Nothing Special   »   [go: up one dir, main page]

JP2012196608A - Method for regenerating methacrylic acid producing catalyst and method for producing methacrylic acid - Google Patents

Method for regenerating methacrylic acid producing catalyst and method for producing methacrylic acid Download PDF

Info

Publication number
JP2012196608A
JP2012196608A JP2011061152A JP2011061152A JP2012196608A JP 2012196608 A JP2012196608 A JP 2012196608A JP 2011061152 A JP2011061152 A JP 2011061152A JP 2011061152 A JP2011061152 A JP 2011061152A JP 2012196608 A JP2012196608 A JP 2012196608A
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
regenerating
molybdenum
aqueous slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011061152A
Other languages
Japanese (ja)
Inventor
Junji Shibata
順二 柴田
Eiichi Shiraishi
英市 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2011061152A priority Critical patent/JP2012196608A/en
Priority to SG2012016952A priority patent/SG184652A1/en
Priority to DE102012005249A priority patent/DE102012005249A1/en
Priority to KR1020120026906A priority patent/KR20120106634A/en
Publication of JP2012196608A publication Critical patent/JP2012196608A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/28Regeneration or reactivation
    • B01J27/285Regeneration or reactivation of catalysts comprising compounds of phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/16Oxidation gas comprising essentially steam and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/68Liquid treating or treating in liquid phase, e.g. dissolved or suspended including substantial dissolution or chemical precipitation of a catalyst component in the ultimate reconstitution of the catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for regenerating a methacrylic acid producing catalyst which enables effective recovery of the catalytic activity and catalyst life of a used catalyst that is used in the production of methacrylic acid and a method for producing methacrylic acid at a good convert ratio and an excellent selectivity by using a regeneration catalyst obtained by the regeneration method.SOLUTION: In the method for regenerating the methacrylic acid producing catalyst comprising a heteropoly acid compound containing phosphorus and molybdenum, a catalyst precursor is obtained by drying aqueous slurry containing the used catalyst used in the production of methacrylic acid, an ammonium radical, nitric acid radical, and water, and after the catalyst precursor is first stage-baked at a temperature of 360-410°C in an oxidative gas atmosphere containing moisture in an amount of ≥0.1 vol.% and <2.0 vol.%, the catalyst precursor is second stage-baked at a temperature of 420-500°C in a non-oxidative gas atmosphere.

Description

本発明は、メタクリル酸製造用触媒を再生する方法、およびこの方法により再生された触媒を用いて、メタクリル酸を製造する方法に関する。   The present invention relates to a method for regenerating a catalyst for producing methacrylic acid, and a method for producing methacrylic acid using a catalyst regenerated by this method.

リンおよびモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒は、メタクロレイン等を原料とする気相接触酸化反応に長時間使用されると、熱負荷等により触媒活性が低下し、該触媒が劣化することが知られている。   When a catalyst for methacrylic acid production comprising a heteropolyacid compound containing phosphorus and molybdenum is used for a long time in a gas phase catalytic oxidation reaction using methacrolein or the like as a raw material, the catalytic activity decreases due to heat load, etc. It is known to deteriorate.

かかる劣化触媒の再生処理方法として、例えば、特許文献1では、劣化触媒、アンモニウム根、硝酸根及び水を含む混合物を乾燥した後、2容量%の水分を含む空気の雰囲気下に390℃で第一段焼成した後、窒素の雰囲気下に435℃で第二段焼成する方法が記載されている。   As a method for regenerating such a deteriorated catalyst, for example, in Patent Document 1, a mixture containing a deteriorated catalyst, an ammonium root, a nitrate root and water is dried, and then at 390 ° C. in an air atmosphere containing 2% by volume of water. A method is described in which after the first stage baking, the second stage baking is performed at 435 ° C. in a nitrogen atmosphere.

特開2008−93595号公報JP 2008-93595 A

しかしながら、上記の再生方法で再生された再生触媒は、触媒寿命の点で必ずしも満足のいくものではなかった。   However, the regenerated catalyst regenerated by the above regeneration method is not always satisfactory in terms of catalyst life.

そこで、本発明の目的は、メタクリル酸の製造に使用された使用済触媒の触媒活性および触媒寿命を効果的に回復させることのできるメタクリル酸製造用触媒の再生方法と、この方法により得られた再生触媒を用いて、良好な転化率、選択率でメタクリル酸を製造する方法とを提供することにある。   Therefore, the object of the present invention was obtained by a method for regenerating a catalyst for methacrylic acid production which can effectively recover the catalytic activity and catalyst life of the used catalyst used in the production of methacrylic acid, and the method. An object of the present invention is to provide a method for producing methacrylic acid with a good conversion and selectivity using a regenerated catalyst.

本発明者等は上記課題を解決すべく鋭意研究を行った結果、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.

すなわち、本発明のメタクリル酸製造用触媒の再生方法は、リン及びモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の再生方法であって、メタクリル酸の製造に使用された使用済触媒、アンモニウム根、硝酸根及び水を含む水性スラリーを乾燥して触媒前駆体を得、該触媒前駆体を0.1容量%以上2.0容量%未満の水分を含む酸化性ガスの雰囲気下に360〜410℃で第一段焼成した後、非酸化性ガスの雰囲気下に420〜500℃で第二段焼成することを特徴とする。   That is, the method for regenerating a catalyst for methacrylic acid production of the present invention is a method for regenerating a catalyst for methacrylic acid production comprising a heteropolyacid compound containing phosphorus and molybdenum, and is a spent catalyst used for the production of methacrylic acid, ammonium An aqueous slurry containing roots, nitrate radicals, and water is dried to obtain a catalyst precursor, and the catalyst precursor is placed in an oxidizing gas atmosphere containing water in an amount of 0.1% by volume or more and less than 2.0% by volume in the range of 360 to 360%. After the first stage baking at 410 ° C., the second stage baking is performed at 420 to 500 ° C. in an atmosphere of non-oxidizing gas.

