Nothing Special   »   [go: up one dir, main page]

JP2012137386A - Motor-preventive maintenance device - Google Patents

Motor-preventive maintenance device Download PDF

Info

Publication number
JP2012137386A
JP2012137386A JP2010289975A JP2010289975A JP2012137386A JP 2012137386 A JP2012137386 A JP 2012137386A JP 2010289975 A JP2010289975 A JP 2010289975A JP 2010289975 A JP2010289975 A JP 2010289975A JP 2012137386 A JP2012137386 A JP 2012137386A
Authority
JP
Japan
Prior art keywords
electric motor
motor
preventive maintenance
abnormality
evaluation model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010289975A
Other languages
Japanese (ja)
Inventor
Zhong Li
忠 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2010289975A priority Critical patent/JP2012137386A/en
Priority to KR1020110069741A priority patent/KR101279669B1/en
Priority to CN2011102997618A priority patent/CN102570729A/en
Publication of JP2012137386A publication Critical patent/JP2012137386A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Protection Of Generators And Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motor-preventive maintenance device enabling an objective determination of an abnormality of a motor independently of a worker's skill and ability, thereby contributing to preventing the motor from suddenly failing.SOLUTION: A motor-preventive maintenance device performs: obtaining an amount of operation (a load factor) of a motor from a motor drive device and a state amount of the motor (a coil temperature-rise value) that has correlation with the obtained amount of operation, from a sensor installed in the motor; collating a correlation evaluation model with evaluation-use data representing a relationship between a specific state amount and the amount of operation obtained during the operation of the motor to thereby determine a degree of coincidence between the evaluation-use data and correlation evaluation model; and monitoring an abnormality of the motor on the basis of the aforementioned degree of coincidence.

Description

本発明は、電動機の予防保全装置に係わり、特に、製鉄所の圧延プラントに用いられる電動機のような大型電動機の予兆診断に用いて好適な予防保全装置に関する。   The present invention relates to a preventive maintenance apparatus for an electric motor, and more particularly to a preventive maintenance apparatus suitable for use in predictive diagnosis of a large electric motor such as an electric motor used in a steel plant rolling plant.

製鉄所の圧延プラントを構成する機器の一つに電動機がある。電動機は圧延プラントにおける重要な要素であり、その故障は圧延プラント全体に影響する。このため、圧延プラントの運転においては、電動機に異常が生じていないか監視することにより、電動機の故障を未然に防止することが必要とされている。つまり、電動機の予防保全が必要とされている。   One of the equipment that makes up the rolling mill of an ironworks is an electric motor. The electric motor is an important element in the rolling plant, and its failure affects the entire rolling plant. For this reason, in the operation of a rolling plant, it is necessary to prevent failure of the electric motor by monitoring whether the electric motor is abnormal. In other words, preventive maintenance of the electric motor is required.

従来の電動機の予防保全では、例えば特開昭60−66647号公報に開示されているように、電動機の温度や振動を計測し、その計測値を監視することが行われていた。具体的には、図7及び図8に示すように振動や温度などの監視対象の計測値が時間軸上に読み込まれて、その計測値が閾値を越えていないかどうか監視されていた。そして、図7に示すように監視対象の計測値が閾値を超えていない間は、電動機は正常に保たれていると判断され、図8に示すように監視対象の計測値が閾値を超える異常点が検出されたら、電動機が異常だとして警報が出されていた。また、監視対象の計測値が閾値を超えた各異常点について、異常の程度の大きさによって軽故障と重故障の警報が分けられていた。   In conventional preventive maintenance of an electric motor, for example, as disclosed in JP-A-60-66647, the temperature and vibration of the electric motor are measured and the measured values are monitored. Specifically, as shown in FIGS. 7 and 8, the measurement values to be monitored such as vibration and temperature are read on the time axis, and it is monitored whether or not the measurement values exceed the threshold value. Then, as shown in FIG. 7, while the measured value of the monitoring target does not exceed the threshold, it is determined that the electric motor is kept normal, and the measured value of the monitoring target exceeds the threshold as shown in FIG. 8. When the point was detected, an alarm was given that the motor was abnormal. In addition, for each abnormal point where the measured value of the monitored object exceeds the threshold value, a light failure alarm and a serious failure alarm are classified according to the magnitude of the abnormality.

特開昭60−66647号公報JP 60-66647 A

ところが、従来の方法では、電動機の異常が検知されて警報が出された場合、電動機のメンテナンスを実施するか否か、実施するのであればどの程度に実施するのかといった判断は人間、すなわち、現場の作業者に委ねられていた。このため、作業員の能力の差異によって判断が異なり、誤った判断の結果、重大な故障を発生させしてしまう場合があった。前述のように、電動機の故障はプラント全体に影響し、重大な故障であればプラントの操業を停止させてしまうこともある。特に遠隔地のプラントにおいて、突発的な故障が発生した場合には、補修・修理に時間がかかり、多くのリソースが割かれることになる。   However, in the conventional method, when an abnormality is detected in an electric motor and an alarm is issued, whether or not to perform maintenance of the electric motor is determined by humans, that is, on-site Was entrusted to the workers. For this reason, the judgment differs depending on the ability of the worker, and as a result of erroneous judgment, a serious failure may occur. As described above, the failure of the electric motor affects the entire plant, and if it is a serious failure, the operation of the plant may be stopped. In particular, when a sudden failure occurs in a remote plant, it takes time to repair and repair, and a lot of resources are used.

