Nothing Special   »   [go: up one dir, main page]

JP2012127893A - 衛星信号捕捉適否判定方法及び衛星信号捕捉適否判定装置 - Google Patents

衛星信号捕捉適否判定方法及び衛星信号捕捉適否判定装置 Download PDF

Info

Publication number
JP2012127893A
JP2012127893A JP2010281337A JP2010281337A JP2012127893A JP 2012127893 A JP2012127893 A JP 2012127893A JP 2010281337 A JP2010281337 A JP 2010281337A JP 2010281337 A JP2010281337 A JP 2010281337A JP 2012127893 A JP2012127893 A JP 2012127893A
Authority
JP
Japan
Prior art keywords
satellite
signal
orbit data
satellite orbit
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010281337A
Other languages
English (en)
Other versions
JP5740961B2 (ja
Inventor
Hideo Sasahara
英生 笹原
Mikio Nagahara
幹央 永原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010281337A priority Critical patent/JP5740961B2/ja
Priority to CN2011104213319A priority patent/CN102590834A/zh
Priority to US13/329,153 priority patent/US9354320B2/en
Publication of JP2012127893A publication Critical patent/JP2012127893A/ja
Application granted granted Critical
Publication of JP5740961B2 publication Critical patent/JP5740961B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/243Demodulation of navigation message
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/28Satellite selection

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

【課題】衛星信号の捕捉適否を判定するための新たな手法の提案。
【解決手段】GPS衛星からのGPS衛星信号の捕捉を試行して復号した復号衛星軌道データ(第1の衛星軌道データ)と、当該GPS衛星について取得済みの照合用衛星軌道データ(第2の衛星軌道データ)とを用いて、GPS衛星信号の捕捉適否を判定する。具体的には、復号衛星軌道データと照合用衛星軌道データとが所定の近似条件を満たすか否かを判定し、近似条件を満たす場合には、GPS衛星信号の捕捉が適切に行われたと判定する。
【選択図】図1

