Nothing Special   »   [go: up one dir, main page]

JP2012134333A - Method for measurement - Google Patents

Method for measurement Download PDF

Info

Publication number
JP2012134333A
JP2012134333A JP2010285393A JP2010285393A JP2012134333A JP 2012134333 A JP2012134333 A JP 2012134333A JP 2010285393 A JP2010285393 A JP 2010285393A JP 2010285393 A JP2010285393 A JP 2010285393A JP 2012134333 A JP2012134333 A JP 2012134333A
Authority
JP
Japan
Prior art keywords
workpiece
work
holding
measuring
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010285393A
Other languages
Japanese (ja)
Inventor
Masaru Nakamura
勝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2010285393A priority Critical patent/JP2012134333A/en
Publication of JP2012134333A publication Critical patent/JP2012134333A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Laser Beam Processing (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the fact that a work having a thickness deviating from a standard is carried in before starting the processing in a processing device which forms a modified layer in the work by condensing a laser beam.SOLUTION: While holding a work 1 carried in holding means 40, are carried out the two steps of: a first measurement step for measuring the height position of a top face 1a of the work 1 by optical measuring means 70; and a second measurement step for measuring the height position of an adhesive face 10a of a protective tape 10 set on the reference surface. Distance from the top face 1a of the work 1 to the reference surface is detected by the difference between the values obtained by the first measurement step and second measurement step, and a determination is made whether or not the thickness of the work 1 thus carried in deviates from the standard.

Description

本発明は、半導体ウェーハ等のワークの内部にレーザー光線を集光して改質層を形成する加工装置において、ワークの厚さが規格通りのものであるか否かを検出するための測定方法に関する。   The present invention relates to a measuring method for detecting whether or not the thickness of a workpiece is in conformity with a standard in a processing apparatus that focuses a laser beam inside a workpiece such as a semiconductor wafer to form a modified layer. .

半導体デバイス製造工程においては、円板状の半導体ウェーハ等のワークの表面に格子状の分割予定ラインにより多数の矩形状のデバイス領域を区画して、これらデバイス領域の表面にICやLSI等からなる電子回路を形成し、次いで裏面を研削した後に研磨するなど必要な処理を施してから、ワークを分割予定ラインに沿って切断、分割して1枚のワークから多数のデバイスを得ている。   In the semiconductor device manufacturing process, a large number of rectangular device areas are defined on the surface of a workpiece such as a disk-shaped semiconductor wafer by grid-like division lines, and the surface of these device areas is composed of IC, LSI, or the like. After forming an electronic circuit and then performing necessary processing such as polishing after the back surface is ground, the workpiece is cut and divided along a predetermined division line to obtain a large number of devices from one workpiece.

ワークの分割は、一般に、高速回転させた切削ブレードをワークに切り込ませて切断するダイサーと称される切削装置によって行われている。また近年では、ワークの内部に、ワークを透過する波長のレーザー光線を表面側から分割予定ラインに沿って集光して照射することにより改質層を形成し、次いで改質層に外力を加えることによってワークを分割予定ラインに沿って分割する方法が試みられている(特許文献1等)。このようなレーザー加工を行う装置としては、チャックテーブル上に搬入されて保持したワークを水平方向に加工送りしながら、レーザー光線を下方のワークに向けて照射する構成のものが知られている(例えば特許文献2)。レーザー光線の集光点は、ワークの表面から所定深さの位置に設定される。   The workpiece is generally divided by a cutting device called a dicer that cuts a workpiece by cutting a cutting blade rotated at a high speed into the workpiece. In recent years, a modified layer is formed by condensing and irradiating the workpiece with a laser beam having a wavelength that passes through the workpiece from the surface side along the planned dividing line, and then applying an external force to the modified layer. A method of dividing the work along the planned dividing line is attempted (Patent Document 1, etc.). As an apparatus for performing such laser processing, there is known an apparatus configured to irradiate a laser beam toward a lower workpiece while processing and feeding a workpiece carried and held on a chuck table in a horizontal direction (for example, Patent Document 2). The condensing point of the laser beam is set at a predetermined depth from the surface of the workpiece.

特許第3408805号公報Japanese Patent No. 3408805 特開2005−28423号公報JP-A-2005-28423

上記のようにレーザー光線照射によりワークの内部に改質層を形成する場合には、予めワークの厚さを把握しておき、その厚さに基づいてレーザー光線の集光点を設定している。ところが、把握している値以外の厚さを有する規格外のワークが搬入された場合には、レーザー光線の集光点は設定通りの位置に位置付けられず、そのままレーザー加工がなされると加工不良となる不具合が起こる。そこで、厚さが規格外のワークが搬入されたことをレーザー加工を施す前に検出することができる方法が要望された。   As described above, when the modified layer is formed inside the workpiece by laser beam irradiation, the thickness of the workpiece is grasped in advance, and the condensing point of the laser beam is set based on the thickness. However, when a non-standard workpiece with a thickness other than the known value is brought in, the focal point of the laser beam is not positioned as set, and if laser processing is performed as it is, processing failure will occur. A malfunction occurs. Therefore, there has been a demand for a method that can detect that a workpiece having a thickness outside the standard has been carried in before laser processing.

本発明は上記事情に鑑みてなされたものであり、その主な技術的課題は、ワーク内部にレーザー光線を集光して改質層を形成する加工装置において、厚さが規格外のワークが搬入されたことを加工前に検出することができる測定方法を提供することにある。   The present invention has been made in view of the above circumstances, and the main technical problem thereof is that a workpiece having a thickness outside the standard is brought into a processing apparatus for condensing a laser beam inside the workpiece to form a modified layer. It is an object of the present invention to provide a measurement method that can detect the fact before processing.