また、本発明のメタクリル酸の製造方法は、上記再生方法によりメタクリル酸製造用触媒を再生し、この再生された触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸から選ばれる化合物を気相接触酸化反応に付す、ことを特徴とする。   The method for producing methacrylic acid of the present invention regenerates a catalyst for producing methacrylic acid by the above regeneration method, and in the presence of the regenerated catalyst, a compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid. It is characterized by being subjected to a gas phase catalytic oxidation reaction.

本発明の再生方法によれば、メタクリル酸の製造に使用された使用済触媒の触媒活性および触媒寿命を効果的に回復させることができ、また、得られた再生触媒を用いて、良好な転化率および選択率で長期間にわたりメタクリル酸を製造することができる。   According to the regeneration method of the present invention, the catalyst activity and the catalyst life of the used catalyst used for the production of methacrylic acid can be effectively recovered, and good conversion can be achieved using the obtained regeneration catalyst. Methacrylic acid can be produced over a long period of time at a rate and selectivity.

<メタクリル酸製造用触媒および使用済触媒>
本発明が再生の対象とするメタクリル酸製造用触媒は、リンおよびモリブデンを含むヘテロポリ酸化合物からなるものであり、遊離のヘテロポリ酸からなるものであってもよいし、ヘテロポリ酸の塩からなるものであってもよい。中でも、ヘテロポリ酸の酸性塩(部分中和塩)からなるものが好ましく、さらに好ましくはケギン型ヘテロポリ酸の酸性塩からなるものである。
上記触媒には、リンおよびモリブデン以外の元素として、カリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種の元素(以下、元素Xということがある)が含まれるのが好ましく、また、バナジウムや、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムからなる群より選ばれる少なくとも1種の元素(以下、Y元素ということがある)が含まれるのが好ましい。
<Catalyst for methacrylic acid production and used catalyst>
The catalyst for producing methacrylic acid to be regenerated by the present invention is composed of a heteropolyacid compound containing phosphorus and molybdenum, and may be composed of a free heteropolyacid or a salt of a heteropolyacid. It may be. Especially, what consists of an acidic salt (partially neutralized salt) of heteropolyacid is preferable, More preferably, it consists of an acidic salt of Keggin type heteropolyacid.
The catalyst preferably contains at least one element selected from the group consisting of potassium, rubidium, cesium and thallium (hereinafter sometimes referred to as element X) as an element other than phosphorus and molybdenum. It is preferable that at least one element selected from the group consisting of vanadium, copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium (hereinafter sometimes referred to as Y element) is included.

前記メタクリル酸製造用触媒(対象触媒)を構成する前記ヘテロポリ酸化合物の組成は、使用前の新品触媒において、下記式(i)の通りであることが好ましい。
PaMobVcXdYeOx (i)
(式(i)中、P、Mo及びVはそれぞれリン、モリブデン、バナジウムを表し、Xはカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種の元素Xを示し、Yは銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムからなる群より選ばれる少なくとも1種の元素(元素Y)を示し、Oは酸素を表し、b=12としたとき、0<a≦3、0≦c≦3、0≦d≦3、0≦e≦3であり、xは各元素の酸化状態により定まる値である。なお、XおよびYのそれぞれが、2種以上の元素である場合には、2種以上の元素の合計比率が、b=12としたとき、0≦d≦3、0≦e≦3となればよい。)
特に、前記新品触媒を構成する前記ヘテロポリ酸化合物の組成は、モリブデンに対する元素Xの原子比(X/Mo)が0.5/12〜2/12であることが好ましい。
The composition of the heteropolyacid compound constituting the catalyst for producing methacrylic acid (target catalyst) is preferably as shown in the following formula (i) in the new catalyst before use.
PaMobVcXdYeOx (i)
(In the formula (i), P, Mo and V represent phosphorus, molybdenum and vanadium, respectively, X represents at least one element X selected from the group consisting of potassium, rubidium, cesium and thallium, Y represents copper, Represents at least one element (element Y) selected from the group consisting of arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum and cerium, O represents oxygen, and when b = 12, 0 < a ≦ 3, 0 ≦ c ≦ 3, 0 ≦ d ≦ 3, 0 ≦ e ≦ 3, and x is a value determined by the oxidation state of each element, wherein each of X and Y is two or more types In the case of an element, the total ratio of two or more elements may be 0 ≦ d ≦ 3 and 0 ≦ e ≦ 3 when b = 12.
In particular, the composition of the heteropolyacid compound constituting the new catalyst preferably has an atomic ratio of element X to molybdenum (X / Mo) of 0.5 / 12 to 2/12.

