed (2 and 2-1 are indicated by white circles), 3 is the flight altitude 16 km, the flight Mach number 1.8 This is the operating point for the supersonic cruise. Table 2 shows the engine performance under the operating conditions shown in FIGS.
先ず離陸時に設計点1から作動点1−1に運転点を移す。この場合の条件は、燃料流量一定、また高圧タービン(HPT:High Pressure Turbine)とLPTはチョーク状態にある。コアダクト出口面積A7Cを開きLPTの全エンタルピ降下量を増し膨張比を上げると、LPTのエネルギーが増すのでファン回転数が上昇しエンジン流量が増加する。First, at the time of takeoff, the operating point is moved from the
LPT回転数が上がったことによりファンのコア側出口条件が変わり、圧縮機入口ではコア流量mc、圧力P2、温度T2とも上昇し、圧縮機に、より高い密度のより多くの流量が流れ込む。従って圧縮機修正回転数は少々下がる。燃料流量一定、HPT、LPTともチョークが条件だからHPTの仕事は増さず、新しい熱力学的平衡点は、A7Cを広げる直前に比べT4は下がるがHPT入口修正流量は変化しない。ファンのコア側は圧縮機に流量を押し込むため圧力比が上昇し、BPRが増える流れ場が形成される。結果として推力が上昇して、sfcは低減され、ジェット速度Vjも減少する(冷却空気等を考慮していないため表2の排気速度は実際より高い)。As the LPT rotation speed increases, the core outlet condition of the fan changes, and at the compressor inlet, the core flow rate mc, the pressure P 2 , and the temperature T 2 also rise, and a higher flow rate of higher density flows into the compressor. . Therefore, the compressor correction rotational speed is slightly lowered. Fuel flow rate constant, HPT, chalk without increasing the work because conditions HPT both LPT, new thermodynamic equilibrium point, T 4 compared with immediately before widening the A 7C is lowered but HPT inlet corrected flow does not change. Since the flow rate is pushed into the compressor on the core side of the fan, the pressure ratio increases, and a flow field in which BPR increases is formed. As a result, the thrust increases, sfc is reduced, and the jet speed Vj is also reduced (the exhaust speed in Table 2 is higher than the actual speed because cooling air or the like is not considered).
遷音速巡航2においては、ファン修正回転数を100%に維持するためA7Cを僅かに開いてLPT出力を保つ。遷音速上昇2−2は、音の壁を破り超音速飛行に入るためエンジン流量を増し、且つ比推力を高めた場合である。燃料流量を増加して圧縮機圧力比を高め、推力を増すが、そのままでは当然ファン回転数が上昇してしまうので、A7Cを絞りLPT背圧の低下を抑えて、ファンの過回転を防ぐ。超音速巡航3では、TITは最高となり、固定サイクルの場合上昇してしまうBPRを抑えるため、A7Cを絞りファン機械回転数を100%に保つ。In
サイクル計算を基に、本エンジンのLPTの作動性(operability)を解析するために、離陸時における1と1−1のLPT入口出口(エンジン位置、5、6、7C)の状態を計算した。離陸1(設計点)ではLPT出口6とコアダクト出口7Cの面積は等しいとした。計算結果を表3に示す。 Based on the cycle calculation, in order to analyze the LPT operability of this engine, the states of the LPT inlet and outlet (engine positions 5, 6, 7C) of 1 and 1-1 at takeoff were calculated. At takeoff 1 (design point), the LPT outlet 6 and the core duct outlet 7C have the same area. Table 3 shows the calculation results.