本発明の測定方法は、ワークを保持する保持面を有する保持部と該保持部を囲繞し該保持面と同一面を有する枠体とから構成された保持手段と、ワークの内部にレーザー光線を集光して改質層を形成する加工手段と、から構成された加工装置において、前記保持手段の保持面に保持されたワークの上面から基準面までの距離を測定する測定方法であって、ワーク上面の高さ位置を光学式の方法で測定する第一の測定工程と、前記基準面の高さ位置を光学式の方法で測定する第二の測定工程と、前記第一の測定工程と前記第二の測定工程とによって得られた値の差分によってワークの上面から基準面までの距離を検出する工程と、を含むことを特徴とする。   The measuring method of the present invention comprises a holding unit having a holding surface for holding a workpiece, a frame surrounding the holding unit and having the same surface as the holding surface, and a laser beam collected inside the workpiece. A measuring device that measures the distance from the upper surface of the workpiece held on the holding surface of the holding means to a reference surface in a processing apparatus comprising: a processing means that forms a modified layer by light; A first measuring step for measuring the height position of the upper surface by an optical method; a second measuring step for measuring the height position of the reference surface by an optical method; the first measuring step; And a step of detecting a distance from the upper surface of the workpiece to the reference surface based on a difference between values obtained by the second measurement step.

本発明によれば、第一の測定工程と第二の測定工程とによって得られた値の差分に基づいてワークの厚さが規格通りのものであるかを検出することができる。これら測定工程は加工装置の保持手段に保持したワークに対して行うため、厚さが規格外のワークが搬入されたことをレーザー加工前に検出することができる。   According to the present invention, it is possible to detect whether the thickness of the workpiece conforms to the standard based on the difference between the values obtained by the first measurement process and the second measurement process. Since these measurement steps are performed on the workpiece held by the holding means of the machining apparatus, it is possible to detect before carrying out the laser machining that a workpiece whose thickness is not specified is carried.

本発明は、ワークには結晶方位を示す切欠きが円形外周の一部に形成され、ワークの下面に円形外周に沿った形状の保護テープの粘着面が貼着され、前記基準面は前記切欠き部分によって露出した前記保護テープの前記粘着面である形態を含む。また、本発明は、前記基準面は前記枠体の上面である形態を含む。   According to the present invention, a notch indicating a crystal orientation is formed in a part of a circular outer periphery of the work, an adhesive surface of a protective tape having a shape along the circular outer periphery is attached to the lower surface of the work, and the reference surface is the cut The form which is the said adhesion surface of the said protective tape exposed by the notch part is included. In addition, the present invention includes a form in which the reference surface is an upper surface of the frame.

なお、本発明で言うワークは特に限定はされないが、例えば、シリコン、ガリウムヒ素(GaAs)、シリコンカーバイド(SiC)等からなる半導体ウェーハ、チップ実装用としてウェーハの裏面に設けられるDAF(Die Attach Film)等の粘着部材、半導体製品のパッケージ、セラミックやガラス、サファイア(Al)系あるいはシリコン系の無機材料基板、液晶表示装置を制御駆動するLCDドライバ等の各種電子部品、さらにはミクロンオーダーの加工位置精度が要求される各種加工材料等が挙げられる。 The work referred to in the present invention is not particularly limited. For example, a semiconductor wafer made of silicon, gallium arsenide (GaAs), silicon carbide (SiC), or the like, or a DAF (Die Attach Film) provided on the back surface of the wafer for chip mounting. ), Etc., semiconductor product packages, ceramics and glass, sapphire (Al 2 O 3 ) -based or silicon-based inorganic material substrates, various electronic components such as LCD drivers for controlling and driving liquid crystal display devices, and micron Various processing materials that require high processing position accuracy are listed.

また、本発明で言う改質層とは、密度、屈折率、機械的強度、あるいはその他の物理的特性が周囲とは異なる状態になった領域のことであり、例えば、溶融処理層、クラック層、絶縁破壊層、屈折率変化層等が挙げられ、さらにこれらの単独状態、または混在状態を含むものとされる。   The modified layer in the present invention is a region where the density, refractive index, mechanical strength, or other physical characteristics are different from the surroundings, such as a melt-treated layer, a crack layer. A dielectric breakdown layer, a refractive index change layer, and the like, and further include a single state or a mixed state thereof.

本発明によれば、ワーク内部にレーザー光線を集光して改質層を形成する加工装置において、厚さが規格外のワークが搬入されたことを加工前に検出することができる測定方法が提供されるといった効果を奏する。   According to the present invention, there is provided a measuring method capable of detecting, prior to processing, that a workpiece having a non-standard thickness is carried in a processing apparatus that forms a modified layer by condensing a laser beam inside the workpiece. The effect that it is done.

裏面に保護テープが貼着された本発明の一実施形態に係るワークの、(a)斜視図、(b)断面図、(c)切欠き部分を示す一部拡大平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the partially expanded plan view which shows the (a) perspective view, (b) sectional drawing, (c) notch part of the workpiece | work which concerns on one Embodiment of this invention by which the protective tape was stuck on the back surface. 一実施形態に係る加工装置の全体斜視図である。1 is an overall perspective view of a processing apparatus according to an embodiment. 加工装置の保持手段を示す断面図である。It is sectional drawing which shows the holding means of a processing apparatus. レーザー加工によりワーク内部に改質層を形成している状態を示す側面断面図である。It is side surface sectional drawing which shows the state which has formed the modified layer inside the workpiece | work by laser processing. レーザー加工によりワーク内部に改質層を形成している状態を示す正面断面図である。It is front sectional drawing which shows the state which has formed the modified layer inside the workpiece | work by laser processing. 保護テープの粘着面を基準面とする実施形態の測定方法を示す断面図である。It is sectional drawing which shows the measuring method of embodiment which uses the adhesion surface of a protective tape as a reference surface. 保持手段の枠体の上面を基準面とする実施形態の測定方法を示す断面図である。It is sectional drawing which shows the measuring method of embodiment which uses the upper surface of the frame of a holding means as a reference plane. 予備保持手段の枠体の上面を基準面とする実施形態の測定方法を示す断面図である。It is sectional drawing which shows the measuring method of embodiment which uses the upper surface of the frame of a preliminary | backup holding means as a reference plane. 保持手段にワークを保持した状態を模式的に示す側面図であって、従来方法の問題を説明するための図である。It is a side view which shows typically the state which hold | maintained the workpiece | work to the holding means, Comprising: It is a figure for demonstrating the problem of the conventional method.