Description

本発明は、衛星信号の捕捉適否を判定するための方法等に関する。
測位用信号を利用した測位システムとしては、GPS(Global Positioning System)が広く知られており、携帯型電話機やカーナビゲーション装置等に内蔵された受信装置に利用されている。GPSでは、複数のGPS衛星の位置や各GPS衛星から受信装置までの擬似距離等の情報に基づいて受信装置の位置座標及び時計誤差を求める位置算出計算を行う。
GPS衛星から送出されるGPS衛星信号は、C/A(Coarse and Acquisition)コードと呼ばれるGPS衛星毎に異なる拡散符号で変調されている。C/Aコードは、コード長1023チップを1PNフレームとする繰返し周期1msの擬似ランダム雑音符号である。受信装置は、微弱な受信信号の中からGPS衛星信号を捕捉するために、受信信号と、受信装置内部で発生させた擬似的なC/AコードであるレプリカC/Aコードとの相関演算を行い、その結果として得られる相関値に基づいてGPS衛星信号を捕捉する。
C/Aコードはいわゆるゴールド符号であるため、正しいGPS衛星信号のレプリカC/Aコードとの相関演算でない限り高い相関値が得られることはない。しかし、得られる相関値の総体的な大きさは、GPS衛星信号の受信状況によって変動し得る。そのため、例えば、受信信号の信号強度が強い場合などには、誤った衛星のレプリカC/Aコードとの相関演算であっても、一定以上の相関値が得られ、相関がとれたと判断してしまう場合がある。この場合が誤相関である。
本明細書では、GPS受信装置が想定している衛星と実際の衛星とが一致している場合の相関のことを「正相関」と定義する。それに対して、GPS受信装置が想定している衛星と実際の衛星とが異なる場合の相関のことを「誤相関」と定義する。誤相関が発生したということは、GPS受信装置が想定している衛星とは異なる別の衛星からの衛星信号を捕捉したということである。これは、GPS衛星信号の捕捉が適切に行われなかったことを意味する。誤相関が発生すると位置算出の正確性が低下するという問題がある。そこで、誤相関を判定するための種々の技術が考案されている(例えば、特許文献1。)。
特開2003−84055号公報
特許文献1の技術では、相関演算で得られた相関値に対して閾値判定を段階的に行うことで誤相関を判定している。この特許文献1の技術では、誤相関判定を実現するために、段階的な閾値それぞれを適切に設定する必要がある。一方、受信装置がGPS衛星信号を受信した際の信号強度や受信環境といった受信状況はその都度変化する。そのため、画一的な判定基準に従って誤相関判定を行ったのでは、判定の確実性が担保されないという問題がある。誤相関を正しく検出できないということは、衛星信号の捕捉適否を正しく判定することができないということである。
本発明は上述した課題に鑑みて為されたものであり、その目的とするところは、衛星信号の捕捉適否を判定するための新たな手法を提案することにある。
以上の課題を解決するための第1の形態は、衛星からの衛星信号の捕捉を試行して第1の衛星軌道データを復号することと、前記第1の衛星軌道データと、前記衛星について取得済みの第2の衛星軌道データとを用いて、前記衛星信号の捕捉適否を判定することと、を含む衛星信号捕捉適否判定方法である。
また、他の形態として、衛星からの衛星信号の捕捉を試行して第1の衛星軌道データを復号する復号部と、前記第1の衛星軌道データと、前記衛星について取得済みの第2の衛星軌道データとを用いて、前記衛星信号の捕捉適否を判定する判定部と、を備えた衛星信号捕捉適否判定装置を構成してもよい。
この第1の形態等によれば、衛星からの衛星信号の捕捉を試行して復号した第1の衛星軌道データと、当該衛星について取得済みの第2の衛星軌道データとを用いて、衛星信号の捕捉適否を判定する。第2の衛星軌道データは、第1の衛星軌道データを復号した衛星について取得済みの衛星軌道データであるため、第1の衛星軌道データが第2の衛星軌道データと同一の意味内容あるいは差分が小さいデータであるならば、衛星信号の捕捉が適切に行われたと判断できる。
また、第2の形態として、第1の形態の衛星信号捕捉適否判定方法であって、前記判定することは、前記第1の衛星軌道データに格納されている衛星軌道パラメーターの値と前記第2の衛星軌道データに格納されている衛星軌道パラメーターの値との差分に基づいて前記衛星信号の捕捉適否を判定することを含む、衛星信号捕捉適否判定方法を構成してもよい。
この第2の形態によれば、第1の衛星軌道データに格納されている衛星軌道パラメーターの値と第2の衛星軌道データに格納されている衛星軌道パラメーターの値との差分に基づいて衛星信号の捕捉適否を判定する。衛星信号の捕捉が適切に行われたならば、衛星軌道パラメーターの値の差分は小さくなるはずである。従って、衛星軌道パラメーターの値の差分を指標とすれば、衛星信号の捕捉適否が判定できる。
また、第3の形態として、第2の形態の衛星信号捕捉適否判定方法であって、前記判定することは、少なくとも、前記第1の衛星軌道データに格納されている衛星軌道パラメーターに含まれる衛星位置指定値と前記第2の衛星軌道データに格納されている衛星軌道パラメーターに含まれる衛星位置指定値との差分に基づいて前記衛星信号の捕捉適否を判定することを含む、衛星信号捕捉適否判定方法を構成してもよい。
この第3の形態によれば、少なくとも、第1の衛星軌道データに格納されている衛星軌道パラメーターに含まれる衛星位置指定値と第2の衛星軌道データに格納されている衛星軌道パラメーターに含まれる衛星位置指定値との差分に基づいて衛星信号の捕捉適否を判定する。衛星位置指定値は衛星毎に固有の値であるため、衛星信号の捕捉適否を判定するのに好適である。
また、第4の形態として、第1の形態の衛星信号捕捉適否判定方法であって、前記判定することは、前記第1の衛星軌道データを用いて前記衛星の第1の衛星位置を算出することと、前記第2の衛星軌道データを用いて前記衛星の第2の衛星位置を算出することと、前記第1の衛星位置と前記第2の衛星位置との差分に基づいて前記衛星信号の捕捉適否を判定することと、を含む、衛星信号捕捉適否判定方法を構成してもよい。
この第4の形態によれば、第1の衛星軌道データを用いて算出した衛星の第1の衛星位置と第2の衛星軌道データを用いて算出した当該衛星の第2の衛星位置との差分に基づいて衛星信号の捕捉適否を判定する。衛星信号の捕捉が適切に行われたならば、第1の衛星位置と第2の衛星位置との差分(2つの衛星位置間の距離)は小さくなるはずである。従って、衛星位置の差分を指標とすれば、衛星信号の捕捉適否が判定できる。
また、第5の形態として、第1〜第4の何れかの形態の衛星信号捕捉適否判定方法であって、前記第1の衛星軌道データはエフェメリスであり、前記第2の衛星軌道データはアルマナック、エフェメリス及び長期エフェメリスの何れかのデータである、衛星信号捕捉適否判定方法を構成してもよい。
この第5の形態によれば、第1の衛星軌道データをエフェメリスとし、第2の衛星軌道データをアルマナック、エフェメリス及び長期エフェメリスの何れかのデータとして、衛星信号の捕捉適否を判定することができる。
また、第1の衛星軌道データは、衛星信号の捕捉を試行して復号したデータである。衛星信号を復号するためにはある程度の時間が必要である。その点、第5の形態では、衛星信号を復号して得られる衛星軌道データのうちエフェメリスを第1の衛星軌道データとするため、例えばアルマナックを復号せずとも捕捉適否の判定が可能であり、衛星信号の捕捉適否の判定に要する時間を比較的短くすることができる。
また、第6の形態として、第5の形態の衛星信号捕捉適否判定方法であって、前記第2の衛星軌道データがアルマナック、エフェメリス及び長期エフェメリスの何れであるかに基づいて前記捕捉適否の判定条件を変更することを更に含む、衛星信号捕捉適否判定方法を構成してもよい。
衛星軌道の予測精度は、衛星軌道データの種類によって異なるものである。そのため、第6の形態のように、第2の衛星軌道データがアルマナック、エフェメリス及び長期エフェメリスの何れであるかに基づいて捕捉適否の判定条件を変更して、衛星信号の捕捉適否の判定を適正化することが適切である。
また、第7の形態として、第1〜第6の何れかの形態の衛星信号捕捉適否判定方法であって、前記第2の衛星軌道データはサーバーアシストにより取得されたアシストデータである、衛星信号捕捉適否判定方法を構成してもよい。
この第7の形態によれば、サーバーアシストにより取得されたアシストデータである第2の衛星軌道データを用いて、衛星信号の捕捉適否を判定することができる。
衛星信号の捕捉適否をより正しく判定するためには、第2の衛星軌道データが信頼できるデータである必要がある。その点、第7の形態によれば、第2の衛星軌道データはサーバーアシストにより取得されたアシストデータである。アシストデータは、例えば、受信信号が強電界の信号となる環境の元で衛星信号を捕捉して復号されたアルマナックやエフェメリスであったり、未来の衛星位置の予測結果に基づいて算出した長期エフェメリス(衛星が発信しているエフェメリスよりも長期間分の衛星軌道データ)であったりする。かかるアシストデータは、良好な受信環境の元で復号したデータや、精密な予測に基づくデータであるため、衛星軌道データとしての信頼性が高い。従って、衛星信号の捕捉適否を判定する際にアシストデータを用いることによって、衛星信号の捕捉適否をより正しく判定することができる。
衛星信号捕捉適否判定方法の説明図。 近似条件を定めたテーブルの一例を示す図。 第1の捕捉適否判定処理の流れを示すフローチャート。 携帯型電話機の機能構成の一例を示すブロック図。 ベースバンド処理回路部の回路構成の一例を示す図。 ベースバンド処理の流れを示すフローチャート。 捕捉処理の流れを示すフローチャート。 第2の捕捉適否判定処理の流れを示すフローチャート。 第3の捕捉適否判定処理の流れを示すフローチャート。 近似条件を定めたテーブルの変形例を示す図。 近似条件閾値テーブルのテーブル構成の一例を示す図。 ベースバンド処理回路部の記憶部のデータ構成の変形例を示す図。
以下、本発明を適用した好適な実施形態の一例について説明する。但し、本発明を適用可能な形態が以下説明する実施形態に限定されるわけでないことは勿論である。
1.原理
最初に、本実施形態における衛星信号捕捉適否判定方法について説明する。本実施形態では、衛星測位システムの一種であるGPS(Global Positioning System)を例に挙げて、GPS衛星から発信されるGPS衛星信号を受信して捕捉した際のGPS衛星信号の捕捉適否を判定する場合について説明する。
GPSを利用した衛星測位システムにおいて、測位用衛星の一種であるGPS衛星は、エフェメリスやアルマナックといった衛星軌道データを含む航法メッセージを、測位用の衛星信号の一種であるGPS衛星信号に乗せて発信している。GPS衛星信号は、拡散符号の一種であるC/A(Coarse and Acquisition)コードによって、スペクトラム拡散方式として知られるCDMA(Code Division Multiple Access)方式によって変調された1.57542[GHz]の通信信号である。C/Aコードは、コード長1023チップを1PNフレームとする繰返し周期1msの擬似ランダム雑音符号であり、各GPS衛星に固有のコードである。
GPS衛星がGPS衛星信号を発信する際の周波数は、1.57542[GHz](以下、「規定搬送波周波数」と称する。)と予め規定されている。しかし、GPS衛星及びGPS受信装置の移動により生ずるドップラー等の影響により、GPS受信装置がGPS衛星信号を受信する際の周波数は、必ずしも規定搬送波周波数とは一致しない。そのため、GPS受信装置は、GPS衛星信号を受信した信号に対して、装置内部で発生させた擬似的なC/AコードであるレプリカC/Aコードとの相関演算を、周波数方向及び位相方向それぞれについて行って、GPS衛星信号を捕捉する手法が用いられる。