本発明は、上述のような課題に鑑みなされたもので、作業者の熟練度や能力に左右されることなく電動機の異常を客観的に判断することができ、ひいては、電動機の突発的な故障を未然に防止することのできる電動機の予防保全装置を提供することを目的とする。   The present invention has been made in view of the problems as described above, and can determine an abnormality of the motor objectively without being influenced by the skill level and ability of the operator, and consequently, a sudden failure of the motor. It is an object of the present invention to provide a preventive maintenance device for an electric motor that can prevent the occurrence of the problem.

上記の目的を達成するために、本発明の電動機の予防保全装置は、電動機の操作量を電動機駆動装置から取得するとともに、取得した操作量と相関関係がある電動機の状態量(特定状態量)を電動機に設置されているセンサにより取得する。そして、電動機の運転時において取得された操作量と特定状態量との関係を示すデータ(評価用データ)を相関評価モデルと照合し、評価用データと相関評価モデルとの一致度を判定する。相関評価モデルは、電動機が正常な場合における操作量と特定状態量との相関関係をモデル化したものであって、予め用意されたものが予防保全装置に記憶されている。本発明の電動機の予防保全装置は、評価用データと相関評価モデルとの一致度に基づいて電動機の異常を監視する。   In order to achieve the above object, the preventive maintenance device for an electric motor according to the present invention acquires the operation amount of the motor from the electric motor drive device, and the state quantity (specific state quantity) of the motor correlated with the acquired operation quantity. Is acquired by a sensor installed in the electric motor. Then, the data (evaluation data) indicating the relationship between the manipulated variable and the specific state quantity acquired during operation of the motor is collated with the correlation evaluation model, and the degree of coincidence between the evaluation data and the correlation evaluation model is determined. The correlation evaluation model is obtained by modeling the correlation between the operation amount and the specific state amount when the motor is normal, and the prepared model is stored in the preventive maintenance device. The preventive maintenance device for an electric motor according to the present invention monitors the abnormality of the electric motor based on the degree of coincidence between the evaluation data and the correlation evaluation model.

電動機の異常監視の具体的な方法としては、評価用データと相関評価モデルとの一致度が所定の異常判定値よりも低下していることを電動機の異常として検知することが好ましい。また、一定期間内に一致度が所定の異常判定値を下回った回数を計数することも好ましい異常監視の方法の一つである。また、一定期間ごとに一致度が所定の異常判定値を下回った回数(異常回数)を計数し、異常回数の経時的変化を記録することも好ましい異常監視の方法の一つである。   As a specific method for monitoring the abnormality of the electric motor, it is preferable to detect that the degree of coincidence between the evaluation data and the correlation evaluation model is lower than a predetermined abnormality determination value as an abnormality of the electric motor. In addition, counting the number of times the degree of coincidence falls below a predetermined abnormality determination value within a certain period is also a preferable abnormality monitoring method. In addition, counting the number of times the degree of coincidence falls below a predetermined abnormality determination value (abnormal number) for each predetermined period and recording the change over time in the abnormal number is also one of the preferable abnormality monitoring methods.

本発明は、電動機の操作量と特定状態量との間に相関関係がある場合、電動機が正常なときと異常なときとではその関係に不一致が生じ、異常の度合いが大きいほど一致度が低下することに着目したものである。本発明では、上述のように、電動機が正常な場合における操作量と特定状態量との相関関係をモデル化した相関評価モデルを基準として、あるタイミングで取得された操作量と特定状態量との関係が電動機の正常時の関係かどうかが判定される。これによれば、従来方法のように単に振動や温度の計測値を閾値と比較する方法に比較して、作業員の熟練度や能力に左右されることなく電動機の異常を客観的に且つ正確に判断することができる。したがって、本発明によれば、電動機の故障の兆候を事前に知り、その症状に応じたメンテナンスを適切に実施することが可能であり、プラント全体の運転に影響するような電動機の突発的な故障を未然に防止することができる。   In the present invention, when there is a correlation between the operation amount of the motor and the specific state quantity, a mismatch occurs between the normal state and the abnormal state of the motor, and the degree of coincidence decreases as the degree of abnormality increases. The focus is on doing. In the present invention, as described above, the operation amount and the specific state amount acquired at a certain timing are based on the correlation evaluation model that models the correlation between the operation amount and the specific state amount when the motor is normal. It is determined whether the relationship is a normal motor relationship. According to this, compared with the method of simply comparing the measured values of vibration and temperature with the threshold values as in the conventional method, the abnormality of the motor can be objectively and accurately determined regardless of the skill level and ability of the worker. Can be judged. Therefore, according to the present invention, it is possible to know in advance the signs of the failure of the motor and appropriately perform maintenance according to the symptom, and the sudden failure of the motor that affects the operation of the entire plant Can be prevented in advance.

本発明の実施の形態1−3の電動機の予防保全装置が適用されるシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the system with which the preventive maintenance apparatus of the electric motor of Embodiment 1-3 of this invention is applied. 本発明の実施の形態1による相関評価モデルを示すグラフである。It is a graph which shows the correlation evaluation model by Embodiment 1 of this invention. 本発明の実施の形態1による異常監視の方法を示すグラフである。It is a graph which shows the method of abnormality monitoring by Embodiment 1 of this invention. 本発明の実施の形態2による異常監視の方法を示すグラフである。It is a graph which shows the method of abnormality monitoring by Embodiment 2 of this invention. 本発明の実施の形態3による異常監視の方法を示すグラフである。It is a graph which shows the method of abnormality monitoring by Embodiment 3 of this invention. 巻線コイル絶縁層の経年劣化を示す図である。It is a figure which shows aged deterioration of the winding coil insulation layer. 従来の電動機の予防保全で行われていた電動機の異常監視の方法を示すグラフである。It is a graph which shows the abnormality monitoring method of the motor performed by the preventive maintenance of the conventional motor. 従来の電動機の予防保全で行われていた電動機の異常監視の方法を示すグラフである。It is a graph which shows the abnormality monitoring method of the motor performed by the preventive maintenance of the conventional motor.