以下、本発明の一実施形態を説明する。本実施形態では、図1に示すワーク1を図2に示す加工装置20に搬入してレーザー加工を施す際のワークの厚さ測定方法に本発明を適用している。   Hereinafter, an embodiment of the present invention will be described. In the present embodiment, the present invention is applied to a method for measuring the thickness of a workpiece when the workpiece 1 shown in FIG. 1 is carried into the processing apparatus 20 shown in FIG. 2 and laser processing is performed.

(1)ワーク
はじめに、図1により一実施形態に係るワーク1を説明する。ワーク1はシリコンウェーハ等の円板状の半導体ウェーハであり、表面1aには格子状に設定される分割予定ライン2によって多数のデバイス領域3が区画され、これらデバイス領域3には電子回路等が形成されている。ワーク1の外周部の所定箇所には、半導体の結晶方位を示すノッチと呼ばれるV字状の切欠き4が形成されている。
(1) Workpiece First, a work 1 according to an embodiment will be described with reference to FIG. The workpiece 1 is a disk-shaped semiconductor wafer such as a silicon wafer, and a large number of device regions 3 are defined on the surface 1a by division lines 2 set in a lattice shape. Is formed. A V-shaped notch 4 called a notch indicating the crystal orientation of the semiconductor is formed at a predetermined location on the outer periphery of the work 1.

図1(b)に示すように、ワーク1の裏面1bには所定厚さを有する円板状の保護テープ10が貼着されている。保護テープ10は、樹脂シートからなる基材の片面が粘着面10aとされたもので、粘着面10aにワーク1の裏面1bが貼着されている。保護テープ10はワーク1の円形外周に沿ったワーク1と同等の径を有する円形状で、ワーク1の裏面1b全面を覆って貼着されており、図1(c)に示すように切欠き4部分には粘着面10aが上方に露出している。   As shown in FIG. 1B, a disc-shaped protective tape 10 having a predetermined thickness is attached to the back surface 1b of the workpiece 1. The protective tape 10 is one in which one side of a base material made of a resin sheet is an adhesive surface 10a, and the back surface 1b of the workpiece 1 is adhered to the adhesive surface 10a. The protective tape 10 has a circular shape having the same diameter as that of the workpiece 1 along the circular outer periphery of the workpiece 1 and is attached so as to cover the entire back surface 1b of the workpiece 1 as shown in FIG. 1 (c). The adhesive surface 10a is exposed upward in the four portions.

(2)加工装置
ワーク1は、図2に示す加工装置20により分割予定ライン2に沿ってレーザー加工が施される。以下、この加工装置20の基本的な構成および動作を説明する。
(2) Processing Device The workpiece 1 is subjected to laser processing along the planned division line 2 by the processing device 20 shown in FIG. Hereinafter, the basic configuration and operation of the processing apparatus 20 will be described.

図2の符号21は基台であり、基台21の図中奥側には壁部22が立設されている。基台21上には、XY移動テーブル30がX方向およびY方向に移動可能に設けられている。XY移動テーブル30は、基台21上にガイドレール23を介してX方向に移動可能に設けられたX軸ベース31上に、ガイドレール24を介してY方向に移動可能に設けられており、X軸ベース31がX方向に移動することによりX方向に移動し、XY移動テーブル30自身がY方向に移動することによりY方向に移動する。X軸ベース31は、モータ32aでボールねじ32bを作動させるX軸駆動機構32によってX方向に駆動され、XY移動テーブル30は、モータ33aでボールねじ33bを作動させるY軸駆動機構33によってY方向に駆動される。   Reference numeral 21 in FIG. 2 denotes a base, and a wall portion 22 is erected on the back side of the base 21 in the drawing. An XY movement table 30 is provided on the base 21 so as to be movable in the X direction and the Y direction. The XY moving table 30 is provided on the base 21 so as to be movable in the Y direction via the guide rail 24 on the X-axis base 31 provided so as to be movable in the X direction via the guide rail 23. The X-axis base 31 moves in the X direction by moving in the X direction, and the XY movement table 30 itself moves in the Y direction by moving in the Y direction. The X-axis base 31 is driven in the X direction by an X-axis drive mechanism 32 that operates a ball screw 32b by a motor 32a, and the XY moving table 30 is driven by a Y-axis drive mechanism 33 that operates a ball screw 33b by a motor 33a. Driven by.