周波数方向の相関演算は、受信した搬送波(キャリア)の信号である「受信キャリア信号」の周波数(以下、「受信周波数」と称す。)を特定するための演算(いわゆる周波数サーチ)である。また、位相方向の相関演算は、受信信号のC/Aコードである「受信C/Aコード」の位相(以下、「コード位相」と称す。)を特定するための演算(いわゆる位相サーチ)である。
具体的な処理手順としては、例えば、受信キャリア信号からキャリアを除去する際、及び、受信C/AコードとレプリカC/Aコードとの相関演算を行う際に、キャリア除去用信号の周波数及びレプリカC/Aコードの位相を変化させながら、相関演算を実行する。そして、相関演算で得られる相関値が最大となるキャリア除去用信号の周波数及びレプリカC/Aコードの位相を特定する。
各GPS衛星には固有のC/Aコードが割り当てられている。GPS受信装置は、捕捉対象とするGPS衛星(以下、「捕捉対象衛星」と称す。)に対して、当該捕捉対象衛星のC/AコードのレプリカであるレプリカC/Aコードを用いて、当該捕捉対象衛星からのGPS衛星信号の捕捉を試行する。捕捉対象衛星は、GPS受信装置がGPS衛星信号の捕捉を希望する衛星(捕捉希望衛星)であるとも言える。
C/Aコードはいわゆるゴールド符号であるため、正しいGPS衛星信号との相関演算でない限り高い相関値が得られることはない。しかし、得られる相関値の総体的な大きさは、GPS衛星信号の受信状況によって変動し得る。つまり、受信した信号が強電界の信号となる環境(以下、「強電界環境」と称す。)では、受信した信号が弱電界の信号となる環境(以下、「弱電界環境」と称す。)と比べて、相関値は相対的に大きくなる傾向がある。
その結果、特に強電界環境においては、捕捉対象として想定しているGPS衛星が、実際のGPS衛星と異なる場合であっても、相関値がある程度大きな値となる場合がある。この場合、相関値のうちのピークの値(以下、「ピーク相関値」と称す。)が所定の閾値を超えたことを以て相関がとれた(捕捉成功)と判定するならば、誤った相関(誤相関)となり得る。誤相関が発生した場合は、GPS受信装置が本来想定している衛星ではない別の衛星からのGPS衛星信号を捕捉することとなる。この場合は、GPS衛星信号の捕捉が適切に行われなかったことになり、位置算出の正確性を低下させる要因となる。
かかる問題に鑑み、本願発明者は、GPS衛星信号に搬送されている衛星軌道データに着目し、捕捉したGPS衛星信号を復号することで得られた衛星軌道データを利用してGPS衛星信号の捕捉適否を判定する手法を考案した。GPS衛星信号に搬送されている衛星軌道データとは、エフェメリス及びアルマナックのことを意味する。
本願発明者は、捕捉したGPS衛星信号を復号することで取得した衛星軌道データと、捕捉希望衛星(捕捉対象衛星)について取得済みの衛星軌道データとを用いれば、GPS衛星信号の捕捉適否が判定できるのではないかと考えた。つまり、誤相関が発生すると、捕捉希望衛星の衛星軌道データではなく、他の衛星の衛星軌道データが復号されることになる。従って、復号された衛星軌道データと捕捉希望衛星について取得済みの衛星軌道データとを照合する。そして、その結果、復号した衛星軌道データ(第1の衛星軌道データ)と、捕捉希望衛星について取得済みの衛星軌道データ(第2の衛星軌道データ)とが所定の近似条件を満たす関係にあるならば、GPS衛星信号の捕捉が適切に行われたと判定できる。
以下の説明では、捕捉したGPS衛星信号を復号することで取得した衛星軌道データのことを「復号衛星軌道データ」と称する。また、復号衛星軌道データの照合に用いる衛星軌道データのことを「照合用衛星軌道データ」と称する。本実施形態では、復号衛星軌道データをエフェメリスとし、照合用衛星軌道データをアルマナック、長期エフェメリス(LTE;Long Term Ephemeris)及びエフェメリスの何れかとして、GPS衛星信号の捕捉適否を判定する。
長期エフェメリス(LTE)は、衛星軌道データの一種であり、GPS衛星が発信しているエフェメリスと比べて長期間分の衛星軌道の予測データである。例えば、予測対象とする期間を1週間といった長期的な期間とし、当該1週間の期間を4時間、6時間、8時間といった所定の単位期間毎に区切った各期間におけるGPS衛星の予測軌道のデータが格納されている。長期間分の衛星軌道を予測したデータであるため「長期予測エフェメリス」と呼ぶこともできる。長期エフェメリスは、精密な予測に基づくデータであるため、衛星軌道データとしての信頼性は高いと言える。
照合用衛星軌道データは、例えば、サーバーアシストにより取得されたアシストデータとすることができる。この場合は、GPSを搭載した電子機器が所定のサーバーにアクセスし、照合用衛星軌道データをアシストデータとして取得することが考えられる。そして、GPS衛星からのGPS衛星信号の捕捉を試行して復号した復号衛星軌道データと、当該GPS衛星について取得済みの照合用衛星軌道データとを用いて、GPS衛星信号の捕捉適否を判定する。
1−1.第1の判定方法
第1の判定方法は、復号衛星軌道データに格納されている衛星軌道パラメーターの値と、照合用衛星軌道データに格納されている衛星軌道パラメーターの値との差分に基づいて、GPS衛星信号の捕捉適否を判定する方法である。
図1は、第1の判定方法の説明図である。復号衛星軌道データに格納されている衛星軌道パラメーターの値を図1(1)に模式的に示し、照合用衛星軌道データに格納されている衛星軌道パラメーターの値を図1(2)に模式的に示す。復号衛星軌道データはエフェメリスであるため、図1(1)はエフェメリスに格納されている衛星軌道パラメーターの値に相当する。また、照合用衛星軌道データはアルマナック、長期エフェメリス及びエフェメリスの何れかであるが、例えばアルマナックを照合用衛星軌道データとする場合には、図1(2)はアルマナックに格納されている衛星軌道パラメーターの値に相当する。
図1には各種の衛星軌道パラメーターを示しているが、このうちの主要な衛星軌道パラメーターとしては、ケプラーの軌道要素として知られる軌道長半径“A1/2”と、離心率“e”と、昇交点赤経“Ω0”と、軌道傾斜角“i0”と、近地点引数“ω”と、平均近点角“M0”とが挙げられる。
軌道長半径“A1/2”は、衛星軌道の長半径であり、航法メッセージの第2サブフレームに格納されている。離心率“e”は、衛星軌道の楕円の膨らみ具合を示す値であり、航法メッセージの第2サブフレームに格納されている。昇交点赤経“Ω0”は、春分点を指す基準方向と昇交点とのなす角度であり、航法メッセージの第3サブフレームに格納されている。軌道傾斜角“i0”は、衛星軌道面と地球赤道面とのなす角度であり、航法メッセージの第3サブフレームに格納されている。近地点引数“ω”は、昇交点と近地点とのなす角度であり、航法メッセージの第3サブフレームに格納されている。また、平均近点角“M0”は、ある時刻における衛星の衛星軌道上の位置を指定するために便宜的に用いられる値である。平均近点角“M0”は衛星位置指定値に相当し、航法メッセージの第2サブフレームに格納されている。
例えば、アルマナックを照合用衛星軌道データとする場合を考える。エフェメリスとアルマナックとでは、衛星軌道の予測精度が異なる。エフェメリスはGPS衛星の詳細な衛星軌道についてのデータであり、その予測精度は極めて高いと言える。しかし、アルマナックはGPS衛星の概略の衛星軌道についてのデータであり、その予測精度はエフェメリスと比べると低い。従って、復号衛星軌道データ(エフェメリス)の衛星軌道パラメーターと、照合用衛星軌道データ(アルマナック)の衛星軌道パラメーターとでは、その値に差が見られる。
しかし、同一のGPS衛星についての衛星軌道データであれば、上記の2つの衛星軌道データの衛星軌道パラメーターの値は、似通った値となっているはずである。そこで、第1の判定方法では、復号衛星軌道データの衛星軌道パラメーターの値と、照合用衛星軌道データの衛星軌道パラメーターの値との差分を算出する。そして、算出した差分に基づく近似条件判定を行って、GPS衛星信号の捕捉適否を判定する。つまり、近似条件が成立すれば、GPS衛星信号の捕捉が適切に行われたと判定し、近似条件が成立しなければ、GPS衛星信号の捕捉が適切に行われなかったと判定する。
図2は、近似条件を定めたテーブルの一例を示す図である。図2のテーブルには、近似条件として考えられる幾つかの種類の条件を例示している。具体的には、近似条件の番号と対応付けて、各近似条件の内容が定められている。
近似条件Aは、値が近似する衛星軌道パラメーターの割合が所定の閾値“θp[%]”を超えることとして定められている。値が近似するというのは、例えば、各衛星軌道パラメーターそれぞれについて算出した差分が、衛星軌道パラメーター毎に規定された所定の閾値未満(或いは閾値以下)となることである。照合対象とする全衛星軌道パラメーターの数に対して、復号衛星軌道データと照合用衛星軌道データとで値が近似する衛星軌道パラメーターの数の占める割合が“θp[%]”を超えていれば、近似条件Aが成立する。
近似条件Bは、衛星軌道パラメーターの値の差分の総和が所定の閾値“θtotal”未満となることとして定められている。各衛星軌道パラメーターについて算出した差分を合算した値がある程度小さな値となっていれば、近似条件Bが成立する。なお、各衛星軌道パラメーターは単位が異なるため、例えば各衛星軌道パラメーターについて正規化を行った後に差分の総和を算出するなどする必要がある。
近似条件Cは、平均近点角“M0”の差分が所定の閾値“θM”未満となることとして定められている。平均近点角“M0”は、ケプラーの衛星軌道要素の1つであり、ある時刻におけるGPS衛星の衛星軌道上の位置を指定するために用いられる値である。
平均近点角“M0”に着目して近似条件を定めたのには理由がある。各衛星に共通する衛星軌道パラメーターや、共通ではないにしても衛星間で値が似通った衛星軌道パラメーターを対象として近似条件を判定しても、誤相関の有無を判定することはできない。誤相関が発生すると、GPS受信装置が想定している衛星ではない他の衛星の衛星軌道データが復号される。この場合、複数の衛星間で値の変化のない(或いは値の変化の少ない)衛星軌道パラメーターに着目したならば、正相関の場合も誤相関の場合も同じような値が得られることになるため、相関の正誤を判定することができない。
それに対して、衛星毎に固有の衛星軌道パラメーターに着目したならば、正相関の場合と誤相関の場合とで得られる値に明確な差が現れるため、相関の正誤を判定することができる。平均近点角“M0”は衛星毎に固有の値とされるため、照合に好適な衛星軌道パラメーターであると言える。
近似条件D及びEは、複数種類の衛星軌道パラメーターの差分を組み合わせた近似条件である。上記の理由から、平均近点角“M0”は必須のパラメーターとしている。例えば、近似条件Dは、平均近点角“M0”の差分が所定の閾値“θM”未満となることに加えて、衛星軌道パラメーターの一種である昇交点赤経“Ω0”の差分が所定の閾値“θΩ”未満となることとして定められている。
同様に、近似条件Eは、平均近点角“M0”の差分が所定の閾値“θM”未満となることに加えて、衛星軌道パラメーターの一種である近地点引数“Ωω”の差分が所定の閾値“θω”未満となることとして定められている。