実施の形態1.
以下、本発明の実施の形態1について図1、図2及び図3に基づいて説明する。
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG. 1, FIG. 2, and FIG.

図1は本実施の形態の電動機の予防保全装置が適用されるシステムの構成を示すブロック図である。このシステムでは、電動機1と電動機駆動装置2とは離れた場所に配置され、それぞれリモートIO盤3,4を介してネットワーク5に接続されている。電動機駆動装置2が出力する操作信号は、リモートIO盤4を介してネットワーク5へ出力され、同ネットワーク5からリモートIO盤3を介して電動機1に入力される。電動機1は、電動機駆動装置2から送信された操作信号によってその回転を制御される。電動機1には、その状態量を測定するためのセンサとして、2つの測温抵抗体6,7が設けられている。その一つは、電動機1の巻線温度を測定するための巻線温度測定用測温抵抗体(Resistance Temperature Detector)6である。もう一つは、電動機1を冷却している冷媒の温度を測定するための冷媒温度測定用測温抵抗体7である。   FIG. 1 is a block diagram showing a configuration of a system to which the preventive maintenance device for an electric motor according to the present embodiment is applied. In this system, the electric motor 1 and the electric motor driving device 2 are arranged at remote locations, and are connected to the network 5 via the remote IO boards 3 and 4, respectively. The operation signal output by the electric motor drive device 2 is output to the network 5 via the remote IO board 4 and is input from the network 5 to the electric motor 1 via the remote IO board 3. The rotation of the electric motor 1 is controlled by an operation signal transmitted from the electric motor driving device 2. The electric motor 1 is provided with two resistance temperature detectors 6 and 7 as sensors for measuring the state quantity. One of them is a resistance temperature detector 6 for measuring the winding temperature for measuring the winding temperature of the electric motor 1. The other is a temperature measuring resistor 7 for measuring the refrigerant temperature for measuring the temperature of the refrigerant cooling the electric motor 1.

本実施の形態の電動機予防保全装置8はネットワーク5に接続されている。電動機駆動装置2から出力される操作信号には電動機1の操作量である負荷率のデータが含まれる。電動機予防保全装置8は電動機1の負荷率のデータをリモートIO盤4からネットワーク5を介して収集し、保存する。また、電動機予防保全装置8は、巻線温度測定用測温抵抗体6と冷媒温度測定用測温抵抗体7の各測定データをリモートIO盤3からネットワーク5を介して収集し、保存する。電動機予防保全装置8による負荷率データの取り込みタイミングと、各測定データの取り込みタイミングとは同期されている。   The motor preventive maintenance device 8 of the present embodiment is connected to the network 5. The operation signal output from the electric motor drive device 2 includes load factor data that is the operation amount of the electric motor 1. The motor preventive maintenance device 8 collects and stores the load factor data of the motor 1 from the remote IO board 4 via the network 5. Further, the motor preventive maintenance device 8 collects and stores each measurement data of the resistance temperature measuring resistor 6 and the temperature measuring resistor 7 for measuring the refrigerant temperature from the remote IO board 3 via the network 5. The loading timing of the load factor data by the motor preventive maintenance device 8 and the loading timing of each measurement data are synchronized.

電動機予防保全装置8は、負荷率データから負荷率の二乗平均平方根を算出するとともに、巻線温度測定用測温抵抗体6と冷媒温度測定用測温抵抗体7の各測定データから電動機1の巻線温度の上昇値を算出する。負荷率の二乗平均平方根と巻線温度上昇値との間には、以下に述べるような相関関係がある。   The motor preventive maintenance device 8 calculates the root mean square of the load factor from the load factor data, and calculates the motor 1 from each measurement data of the resistance temperature measuring resistor 6 and the temperature measuring resistor 7 for measuring the refrigerant temperature. Calculate the rise in winding temperature. There is a correlation as described below between the root mean square of the load factor and the winding temperature rise value.

電動機1の損失には、鉄損、銅損、漂遊負荷損、機械損などが含まれる。その中でも銅損は損失の大半を占めている。巻線温度上昇値は電動機1の損失に比例することから、銅損と巻線温度上昇値とは比例関係にある。ここで、銅損とは巻線コイルの発熱量のことを指す。巻線コイルの発熱量をQとすると、発熱量Qは次の式1によって表される。式1において、iは巻線電流、Rは巻線抵抗、tは時間である。   The loss of the electric motor 1 includes iron loss, copper loss, stray load loss, mechanical loss, and the like. Among them, copper loss accounts for most of the loss. Since the winding temperature rise value is proportional to the loss of the electric motor 1, the copper loss and the winding temperature rise value are in a proportional relationship. Here, copper loss refers to the amount of heat generated by the winding coil. If the heat generation amount of the winding coil is Q, the heat generation amount Q is expressed by the following equation 1. In Equation 1, i is the winding current, R is the winding resistance, and t is time.

Figure 2012137386
Figure 2012137386

式1より、巻線温度上昇値は電流の二乗に比例することが得られる。その関係を式2に示す。式2において、ΔTは巻線温度上昇値である。   From Equation 1, it can be seen that the winding temperature rise value is proportional to the square of the current. The relationship is shown in Equation 2. In Equation 2, ΔT is the winding temperature rise value.