新品触媒としてのメタクリル酸製造用触媒は、例えば、ヘテロポリ酸化合物を構成する上述した各元素を含む化合物(例えば、各元素のオキソ酸、オキソ酸塩、酸化物、硝酸塩、炭酸塩、重炭酸塩、水酸化物、ハロゲン化物等)を混合し、所望の形状に成形した後、焼成するなど、従来公知の方法で製造されたものであればよい。
上述した各元素を含む化合物は、例えば、リンを含む化合物としては、リン酸、リン酸塩等が用いられ、モリブデンを含む化合物としては、モリブデン酸、モリブデン酸アンモニウムなどのモリブデン酸塩、酸化モリブデン、塩化モリブデン等が用いられ、バナジウムを含む化合物としては、バナジン酸、バナジン酸アンモニウム(メタバナジン酸アンモニウム)などのバナジン酸塩(メタバナジン酸塩)、酸化バナジウム、塩化バナジウム等が用いられ、元素Xを含む化合物としては、酸化カリウム、酸化ルビジウム、酸化セシウムなどの酸化物;硝酸カリウム、硝酸ルビジウム、硝酸セシウム、硝酸タリウムなどの硝酸塩;炭酸カリウム、炭酸ルビジウム、炭酸セシウムなどの炭酸塩;炭酸水素カリウム、炭酸水素セシウムなどの重炭酸塩;水酸化カリウム、水酸化ルビジウム、水酸化セシウムなどの水酸化物;塩化カリウム、塩化ルビジウム、フッ化セシウム、塩化セシウム、臭化セシウム、ヨウ化セシウムなどのハロゲン化物等が用いられる。また、前記元素Yを含む化合物としては、オキソ酸、オキソ酸塩、酸化物、硝酸塩、炭酸塩、水酸化物、ハロゲン化物等が用いられる。
The catalyst for producing methacrylic acid as a new catalyst is, for example, a compound containing each of the above-described elements constituting a heteropolyacid compound (for example, oxo acid, oxo acid salt, oxide, nitrate, carbonate, bicarbonate of each element) , Hydroxides, halides, etc.), formed into a desired shape, and then fired.
Examples of the compound containing each element described above include phosphoric acid and phosphate as the compound containing phosphorus, and examples of the compound containing molybdenum include molybdate such as molybdic acid and ammonium molybdate, and molybdenum oxide. Molybdenum chloride and the like are used, and vanadium-containing compounds include vanadate, vanadate (metavanadate) such as ammonium vanadate (metavanadate), vanadium oxide, vanadium chloride, etc. The compounds included include oxides such as potassium oxide, rubidium oxide and cesium oxide; nitrates such as potassium nitrate, rubidium nitrate, cesium nitrate and thallium nitrate; carbonates such as potassium carbonate, rubidium carbonate and cesium carbonate; potassium hydrogen carbonate, carbonic acid Bicarbonate such as cesium hydrogen ; Potassium hydroxide, rubidium hydroxide, hydroxides such as cesium hydroxide; potassium chloride, rubidium chloride, cesium fluoride, cesium chloride, cesium bromide, halides such as cesium iodide is used. Examples of the compound containing the element Y include oxo acids, oxo acid salts, oxides, nitrates, carbonates, hydroxides, halides, and the like.

メタクリル酸製造用触媒は、新品触媒において、メタクリル酸の製造に使用されると、熱負荷等により触媒活性が低下してしまうことがある。
本発明の製造方法では、このようにメタクリル酸の製造に使用して触媒活性の低下した使用済触媒を再生処理の対象とするものである。尚、メタクリル酸製造用触媒における活性点の分解については、該触媒についてX線回折(XRD)分析を行い、分解物である三酸化モリブデンが検出されるか否かで確認することができる。
When a catalyst for producing methacrylic acid is used in the production of methacrylic acid in a new catalyst, the catalytic activity may be reduced due to heat load or the like.
In the production method of the present invention, the spent catalyst having a reduced catalytic activity used in the production of methacrylic acid is subjected to regeneration treatment. In addition, about the decomposition | disassembly of the active site | part in the catalyst for methacrylic acid production, it can confirm by performing X-ray diffraction (XRD) analysis about this catalyst, and detecting whether molybdenum trioxide which is a decomposition product is detected.

本発明の再生方法では、メタクリル酸の製造に使用された使用済触媒、アンモニウム根、硝酸根および水を混合し、水性スラリーを得る。アンモニウム根の原料化合物としては、例えば、アンモニアや、硝酸アンモニウム、炭酸アンモニウム、酢酸アンモニウムなどのアンモニウム塩等が挙げられ、好ましくはアンモニウム、硝酸アンモニウムが挙げられる。硝酸根の原料化合物としては、例えば、硝酸や、硝酸アンモニウムなどの硝酸塩等が挙げられ、好ましくは硝酸、硝酸アンモニウムが挙げられる。
また、次に述べる飛散成分として加える化合物に、アンモニウム塩や硝酸塩を用いる場合、これらアンモニウム塩や硝酸塩もアンモニウム根、硝酸根である。
In the regeneration method of the present invention, the spent catalyst, ammonium root, nitrate root and water used in the production of methacrylic acid are mixed to obtain an aqueous slurry. Examples of the ammonium root material compound include ammonia and ammonium salts such as ammonium nitrate, ammonium carbonate, and ammonium acetate, and preferably ammonium and ammonium nitrate. Examples of the nitrate radical raw material compound include nitric acid and nitrates such as ammonium nitrate, preferably nitric acid and ammonium nitrate.
Moreover, when ammonium salt and nitrate are used for the compound added as a scattering component described below, these ammonium salts and nitrates are also ammonium and nitrate.

メタクリル酸製造用触媒は、メタクリル酸の製造に使用されると、リンやモリブデン等の触媒の構成成分が一部飛散することがある。このような場合、蛍光X線分析や誘導結合プラズマ(ICP)発光分析により飛散した構成成分の種類を解析し、得られる結果から飛散量を算出し、その飛散分を、上記水性スラリーを調製する際にあわせて加えるのが好ましい。
また、飛散分として加える化合物には、上述の新品触媒の製造に用いることのできる各元素を含む化合物の中から、1種もしくは2種以上を適宜選択すればよい。
When the catalyst for methacrylic acid production is used for the production of methacrylic acid, some components of the catalyst such as phosphorus and molybdenum may be scattered. In such a case, the type of constituents scattered by fluorescent X-ray analysis or inductively coupled plasma (ICP) emission analysis is analyzed, the amount of scattering is calculated from the obtained results, and the above-mentioned aqueous slurry is prepared from the amount of scattering. It is preferable to add them accordingly.
Moreover, what is necessary is just to select suitably 1 type (s) or 2 or more types from the compound containing each element which can be used for manufacture of the above-mentioned new catalyst as a compound added as a scattering part.