上記に例示した近似条件のうち、近似条件Cを用いれば最も簡単に捕捉適否を判定することができる。1つの衛星軌道パラメーターについてのみ差分を算出して閾値判定を行えば済むためである。しかし、捕捉したGPS衛星信号から衛星軌道データを復号する際には、GPS衛星信号の受信状況によっては、デコードエラーやビット値の欠落などの事象が発生することが想定される。そのため、平均近点角“M0”の値が正しく復号されなかった場合には、GPS衛星信号の捕捉適否が正しく判定されなくなる。
上記の問題は、他の近似条件についても同様のことが言える。そこで、2以上の近似条件をAND条件又はOR条件として組み合わせて使用すると効果的である。
図3は、第1の判定方法を適用してGPS衛星信号の捕捉適否を判定する処理の一例である第1の捕捉適否判定処理の流れを示すフローチャートである。この処理では、各捕捉対象衛星それぞれについてループAの処理を実行する(ステップC1〜C15)。
ループAの処理では、最初に第1の近似条件判定処理を行う(ステップC3)。具体的には、復号衛星軌道データと照合用衛星軌道データとを照合し、図2に定められた近似条件のうちから選択した一の近似条件が成立するか否かを判定する。この判定処理で近似条件が成立すると判定された場合には(ステップC5;Yes)、捕捉適切と判定される(ステップC13)。従って、この第1の近似条件判定処理は、できるだけデータ量の小さいデータを判定対象とすれば、信号の捕捉時間を短縮することができ好適である。例えば、近似条件Cが好適である。
次いで、第1の近似条件判定処理において近似条件が成立したか否かを判定し(ステップC5)、成立しなかったと判定した場合は(ステップC5;No)、第2の近似条件判定処理を行う(ステップC7)。具体的には、第1の近似条件判定処理で用いた近似条件以外の一の近似条件が成立するか否かを判定する。この第2の近似条件判定処理は、第1の近似条件判定処理で判定に失敗する場合を想定した処理であるため、第1の近似条件判定処理で用いた近似条件とは性質の異なる近似条件を用いると効果的である。例えば、近似条件Aが好適である。
そして、第2の近似条件判定処理において近似条件が成立したか否かを判定し(ステップC9)、成立しなかったと判定した場合は(ステップC9;No)、GPS衛星信号の捕捉が不適であったと判定して(ステップC11)、次の捕捉対象衛星へと処理を移行する。
それに対して、ステップC5又はC9の何れかにおいて近似条件が成立したと判定した場合は(ステップC5;Yes又はステップC9;Yes)、GPS衛星信号の捕捉が適切に行われたと判定して(ステップC13)、次の捕捉対象衛星へと処理を移行する。
全ての捕捉対象衛星についてステップC3〜C13の処理を行った後、ループAの処理を終了して(ステップC15)、第1の捕捉適否判定処理を終了する。
1−2.第2の判定方法
第2の判定方法は、復号衛星軌道データを用いて算出した捕捉希望衛星(捕捉対象衛星)の位置(以下、「第1の衛星位置」と称す。)と、照合用衛星軌道データを用いて算出した同じ捕捉希望衛星の位置(以下、「第2の衛星位置」と称す。)との差分に基づいて、GPS衛星信号の捕捉適否を判定する方法である。
復号衛星軌道データと照合用衛星軌道データとが、何れも同じGPS衛星の衛星軌道についてのデータであれば、第1の衛星位置と第2の衛星位置とは近接した位置となって然るべきである。しかし、誤相関が発生すると捕捉希望衛星ではない他の衛星の衛星軌道データが復号されるため、第1の衛星位置と第2の衛星位置とは乖離した位置となる。
そこで、第1の衛星位置と第2の衛星位置との差、つまり、第1の衛星位置と第2の衛星位置との間の距離を算出する。そして、算出した距離が所定の閾値距離未満(或いは閾値距離以下)となっているのであれば、GPS衛星信号が適切に捕捉されたと判定する。
2.実施例
次に、上記の原理に従って衛星信号捕捉適否判定を行う衛星信号捕捉適否判定装置の実施例について説明する。ここでは、衛星信号捕捉適否判定装置を備えた電子機器の一例として、携帯型電話機に本発明を適用した場合の実施例について説明する。但し、本発明を適用可能な実施例が以下説明する実施例に限定されるわけではないことは勿論である。
2−1.機能構成
図4は、本実施例における携帯型電話機1の機能構成の一例を示すブロック図である。携帯型電話機1は、GPSアンテナ5と、GPS受信部10と、ホスト処理部30と、操作部40と、表示部50と、携帯電話用アンテナ60と、携帯電話用無線通信回路部70と、記憶部80と、時計部90とを備えて構成される。
GPSアンテナ5は、GPS衛星から発信されているGPS衛星信号を含むRF(Radio Frequency)信号を受信するアンテナであり、受信信号をGPS受信部10に出力する。
GPS受信部10は、GPSアンテナ5から出力された信号に基づいて携帯型電話機1の位置を計測する位置算出回路或いは位置算出装置であり、いわゆるGPS受信装置に相当する機能ブロックである。GPS受信部10は、RF受信回路部11と、ベースバンド処理回路部20とを備えて構成される。なお、RF受信回路部11と、ベースバンド処理回路部20とは、それぞれ別のLSI(Large Scale Integration)として製造することも、1チップとして製造することも可能である。
RF受信回路部11は、RF信号の受信回路である。回路構成としては、例えば、GPSアンテナ5から出力されたRF信号をA/D変換器でデジタル信号に変換し、デジタル信号を処理する受信回路を構成してもよい。また、GPSアンテナ5から出力されたRF信号をアナログ信号のまま信号処理し、最終的にA/D変換することでデジタル信号をベースバンド処理回路部20に出力する構成としてもよい。
後者の場合には、例えば、次のようにRF受信回路部11を構成することができる。すなわち、所定の発振信号を分周或いは逓倍することで、RF信号乗算用の発振信号を生成する。そして、生成した発振信号を、GPSアンテナ5から出力されたRF信号に乗算することで、RF信号を中間周波数の信号(以下、「IF(Intermediate Frequency)信号」と称す。)にダウンコンバートし、IF信号を増幅等した後、A/D変換器でデジタル信号に変換して、ベースバンド処理回路部20に出力する。
ベースバンド処理回路部20は、RF受信回路部11から出力された受信キャリア信号に対して相関処理等を行ってGPS衛星信号を捕捉し、GPS衛星信号から取り出した衛星軌道データや時刻データ等に基づいて、所定の位置算出計算を行って携帯型電話機1の位置(位置座標)を算出する処理回路ブロックである。
本実施例において、ベースバンド処理回路部20は、衛星信号捕捉適否判定装置として機能する。より具体的には、捕捉希望衛星からのGPS衛星信号の捕捉を試行して衛星軌道データを復号する復号部として機能するとともに、復号衛星軌道データ(第1の衛星軌道データ)と、捕捉希望衛星について取得済みの照合用衛星軌道データ(第2の衛星軌道データ)とを用いてGPS衛星信号の捕捉適否を判定する判定部として機能する。
ホスト処理部30は、記憶部80に記憶されているシステムプログラム等の各種プログラムに従って携帯型電話機1の各部を統括的に制御するプロセッサーである。ホスト処理部30は、ベースバンド処理回路部20から取得した位置座標をもとに、表示部50に現在位置を指し示した地図を表示させたり、その位置座標を各種のアプリケーション処理に利用する。
操作部40は、例えばタッチパネルやボタンスイッチ等により構成される入力装置であり、押下されたキーやボタンの信号をホスト処理部30に出力する。この操作部40の操作により、通話要求やメール送受信要求、位置算出要求等の各種指示入力がなされる。
表示部50は、LCD(Liquid Crystal Display)等により構成され、ホスト処理部30から入力される表示信号に基づいた各種表示を行う表示装置である。表示部50には、位置表示画面や時刻情報等が表示される。
携帯電話用アンテナ60は、携帯型電話機1の通信サービス事業者が設置した無線基地局との間で携帯電話用無線信号の送受信を行うアンテナである。
携帯電話用無線通信回路部70は、RF変換回路、ベースバンド処理回路等によって構成される携帯電話の通信回路部であり、携帯電話用無線信号の変調・復調等を行うことで、通話やメールの送受信等を実現する。
記憶部80は、ホスト処理部30が携帯型電話機1を制御するためのシステムプログラムや、各種アプリケーション処理を実行するための各種プログラムやデータ等を記憶する記憶装置である。
時計部90は、携帯型電話機1の内部時計であり、水晶発振器等の発振回路を備えて構成される。時計部90の計時時刻は、ベースバンド処理回路部20及びホスト処理部30に随時出力される。
2−2.ベースバンド処理回路部の回路構成
図5は、ベースバンド処理回路部20の回路構成の一例を示す図であり、本実施例に係わる回路ブロックを中心に記載した図である。ベースバンド処理回路部20は、例えば、乗算部21と、キャリア除去用信号発生部22と、相関演算部23と、レプリカコード発生部24と、処理部25と、記憶部27とを備えて構成される。
乗算部21は、キャリア除去用信号発生部22により生成されたキャリア除去用信号を、I相及びQ相の受信信号である受信キャリア信号に乗算することで、受信キャリア信号からキャリア(搬送波)を除去する回路部であり、乗算器等を有して構成される。キャリア除去用信号発生部22は、処理部25から指示されたサーチ周波数に応じたキャリア除去用信号を生成・発生させて、乗算部21に出力する。
なお、受信信号のIQ成分の分離(IQ分離)を行う回路ブロックについては図示を省略するが、例えば、RF受信回路部11において受信信号をIF信号にダウンコンバージョンする際に、位相が90度異なる局部発振信号を受信信号に乗算することでIQ分離を行うこととすればよい。また、RF受信回路部11から出力される信号がIF信号である場合には、IF周波数のキャリア除去用信号を生成すればよい。このように、RF受信回路部11が受信信号をIF信号にダウンコンバージョンする場合も、本実施形態を実質的に同一に適用可能である。
キャリア除去用信号発生部22は、GPS衛星信号のキャリア信号の周波数と同一の周波数のキャリア除去用信号を生成する回路であり、キャリアNCO(Numerical Controlled Oscillator)等の発振器を有して構成される。受信キャリア信号がIF信号である場合には、IF周波数の信号を生成する。キャリア除去用信号発生部22は、I相の受信信号に対するI相キャリア除去用信号と、Q相の受信信号に対するQ相キャリア除去用信号とを生成して、乗算部21にそれぞれ出力する。Q相キャリア除去用信号は、I相キャリア除去用信号と位相が90度異なる信号である。
キャリア除去用信号発生部22により発生されたキャリア除去用信号が乗算部21において受信キャリア信号に乗算されることで、復調(検波)が行われ、キャリアが除去された受信コード信号が生成・出力される。すなわち、乗算部21において、I相の受信信号にI相のキャリア除去用信号が乗算されることでI相の受信コード信号が復調されるとともに、Q相の受信信号にQ相のキャリア除去用信号が乗算されることでQ相の受信コード信号が復調される。乗算部21及びキャリア除去用信号発生部22は、復調部(検波部)であるとも言える。
相関演算部23は、乗算部21から出力されたI相及びQ相の受信コード信号と、レプリカコード発生部24により生成・発生されたレプリカC/Aコードとの相関演算を行う回路部であり、複数の相関器(コリレーター)等を有して構成される。
レプリカコード発生部24は、C/Aコードを模擬したレプリカであるレプリカC/Aコードを生成・発生する回路部であり、コードNCO等の発振器を有して構成される。レプリカコード発生部24は、処理部25から指示された衛星番号及び位相遅延量に応じたレプリカC/Aコードを生成・発生させて、相関演算部23に出力する。相関演算部23は、I相及びQ相の受信コード信号それぞれに対して、レプリカコード発生部24により生成されたレプリカC/Aコードとの相関演算を行う。