Figure 2012137386
Figure 2012137386

一方、電動機1の負荷率は巻線電流により求めることができる。その関係を式3に示す。式3において、Lは負荷率である。   On the other hand, the load factor of the electric motor 1 can be obtained from the winding current. The relationship is shown in Equation 3. In Equation 3, L is a load factor.

Figure 2012137386
Figure 2012137386

負荷率の二乗平均平方根をRMSとすると、二乗平均平方根RMSは次の式4によって表される。式4において、Lは負荷率、TはRMSを演算する時間、tはRMSを演算する時間内のサンプリング時間、j=1,2,…nである。 When the root mean square of the load factor is RMS, the root mean square RMS is expressed by the following Equation 4. In Expression 4, L j is a load factor, T is a time for calculating RMS, t j is a sampling time within a time for calculating RMS, and j = 1, 2,... N.

Figure 2012137386
Figure 2012137386

式4と式3により、次の式5の関係が得られる。   From the equations 4 and 3, the following equation 5 is obtained.

Figure 2012137386
Figure 2012137386

さらに、式2と式5により、次の式6の関係が得られる。   Furthermore, the relationship of the following equation 6 is obtained from the equations 2 and 5.

Figure 2012137386
Figure 2012137386

式6より、巻線温度上昇値ΔTと負荷率の二乗平均平方根の二乗値RMSとの間には比例関係があることが分かる。本実施の形態では、電動機1の正常運転時の一定期間に前述の各データを収集し、巻線温度上昇値ΔTと負荷率の二乗平均平方根RMSの関係を示すデータを複数取得する。そして、取得したデータを用いて最小二乗法によりΔTとRMSとの関係を示す近似式を決定する。次の式7がその近似式である。式7において、κは既知の係数、cは既知の定数である。式7をグラフで表すと図2のようになる。 From Equation 6, it can be seen that there is a proportional relationship between the winding temperature rise value ΔT and the root mean square value RMS 2 of the load factor. In the present embodiment, each of the above-described data is collected during a certain period during normal operation of the electric motor 1, and a plurality of data indicating the relationship between the winding temperature rise value ΔT and the root mean square RMS of the load factor are acquired. Then, an approximate expression indicating the relationship between ΔT and RMS is determined by the least square method using the acquired data. The following expression 7 is an approximate expression. In Equation 7, κ is a known coefficient, and c is a known constant. Expression 7 is represented by a graph as shown in FIG.

Figure 2012137386
Figure 2012137386

電動機予防保全装置8には、式7に示す一次方程式が相関評価モデルとして記憶されている。電動機予防保全装置8は、この相関評価モデルを用いて電動機1の異常を監視する。具体的には、電動機1の運転時、ある時間帯の負荷率のデータからRMSの二乗値を算出するとともに、その時間帯内の各測温抵抗体6,7の測定データから巻線温度上昇値ΔTを算出する。これにより、前記時間帯におけるRMSの二乗値と巻線温度上昇値ΔTとの関係を示すデータ(評価用データ)が得られる。そして、図3に示すように、得られた評価用データ(図3において点mで示す)を相関評価モデル(図3において実線の直線で示す)と照合する。評価用データを示す点が相関評価モデルを示す直線から離れるほど、両者の一致度は低いということになる。   In the motor preventive maintenance apparatus 8, a linear equation shown in Expression 7 is stored as a correlation evaluation model. The motor preventive maintenance device 8 monitors the abnormality of the motor 1 using this correlation evaluation model. Specifically, during the operation of the electric motor 1, the RMS value is calculated from the load factor data in a certain time zone, and the winding temperature rises from the measured data of the resistance temperature detectors 6 and 7 in the time zone. The value ΔT is calculated. Thereby, data (evaluation data) indicating the relationship between the RMS square value and the winding temperature rise value ΔT in the time period is obtained. Then, as shown in FIG. 3, the obtained evaluation data (indicated by a point m in FIG. 3) is collated with a correlation evaluation model (indicated by a solid straight line in FIG. 3). The more the point indicating the evaluation data is away from the straight line indicating the correlation evaluation model, the lower the degree of coincidence between them.

図3に示す点線の直線は、評価用データと相関評価モデルとの一致度を判定するための異常判定ラインである。RMSの値に関し、巻線温度上昇値ΔTの値が異常判定ラインを超える場合には、その評価用データは異常データであると判断することができる。このため、電動機予防保全装置8は、巻線温度上昇値ΔTが異常判定ラインを超えることを電動機1の異常として検知する。なお、異常判定ラインは経験値より設定することができる。例えば、相関評価モデルのラインをΔT軸のプラス方向に所定値だけスライドしたラインを異常判定ラインとして設定することができる。また、相関評価モデルのラインをΔT軸の方向に拡大(例えば1.5倍)したラインを異常判定ラインとして設定することができる。 A dotted straight line shown in FIG. 3 is an abnormality determination line for determining the degree of coincidence between the evaluation data and the correlation evaluation model. Regarding the value of RMS 2, when the value of the winding temperature increase value ΔT exceeds the abnormality determination line, it can be determined that the evaluation data is abnormal data. For this reason, the motor preventive maintenance device 8 detects that the winding temperature rise value ΔT exceeds the abnormality determination line as an abnormality of the electric motor 1. The abnormality determination line can be set from experience values. For example, a line obtained by sliding the correlation evaluation model line by a predetermined value in the plus direction of the ΔT axis can be set as the abnormality determination line. Further, a line obtained by enlarging the correlation evaluation model line in the direction of the ΔT axis (for example, 1.5 times) can be set as the abnormality determination line.