上記水性スラリー中に元素Xが存在する場合、水性スラリーは、モリブデンに対する元素Xの原子比(X/Mo)が0.5/12〜2/12、好ましくは、1.0/12〜1.8/12となるように調整されているのが好ましい。
具体的には、原子比の調整は、元素Xを含む化合物(元素X含有化合物)とモリブデン化合物の少なくとも一方を加えることにより行なえばよい。
When element X is present in the aqueous slurry, the aqueous slurry has an atomic ratio (X / Mo) of element X to molybdenum of 0.5 / 12 to 2/12, preferably 1.0 / 12 to 1. It is preferably adjusted to 8/12.
Specifically, the atomic ratio may be adjusted by adding at least one of a compound containing element X (element X-containing compound) and a molybdenum compound.

元素X含有化合物とモリブデン化合物等との混合量は、再生に供する前の使用済触媒の触媒組成(構成成分の種類や量)を、蛍光X線分析やICP発光分析等により分析しておき、この使用済触媒の触媒組成に基づき、元素X含有化合物および/またはモリブデン化合物を加えた後の組成におけるモリブデンに対する元素Xの原子比(X/Mo)が前述した範囲になるように決定すればよい。
通常は、使用済触媒のモリブデン量を考慮して元素X含有化合物を加えることになるが、メタクリル酸の製造に長時間使用することによる熱負荷等によってモリブデンが飛散、消失してしまう場合には、その減少量によっては、使用済触媒の組成が前述した水性スラリーにおけるX/Mo比になっている場合もあり、そのような場合には元素X含有化合物とモリブデン化合物の両方を加えないこともありえる。
The mixing amount of the element X-containing compound and the molybdenum compound, etc. is analyzed by fluorescent X-ray analysis, ICP emission analysis, etc., with respect to the catalyst composition (type and amount of constituent components) of the used catalyst before being subjected to regeneration, Based on the catalyst composition of the spent catalyst, the atomic ratio of element X to molybdenum (X / Mo) in the composition after adding the element X-containing compound and / or the molybdenum compound may be determined to be in the above-described range. .
Normally, the element X-containing compound is added in consideration of the amount of molybdenum in the spent catalyst. However, when molybdenum is scattered and disappears due to heat load due to long-term use in the production of methacrylic acid. Depending on the amount of reduction, the composition of the used catalyst may be the X / Mo ratio in the aqueous slurry described above. In such a case, it is possible not to add both the element X-containing compound and the molybdenum compound. It can be.

水性スラリーの調製において混合するモリブデン化合物や元素X含有化合物としては、上述した新品触媒の製造に用いることのできるモリブデンを含む化合物や元素X含有化合物の中から、1種もしくは2種以上を適宜選択すればよい。   As the molybdenum compound and the element X-containing compound to be mixed in the preparation of the aqueous slurry, one or two or more kinds are appropriately selected from the molybdenum-containing compound and the element X-containing compound that can be used for the production of the new catalyst described above. do it.

また、水性スラリーを調製する際には、使用済触媒の触媒組成に基づき、必要に応じて、モリブデンや元素X以外の触媒構成元素を含む化合物を加えることもできる。モリブデンや元素X以外の触媒構成元素を含む化合物としては、上述した新品触媒の製造に用いることのできる各元素を含む化合物の中から、1種もしくは2種以上を適宜選択すればよい。   Moreover, when preparing aqueous slurry, the compound containing catalyst structural elements other than molybdenum and the element X can also be added as needed based on the catalyst composition of a used catalyst. As the compound containing a catalyst constituent element other than molybdenum and element X, one or more kinds may be appropriately selected from the compounds containing each element that can be used for the production of the new catalyst described above.

上記水性スラリーの調製法については特に制限はなく、例えば、使用済触媒を水に懸濁させた後、アンモニウム根の原料化合物及び硝酸根の原料化合物を加えてもよいし、アンモニウム根及び硝酸根を含む水溶液に上記使用済触媒を懸濁させてもよい。   The method for preparing the aqueous slurry is not particularly limited. For example, after suspending a used catalyst in water, an ammonium root raw material compound and a nitrate radical raw material compound may be added, or an ammonium root and a nitrate radical may be added. The spent catalyst may be suspended in an aqueous solution containing.

前記水性スラリーに含まれる硝酸根とアンモニウム根との比率は、硝酸根1モルに対してアンモニウム根が1.3モル以下であることが好ましく、0.5〜1.3モルであることがより好ましい。アンモニウム根の量が前記範囲を外れると、触媒活性が充分に回復しない恐れがある。尚、アンモニウム根や硝酸根を含む化合物を飛散分として水性スラリーに加える場合、これらアンモニウム根や硝酸根も考慮して前記範囲となるようにする。   The ratio of the nitrate radical to the ammonium root contained in the aqueous slurry is preferably 1.3 moles or less, more preferably 0.5 to 1.3 moles per mole of nitrate root. preferable. If the amount of ammonium radical is out of the above range, the catalytic activity may not be sufficiently recovered. In addition, when adding the compound containing an ammonium root and a nitrate root to a water-based slurry as a scattered part, these ammonium roots and a nitrate root are considered, and it is set as the said range.

水性スラリーの調製において使用される水としては、通常イオン交換水が用いられる。水の使用量は、上記水性スラリー中のモリブデン(使用済触媒に含まれるモリブデンと添加するモリブデン化合物に含まれるモリブデンとの合計)1重量部に対し、通常1〜20重量部である。   As water used in the preparation of the aqueous slurry, ion-exchanged water is usually used. The amount of water used is usually 1 to 20 parts by weight with respect to 1 part by weight of molybdenum (total of molybdenum contained in the used catalyst and molybdenum compound added) in the aqueous slurry.