処理部25は、ベースバンド処理回路部20の各機能部を統括的に制御する制御装置及び演算装置であり、CPU(Central Processing Unit)等のプロセッサーを有して構成される。処理部25は、主要な機能部として、衛星信号捕捉部251と、位置算出部253とを有する。
衛星信号捕捉部251は、相関演算部23から出力される周波数方向及び位相方向の相関演算結果(相関値)に対するピーク判定を行って、受信キャリア信号の周波数(受信周波数)及び受信C/Aコードの位相(コード位相)を検出する。そして、検出した受信周波数及びコード位相をメジャメント情報として記憶部27に記憶させて、位置算出等に利用する。また、衛星信号捕捉部251は、相関演算部23から出力される相関値に基づいて衛星軌道データを復号して記憶部27に記憶させ、衛星信号捕捉適否判定や位置算出等に利用する。
受信キャリア信号の位相(キャリア位相)と、受信C/Aコードの位相(コード位相)とが検出され、相関がとれた状態になると、相関値の時間変化をもとに、航法メッセージを構成する各ビットの値を得ることができる。この位相同期は、例えば位相ロックループとして知られるPLL(Phase Locked Loop)により実現され、I相の受信コード信号に対する相関値の時間変化から、航法メッセージのデータビットが復号される。
位置算出部253は、衛星信号捕捉部251により各捕捉衛星について取得されたメジャメント情報と、各捕捉衛星について復号された航法メッセージとを用いて、公知の位置算出計算を行って携帯型電話機1の位置を算出する。算出した位置は、ホスト処理部30に出力され、各種のアプリケーションに利用される。
記憶部27は、ROM(Read Only Memory)やフラッシュROM、RAM(Random Access Memory)等の記憶装置(メモリー)によって構成され、ベースバンド処理回路部20のシステムプログラムや、衛星信号捕捉機能、位置算出機能等の各種機能を実現するための各種プログラム、データ等を記憶している。また、各種処理の処理中データ、処理結果などを一時的に記憶するワークエリアを有する。
図5に示すように、記憶部27には、プログラムとして、処理部25により読み出され、ベースバンド処理(図6参照)として実行されるベースバンド処理プログラム271が記憶されている。また、ベースバンド処理プログラム271は、捕捉処理(図7参照)として実行される捕捉プログラム2711と、各種の捕捉適否判定処理(図3,図8及び図9参照)として実行される衛星信号捕捉適否判定プログラム2713とをサブルーチンとして含む。
ベースバンド処理とは、処理部25が、GPS衛星から送出されるGPS衛星信号を捕捉する処理を行い、捕捉したGPS衛星信号を利用した所定の位置算出計算を行って、携帯型電話機1の位置を算出する処理である。
また、捕捉適否判定処理とは、衛星信号捕捉部251が、上記の原理で説明した各種の判定方法を利用してGPS衛星信号の捕捉適否を判定する処理である。これらの処理については、フローチャートを用いて詳細に後述する。
記憶部27には、データとして、衛星別照合用衛星軌道データ272と、衛星別復号衛星軌道データ274と、衛星別メジャメント情報276とが記憶される。
衛星別照合用衛星軌道データ272は、照合用衛星軌道データが衛星別に記憶されたデータである。本実施例では、ホスト処理部30を介して携帯型電話機1の基地局と通信を行い、サーバーアシストによって各衛星に係る照合用衛星軌道データをアシストデータとして外部取得する。
衛星別復号衛星軌道データ274は、捕捉したGPS衛星信号を復号することで取得した衛星軌道データが衛星別に記憶されたデータである。
衛星別メジャメント情報276は、捕捉したGPS衛星信号に関するメジャメント情報が衛星別に記憶されたデータである。すなわち、各捕捉対象衛星について、受信周波数及びコード位相の情報がメジャメント情報として記憶される。
2−3.処理の流れ
図6は、記憶部27に記憶されたベースバンド処理プログラム271が処理部25により読み出されることで、ベースバンド処理回路部20において実行されるベースバンド処理の流れを示すフローチャートである。
最初に、衛星信号捕捉部251は、電源投入後初回測位であるか否かを判定し(ステップA1)、初回測位であると判定した場合は(ステップA1;Yes)、基地局と通信を行い、サーバーアシストによって衛星別照合用衛星軌道データ272をアシストデータとして外部取得して、記憶部27に記憶させる(ステップA3)。
ステップA3の後、又は、ステップA1において電源投入後初回測位ではないと判定した場合は(ステップA1;No)、衛星信号捕捉部251は、記憶部27に記憶された捕捉プログラム2711に従って捕捉処理を行う(ステップA5)。
図7は、捕捉処理の流れを示すフローチャートである。
先ず、衛星信号捕捉部251は、初期設定を行う(ステップB1)。具体的には、衛星信号捕捉部251は、GPS衛星信号の周波数サーチ範囲を設定する。詳細には、あるサーチ中心周波数(例えば、中間周波数変換後の規定搬送波周波数)を中心として、所定幅(例えば±10kHz)の範囲を周波数サーチ範囲として設定する。
次いで、衛星信号捕捉部251は、捕捉対象衛星選定処理を行う(ステップB3)。具体的には、時計部90の計時時刻(現在時刻)において、所与の基準位置の天空に位置するGPS衛星を、例えば記憶部27に記憶された衛星別照合用衛星軌道データ272を用いて判定して、捕捉対象衛星に選定する。基準位置は、例えば、電源投入後の初回の位置算出の場合は、いわゆるサーバーアシストによってアシストサーバーから取得した位置とし、2回目以降の位置算出の場合は、最新の算出位置とする等の方法で設定できる。
その後、衛星信号捕捉部251は、各捕捉対象衛星それぞれについてループBの処理を行う(ステップB5〜B15)。ループBの処理では、衛星信号捕捉部251は、当該捕捉対象衛星に対応するレプリカC/Aコードを用いてGPS衛星信号を捕捉する(ステップB7)。
具体的には、衛星信号捕捉部251は、ステップB1で設定した周波数サーチ範囲内でサーチ周波数を変化させながら、キャリア除去用信号発生部22にキャリア除去用信号を発生させ、乗算部21において受信キャリア信号からキャリアを除去させる。また、当該捕捉対象衛星のレプリカC/Aコードをレプリカコード発生部24に発生させ、位相遅延量を変化させながら相関演算部23に相関演算を行わせる。
次いで、衛星信号捕捉部251は、相関がとれたか否かを判定する(ステップB9)。すなわち、相関演算部23から出力される各位相遅延量での相関値のうちの最大の相関値であるピーク相関値が、所定の閾値を超えている(或いは閾値以上)場合に、相関がとれたと判定する。相関がとれなかったと判定した場合は(ステップB9;No)、次の捕捉対象衛星へと処理を移行する。
また、相関がとれたと判定したならば(ステップB9;Yes)、衛星信号捕捉部251は、ピーク相関値に対応するキャリア除去用信号の周波数(受信周波数)及びレプリカC/Aコードの位相(コード位相)を、メジャメント情報として記憶部27の衛星別メジャメント情報276に記憶させる(ステップB11)。
次いで、衛星信号捕捉部251は、相関演算部23から出力される相関値に基づいて、航法メッセージを復号する(ステップB13)。そして、衛星信号捕捉部251は、次の捕捉対象衛星へと処理を移行する。
全ての捕捉対象衛星についてステップB7〜B13の処理を行った後、衛星信号捕捉部251は、ループBの処理を終了する(ステップB15)。次いで、衛星信号捕捉部251は、記憶部27に記憶された捕捉適否判定プログラム2713に従って捕捉適否判定処理を行う(ステップB17)。例えば、衛星信号捕捉部251は、図3の第1の捕捉適否判定処理を行って、各捕捉対象衛星からのGPS衛星信号の捕捉適否を判定する。
次いで、衛星信号捕捉部251は、記憶部27に記憶された衛星別メジャメント情報276のうち、捕捉適否判定処理において捕捉不適と判定された捕捉対象衛星のメジャメント情報を削除する(ステップB19)。捕捉不適と判定された衛星のメジャメント情報を位置算出に使用しないようにするためである。
次いで、衛星信号捕捉部251は、衛星の再サーチを行う(ステップB21)。具体的には、捕捉不適と判定された衛星について、周波数のサーチ範囲を変えて、再度GPS衛星信号の捕捉を試行する。これは、捕捉不適と判定された衛星について再サーチを行うことで正しく捕捉されれば、位置算出に利用可能な衛星数が増えるため、位置算出の性能を改善することができるためである。これらの処理を行った後、衛星信号捕捉部251は、捕捉処理を終了する。
なお、ステップB21において衛星の再サーチを行う前に、位置算出が可能な衛星数(以下、「位置算出可能衛星数」と称す。)以上の数のメジャメント情報が衛星別メジャメント情報276に記憶されているか否かを判定することとしてもよい。そして、位置算出可能衛星数に達していない場合に限り、ステップB21の衛星の再サーチを行うこととしてもよい。位置算出可能衛星数は、例えば、2次元測位の場合は「3個」、3次元測位の場合は「4個」と定めることができる。
図6のベースバンド処理に戻って、捕捉処理を行った後、位置算出部253は、衛星別メジャメント情報276に記憶された各捕捉衛星のメジャメント情報と、各捕捉衛星について復号された航法メッセージとを用いて、位置算出処理を行う(ステップA7)。位置算出処理では、携帯型電話機1と各捕捉衛星間の擬似距離を利用して、例えば最小二乗法やカルマンフィルターを用いた公知の位置算出計算を行って携帯型電話機1の位置を算出する。
擬似距離は、次のようにして算出することができる。すなわち、航法メッセージから求まる各捕捉衛星の衛星位置と、携帯型電話機1の初期位置とを用いて、各捕捉衛星と携帯型電話機1間の擬似距離の整数部分を算出する。また、メジャメント情報に含まれるコード位相を用いて、各捕捉衛星と携帯型電話機1間の擬似距離の端数部分を算出する。このようにして算出した整数部分と端数部分とを合算することで擬似距離が求まる。
次いで、位置算出部253は、位置算出処理で算出した位置(位置座標)をホスト処理部30に出力する(ステップA9)。そして、処理部25は、処理を終了するか否かを判定し(ステップA11)、まだ終了しないと判定した場合は(ステップA11;No)、ステップA1に戻る。また、処理を終了すると判定した場合は(ステップA11;Yes)、ベースバンド処理を終了する。
2−4.作用効果
ベースバンド処理回路部20において、処理部25は、捕捉対象衛星からのGPS衛星信号の捕捉を試行して復号した復号衛星軌道データ(第1の衛星軌道データ)と、捕捉対象衛星についてアシストデータとして外部取得した照合用衛星軌道データ(第2の衛星軌道データ)とを用いて、GPS衛星信号の捕捉適否を判定する。照合用衛星軌道データは捕捉希望衛星についての衛星軌道データであるため、GPS衛星信号を捕捉して復号した衛星軌道データが照合用衛星軌道データと同内容のデータであれば、GPS衛星信号の捕捉が適切に行われたと判断できる。
第1の判定方法では、復号衛星軌道データに格納されている衛星軌道パラメーターの値と、照合用衛星軌道データに格納されている衛星軌道パラメーターの値との差に基づいて、GPS衛星信号の捕捉適否を判定する。詳細には、衛星軌道パラメーターの値の差分に基づく複数の近似条件が定められており、衛星軌道パラメーターの値の差分がこれらの近似条件を満たすか否かに基づいて、GPS衛星信号の捕捉適否を判定する。少なくとも衛星軌道パラメーターに含まれる平均近点角“M0”の差分に基づく近似条件が定められている。この場合、少なくとも平均近点角“M0”の差分に対して閾値判定を行えば誤相関の有無がわかるため、GPS衛星信号の捕捉適否を簡易に判定することができる。また、複数の近似条件を組み合わせて判定を行うことで、デコードエラーやビット値の欠落等の事象に対して頑健な判定方法を実現することができる。