以上述べたように、本実施の形態では、電動機1が正常な場合における負荷率と巻線温度上昇値との相関関係をモデル化した相関評価モデルを基準として、任意の時間帯で取得された負荷率と巻線温度上昇値との関係が正常時の関係かどうかが判定される。これによれば、従来のように単に1つのデータを閾値と比較するのと比較して、電動機1の異常を客観的に且つ正確に判断することができる。   As described above, in the present embodiment, the motor 1 is acquired in an arbitrary time zone with reference to the correlation evaluation model that models the correlation between the load factor and the winding temperature rise value when the motor 1 is normal. It is determined whether or not the relationship between the load factor and the winding temperature rise value is a normal relationship. According to this, it is possible to objectively and accurately determine the abnormality of the electric motor 1 as compared with the case where one piece of data is compared with a threshold value as in the prior art.

実施の形態2.
以下、本発明の実施の形態2について図4に基づいて説明する。ただし、本実施の形態の電動機の予防保全装置は、実施の形態1と同様に図1に示す構成のシステムに適用される。
Embodiment 2. FIG.
The second embodiment of the present invention will be described below with reference to FIG. However, the preventive maintenance apparatus for an electric motor according to the present embodiment is applied to the system having the configuration shown in FIG. 1 as in the first embodiment.

本実施の形態では、電動機予防保全装置8は、一定の監視周期で前記の評価用データを取得し、その都度相関評価モデルと照合する。そして、評価用データが閾値である異常判定ラインを超えた時刻を記録するとともに、一定期間内に評価用データが異常判定ラインを超えた回数を計数する。記録された時刻や回数は、音声や画像によって作業者に報知されるようになっている。   In the present embodiment, the motor preventive maintenance device 8 acquires the evaluation data at a constant monitoring cycle and collates with the correlation evaluation model each time. Then, the time when the evaluation data exceeds the abnormality determination line as a threshold is recorded, and the number of times the evaluation data exceeds the abnormality determination line within a certain period is counted. The recorded time and number of times are notified to the worker by sound or image.

従来方法では、監視対象である温度や振動のデータが閾値を超える度に警報が出されるため、閾値は正常値よりある程度大きく設定せざるを得なかった。しかしながら、本実施の形態のように閾値を超えた回数だけをカウントし、その回数を記録して知らせるようにすれば、正常値に近い値に閾値を設定することができる。したがって、本実施の形態では、実施の形態1の場合よりも相関評価モデルに近いラインを異常判定ラインとして設定することができる。例えば、図4では、相関評価モデルのライン実線で示し、実施の形態1の場合の異常判定ラインを点線で示し、本実施の形態の場合の異常判定ラインを一点鎖線で示している。   In the conventional method, an alarm is issued each time the temperature or vibration data to be monitored exceeds the threshold value, so the threshold value has to be set to be somewhat larger than the normal value. However, if the number of times exceeding the threshold is counted and the number of times is recorded and notified as in the present embodiment, the threshold can be set to a value close to the normal value. Therefore, in the present embodiment, a line closer to the correlation evaluation model than in the case of the first embodiment can be set as the abnormality determination line. For example, in FIG. 4, the correlation evaluation model is indicated by a solid line, the abnormality determination line in the first embodiment is indicated by a dotted line, and the abnormality determination line in the present embodiment is indicated by a one-dot chain line.

本実施の形態によれば、閾値である異常判定ラインを正常値である相関評価モデルのラインにより近づけて設定できることから、電動機1の異常を早見できる効果がある。   According to the present embodiment, an abnormality determination line that is a threshold value can be set closer to a correlation evaluation model line that is a normal value, so that there is an effect that an abnormality of the electric motor 1 can be quickly seen.

実施の形態3.
以下、本発明の実施の形態3について図5及び図6に基づいて説明する。ただし、本実施の形態の電動機の予防保全装置は、実施の形態1と同様に図1に示す構成のシステムに適用される。
Embodiment 3 FIG.
The third embodiment of the present invention will be described below with reference to FIGS. However, the preventive maintenance apparatus for an electric motor according to the present embodiment is applied to the system having the configuration shown in FIG. 1 as in the first embodiment.

本実施の形態では、電動機予防保全装置8は、一定の監視周期で前記の評価用データを取得し、その都度相関評価モデルと照合する。そして、評価用データが閾値である異常判定ラインを超えた時刻を記録するとともに、一定期間ごとに評価用データが異常判定ラインを超えた回数(異常回数)を計数し、異常回数の経時的変化を記録する。つまり、本実施の形態では、電動機予防保全装置8は、異常回数の増減を長期的に監視し、電動機1の経年の劣化を予見する。   In the present embodiment, the motor preventive maintenance device 8 acquires the evaluation data at a constant monitoring cycle and collates with the correlation evaluation model each time. Then, the time when the evaluation data exceeds the abnormality determination line, which is a threshold, is recorded, and the number of times the evaluation data exceeds the abnormality determination line (abnormal number) is counted for a certain period, and the change in the number of abnormality over time Record. That is, in the present embodiment, the motor preventive maintenance device 8 monitors the increase / decrease in the number of abnormalities over a long period of time, and predicts the deterioration of the motor 1 over time.