水性スラリーを調製する際には、使用済触媒をそのまま混合に供してもよいし、これにあらかじめ前処理として熱処理を施してもよい。   When preparing the aqueous slurry, the spent catalyst may be used for mixing as it is, or may be subjected to heat treatment as a pretreatment in advance.

使用済触媒の前処理として行う前記熱処理の処理温度は、特に制限されないが、好ましくは350〜600℃である。熱処理の処理時間は、特に制限されないが、通常0.1〜24時間であり、好ましくは0.5〜10時間である。また、使用済触媒の前処理として行う前記熱処理は、酸素含有ガス等の酸化性ガスの雰囲気下で行ってもよいし、窒素等の非酸化性ガスの雰囲気下で行ってもよい。   The treatment temperature of the heat treatment performed as a pretreatment of the spent catalyst is not particularly limited, but is preferably 350 to 600 ° C. The treatment time for heat treatment is not particularly limited, but is usually 0.1 to 24 hours, preferably 0.5 to 10 hours. Further, the heat treatment performed as a pretreatment of the used catalyst may be performed in an atmosphere of an oxidizing gas such as an oxygen-containing gas, or may be performed in an atmosphere of a non-oxidizing gas such as nitrogen.

また、水性スラリーの調製に供する使用済触媒が成形体である場合、そのまま用いてもよいが、必要に応じて、あらかじめ従来公知の方法で破砕処理を施すこともできる。ただし、該成形体に触媒の強度を発現させるファイバー等が含まれている場合には、切断されると強度低下が懸念されるため、破砕する際には、ファイバー等が切断されないようにすることが好ましい。
水性スラリーの調製に供する使用済触媒に、破砕処理と、前処理として行う前記熱処理との両方を施す場合、両処理の順序は特に制限されないが、通常は破砕処理を行った後に熱処理が施される。
Moreover, when the used catalyst used for preparation of an aqueous slurry is a molded object, you may use as it is, However, If necessary, it can also crush by a conventionally well-known method previously. However, if the molded body contains fibers or the like that develop the strength of the catalyst, there is a concern that the strength may decrease when the molded body is cut, so that the fibers or the like should not be cut when crushing. Is preferred.
When both the crushing treatment and the heat treatment performed as a pretreatment are performed on the spent catalyst used for the preparation of the aqueous slurry, the order of both treatments is not particularly limited, but usually the heat treatment is performed after the crushing treatment. The

前記水性スラリーは、乾燥に付され、触媒前駆体が得られる。かかる乾燥方法としては、この分野で通常用いられる方法、例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法、気流乾燥法等を採用することができる。また、乾燥条件については、水性スラリー中の水分含量が充分に低減されるよう適宜設定すればよく、特に限定されないが、その温度は、通常、300℃未満である。
水性スラリーは、乾燥に付す前に、100℃以上で熱処理し、熟成することが、触媒活性の回復の点で好ましい。熱処理温度は、200℃以下であるのが好ましく、150℃以下であるのがより好ましい。かかる熱処理は、通常、密閉容器内で行うことができる。熱処理時間は、通常0.1時間以上であり、好ましくは2時間以上、より好ましくは2〜10時間である。0.1時間より短いと活性回復効果が充分には得られにくく、一方、生産性の点から10時間以下が好ましい。
また、得られた乾燥物(触媒前駆体)は、そのまま焼成してもよいが、好ましくは打錠成形や押出成形等によって、リング状、ペレット状、球状、円柱状等に成形される。この際、強度を高めるために、必要に応じてセラミックファイバーやグラスファイバーのほか、硝酸アンモニウム等の成形助剤を用いてもよい。特に、硝酸アンモニウムは、成形助剤としての機能を有するほか、気孔剤としての機能も有する。
The aqueous slurry is subjected to drying to obtain a catalyst precursor. As such a drying method, a method usually used in this field, for example, an evaporation to dryness method, a spray drying method, a drum drying method, an airflow drying method, or the like can be employed. The drying conditions may be appropriately set so that the water content in the aqueous slurry is sufficiently reduced, and is not particularly limited, but the temperature is usually less than 300 ° C.
The aqueous slurry is preferably heat-treated at 100 ° C. or more and aged before being dried in view of recovery of the catalyst activity. The heat treatment temperature is preferably 200 ° C. or lower, more preferably 150 ° C. or lower. Such heat treatment can usually be performed in a sealed container. The heat treatment time is usually 0.1 hour or longer, preferably 2 hours or longer, more preferably 2 to 10 hours. When the time is shorter than 0.1 hour, the activity recovery effect is not sufficiently obtained. On the other hand, 10 hours or shorter is preferable from the viewpoint of productivity.
The obtained dried product (catalyst precursor) may be calcined as it is, but is preferably formed into a ring shape, a pellet shape, a spherical shape, a cylindrical shape, or the like by tableting or extrusion. At this time, in order to increase the strength, a molding aid such as ammonium nitrate may be used in addition to ceramic fiber and glass fiber as necessary. In particular, ammonium nitrate has not only a function as a molding aid but also a function as a pore agent.

上記の如く成形した場合、得られた成形体を調温調湿処理、具体的には40〜100℃で0.5〜10時間、相対湿度10〜60%の雰囲気下にさらした後に、焼成を行うことが、さらに良好に触媒活性を回復させるうえで好ましい。該処理は、例えば、調温、調湿された槽内にて行ってもよいし、調温、調湿されたガスを成形体に吹き付けることで行ってもよい。また、該処理の雰囲気ガスとしては、通常、空気が用いられるが、窒素等の不活性ガスを用いてもよい。   In the case of molding as described above, the obtained molded body is subjected to a temperature and humidity control treatment, specifically, exposed to an atmosphere of 40 to 100 ° C. for 0.5 to 10 hours and a relative humidity of 10 to 60%, and then fired. Is preferable in order to recover the catalytic activity more satisfactorily. The treatment may be performed, for example, in a temperature-controlled and humidity-controlled tank, or by spraying a temperature-controlled and humidity-controlled gas on the molded body. In addition, as the atmospheric gas for the treatment, air is usually used, but an inert gas such as nitrogen may be used.