興味深いことに、LPT出口6の両者(1と1−1)の軸流マッハ数M6は等しく、膨張比もほとんど違いがない。つまり両者の膨張比の違いはコアダクト内で生じている。コアダクト出口面積A7Cを広げると、運動量流束が減少して、コアダクト内で作動ガスは断熱膨張する。よって作動ガスの動圧が低下し、運動エネルギーは運動量の変化を通してLPT動力に変換される。Interestingly, (1 1-1) both LPT outlet 6 axial Mach number M 6 of equal, there is little difference between the expansion ratio also. That is, the difference in expansion ratio between the two occurs in the core duct. A larger core duct exit area A 7C, the momentum flux is reduced, the working gas in the core duct is adiabatic expansion. Accordingly, the dynamic pressure of the working gas is reduced, and the kinetic energy is converted into LPT power through a change in momentum.
一般に拡大流路(デフューザー)は、減速流で逆圧力勾配となる。数式2はA7Cを広げ拡大流路にすると、減速流で順圧力勾配の流れ場が形成されることを示している。これは当該コアダクトが静止した要素ではないことを意味している。流体の全エネルギーを表現する方程式を数式6に示す。In general, the enlarged flow path (diffuser) has a reverse pressure gradient in a deceleration flow.
数式6から流体の全温、従ってその全圧は、非定常な圧縮、または膨張によってのみ変化し得る。定常流は∂/∂t=0なので、流体にエネルギーを加えたり、流れからエネルギーを引き出すことはできない。さらに数式6は、タービンのように流体のエネルギーを減らすには、圧力(運動量流束)を下げねばならないことを示しており、表3と整合している。コアダクト内の流れが定常流となり、静止した要素、即ちディフューザーになるのはLPTがチョークしていない場合である。 From Equation 6, the total temperature of the fluid, and thus its total pressure, can only be changed by unsteady compression or expansion. Since steady flow is ∂ / ∂t = 0, it is not possible to add energy to the fluid or extract energy from the flow. Further, Equation 6 shows that the pressure (momentum flux) must be decreased to reduce the energy of the fluid as in the turbine, and is consistent with Table 3. The flow in the core duct becomes a steady flow and becomes a stationary element, that is, a diffuser, when the LPT is not choked.
図4に示す離陸時のタービン特性図は、上記の物理現象をよく表している。P5/P6は1と1−1で差がなく(両者ともチョーク状態)、1−1のみコアダクト出口7Cで膨張比が大きくなっている。回転するターボ機械と流体のエネルギー交換は、非定常過程を通じてのみ行われるという原理に、図4は合致している。The turbine characteristic diagram at take-off shown in FIG. 4 well represents the above physical phenomenon. P 5 / P 6 has no difference between 1 and 1-1 (both are choked), and only 1-1 has an increased expansion ratio at the core duct outlet 7C. FIG. 4 is consistent with the principle that the energy exchange between the rotating turbomachine and the fluid takes place only through an unsteady process.
タービン出口の特性曲線は、入口の状態量と、ファンとLPTのパワーバランスによって定まる。従ってタービンチョーク状態でこの曲線に沿って体積流量を増すと、入口修正流量一定からタービン背圧が低下する。 The characteristic curve at the turbine outlet is determined by the state quantity at the inlet and the power balance between the fan and the LPT. Therefore, when the volume flow rate is increased along this curve in the turbine choke state, the turbine back pressure is lowered from the constant inlet correction flow rate.
図5には遷音速上昇時のタービン特性図を示す。遷音速での推力増加は、あくまで燃料の増量によるものである。この場合の可変コアダクト出口面積の役割は、前述のようにファン回転数の異常な上昇を防ぐことにある。温度変化量による反動度Rを数式6で示す。 FIG. 5 shows a turbine characteristic diagram when the transonic speed is increased. The increase in thrust at the transonic speed is only due to an increase in fuel. In this case, the role of the variable core duct exit area is to prevent an abnormal increase in the number of fan rotations as described above. The reaction degree R according to the temperature change amount is expressed by Equation 6.
表3から数式6により算出された反動度を表4に示す。 Table 4 shows the degree of reaction calculated from Table 3 using Equation 6.