異常回数が一方方向で増加していく、もしくは減少していくのであれば、電動機1が劣化していると判断することができる。例えば、図5に示すように、一定期間ごとの測定に伴い、異常回数が一方向に増加していく場合には、電動機1の経年の劣化を推定することができる。また、図6に示すように、電動機1のコイルを取り巻く絶縁層には長年の運転によって枯れなどの劣化が見られるようになる。これらの劣化傾向を把握するため、測温抵抗体6,7の実測値から得られる温度上昇値と閾値とを比較し、閾値を越えた点の増減を長期的に監視することで、短絡のような重大な故障が起こる前に適切な復旧措置を行うことができる。   If the number of abnormalities increases or decreases in one direction, it can be determined that the electric motor 1 has deteriorated. For example, as shown in FIG. 5, when the number of abnormalities increases in one direction with the measurement for each fixed period, it is possible to estimate the deterioration of the motor 1 over time. In addition, as shown in FIG. 6, the insulating layer surrounding the coil of the electric motor 1 is deteriorated such as withering due to operation for many years. In order to grasp these deterioration trends, the temperature rise value obtained from the measured value of the resistance thermometers 6 and 7 is compared with the threshold value, and the increase and decrease of the points exceeding the threshold value are monitored over a long period of time. Appropriate recovery measures can be taken before such a serious failure occurs.

本実施の形態によれば、評価用データが閾値である異常判定ラインを超えた異常回数の増減を長期的に監視するため、電動機1の経年の劣化を予見できる効果がある。   According to the present embodiment, since the increase / decrease in the number of abnormalities exceeding the abnormality determination line that is the threshold value of the evaluation data is monitored over a long period of time, there is an effect that it is possible to predict the deterioration of the electric motor 1 over time.

その他.
本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、上述の実施の形態では操作量として電動機の負荷率を用い、状態量として巻線温度上昇値を用いているが、相関関係があるならばその他の操作量と状態量の組み合わせを用いることもできる。
Others.
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the above embodiment, the load factor of the motor is used as the operation amount and the winding temperature rise value is used as the state amount. However, if there is a correlation, other combinations of the operation amount and the state amount are used. You can also.

1…電動機
2…電動機駆動装置
3、4…リモートIO盤
5…ネットワーク
6…巻線温度測定用測温抵抗体
7…冷媒温度測定用測温抵抗体
8…電動機予防保全装置
DESCRIPTION OF SYMBOLS 1 ... Electric motor 2 ... Electric motor drive device 3, 4 ... Remote IO board 5 ... Network 6 ... Resistance temperature detector 7 for winding temperature measurement ... Resistance temperature detector 8 for refrigerant temperature measurement ... Electric motor preventive maintenance device

Claims (5)

電動機駆動装置から入力される操作信号によって回転を制御される電動機の予防保全装置であって、
前記電動機の操作量を前記電動機駆動装置から取得する操作量取得手段と、
前記操作量と相関関係がある前記電動機の状態量を前記電動機に設置されているセンサにより取得する状態量取得手段と、
前記電動機が正常な場合における前記操作量と前記状態量との相関関係をモデル化した相関評価モデルを記憶する相関評価モデル記憶手段と、
前記電動機の運転時において取得された前記操作量と前記状態量との関係を示すデータを前記相関評価モデルと照合し、前記データと前記相関評価モデルとの一致度を判定する一致度判定手段と、
前記一致度に基づいて前記電動機の異常を監視する異常監視手段と、
を備えることを特徴とする電動機の予防保全装置。
A preventive maintenance device for an electric motor whose rotation is controlled by an operation signal input from an electric motor drive device,
An operation amount obtaining means for obtaining an operation amount of the electric motor from the electric motor driving device;
A state quantity acquisition means for acquiring a state quantity of the motor correlated with the operation quantity by a sensor installed in the motor;
Correlation evaluation model storage means for storing a correlation evaluation model that models the correlation between the operation amount and the state amount when the electric motor is normal;
A degree of coincidence determination means for collating data indicating a relationship between the manipulated variable and the state quantity acquired during operation of the electric motor with the correlation evaluation model and determining a degree of coincidence between the data and the correlation evaluation model; ,
An abnormality monitoring means for monitoring an abnormality of the electric motor based on the degree of coincidence;
A preventive maintenance device for an electric motor comprising:
前記異常監視手段は、前記一致度が所定の異常判定値よりも低下していることを前記電動機の異常として検知することを特徴とする請求項1記載の電動機の予防保全装置。   2. The preventive maintenance apparatus for an electric motor according to claim 1, wherein the abnormality monitoring unit detects that the degree of coincidence is lower than a predetermined abnormality determination value as an abnormality of the electric motor. 前記異常監視手段は、一定期間内に前記一致度が所定の異常判定値を下回った回数を計数することを特徴とする請求項1記載の電動機の予防保全装置。   2. The preventive maintenance apparatus for an electric motor according to claim 1, wherein the abnormality monitoring means counts the number of times that the degree of coincidence falls below a predetermined abnormality determination value within a predetermined period. 前記異常監視手段は、一定期間ごとに前記一致度が所定の異常判定値を下回った回数を計数し、前記回数の経時的変化を記録することを特徴とする請求項1記載の電動機の予防保全装置。   2. The preventive maintenance of an electric motor according to claim 1, wherein the abnormality monitoring unit counts the number of times that the degree of coincidence falls below a predetermined abnormality determination value every predetermined period, and records a change with time of the number of times. apparatus. 前記操作量取得手段は、前記電動機の負荷率を前記操作量として取得し、
前記状態量取得手段は、前記電動機の巻線温度上昇値を前記状態量として取得し、
前記相関評価モデル記憶手段は、前記巻線温度上昇値と前記負荷率の二乗平均との間に成り立つ一次方程式を前記相関評価モデルとして記憶することを特徴とする請求項1乃至4の何れか1項に記載の電動機の予防保全装置。
The operation amount acquisition means acquires a load factor of the electric motor as the operation amount,
The state quantity acquisition means acquires the winding temperature rise value of the electric motor as the state quantity,
5. The correlation evaluation model storage unit stores a linear equation established between the winding temperature rise value and a root mean square of the load factor as the correlation evaluation model. The preventive maintenance device for an electric motor according to Item.
JP2010289975A 2010-12-27 2010-12-27 Motor-preventive maintenance device Pending JP2012137386A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010289975A JP2012137386A (en) 2010-12-27 2010-12-27 Motor-preventive maintenance device
KR1020110069741A KR101279669B1 (en) 2010-12-27 2011-07-14 Apparatus for planning maintenance of electric motor
CN2011102997618A CN102570729A (en) 2010-12-27 2011-09-20 Maintaining device for electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010289975A JP2012137386A (en) 2010-12-27 2010-12-27 Motor-preventive maintenance device