XY移動テーブル30上には円筒状のテーブル台34が固定されており、このテーブル台34上に、真空チャック式の保持手段40がZ方向を回転軸として回転自在に支持されている。保持手段40は、図3に示すように、ステンレス等の金属からなる円板状の枠体41の上面凹所41aに、多孔質材からなり上面が保持面42aとされる保持部42が同心状に嵌合されてなるものである。保持面42aと、保持部42を囲繞する枠体41の環状の上面41bとは、水平で、かつ同一面となっている。保持手段40は、テーブル台34の内部に収容されている図示せぬ回転駆動機構によって一方向あるいは両方向に回転駆動される。ワーク1は、保持手段40の保持面42aに保護テープ10を介して同心状に載置され、負圧作用により吸着して保持される。この場合、ワーク1の径は保持面42aの外径より大きく、かつ枠体41の外径よりも小さく、したがってワーク1の外側に枠体41の上面41bの外周側が露出する状態となる。   A cylindrical table base 34 is fixed on the XY moving table 30, and a vacuum chuck type holding means 40 is rotatably supported on the table base 34 with the Z direction as a rotation axis. As shown in FIG. 3, the holding means 40 has a holding portion 42 made of a porous material and having a holding surface 42a concentric with an upper surface recess 41a of a disk-like frame 41 made of a metal such as stainless steel. It is formed by fitting in a shape. The holding surface 42a and the annular upper surface 41b of the frame body 41 surrounding the holding portion 42 are horizontal and flush with each other. The holding means 40 is rotationally driven in one direction or both directions by a rotation driving mechanism (not shown) housed in the table base 34. The workpiece 1 is placed concentrically on the holding surface 42a of the holding means 40 via the protective tape 10, and is sucked and held by a negative pressure action. In this case, the diameter of the work 1 is larger than the outer diameter of the holding surface 42 a and smaller than the outer diameter of the frame body 41, so that the outer peripheral side of the upper surface 41 b of the frame body 41 is exposed outside the work 1.

また、図2に示すように、XY移動テーブル30上には、軸線方向がZ方向に沿った円筒状の基準台50が保持手段40に近接して配設されている。この基準台50は保持手段40よりも小径であり、保持手段40と同一高さで鏡面仕上げされた水平な上面51を有している。   Further, as shown in FIG. 2, on the XY moving table 30, a cylindrical reference table 50 whose axial direction is along the Z direction is disposed close to the holding means 40. The reference table 50 is smaller in diameter than the holding means 40 and has a horizontal upper surface 51 that is mirror-finished at the same height as the holding means 40.

保持手段40に保持されたワーク1には、壁部22に固定された加工手段60によりレーザー加工が施される。加工手段60は、壁部22に固定された直方体状の筐体61と、筐体61の先端に固定された照射部62とを備えており、照射部62からレーザー光線がほぼ鉛直下方に向けて照射される。筐体61内にはレーザー光線発振器や該発振器で発振されたレーザー光線の出力を調整する出力調整器等が収容されている。この場合のレーザー光線発振器は、例えばYAGやYVO等のワーク1を透過する波長のパルスレーザー光線を発振可能なものが用いられる。また、照射部62には、レーザー光線の光路を鉛直下方に反射させるミラーや、このミラーによって反射したレーザー光線をワーク1に向けて集光する対物レンズ等が収容されている。   The workpiece 1 held by the holding means 40 is subjected to laser processing by the processing means 60 fixed to the wall portion 22. The processing means 60 includes a rectangular parallelepiped casing 61 fixed to the wall portion 22 and an irradiation section 62 fixed to the tip of the casing 61, and the laser beam is directed substantially vertically downward from the irradiation section 62. Irradiated. The housing 61 accommodates a laser beam oscillator, an output adjuster for adjusting the output of the laser beam oscillated by the oscillator, and the like. In this case, a laser beam oscillator that can oscillate a pulse laser beam having a wavelength that passes through the workpiece 1 such as YAG or YVO is used. Further, the irradiation unit 62 accommodates a mirror that reflects the optical path of the laser beam vertically downward, an objective lens that condenses the laser beam reflected by the mirror toward the workpiece 1, and the like.

本実施形態のレーザー加工は、図4および図5に示すように、ワーク1の内部に、ワーク1を透過する波長のレーザー光線LBを表面1a側から分割予定ライン2に沿って集光して照射することにより、本発明に係る改質層5を形成するといったものである。分割予定ライン2に沿ってレーザー加工を施すには、予めワーク1の表面1aを赤外線を検出する撮像手段で撮像するなどして分割予定ライン2の位置を検出しておき、検出した分割予定ライン2の位置に基づいて、レーザー光線LBをワーク1の内部に集光点を位置付けて分割予定ライン2に沿って走査する。図4の矢印Fは、レーザー光線LBの相対的な走査方向を示している。また、ワーク1にレーザー光線LBを照射するにあたっては、保持手段40に保持したワーク1の厚さを、図2に示す測定手段70により測定してから行う。   In the laser processing of the present embodiment, as shown in FIGS. 4 and 5, a laser beam LB having a wavelength that passes through the work 1 is condensed and irradiated along the planned division line 2 from the surface 1 a side. By doing so, the modified layer 5 according to the present invention is formed. In order to perform laser processing along the planned division line 2, the position of the planned division line 2 is detected in advance by, for example, imaging the surface 1a of the workpiece 1 with an imaging means that detects infrared rays, and the detected division planned line is detected. Based on the position 2, the laser beam LB is scanned along the planned division line 2 with a condensing point positioned inside the work 1. An arrow F in FIG. 4 indicates the relative scanning direction of the laser beam LB. Further, when the workpiece 1 is irradiated with the laser beam LB, the thickness of the workpiece 1 held by the holding unit 40 is measured by the measuring unit 70 shown in FIG.

この測定手段70は、検出光線を下方の測定対象物に照射して測定対象物からの反射光を受光し、受光した光を評価・演算して距離に換算する一般周知の非接触式で光学式の距離センサが用いられる。   This measuring means 70 is a generally known non-contact type optical device that irradiates a detection light beam below and receives reflected light from the measurement object, evaluates and calculates the received light, and converts it into a distance. A distance sensor of the type is used.