上記乾燥物(触媒前駆体)は、そのまま焼成するか、または成形した後、上記調温調湿処理を行い、次いで焼成することにより、再生触媒を得ることができる。焼成にあたっては、0.1容量%以上2.0容量%未満の水分を含む酸化性ガスの雰囲気下に360〜410℃で第一段焼成を行い、次いで非酸化性ガスの雰囲気下に420〜500℃で第二段焼成を行う。このような二段階の焼成を行うことにより、より良好に触媒活性を回復させることができる。   The dried product (catalyst precursor) is calcined as it is or molded, and then subjected to the temperature and humidity control treatment and then calcined, whereby a regenerated catalyst can be obtained. In the firing, first-stage firing is performed at 360 to 410 ° C. in an atmosphere of an oxidizing gas containing moisture of 0.1% by volume or more and less than 2.0% by volume, and then 420 to 420− in an atmosphere of a non-oxidizing gas. Second stage baking is performed at 500 ° C. By performing such two-stage firing, the catalyst activity can be recovered more favorably.

第一段焼成における雰囲気に含まれる水分は、0.1容量%以上2.0容量%未満であり、0.3〜1.8容量%であるのが好ましく、0.6〜1.6容量%であるのがより好ましい。水分が0.1容量%未満であると、触媒の一部がMoO3に分解するなどして、再生触媒の活性が充分に回復しないおそれがあり、水分が2.0容量%以上であると再生触媒の寿命が充分に回復しないおそれがある。 The moisture contained in the atmosphere in the first stage firing is 0.1% by volume or more and less than 2.0% by volume, preferably 0.3 to 1.8% by volume, and 0.6 to 1.6% by volume. % Is more preferred. If the water content is less than 0.1% by volume, a part of the catalyst may be decomposed into MoO 3 , and the activity of the regenerated catalyst may not be sufficiently recovered, and the water content is 2.0% by volume or more. The life of the regenerated catalyst may not be fully recovered.

第一段焼成で用いられる酸化性ガスは、酸化性物質を含むガスであり、例えば、酸素含有ガスが挙げられる。その酸素濃度は通常1〜30容量%程度である。この酸素源としては、通常、空気や純酸素が用いられ、必要に応じて不活性ガスで希釈される。酸化性ガスとしては、中でも、空気が好ましい。
第一段焼成は、通常、上記酸化性ガスの気流下で行われる。第一段焼成の温度は360〜410℃であり、好ましくは380〜400℃である。
The oxidizing gas used in the first stage baking is a gas containing an oxidizing substance, and examples thereof include an oxygen-containing gas. The oxygen concentration is usually about 1 to 30% by volume. As the oxygen source, air or pure oxygen is usually used, and diluted with an inert gas as necessary. Of these, air is preferable as the oxidizing gas.
The first stage firing is usually performed under an air flow of the oxidizing gas. The temperature of the first stage baking is 360 to 410 ° C, preferably 380 to 400 ° C.

第二段焼成で用いられる非酸化性ガスは、実質的に酸素の如き酸化性物質を含有しないガスであり、例えば、窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガスが挙げられる。また、必要に応じて水分を存在させてもよいが、その濃度は通常10容量%以下である。非酸化性ガスとしては、中でも、窒素が好ましい。第二段焼成は、通常、上記非酸化性ガスの気流下で行われる。第二段焼成の温度は420〜500℃であり、好ましくは420〜450℃である。   The non-oxidizing gas used in the second-stage firing is a gas that does not substantially contain an oxidizing substance such as oxygen, and examples thereof include inert gases such as nitrogen, carbon dioxide, helium, and argon. In addition, moisture may be present if necessary, but the concentration is usually 10% by volume or less. Of these, nitrogen is preferable as the non-oxidizing gas. Second-stage firing is usually performed under a stream of the non-oxidizing gas. The temperature of the second stage baking is 420 to 500 ° C, preferably 420 to 450 ° C.

なお、上記焼成の前に、触媒前駆体を、酸化性ガスまたは非酸化性ガスの雰囲気下に、180〜300℃程度の温度で保持して、熱処理(前焼成)を行うのが好ましい。   In addition, before the said baking, it is preferable to heat-process (pre-fire) by hold | maintaining a catalyst precursor at the temperature of about 180-300 degreeC in the atmosphere of oxidizing gas or non-oxidizing gas.

<再生触媒>
かくして得られる再生触媒は、ヘテロポリ酸化合物からなるものであり、遊離のヘテロポリ酸からなるものであってもよいし、ヘテロポリ酸の塩からなるものであってもよい。中でも、ヘテロポリ酸の酸性塩からなるものが好ましく、さらにケギン型ヘテロポリ酸の酸性塩からなるものがより好ましい。また、上記熱処理(前焼成)の際にケギン型へテロポリ酸塩の構造が形成されるようにするのがより好適である。再生触媒は、上述の新品触媒と同様の好ましい組成(前記式(i))を有し、元素Xが含まれる場合には、再生された触媒を構成するヘテロポリ酸化合物におけるモリブデンに対する元素Xの原子比(X/Mo)は、0.5/12〜2/12が好ましい。
<Regenerated catalyst>
The regenerated catalyst thus obtained is made of a heteropolyacid compound and may be made of a free heteropolyacid or a salt of a heteropolyacid. Especially, what consists of an acidic salt of heteropolyacid is preferable, and what consists of acidic salt of a Keggin type heteropolyacid is more preferable. In addition, it is more preferable that a Keggin type heteropolyacid salt structure is formed during the heat treatment (pre-firing). The regenerated catalyst has the same preferred composition as the above-mentioned new catalyst (formula (i)), and when element X is contained, the atom of element X relative to molybdenum in the heteropolyacid compound constituting the regenerated catalyst The ratio (X / Mo) is preferably 0.5 / 12 to 2/12.