Publications (1)

Publication Number Publication Date
JP2012137386A true JP2012137386A (en) 2012-07-19

Family

ID=46415394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010289975A Pending JP2012137386A (en) 2010-12-27 2010-12-27 Motor-preventive maintenance device

Country Status (3)

Country Link
JP (1) JP2012137386A (en)
KR (1) KR101279669B1 (en)
CN (1) CN102570729A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056322A (en) * 2012-09-11 2014-03-27 Toshiba Mitsubishi-Electric Industrial System Corp Electric motor preventive maintenance device, electric motor preventive maintenance method, and electric motor preventive maintenance system
WO2014178331A1 (en) * 2013-04-30 2014-11-06 富士電機株式会社 Control device and drive device for motor
JP2017195233A (en) * 2016-04-19 2017-10-26 株式会社村田製作所 Electronic component
JP2018121378A (en) * 2017-01-23 2018-08-02 東日本旅客鉄道株式会社 Method for detecting abnormality of running motor for railway vehicle
JP6380628B1 (en) * 2017-07-31 2018-08-29 株式会社安川電機 Power conversion apparatus, server, and data generation method
JP2019024305A (en) * 2018-08-10 2019-02-14 株式会社安川電機 Motor control system
US10663518B2 (en) 2016-02-23 2020-05-26 Kabushiki Kaisha Yaskawa Denki Abnormality determining apparatus, abnormality determining method, and abnormality determining system
CN111812505A (en) * 2020-04-26 2020-10-23 武汉理工大学 Method and equipment for diagnosing motor temperature rise fault of distributed wheel hub motor driving vehicle
DE102022101615A1 (en) 2021-03-23 2022-09-29 Fuji Electric Co., Ltd. ENGINE ANOMALY DIAGNOSTIC DEVICE, ANOMALY DIAGNOSTIC PROCEDURE AND NON-VOLATILE STORAGE MEDIA

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102103152B1 (en) * 2018-03-14 2020-04-22 (주)아이티공간 Predictive maintenance method of driving device
CA3104046C (en) * 2018-08-09 2023-09-26 Nabtesco Corporation System and method for automatic door maintenance management