分割予定ライン2に沿ったレーザー光線LBの走査は、保持手段40を回転させて分割予定ライン2を図2でのY方向と平行に設定し、XY移動テーブル30をY方向に移動させる加工送りによってなされる。また、照射する分割予定ライン2の切り替えは、X軸ベース31をX方向に移動させる割出し送りによってなされる。なお、加工送り方向と割出し送り方向は、この逆、つまり、X方向が加工送り方向、Y方向が割出し送り方向に設定されてもよく、限定はされない。   The scanning of the laser beam LB along the planned division line 2 is performed by processing feed that rotates the holding means 40 to set the division planned line 2 parallel to the Y direction in FIG. 2 and moves the XY moving table 30 in the Y direction. Made. Further, the division line 2 to be irradiated is switched by index feed for moving the X-axis base 31 in the X direction. Note that the machining feed direction and the index feed direction may be set oppositely, that is, the X direction may be set as the machining feed direction, and the Y direction may be set as the index feed direction, and is not limited.

レーザー光線LBの照射によりワーク1の内部に全ての分割予定ライン2に沿って改質層5を形成したら、保持手段40によるワーク1の保持を解除し、保持手段40からワーク1を搬出する。   When the modified layer 5 is formed along all the planned division lines 2 inside the workpiece 1 by irradiation with the laser beam LB, the holding of the workpiece 1 by the holding means 40 is released, and the workpiece 1 is carried out from the holding means 40.

以上が加工装置20の構成および動作であり、レーザー加工後のワーク1は、形成された改質層5に外力を加えられることにより分割予定ライン2に沿って多数のデバイス領域3、すなわちデバイスに分割される。   The above is the configuration and operation of the processing apparatus 20, and the workpiece 1 after the laser processing is applied to a number of device regions 3, that is, devices along the planned division line 2 by applying an external force to the formed modified layer 5. Divided.

(3)ワークの厚さ測定方法
上記のように、レーザー加工されるワーク1は、レーザー加工に先立って保持手段40上で測定手段70により厚さが測定される。以下、本発明に係るその測定方法を説明する。
(3) Work Thickness Measuring Method As described above, the thickness of the workpiece 1 to be laser processed is measured by the measuring means 70 on the holding means 40 prior to the laser processing. Hereinafter, the measuring method according to the present invention will be described.

本実施形態の測定方法は、図6に示すように、保持手段40上に保持したワーク1の上面すなわち表面1aに、測定手段70から第一の検出光線L1を照射して測定手段70から表面1aまでの距離d1を測定し、この距離d1をワーク1の表面1aの高さ位置H1として認識する(第一の測定工程)。次に、切欠き4によって上方に露出している保護テープ10の粘着面10aを基準面に設定し、該粘着面10aに測定手段70から第二の検出光線L2を照射して測定手段70から粘着面10aまでの距離d2を測定し、この距離d2を粘着面10aの高さ位置H2として認識する。なお、各測定工程において測定手段70から検出光線L1,L2を目的位置に照射するには、XY移動テーブル30をX方向あるいはY方向に移動させ、また、必要に応じて保持手段40を回転させて、目的位置に検出光線L1,L2の光軸を位置付けることによって行うことができる。   As shown in FIG. 6, the measurement method of the present embodiment irradiates the upper surface of the workpiece 1 held on the holding means 40, that is, the surface 1 a with the first detection light beam L <b> 1 from the measuring means 70 to the surface from the measuring means 70. The distance d1 to 1a is measured, and this distance d1 is recognized as the height position H1 of the surface 1a of the workpiece 1 (first measurement step). Next, the adhesive surface 10a of the protective tape 10 exposed upward by the notch 4 is set as a reference surface, and the adhesive surface 10a is irradiated with the second detection light beam L2 from the measuring unit 70 and from the measuring unit 70. The distance d2 to the adhesive surface 10a is measured, and this distance d2 is recognized as the height position H2 of the adhesive surface 10a. In each measurement process, in order to irradiate the detection light beams L1 and L2 from the measurement means 70 to the target position, the XY movement table 30 is moved in the X direction or the Y direction, and the holding means 40 is rotated as necessary. Thus, the detection can be performed by positioning the optical axes of the detection light beams L1 and L2 at the target positions.

次に、ワーク1の表面1aの高さ位置H1と保護テープ10の粘着面10aの高さ位置H2の差分(d2−d1)より、ワーク1の表面1aから保護テープ10の粘着面10aまでの距離を求める。この場合には該距離(d2−d1)がワーク1の厚さとなる。なお、上記レーザー加工の工程においては、ここで測定したワーク1の表面1aの高さ位置を基準として、表面1aからの深さとして設定されるレーザー光線LBの集光点位置が設定される。   Next, from the difference (d2-d1) between the height position H1 of the surface 1a of the workpiece 1 and the height position H2 of the adhesive surface 10a of the protective tape 10, the distance from the surface 1a of the workpiece 1 to the adhesive surface 10a of the protective tape 10 is determined. Find the distance. In this case, the distance (d2-d1) is the thickness of the workpiece 1. In the laser processing step, the condensing point position of the laser beam LB set as the depth from the surface 1a is set on the basis of the height position of the surface 1a of the workpiece 1 measured here.