3.変形例
本発明を適用可能な実施例は、上記の実施例に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能であることは勿論である。以下、変形例について説明するが、上記の実施例と同一の構成要素や、フローチャート中の同一の処理ステップについては同一の符号を付して説明を省略し、上記の実施例とは異なる部分を中心に説明する。
3−1.捕捉適否判定処理
図8は、図3の第1の捕捉適否判定処理に代わる第2の捕捉適否判定処理の流れを示すフローチャートである。第2の捕捉適否判定処理は、「1−2.第2の判定方法」を単体で用いた処理である。
衛星信号捕捉部251は、各捕捉対象衛星それぞれについてループCの処理を行う(ステップD1〜D17)。ループCの処理では、衛星信号捕捉部251は、当該捕捉対象衛星の復号衛星軌道データと、時計部90の計時時刻とを用いて、当該捕捉対象衛星の第1の衛星位置を算出する(ステップD3)。また、当該捕捉対象衛星の照合用衛星軌道データと、時計部90の計時時刻とを用いて、当該捕捉対象衛星の第2の衛星位置を算出する(ステップD5)。
次いで、衛星信号捕捉部251は、第1の衛星位置と第2の衛星位置との間の距離を算出する(ステップD7)。そして、衛星信号捕捉部251は、算出した距離に対する閾値判定を行う(ステップD9)。算出した距離が所定の閾値距離を超えているならば(ステップD11;Yes)、衛星信号捕捉部251は、捕捉不適と判定して(ステップD13)、次の捕捉対象衛星へと処理を移行する。また、算出した距離が所定の閾値距離以下であるならば(ステップD11;No)、衛星信号捕捉部251は、捕捉適切と判定して(ステップD15)、次の捕捉対象衛星へと処理を移行する。
全ての捕捉対象衛星についてステップD3〜D15の処理を行った後、衛星信号捕捉部251は、ループCの処理を終了して(ステップD17)、第2の捕捉適否判定処理を終了する。
3−2.判定方法のバリエーション
上記の実施形態で説明した2つの判定方法の他に、例えば復号衛星軌道データのデータ列と照合用衛星軌道データのデータ列とをビット単位で照合して、GPS衛星信号の捕捉適否判定を行うことも可能である。
衛星軌道データの種類が同じであり、同一衛星についての衛星軌道データであれば、原理的には、復号衛星軌道データのデータ列と照合用衛星軌道データのデータ列とは同じとなる。従って、データ列同士をビット単位で照合すると、その一致率は高くなるはずである。ここで言う一致率とは、照合対象とする全ビット数に対して、照合により値が一致したビットの数の割合のことを指す。
また、衛星軌道データの種類が異なる場合であっても、同一衛星についての衛星軌道データであれば、衛星軌道パラメーターの値は似通った値となるはずである。そのため、衛星軌道パラメーターの値を示すデータ部分において、下位のビット値は異なるとしても、上位のビット値は同じになるはずである。そこで、例えば、衛星軌道パラメーターの値を示すデータ部分のうちの上位所定数のビット値同士を照合し、その照合結果に基づいて、GPS衛星信号の捕捉適否を判定することとしてもよい。
他には、第2の判定方法として説明した第1の衛星位置と第2の衛星位置との差分に基づく判定方法や、上記のようにビット値の一致率に基づく判定方法は、復号衛星軌道データ(第1の衛星軌道データ)と、照合用衛星軌道データ(第2の衛星軌道データ)とが近似条件を満たす関係にあるかどうかを判定する方法であるとも言える。そのため、これらの判定方法を第1の判定方法に包含させることも勿論可能である。
具体的には、例えば図10に示すように、近似条件を定めたテーブルにおいて、近似条件Fとして、第1の衛星位置と第2の衛星位置との差分(衛星位置間の距離)が所定の閾値距離“θd”未満となることを定めておく。また、近似条件Gとして、復号衛星軌道データと照合用衛星軌道データとをビット単位で照合した場合のビット値の一致率が所定の閾値“θb[%]”を超えることを定めておく。
そして、図3の第1の捕捉適否判定処理において、第1の近似条件判定処理(ステップC3)及び第2の近似条件判定処理(ステップC7)では、近似条件F及び近似条件Gも含めた複数の近似条件の中から選択した近似条件を用いて判定を行う。例えば、第1の近似条件判定処理では近似条件Fを用いた判定を行い、第2の近似条件判定処理では近似条件Gを用いた判定を行う。
3−3.照合用衛星軌道データの取得方法
照合用衛星軌道データは、携帯型電話機の基地局から取得する方法以外にも、適宜の方法で取得することとしてよい。例えば、照合用衛星軌道データの提供サービスを行う事業者が運営するサーバーにアクセスして照合用衛星軌道データをダウンロードする構成としてもよい。また、携帯型電話機の通信サービスを提供する携帯電話キャリアが運営する携帯電話ショップに照合用衛星軌道データを提供するための提供マシンを設置するなどして、当該提供マシンから照合用衛星軌道データを取得する構成してもよい。また、電源投入後の2回目以降の測位の場合は、過去にGPS衛星信号を復号して取得した衛星軌道データが既に存在するため、当該復号衛星軌道データを照合用衛星軌道データとして用いてもよい。
3−4.照合用衛星軌道データに基づく判定条件の変更
上記の照合用衛星軌道データの取得方法如何によっては、照合用衛星軌道データがアルマナック、長期エフェメリス及びエフェメリスの何れにもなり得る。具体的には、携帯型電話機の基地局から照合用衛星軌道データを取得する場合には、アルマナックやエフェメリスが照合用衛星軌道データとして提供されることが想定される。また、照合用衛星軌道データの提供サービスを行う事業者や携帯電話キャリアから照合用衛星軌道データを取得する場合には、事業者側で生成された長期エフェメリスが照合用衛星軌道データとして提供されることが想定される。また、過去に取得した復号衛星軌道データを照合用衛星軌道データとする場合には、アルマナックを照合用衛星軌道データとすることが考えられる。
アルマナックと長期エフェメリスとエフェメリスとでは、衛星軌道の予測精度が異なる。一般的には、エフェメリスの予測精度が最も高く、その次に長期エフェメリスの予測精度が高く、アルマナックの予測精度が最も低くなる傾向がある。アルマナックは全てのGPS衛星についての概略の衛星軌道のデータであるため、エフェメリスや長期エフェメリスと比べて予測精度は低くなる傾向がある。また、長期エフェメリスはエフェメリスよりも長期間に亘って衛星軌道を予測したデータであるため、エフェメリスと比較すると予測精度は低くなることが想定される。
このように照合用衛星軌道データの種類によって衛星軌道の予測精度が異なり得るため、近似条件の閾値を固定的にするのではなく、取得した衛星軌道データの種類によって近似条件の閾値を変更することにすれば、より効果的である。
図9は、この場合に衛星信号捕捉部251が図3の第1の捕捉適否判定処理に代えて実行する第3の捕捉適否判定処理の流れを示すフローチャートである。なお、第1の捕捉適否判定処理と同一の処理ステップについては同一の符号を付して、その説明を省略する。
第3の捕捉適否判定処理では、衛星信号捕捉部251は、各捕捉対象衛星について行うループAの処理において(ステップC1〜C15)、記憶部27に記憶されている当該捕捉対象衛星の照合用衛星軌道データの種類に基づいて、近似条件の閾値を設定する(ステップE2)。
図11は、近似条件の閾値設定用のテーブルである近似条件閾値テーブル278のテーブル構成の一例を示す図である。近似条件閾値テーブル278には、照合用衛星軌道データがアルマナック、長期エフェメリス及びエフェメリスの何れであるかに応じて、近似条件毎に異なる閾値が定められている。
例えば近似条件Aについては、値が近似する衛星軌道パラメーターの割合に対する閾値“θp[%]”として、アルマナックには“θp1[%]”が、長期エフェメリスには“θp2[%]”が、エフェメリスには“θp3[%]”がそれぞれ定められている。照合用衛星軌道データの予測精度が高いほど、値が近似する衛星軌道パラメーターの割合は高くなると考えられる。そのため、閾値の大小関係は“θp1<θp2<θp3”として定められている。
同様に、例えば近似条件Cについては、平均近点角“M0”の差分に対する閾値“θM”として、アルマナックには“θM1”が、長期エフェメリスには“θM2”が、エフェメリスには“θM3”がそれぞれ定められている。照合用衛星軌道データの予測精度が高いほど、平均近点角“M0”の差分は小さくなると考えられる。そのため、閾値の大小関係は“θM1>θM2>θM3”として定められている。
同様に、例えば近似条件Fについては、第1の衛星位置と第2の衛星位置との差分に対する閾値“θd”として、アルマナックには“θd1”が、長期エフェメリスには“θd2”が、エフェメリスには“θd3”がそれぞれ定められている。照合用衛星軌道データの予測精度が高いほど、第1の衛星位置と第2の衛星位置との差分は小さくなると考えられる。そのため、閾値の大小関係は“θd1>θd2>θd3”として定められている。
この場合は、例えば図12に示すように、ベースバンド処理回路部20の記憶部27に上記の近似条件閾値テーブル278を記憶させておけばよい。そして、衛星信号捕捉部251は、図9の第3の捕捉適否判定処理のステップE2において、記憶部27に記憶された近似条件閾値テーブル278を参照して、第1及び第2の近似条件判定処理それぞれにおいて判定に用いる近似条件の閾値を設定する。そして、設定した閾値を用いて、第1の近似条件判定処理(ステップC3)及び第2の近似条件判定処理(ステップC7)を行う。
3−5.電子機器
上記の実施例では、電子機器の一種である携帯型電話機に本発明を適用した場合を例に挙げて説明したが、本発明を適用可能な電子機器はこれに限られるわけではない。例えば、カーナビゲーション装置や携帯型ナビゲーション装置、パソコン、PDA(Personal Digital Assistant)、腕時計といった他の電子機器についても同様に適用することが可能である。
3−6.処理の主体
上記の実施例では、衛星信号捕捉適否判定をベースバンド処理回路部の処理部が実行するものとして説明したが、これを電子機器のホスト処理部が実行することとしてもよい。また、GPS衛星信号の捕捉及び衛星信号捕捉適否判定はベースバンド処理回路部の処理部が実行し、位置算出は電子機器のホスト処理部が行うといったように処理を分担することとしてもよい。
3−7.衛星測位システム
また、上記の実施形態では、衛星測位システムとしてGPSを例に挙げて説明したが、WAAS(Wide Area Augmentation System)、QZSS(Quasi Zenith Satellite System)、GLONASS(GLObal NAvigation Satellite System)、GALILEO等の他の衛星測位システムであってもよい。
1 携帯型電話機、 10 GPS受信部、 11 RF受信回路部、 20 ベースバンド処理回路部、 21 乗算部、 22 キャリア除去用信号発生部、 23 相関演算部、 24 レプリカコード発生部、 25 処理部、 27 記憶部、 30 ホスト処理部、 40 操作部、 50 表示部、 60 携帯電話用アンテナ、 70 携帯電話用無線通信回路部、 80 記憶部、 90 時計部