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173692A (en) * 1985-01-25 1986-08-05 Toshiba Corp Malfunction monitor
JPH08102241A (en) * 1994-09-30 1996-04-16 Toshiba Corp Load control apparatus
JPH08182185A (en) * 1994-12-21 1996-07-12 Yamaha Motor Co Ltd Motor overheat preventing equipment
JP2002187687A (en) * 2000-12-22 2002-07-02 Mitsubishi Electric Corp Method and device for diagnosing running of passenger conveyor handrail
JP2005284405A (en) * 2004-03-26 2005-10-13 Matsushita Electric Works Ltd Abnormality diagnosis apparatus
JP2005291017A (en) * 2004-03-31 2005-10-20 Tokyo Gas Co Ltd Abnormality detecting device and abnormality detecting method for internal combustion engine
JP2006213447A (en) * 2005-02-02 2006-08-17 Hitachi Ltd Elevator device
JP2006300699A (en) * 2005-04-20 2006-11-02 Yaskawa Electric Corp Speed detector, and abnormal speed detecting method therefor
JP2009077456A (en) * 2007-08-31 2009-04-09 Mk Seiko Co Ltd Method of preventing overheat of motor and motor-driven scissors employing the same
JP2009303365A (en) * 2008-06-12 2009-12-24 Hitachi Constr Mach Co Ltd Protection device of electric motor and electromotive hydraulic excavator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6066647A (en) * 1983-09-20 1985-04-16 Sumitomo Metal Ind Ltd Diagnosing method of motor
JP3436658B2 (en) * 1997-06-13 2003-08-11 日本電産株式会社 Method and apparatus for detecting abnormality in motor load
KR100564206B1 (en) 1998-11-30 2006-06-01 현대중공업 주식회사 Fault detection display device of large capacity inverter system
DE112005001533T5 (en) * 2004-06-29 2007-05-16 Thk Co Ltd Anomaly detection method and engine control device
JP3931184B2 (en) * 2004-09-10 2007-06-13 三菱電機株式会社 Motor control device
KR20100130326A (en) * 2009-06-03 2010-12-13 한국기계연구원 Electronic motor load test apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173692A (en) * 1985-01-25 1986-08-05 Toshiba Corp Malfunction monitor
JPH08102241A (en) * 1994-09-30 1996-04-16 Toshiba Corp Load control apparatus
JPH08182185A (en) * 1994-12-21 1996-07-12 Yamaha Motor Co Ltd Motor overheat preventing equipment
JP2002187687A (en) * 2000-12-22 2002-07-02 Mitsubishi Electric Corp Method and device for diagnosing running of passenger conveyor handrail
JP2005284405A (en) * 2004-03-26 2005-10-13 Matsushita Electric Works Ltd Abnormality diagnosis apparatus
JP2005291017A (en) * 2004-03-31 2005-10-20 Tokyo Gas Co Ltd Abnormality detecting device and abnormality detecting method for internal combustion engine
JP2006213447A (en) * 2005-02-02 2006-08-17 Hitachi Ltd Elevator device
JP2006300699A (en) * 2005-04-20 2006-11-02 Yaskawa Electric Corp Speed detector, and abnormal speed detecting method therefor
JP2009077456A (en) * 2007-08-31 2009-04-09 Mk Seiko Co Ltd Method of preventing overheat of motor and motor-driven scissors employing the same
JP2009303365A (en) * 2008-06-12 2009-12-24 Hitachi Constr Mach Co Ltd Protection device of electric motor and electromotive hydraulic excavator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056322A (en) * 2012-09-11 2014-03-27 Toshiba Mitsubishi-Electric Industrial System Corp Electric motor preventive maintenance device, electric motor preventive maintenance method, and electric motor preventive maintenance system
WO2014178331A1 (en) * 2013-04-30 2014-11-06 富士電機株式会社 Control device and drive device for motor
CN105027426A (en) * 2013-04-30 2015-11-04 富士电机株式会社 Control device and drive device for motor
JP5971410B2 (en) * 2013-04-30 2016-08-17 富士電機株式会社 Control device and motor drive device
CN105027426B (en) * 2013-04-30 2017-06-09 富士电机株式会社 The drive device of control device and motor
US10663518B2 (en) 2016-02-23 2020-05-26 Kabushiki Kaisha Yaskawa Denki Abnormality determining apparatus, abnormality determining method, and abnormality determining system
JP2017195233A (en) * 2016-04-19 2017-10-26 株式会社村田製作所 Electronic component
JP2018121378A (en) * 2017-01-23 2018-08-02 東日本旅客鉄道株式会社 Method for detecting abnormality of running motor for railway vehicle
JP2019028765A (en) * 2017-07-31 2019-02-21 株式会社安川電機 Power conversion device, server, and data generation method
JP6380628B1 (en) * 2017-07-31 2018-08-29 株式会社安川電機 Power conversion apparatus, server, and data generation method
US11038454B2 (en) 2017-07-31 2021-06-15 Kabushiki Kaisha Yaskawa Denki Power conversion device and server
JP2019024305A (en) * 2018-08-10 2019-02-14 株式会社安川電機 Motor control system
CN111812505A (en) * 2020-04-26 2020-10-23 武汉理工大学 Method and equipment for diagnosing motor temperature rise fault of distributed wheel hub motor driving vehicle
CN111812505B (en) * 2020-04-26 2022-05-10 武汉理工大学 Method and equipment for diagnosing motor temperature rise fault of distributed wheel hub motor driving vehicle
DE102022101615A1 (en) 2021-03-23 2022-09-29 Fuji Electric Co., Ltd. ENGINE ANOMALY DIAGNOSTIC DEVICE, ANOMALY DIAGNOSTIC PROCEDURE AND NON-VOLATILE STORAGE MEDIA

Also Published As

Publication number Publication date
KR20120074179A (en) 2012-07-05
CN102570729A (en) 2012-07-11
KR101279669B1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP2012137386A (en) Motor-preventive maintenance device
US9200995B2 (en) Method and apparatus for monitoring air filter condition
EP2372882B1 (en) Stator coil coolant flow reduction monitoring
TWI533589B (en) Electric motor control device
JPWO2016194029A1 (en) Failure diagnosis apparatus and failure diagnosis method
WO2017038749A1 (en) Degradation diagnosis device, degradation diagnosis method, and degradation diagnosis system for batteries
RU2654807C2 (en) Method for monitoring valve of aircraft engine
JP6806576B2 (en) Anomaly detection method for traveling motors for railway vehicles
JPWO2018101363A1 (en) State estimation apparatus, method and program
JP5933386B2 (en) Data management apparatus and program
JP2010175446A (en) Status diagnostic apparatus
JP2019102694A (en) Transformer diagnostic system, transformer diagnostic method, and transformer
JP2012163439A (en) Rotating machine vibration monitoring system and monitoring method
JP7035842B2 (en) Monitoring system
JP6369895B2 (en) Motor abnormality detection system, motor abnormality detection method, and motor abnormality detection program
JP2013223284A (en) Preventive maintenance device for motor
JP6503541B2 (en) Pump abnormality detection system, pump abnormality detection method, and pump abnormality detection program
WO2018181120A1 (en) Information processing device, information processing method, and program
US20130338938A1 (en) Identifying wind or water turbines for maintenance
JP2004094631A (en) Operation support device for plant equipment
JP2009254104A (en) Conductor monitor for power receiving and distributing equipment
JP6658462B2 (en) Plant equipment deterioration diagnosis device
US11959825B2 (en) Method and a condition monitoring device for monitoring a rotating equipment
JP5191297B2 (en) Remaining life measurement system
JP5476413B2 (en) Diagnostic method for soundness of rotating machinery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140909