表4から面積A7Cを広げると反動度が小さくなり(1−1)、A7Cを狭めると反動度が高くなる(2−1)。反動度の定義から離陸1−1において、結局P6=P7C=349.23kPaであることが理解される。何故ならコアダクト流路内には機械要素はないからである。When the area A 7C is expanded from Table 4, the reaction degree decreases (1-1), and when the A 7C is decreased, the reaction degree increases (2-1). From the definition of the reaction degree, it is understood that P 6 = P 7C = 349.23 kPa after take-off 1-1. This is because there are no mechanical elements in the core duct flow path.
大型SSTでは、陸上超音速飛行が許容される可能性があるソニックブーム強度のレベルを達成するのは、現段階では困難と考えられている。それに対し小型SSTは陸上超音速飛行を前提としている。一方、近年はICAO(International Civil Aviation Organization)による空港騒音に対する規制が益々強化されており、次世代超音速機にとって大きな環境課題であるが、本発明は超音速巡航が可能な低バイパスエンジンを簡単な改造により離陸時に排気速度を下げて、しかも推力を高め得るので、騒音低減デバイスでの推力損失を補うことができる。離陸時での低騒音、且つ超音速での飛行が可能なエンジンの出現は、新しい航空輸送分野を築く可能性がある。 In large SSTs, it is considered difficult at this stage to achieve the level of sonic boom strength at which land-based supersonic flight may be permitted. On the other hand, the small SST is premised on land supersonic flight. On the other hand, in recent years, regulations on airport noise by ICAO (International Civic Aviation Organization) have been increasingly strengthened, which is a big environmental issue for the next-generation supersonic aircraft, but the present invention makes it easy to create a low bypass engine capable of supersonic cruise. As a result of various modifications, the exhaust speed can be lowered at the time of takeoff and the thrust can be increased, so that the thrust loss in the noise reduction device can be compensated. The emergence of low noise at take-off and supersonic flying engines may create a new air transportation sector.
FAN:ファン f:燃料空気混合比 HPC:圧縮機
CC:燃焼器 CVSV:圧縮機可変静翼 HPT:高圧タービン
LPT:低圧タービン LPT−VG:低圧タービン可変静翼
TC:前後に出し入れ可能なテールコーン
A:流路断面積 A7B:エンジン位置7におけるバイパス流路断面積
A7C:コアダクト出口断面積 RM:ローブミキサー EN:エジェクタノズル
1:離陸時(設計点) 1−1:離陸時A7C開 2:遷音速巡航時
2−2:遷音速上昇A7C閉 3:超音速巡航時A7C閉の作動点
添え字
des:設計点、数字:エンジンの各断面位置を表すFAN: Fan f: Fuel / air mixing ratio HPC: Compressor CC: Combustor CVSV: Compressor variable stator blade HPT: High pressure turbine LPT: Low pressure turbine LPT-VG: Low pressure turbine variable stator blade TC: Tail cone that can be inserted and removed A: Channel cross-sectional area A7B: Bypass channel cross-sectional area at engine position 7 A7C: Core duct outlet cross-sectional area RM: Lobe mixer EN: Ejector nozzle 1: At takeoff (design point) 1-1: A7C open at takeoff 2: Transition Sonic cruise 2-2: Transonic increase A7C closed 3: Supersonic cruise A7C closed operating point subscript des: Design point, number: Represents the cross-sectional position of the engine
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011136746A JP2012251542A (en) | 2011-06-03 | 2011-06-03 | Variable cycle engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011136746A JP2012251542A (en) | 2011-06-03 | 2011-06-03 | Variable cycle engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012251542A true JP2012251542A (en) | 2012-12-20 |
Family
ID=47524562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011136746A Withdrawn JP2012251542A (en) | 2011-06-03 | 2011-06-03 | Variable cycle engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012251542A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3597895A1 (en) * | 2018-07-20 | 2020-01-22 | Rolls-Royce plc | Supersonic aircraft turbofan engine |
US10738693B2 (en) | 2018-08-10 | 2020-08-11 | Rolls-Royce Plc | Advanced gas turbine engine |
US10989112B2 (en) | 2018-08-10 | 2021-04-27 | Rolls-Royce Plc | Gas turbine engine |