Claims (8)

  1. 衛星からの衛星信号の捕捉を試行して第1の衛星軌道データを復号することと、
    前記第1の衛星軌道データと、前記衛星について取得済みの第2の衛星軌道データとを用いて、前記衛星信号の捕捉適否を判定することと、
    を含む衛星信号捕捉適否判定方法。
  2. 前記判定することは、前記第1の衛星軌道データに格納されている衛星軌道パラメーターの値と前記第2の衛星軌道データに格納されている衛星軌道パラメーターの値との差分に基づいて前記衛星信号の捕捉適否を判定することを含む、
    請求項1に記載の衛星信号捕捉適否判定方法。
  3. 前記判定することは、少なくとも、前記第1の衛星軌道データに格納されている衛星軌道パラメーターに含まれる衛星位置指定値と前記第2の衛星軌道データに格納されている衛星軌道パラメーターに含まれる衛星位置指定値との差分に基づいて前記衛星信号の捕捉適否を判定することを含む、
    請求項2に記載の衛星信号捕捉適否判定方法。
  4. 前記判定することは、
    前記第1の衛星軌道データを用いて前記衛星の第1の衛星位置を算出することと、
    前記第2の衛星軌道データを用いて前記衛星の第2の衛星位置を算出することと、
    前記第1の衛星位置と前記第2の衛星位置との差分に基づいて前記衛星信号の捕捉適否を判定することと、
    を含む、
    請求項1に記載の衛星信号捕捉適否判定方法。
  5. 前記第1の衛星軌道データはエフェメリスであり、
    前記第2の衛星軌道データはアルマナック、長期エフェメリス及びエフェメリスの何れかである、
    請求項1〜4の何れか一項に記載の衛星信号捕捉適否判定方法。
  6. 前記第2の衛星軌道データがアルマナック、長期エフェメリス及びエフェメリスの何れであるかに基づいて前記捕捉適否の判定条件を変更することを更に含む、
    請求項5に記載の衛星信号捕捉適否判定方法。
  7. 前記第2の衛星軌道データはサーバーアシストにより取得されたアシストデータである、
    請求項1〜6の何れか一項に記載の衛星信号捕捉適否判定方法。
  8. 衛星からの衛星信号の捕捉を試行して第1の衛星軌道データを復号する復号部と、
    前記第1の衛星軌道データと、前記衛星について取得済みの第2の衛星軌道データとを用いて、前記衛星信号の捕捉適否を判定する判定部と、
    を備えた衛星信号捕捉適否判定装置。
JP2010281337A 2010-12-17 2010-12-17 衛星信号捕捉適否判定方法及び衛星信号捕捉適否判定装置 Active JP5740961B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010281337A JP5740961B2 (ja) 2010-12-17 2010-12-17 衛星信号捕捉適否判定方法及び衛星信号捕捉適否判定装置
CN2011104213319A CN102590834A (zh) 2010-12-17 2011-12-15 适当与否判定方法及适当与否判定装置
US13/329,153 US9354320B2 (en) 2010-12-17 2011-12-16 Method of determining adequacy and adequacy determining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010281337A JP5740961B2 (ja) 2010-12-17 2010-12-17 衛星信号捕捉適否判定方法及び衛星信号捕捉適否判定装置