上記測定方法では保護テープ10の粘着面10aを基準面としているが、基準面を保持手段40の枠体41の上面41bに設定してもよい。すなわち図7に示すように、ワーク1の外側に露出する該上面41bに測定手段70から第二の検出光線L2を照射して測定手段70から上面41bまでの距離d3を測定し、この距離d3を枠体41の上面41bの高さ位置H3として認識する(第二の測定工程)。そして、第一の測定工程で測定したワーク1の表面1aの高さ位置H1と枠体41の上面41bの高さ位置H3の差分(d3−d1)より、ワーク1の表面1aから枠体41の上面41bまでの距離を求める。この場合、ワーク1の裏面1bには保護テープ10が貼着されているので、保護テープ10の厚さをtとすると、ワーク1の厚さは「(d3−d1)−t」で求められる。   In the measurement method, the adhesive surface 10a of the protective tape 10 is used as a reference surface, but the reference surface may be set on the upper surface 41b of the frame 41 of the holding means 40. That is, as shown in FIG. 7, the upper surface 41b exposed to the outside of the work 1 is irradiated with the second detection light beam L2 from the measuring means 70 to measure the distance d3 from the measuring means 70 to the upper surface 41b, and this distance d3. Is recognized as the height position H3 of the upper surface 41b of the frame body 41 (second measurement step). Then, from the difference (d3−d1) between the height position H1 of the surface 1a of the workpiece 1 and the height position H3 of the upper surface 41b of the frame body 41 measured in the first measurement step, the frame body 41 from the surface 1a of the workpiece 1 is obtained. The distance to the upper surface 41b of is determined. In this case, since the protective tape 10 is affixed to the back surface 1b of the work 1, when the thickness of the protective tape 10 is t, the thickness of the work 1 is obtained by “(d3-d1) −t”. .

さらに基準面は、基準台50の上面51に設定してもよい。その場合には、図8に示すように、基準台50の上面51に測定手段70から第二の検出光線L2を照射して測定手段70から上面51までの距離d4を測定し、この距離d4を上面51の高さ位置H4として認識する(第二の測定工程)。そして、第一の測定工程で測定したワーク1の表面1aの高さ位置H1と上面51の高さ位置H4の差分(d4−d1)より、ワーク1の表面1aからの上面51までの距離を求める。ワーク1の厚さは、この場合においても保護テープ10の厚さtを考慮し、「(d4−d1)−t」で求められる。   Further, the reference surface may be set on the upper surface 51 of the reference table 50. In that case, as shown in FIG. 8, the distance d4 from the measuring means 70 to the upper surface 51 is measured by irradiating the upper surface 51 of the reference base 50 with the second detection light beam L2 from the measuring means 70, and this distance d4. Is recognized as the height position H4 of the upper surface 51 (second measurement step). Then, the distance from the surface 1a of the workpiece 1 to the upper surface 51 is determined from the difference (d4-d1) between the height position H1 of the surface 1a of the workpiece 1 and the height position H4 of the upper surface 51 measured in the first measurement step. Ask. Even in this case, the thickness of the work 1 is obtained by “(d4−d1) −t” in consideration of the thickness t of the protective tape 10.

第二の検出光線L2を照射する基準面は、ワーク1の厚さが検出され得る一定高さの水平な反射面であれば、上記態様に限定されない。なお、上記枠体41の上面41bは保持面42aとともに研削加工される場合があり、研削加工面のままでは検出光線が十分に反射しないため、少なくとも検出光線L2が照射される箇所を鏡面加工して検出光線L2が十分に反射可能な状態としておくとよい。また、上記のように保護テープ10の粘着面10aを基準面とすれば、保護テープ10の厚さのばらつきに影響を受けないため、ワーク1の厚さ測定値はより正確になる。   The reference surface for irradiating the second detection light beam L2 is not limited to the above-described embodiment as long as it is a horizontal reflecting surface having a certain height at which the thickness of the workpiece 1 can be detected. Note that the upper surface 41b of the frame body 41 may be ground together with the holding surface 42a, and the detected light beam is not sufficiently reflected if the ground surface is left, so at least the portion irradiated with the detected light beam L2 is mirror-finished. Thus, the detection light beam L2 may be sufficiently reflected. Further, if the adhesive surface 10a of the protective tape 10 is used as a reference surface as described above, the thickness measurement value of the workpiece 1 becomes more accurate because it is not affected by variations in the thickness of the protective tape 10.

本実施形態では、第一の測定工程で得たワーク1の高さ位置の値(H1)と、第二の測定工程で得た基準面の高さ位置の値(H2、H3またはH4)の差分に基づいて、ワーク1の厚さを検出することができる。ワーク1の厚さ測定工程は、保持手段40に保持したワーク1に対して行うことができ、このため、厚さが規格外のワークが搬入された場合には、そのことをレーザー加工前に検出することができる。もしも搬入されたワークが規格外の厚さであった場合には、そのワークは保持手段40から搬出し、次のワークを搬入するといった措置がとられる。なお、上記実施形態ではワーク1の厚さまで求めることとしているが、少なくともワーク1の上面の高さ位置の値と基準面の高さ位置の値との差分が検出されれば、ワーク1の厚さが規格外であるか否かを判断することができる。   In the present embodiment, the height position value (H1) of the workpiece 1 obtained in the first measurement step and the height position value (H2, H3 or H4) of the reference surface obtained in the second measurement step. Based on the difference, the thickness of the workpiece 1 can be detected. The thickness measuring step of the workpiece 1 can be performed on the workpiece 1 held by the holding means 40. For this reason, when a workpiece having a thickness outside the standard is loaded, this is performed before laser processing. Can be detected. If the loaded workpiece has a thickness outside the standard, the workpiece is unloaded from the holding means 40 and the next workpiece is loaded. In the above embodiment, the thickness of the workpiece 1 is obtained. However, if at least a difference between the height position value of the upper surface of the workpiece 1 and the height position value of the reference surface is detected, the thickness of the workpiece 1 is detected. It is possible to determine whether the length is out of specification.