US11047301B2 (en) | 2018-08-10 | 2021-06-29 | Rolls-Royce Plc | Gas turbine engine with efficient thrust generation |
US12037942B2 (en) | 2018-08-10 | 2024-07-16 | Rolls-Royce Plc | Efficient aircraft engine |
-
2011
- 2011-06-03 JP JP2011136746A patent/JP2012251542A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3597895A1 (en) * | 2018-07-20 | 2020-01-22 | Rolls-Royce plc | Supersonic aircraft turbofan engine |
US11884414B2 (en) | 2018-07-20 | 2024-01-30 | Rolls-Royce Plc | Supersonic aircraft turbofan engine |
US10738693B2 (en) | 2018-08-10 | 2020-08-11 | Rolls-Royce Plc | Advanced gas turbine engine |
US10989112B2 (en) | 2018-08-10 | 2021-04-27 | Rolls-Royce Plc | Gas turbine engine |
US11047301B2 (en) | 2018-08-10 | 2021-06-29 | Rolls-Royce Plc | Gas turbine engine with efficient thrust generation |
US11466617B2 (en) | 2018-08-10 | 2022-10-11 | Rolls-Royce Plc | Gas turbine engine with efficient thrust generation |
US12037942B2 (en) | 2018-08-10 | 2024-07-16 | Rolls-Royce Plc | Efficient aircraft engine |
US12110830B2 (en) | 2018-08-10 | 2024-10-08 | Rolls-Royce Plc | Gas turbine engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2960579C (en) | Engine bleed system with multi-tap bleed array | |
US11884414B2 (en) | Supersonic aircraft turbofan engine | |
JP2008163945A (en) | Convertible gas turbine engine | |
Rolt et al. | Scale effects on conventional and intercooled turbofan engine performance | |
JP2012251542A (en) | Variable cycle engine | |
Ahmed et al. | Performance Analysis of Cold Sections of High BYPASS Ratio Turbofan Aeroengine | |
JPWO2005085620A1 (en) | Variable cycle engine for subsonic propulsion | |
JP2009057955A (en) | Inter-turbine-bypass variable-cycle engine for supersonic aircraft | |
CN103726952B (en) | Shunting gas-turbine unit | |
JP2018059491A (en) | Flow control method of ultrahigh bypass ratio variable cycle turbofan | |
Clark et al. | Development of a parametric variable cycle engine model using the multiple design point approach | |
Whurr | Propulsion system concepts and technology requirements for quiet supersonic transports | |
Mahmood et al. | Thrust reverser for a mixed exhaust high bypass ratio turbofan engine and its effect on aircraft and engine performance | |
Sebastiampillai et al. | Modelling Geared Turbofan and Open Rotor Engine Performance for Year-2050 Long-Range and Short-Range Aircraft | |
Zhang et al. | A Study of Two Variable Cycle Engine Concepts for High Speed Civil Aircraft | |
Zhou et al. | The transient performance of FLADE variable cycle engine during mode transition | |
Buettner et al. | Design of a transient variable cycle turbine engine model for system integration with controls | |
JP2012067738A (en) | Low noise supersonic propeller | |
Greatrix et al. | Gas turbine engines: Fundamentals | |
JP2002054503A (en) | High bypass ratio variable cycle engine for subsonic aircraft | |
Sippel | Research on TBCC propulsion for a Mach 4.5 supersonic cruise airliner | |
Burgett et al. | Comparison of Vaneless Counter-Rotating Power Extraction Engines for UAV Propulsion | |
Clark et al. | Integrated Design of a Variable Cycle Engine and Aircraft Thermal Management System | |
Cleary et al. | The Effects of Fixed Conical Spike Inlets on the Performance of Higher Bypass Ratio Engines | |
Burgett | Comparison of traditional two-spool and three-spool with vaneless counter-rotating low-pressure turbine for aircraft propulsion power extraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140805 |