Publications (2)

Publication Number Publication Date
JP2012127893A true JP2012127893A (ja) 2012-07-05
JP5740961B2 JP5740961B2 (ja) 2015-07-01

Family

ID=46233685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010281337A Active JP5740961B2 (ja) 2010-12-17 2010-12-17 衛星信号捕捉適否判定方法及び衛星信号捕捉適否判定装置

Country Status (3)

Country Link
US (1) US9354320B2 (ja)
JP (1) JP5740961B2 (ja)
CN (1) CN102590834A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181854A (ja) * 2012-03-02 2013-09-12 Seiko Epson Corp 受信方法及び受信装置
JP2015169494A (ja) * 2014-03-06 2015-09-28 セイコーエプソン株式会社 受信装置、および衛星信号認証方法
CN109543292A (zh) * 2018-11-21 2019-03-29 哈尔滨工业大学 基于轨道预测的星间链路信号捕获过程的仿真方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102026115B1 (ko) * 2017-06-27 2019-11-04 한국항공우주연구원 위성 영상 획득 시각 보정 장치 및 방법
CN112673281A (zh) * 2018-09-26 2021-04-16 日本电气方案创新株式会社 信息处理装置、信息处理系统、信息处理方法和非暂时性计算机可读介质
JPWO2020066153A1 (ja) * 2018-09-26 2021-08-30 Necソリューションイノベータ株式会社 情報処理装置、情報処理システム、情報処理方法およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201812A (ja) * 1992-10-20 1994-07-22 Caterpillar Inc 衛星をベースとするナビゲーションシステムにおいて衛星の位置を予測する方法及び装置
JPH11118900A (ja) * 1997-10-09 1999-04-30 Matsushita Electric Ind Co Ltd Gps受信機及び受信方法
JP2010197189A (ja) * 2009-02-25 2010-09-09 Seiko Epson Corp 時刻決定方法及び時刻決定装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486834A (en) * 1994-08-08 1996-01-23 Trimble Navigation Limited Global orbiting navigation satellite system receiver
US6313786B1 (en) * 1998-07-02 2001-11-06 Snaptrack, Inc. Method and apparatus for measurement processing of satellite positioning system (SPS) signals
US6411892B1 (en) * 2000-07-13 2002-06-25 Global Locate, Inc. Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris
US6563461B1 (en) * 2000-08-16 2003-05-13 Honeywell International Inc. System, method, and software for non-iterative position estimation using range measurements
US6583756B2 (en) * 2000-08-25 2003-06-24 Qualcomm Incorporated Method and apparatus for using satellite status information in satellite positioning systems
JP3749681B2 (ja) 2001-09-10 2006-03-01 日本無線株式会社 送信源捕捉方法及び受信機
US7595752B2 (en) * 2002-10-02 2009-09-29 Global Locate, Inc. Method and apparatus for enhanced autonomous GPS
US6683564B1 (en) * 2002-11-19 2004-01-27 Eride, Inc. High-sensitivity satellite positioning system receivers and reception methods
US7355551B2 (en) * 2006-03-06 2008-04-08 Sirf Technology, Inc. Method for a space-efficient GPS receiver
US8044852B2 (en) * 2009-01-14 2011-10-25 Trimble Navigation Limited Position determination based on hybrid pseudorange solution data
US20100198512A1 (en) * 2009-01-30 2010-08-05 Wentao Zhang Method and apparatus for providing reliable extended ephemeris quality indicators
IN2013CH03050A (ja) * 2013-07-08 2015-09-04 Accord Software & Systems Pvt Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201812A (ja) * 1992-10-20 1994-07-22 Caterpillar Inc 衛星をベースとするナビゲーションシステムにおいて衛星の位置を予測する方法及び装置
JPH11118900A (ja) * 1997-10-09 1999-04-30 Matsushita Electric Ind Co Ltd Gps受信機及び受信方法
JP2010197189A (ja) * 2009-02-25 2010-09-09 Seiko Epson Corp 時刻決定方法及び時刻決定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181854A (ja) * 2012-03-02 2013-09-12 Seiko Epson Corp 受信方法及び受信装置
JP2015169494A (ja) * 2014-03-06 2015-09-28 セイコーエプソン株式会社 受信装置、および衛星信号認証方法
CN109543292A (zh) * 2018-11-21 2019-03-29 哈尔滨工业大学 基于轨道预测的星间链路信号捕获过程的仿真方法
CN109543292B (zh) * 2018-11-21 2022-04-29 哈尔滨工业大学 基于轨道预测的星间链路信号捕获过程的仿真方法

Also Published As

Publication number Publication date
CN102590834A (zh) 2012-07-18
JP5740961B2 (ja) 2015-07-01
US9354320B2 (en) 2016-05-31
US20120154205A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
CN107678045B (zh) 一种全球定位系统启动方法及用户终端和相关介质产品
JP5740961B2 (ja) 衛星信号捕捉適否判定方法及び衛星信号捕捉適否判定装置
JP2009133716A (ja) 測位方法、プログラム及び測位装置
JP2009092541A (ja) 測位方法、プログラム、測位装置及び電子機器
US8265124B2 (en) Received signal determination method, positioning device, and electronic instrument
JP2010117178A (ja) 位置算出方法及び位置算出装置
US8779973B2 (en) Satellite signal tracking method, position calculating method, and position calculating device
JP5685888B2 (ja) 受信信号信頼度判定方法、コード位相誤差算出方法及び受信信号信頼度判定装置
JP2010127672A (ja) 位置算出方法及び位置算出装置
US8953721B2 (en) Cross correlation determination method and cross correlation determination device
US8494094B2 (en) Demodulation of data collected prior to bit edge detection
JP5050870B2 (ja) 測位方法、プログラム及び測位装置
EP3607354B1 (en) Gnss multipath mitigation using slope-based code discriminator
US20110235687A1 (en) Signal acquisition method, signal acquisition apparatus and electronic device
JP2011164088A (ja) 衛星信号追尾方法、位置算出方法、衛星信号追尾装置及び位置算出装置
JP5267478B2 (ja) 衛星信号追尾方法及び位置算出装置
US8724593B2 (en) Capture frequency decision methods and receivers
EP1735633B1 (en) System and method for location-finding using communication signals
US20050012661A1 (en) Method and a system for positioning, and an electronic device
JP2011203234A (ja) 信号捕捉方法、信号捕捉装置及び電子機器
JP2010181158A (ja) 位置算出システム、擬似衛星システム、位置算出装置及び位置決定方法
JP5051011B2 (ja) サーチ周波数補正方法、測位方法、プログラム及び受信装置
US9560483B2 (en) Positioning satellite signal receiving method and positioning satellite signal receiving apparatus
US8761232B2 (en) Bit change determination method and bit change determination device
JP6011042B2 (ja) 受信部駆動制御方法及び受信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5740961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350