ところで、従来ではワークの上面の高さ位置のみを検出し、その検出値を基準としてワーク内部へのレーザー光線の集光点を設定することが行われていた。しかしながらこの方法では、例えば次のような不具合が生じる。図9(a)は、装置の熱膨張により保持手段40の保持面42aの高さ位置が通常よりも高くなる現象が生じており、保持手段40に保持されたワーク1は規格通りの厚さのものである。一方、図9(b)は、保持手段40の上面は通常の高さであるが、保持されたワーク1が規格よりも厚いもので、ワーク1の上面1aの高さ位置は(a)のワーク1と同じとなっている。このような状況においては、ワーク1の上面1aに測定手段70から検出光線Lを照射して測定したワーク1の上面1aの高さ位置は、双方同じで規格よりも高いためにエラーと判断される。すなわち、(a)側のワーク1は厚さが規格通りであるにもかかわらずエラーと判断され、レーザー加工を取りやめることになるので、無駄な動作が生じる。しかしながら本実施形態では、ワーク1の上面1aから基準面までの距離を検出するため、(a)側のワーク1は規格通りの厚さであることが判り、したがって無駄な動作が生じることを回避することができる。   By the way, conventionally, only the height position of the upper surface of the workpiece is detected, and the condensing point of the laser beam into the workpiece is set based on the detected value. However, this method has the following problems, for example. FIG. 9A shows a phenomenon in which the height position of the holding surface 42a of the holding means 40 becomes higher than usual due to the thermal expansion of the apparatus, and the workpiece 1 held by the holding means 40 has a standard thickness. belongs to. On the other hand, in FIG. 9B, the upper surface of the holding means 40 has a normal height, but the held workpiece 1 is thicker than the standard, and the height position of the upper surface 1a of the workpiece 1 is that of (a). It is the same as work 1. In such a situation, the height position of the upper surface 1a of the work 1 measured by irradiating the upper surface 1a of the work 1 with the detection light beam L from the measuring means 70 is the same and higher than the standard, so it is determined as an error. The That is, the workpiece 1 on the (a) side is judged to be an error even though the thickness is in accordance with the standard, and laser processing is canceled, so a useless operation occurs. However, in this embodiment, since the distance from the upper surface 1a of the workpiece 1 to the reference surface is detected, it can be seen that the workpiece 1 on the (a) side has a thickness according to the standard, and therefore, it is possible to avoid unnecessary operations. can do.

通常、規格外の厚さのワークの内部にレーザー加工を施した場合には加工不良となり、改質層を正常に形成することが困難になる可能性があるため、改めてレーザー加工は行われない。これは、次のような理由による。すなわち、例えば規格よりも厚いワークに設定通りの集光点でレーザー光線を照射すると適度な深さまで集光点が到達せず改質層は比較的表面の近傍に形成されてしまい、このようなワークに改めて表面側からレーザー光線をワーク内部に照射しても、既に形成された改質層がレーザー光線の透過の妨げになって目的深さにレーザー光線が集光しないという不具合が起こる。この点、本実施形態の測定方法を適用すれば加工不良を招くことが防がれ、よって生産性の向上が図られるという利点も得られる。   Normally, when laser processing is performed inside a workpiece with a thickness outside the standard, processing may be defective and it may be difficult to form a modified layer normally, so laser processing is not performed again. . This is due to the following reason. That is, for example, if a workpiece thicker than the standard is irradiated with a laser beam at a focal point as set, the focal point does not reach an appropriate depth, and the modified layer is formed relatively near the surface. Even if the laser beam is again irradiated into the workpiece from the surface side, the already formed modified layer hinders the transmission of the laser beam and the laser beam does not converge to the target depth. In this respect, if the measurement method of the present embodiment is applied, it is possible to prevent a processing defect from being caused, and thus to obtain an advantage of improving productivity.

上記実施形態の加工手段60においては、照射部62に収容されておりワーク内部にレーザー光線を集光する上記対物レンズを、発振されるレーザー光線を厚さ測定用の検出光線として集光する対物レンズとして使用することもできる。このように加工手段60を使用すれば、測定手段70を独自に具備する必要がない。なお、照射部62から照射されるレーザー光線によってワークの厚さ測定を行うようにした場合には、ワークの厚さ測定時において照射するレーザー光線の反射の程度を確認することにより、照射部62の対物レンズが汚染されているか否かの判断材料とすることが可能である。   In the processing means 60 of the above embodiment, the objective lens that is accommodated in the irradiation unit 62 and condenses the laser beam inside the workpiece is used as an objective lens that condenses the oscillated laser beam as a detection beam for thickness measurement. It can also be used. Thus, if the processing means 60 is used, it is not necessary to provide the measuring means 70 independently. When the thickness of the workpiece is measured by the laser beam irradiated from the irradiation unit 62, the objective of the irradiation unit 62 is confirmed by confirming the degree of reflection of the laser beam irradiated at the time of measuring the thickness of the workpiece. It can be used as a material for determining whether or not the lens is contaminated.

1…ワーク
1a…ワークの表面(上面)
5…改質層
10…保護テープ
10a…保護テープの粘着面(基準面)
20…加工装置
40…保持手段
41…枠体
41b…枠体の上面(基準面)
42…保持部
42a…保持面
60…加工手段
H1…ワークの上面の高さ位置
H2,H3,H4…基準面の高さ位置
LB…レーザー光線
1 ... Work 1a ... Work surface (upper surface)
5 ... Modified layer 10 ... Protective tape 10a ... Adhesive surface (reference surface) of protective tape
20 ... Processing device 40 ... Holding means 41 ... Frame 41b ... Upper surface (reference surface) of frame
42 ... Holding part 42a ... Holding surface 60 ... Processing means H1 ... Height position H2, H3, H4 ... Working surface height position LB ... Laser beam

Claims (3)