なお、本発明のメタクリル酸製造用触媒の再生方法は、メタクリル酸の製造に使用された使用済触媒を再生対象とするものであるが、例えば、新品触媒の製造過程で生じるロス粉や、所望の性能を有していない新品触媒など、メタクリル酸の製造に未使用の新品触媒を再生対象として本発明の再生方法を実施することもでき、そのような場合にも、使用済触媒を再生した場合と同様に、良好な効果が得られる。   The method for regenerating a catalyst for producing methacrylic acid according to the present invention is intended for regeneration of a used catalyst used in the production of methacrylic acid. The regeneration method of the present invention can also be carried out on a new catalyst that is not used in the production of methacrylic acid, such as a new catalyst that does not have the above performance, and even in such a case, the used catalyst was regenerated. As in the case, good effects can be obtained.

かかる再生触媒は、触媒活性が良好に回復したものであり、この再生触媒存在下に、メタクロレイン等の原料化合物を気相接触酸化反応させることにより、良好な転化率、選択率でメタクリル酸を製造することができる。   Such a regenerated catalyst has a good recovery in catalytic activity. In the presence of this regenerated catalyst, a raw material compound such as methacrolein is subjected to a gas phase catalytic oxidation reaction, whereby methacrylic acid is converted at a good conversion rate and selectivity. Can be manufactured.

<メタクリル酸の製造方法>
メタクリル酸の製造は、通常、固定床多管式反応器に触媒(本発明に係る再生触媒を含む)を充填し、これにメタクロレイン、イソブチルアルデヒド、イソブタンおよびイソ酪酸から選ばれる原料化合物と酸素を含む原料ガスを供給することにより行われるが、流動床や移動床のような反応形式を採用することもできる。酸素源としては、通常、空気が用いられ、また原料ガス中には、上記原料化合物及び酸素以外の成分として、窒素、二酸化炭素、一酸化炭素、水蒸気等が含まれうる。
<Method for producing methacrylic acid>
In the production of methacrylic acid, a fixed-bed multitubular reactor is usually filled with a catalyst (including the regenerated catalyst according to the present invention), and a raw material compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid and oxygen However, it is also possible to adopt a reaction mode such as a fluidized bed or a moving bed. As the oxygen source, air is usually used, and the raw material gas may contain nitrogen, carbon dioxide, carbon monoxide, water vapor and the like as components other than the raw material compound and oxygen.

例えば、メタクロレインを原料として用いる場合、通常、原料ガス中のメタクロレイン濃度は1〜10容量%、水蒸気濃度は1〜30容量%、メタクロレインに対する酸素のモル比は1〜5、空間速度は500〜5000h-1(標準状態基準)、反応温度は250〜350℃、反応圧力は0.1〜0.3MPa、の条件下で反応が行われる。なお、原料のメタクロレインは必ずしも高純度の精製品である必要はなく、例えば、イソブチレンやt−ブチルアルコールの気相接触酸化反応により得られたメタクロレインを含む反応生成ガスを用いることもできる。 For example, when using methacrolein as a raw material, the methacrolein concentration in the raw material gas is usually 1 to 10% by volume, the water vapor concentration is 1 to 30% by volume, the molar ratio of oxygen to methacrolein is 1 to 5, and the space velocity is The reaction is carried out under the conditions of 500 to 5000 h −1 (standard condition standard), reaction temperature of 250 to 350 ° C., and reaction pressure of 0.1 to 0.3 MPa. The raw material methacrolein is not necessarily a highly purified product, and for example, a reaction product gas containing methacrolein obtained by a gas phase catalytic oxidation reaction of isobutylene or t-butyl alcohol can be used.

また、イソブタンを原料として用いる場合、通常、原料ガス中のイソブタン濃度は1〜85容量%、水蒸気濃度は3〜30容量%、イソブタンに対する酸素のモル比は0.05〜4、空間速度は400〜5000h-1(標準状態基準)、反応温度は250〜400℃、反応圧力は0.1〜1MPa、の条件下で反応が行われる。イソ酪酸やイソブチルアルデヒドを原料として用いる場合には、通常、メタクロレインを原料として用いる場合と、ほぼ同様の反応条件が採用される。 When isobutane is used as a raw material, the isobutane concentration in the raw material gas is usually 1 to 85% by volume, the water vapor concentration is 3 to 30% by volume, the molar ratio of oxygen to isobutane is 0.05 to 4, and the space velocity is 400. The reaction is carried out under conditions of ˜5000 h −1 (standard condition standard), reaction temperature of 250 to 400 ° C., and reaction pressure of 0.1 to 1 MPa. When isobutyric acid or isobutyraldehyde is used as a raw material, generally the same reaction conditions are employed as when methacrolein is used as a raw material.

以下、本発明の実施例を示すが、本発明はこれらによって限定されるものではない。
なお、各例で使用した窒素は実質的に水分を含まないものである。
Examples of the present invention will be described below, but the present invention is not limited thereto.
The nitrogen used in each example is substantially free of moisture.