ワークを保持する保持面を有する保持部と該保持部を囲繞し該保持面と同一面を有する枠体とから構成された保持手段と、ワークの内部にレーザー光線を集光して改質層を形成する加工手段と、から構成された加工装置において、
前記保持手段の保持面に保持されたワークの上面から基準面までの距離を測定する測定方法であって、
ワーク上面の高さ位置を光学式の方法で測定する第一の測定工程と、
前記基準面の高さ位置を光学式の方法で測定する第二の測定工程と、
前記第一の測定工程と前記第二の測定工程とによって得られた値の差分によってワークの上面から基準面までの距離を検出する工程と、
を含むことを特徴とする測定方法。
A holding means having a holding portion having a holding surface for holding a work and a frame surrounding the holding portion and having the same surface as the holding surface; and a modified layer by condensing a laser beam inside the work In a processing apparatus constituted by processing means to form,
A measuring method for measuring a distance from an upper surface of a work held on a holding surface of the holding means to a reference surface,
A first measuring step for measuring the height position of the workpiece upper surface by an optical method;
A second measuring step for measuring the height position of the reference surface by an optical method;
Detecting the distance from the upper surface of the workpiece to the reference surface by the difference between the values obtained by the first measurement step and the second measurement step;
A measurement method comprising:
ワークには結晶方位を示す切欠きが円形外周の一部に形成され、
ワークの下面に円形外周に沿った形状の保護テープの粘着面が貼着され、
前記基準面は前記切欠き部分によって露出した前記保護テープの前記粘着面であることを特徴とする請求項1に記載の測定方法。
The workpiece is formed with a notch indicating the crystal orientation in a part of the circular outer periphery,
The adhesive surface of the protective tape with a shape along the circular outer periphery is attached to the lower surface of the workpiece,
The measurement method according to claim 1, wherein the reference surface is the adhesive surface of the protective tape exposed by the notch portion.
前記基準面は前記枠体の上面であることを特徴とする請求項1に記載の測定方法。   The measurement method according to claim 1, wherein the reference surface is an upper surface of the frame.
JP2010285393A 2010-12-22 2010-12-22 Method for measurement Pending JP2012134333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010285393A JP2012134333A (en) 2010-12-22 2010-12-22 Method for measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010285393A JP2012134333A (en) 2010-12-22 2010-12-22 Method for measurement

Publications (1)

Publication Number Publication Date
JP2012134333A true JP2012134333A (en) 2012-07-12

Family

ID=46649586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010285393A Pending JP2012134333A (en) 2010-12-22 2010-12-22 Method for measurement

Country Status (1)

Country Link
JP (1) JP2012134333A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099521A (en) * 2012-11-15 2014-05-29 Disco Abrasive Syst Ltd Laser processing method and laser processing device
CN104034296A (en) * 2014-06-30 2014-09-10 西南交通大学 Detection method for thickness of monocrystalline silicon surface scratch damaged layer
JP2015132538A (en) * 2014-01-14 2015-07-23 株式会社ディスコ Grinding equipment
JP2015162652A (en) * 2014-02-28 2015-09-07 株式会社ディスコ Sticking method of protective tape
JP2015211099A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Vacuum chuck member and method of manufacturing vacuum chuck

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222987A (en) * 2004-02-03 2005-08-18 Disco Abrasive Syst Ltd Method for dividing wafer
JP2005340423A (en) * 2004-05-26 2005-12-08 Renesas Technology Corp Method for manufacturing semiconductor device
JP2007095952A (en) * 2005-09-28 2007-04-12 Tokyo Seimitsu Co Ltd Laser dicing equipment and laser dicing method
JP2009152288A (en) * 2007-12-19 2009-07-09 Tokyo Seimitsu Co Ltd Laser dicing apparatus and dicing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222987A (en) * 2004-02-03 2005-08-18 Disco Abrasive Syst Ltd Method for dividing wafer
JP2005340423A (en) * 2004-05-26 2005-12-08 Renesas Technology Corp Method for manufacturing semiconductor device
JP2007095952A (en) * 2005-09-28 2007-04-12 Tokyo Seimitsu Co Ltd Laser dicing equipment and laser dicing method
JP2009152288A (en) * 2007-12-19 2009-07-09 Tokyo Seimitsu Co Ltd Laser dicing apparatus and dicing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099521A (en) * 2012-11-15 2014-05-29 Disco Abrasive Syst Ltd Laser processing method and laser processing device
JP2015132538A (en) * 2014-01-14 2015-07-23 株式会社ディスコ Grinding equipment
JP2015162652A (en) * 2014-02-28 2015-09-07 株式会社ディスコ Sticking method of protective tape
JP2015211099A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Vacuum chuck member and method of manufacturing vacuum chuck
CN104034296A (en) * 2014-06-30 2014-09-10 西南交通大学 Detection method for thickness of monocrystalline silicon surface scratch damaged layer

Similar Documents

Publication Publication Date Title
CN109202308B (en) Laser processing apparatus and laser processing method
TWI677039B (en) Wafer processing method
KR102086168B1 (en) Laser machining apparatus and laser machining method
KR102275113B1 (en) Method for processing wafer
CN101658977B (en) Laser processing apparatus and laser processing method
CN100479969C (en) Laser Beam Processing Equipment
JP6071775B2 (en) Wafer processing method
KR20130121718A (en) Laser machining apparatus and laser machining method
JP7325897B2 (en) Machining device and machining method of workpiece
JP2010029927A (en) Laser beam machining apparatus and laser beam machining method
TWI743297B (en) Laser processing device
KR20160086267A (en) Wafer processing method
JP2011253866A (en) Division method
JP2012134333A (en) Method for measurement
KR20130075656A (en) Wafer processing method and laser machining apparatus
JP5213112B2 (en) Laser processing method and laser processing apparatus
WO2004105110A1 (en) Laser dicing device
CN106256476A (en) Laser processing device
JP2010029930A (en) Laser beam machining apparatus and laser beam machining method
JP2011082354A (en) Processing device
JP2014209523A (en) Wafer processing method
JP5939769B2 (en) Processing method of plate
JP5846764B2 (en) Wafer processing method
JP5117954B2 (en) Laser processing apparatus and laser processing method
JP5441111B2 (en) Processing method of plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150526