本実施例中の触媒の組成分析、触媒性能の評価は、下記のようにして行った。
<触媒の活性試験>
触媒9gを、内径16mmのガラス製マイクロリアクターに充填し、この中に、メタクロレイン、空気、スチームおよび窒素を混合して調製した原料ガス(組成:メタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%、窒素67容量%)を、空間速度670h-1で供給して、炉温(マイクロリアクターを加熱するための炉の温度)を355℃まで上げた後、該温度で1時間保持し、次いで炉温を280℃に下げた。その後、該温度で反応を1時間継続した。この反応開始から(炉温を280℃としてから)1時間経過時の出口ガス(反応後のガス)をサンプリングし、ガスクロマログラフィーにより分析して、下記式に基づき、メタクロレイン転化率(%)、メタクリル酸選択率(%)および収率(%)を求めた。
The composition analysis of the catalyst in this example and the evaluation of the catalyst performance were performed as follows.
<Catalyst activity test>
9 g of catalyst was charged into a glass microreactor having an inner diameter of 16 mm, and raw material gas prepared by mixing methacrolein, air, steam and nitrogen (composition: methacrolein 4 vol%, molecular oxygen 12 vol%) Were supplied at a space velocity of 670 h −1 to raise the furnace temperature (furnace temperature for heating the microreactor) to 355 ° C. and then at that temperature for 1 hour. Held, then the furnace temperature was lowered to 280 ° C. The reaction was then continued for 1 hour at that temperature. From this reaction start (after setting the furnace temperature to 280 ° C.), the outlet gas (gas after reaction) after 1 hour was sampled, analyzed by gas chromatography, and methacrolein conversion rate (%) based on the following formula The methacrylic acid selectivity (%) and yield (%) were determined.

転化率、選択率および収率は、次のとおり定義される。
転化率(%)=反応したメタクロレインのモル数÷供給したメタクロレインのモル数×100
選択率(%)=生成したメタクリル酸のモル数÷反応したメタクロレインのモル数×100
収率(%)=〔転化率(%)×選択率(%)〕÷100
Conversion, selectivity and yield are defined as follows.
Conversion rate (%) = Mole number of reacted methacrolein ÷ Mole number of supplied methacrolein × 100
Selectivity (%) = number of moles of methacrylic acid produced ÷ number of moles of reacted methacrolein × 100
Yield (%) = [conversion (%) × selectivity (%)] ÷ 100

<触媒の寿命試験>
触媒4.5gを、内径16mmのガラス製マイクロリアクターに充填し、この中に、メタクロレイン、空気、スチーム及び窒素を混合して調製した原料ガス(組成:メタクロレイン4容量%、分子状酸素12容量%、水蒸気17容量%、窒素67容量%)を、空間速度1340h-1で供給して、炉温320℃にて50日以上反応を行い、この間、7〜14日おきにメタクロレイン転化率を求めた。反応時間を横軸、転化率を縦軸としてプロットし、最小二乗法により傾きを求め、転化率の低下速度(%/日)を算出した。
<Catalyst life test>
4.5 g of catalyst is packed in a glass microreactor having an inner diameter of 16 mm, and raw material gas prepared by mixing methacrolein, air, steam and nitrogen (composition: methacrolein 4 vol%, molecular oxygen 12). Volume%, water vapor 17 volume%, nitrogen 67 volume%) at a space velocity of 1340 h −1 , and the reaction is carried out at a furnace temperature of 320 ° C. for 50 days or more. During this period, methacrolein conversion is performed every 7 to 14 days Asked. The reaction time was plotted on the horizontal axis and the conversion rate was plotted on the vertical axis, the slope was determined by the least square method, and the rate of decrease in conversion rate (% / day) was calculated.

<X線回折測定による三酸化モリブデンの検出>
X線回折測定装置として、(株)リガク製のMiniFlexを用い、粉末法にてX線回折測定を行い、三酸化モリブデン(MoO3)に由来するd値=3.24〜3.26の位置における回折線の有無を観察した。
<Detection of molybdenum trioxide by X-ray diffraction measurement>
As an X-ray diffraction measuring apparatus, MiniFlex manufactured by Rigaku Corporation is used, X-ray diffraction measurement is performed by a powder method, and d value derived from molybdenum trioxide (MoO 3 ) = position of 3.24 to 3.26 The presence or absence of diffraction lines in was observed.

<参考例1>
(新品触媒の調製)
40℃に加熱したイオン交換水224kgに、硝酸セシウム[CsNO3]38.2kg、75重量%オルトリン酸27.4kg、および70重量%硝酸25.2kgを溶解し、これをA液とした。
一方、40℃に加熱したイオン交換水330kgに、モリブデン酸アンモニウム4水和物[(NH46Mo724・4H2O]297kgを溶解した後、メタバナジン酸アンモニウム[NH4VO3]8.19kgを懸濁させ、これをB液とした。
A液とB液を40℃に調整し、攪拌下、B液にA液を滴下した後、密閉容器中120℃で5.8時間攪拌し、次いで、三酸化アンチモン[Sb23]10.2kgおよび硝酸銅3水和物[Cu(NO32・3H2O]10.2kgを、イオン交換水23kgに懸濁させて添加した後、密封容器中、120℃で5時間攪拌した。
こうして得られた混合物をスプレードライヤーにて噴霧乾燥し、この乾燥粉末100重量部に対して、セラミックファイバー4重量部、硝酸アンモニウム13重量部、およびイオン交換水9.7重量部を加えて混練し、直径5mm、高さ6mmの円柱状に押出成形した。この成形体を、温度90℃、相対湿度30%にて3時間乾燥した後、空気気流中220℃で22時間、空気気流中250℃で1時間の順に熱処理(前焼成)し、その後、窒素気流中で435℃に昇温して、同温度で3時間保持した。更に、窒素気流中で300℃まで冷却した後、窒素を3.5容量%の水分を含む空気に切り替え、空気気流中で390℃に昇温して、同温度で3時間保持後、空気気流中で70℃まで冷却してから、新品触媒を取り出した。
この新品触媒は、リン、モリブデン、バナジウム、アンチモン、銅およびセシウムをそれぞれ1.5、12、0.50、0.5、0.3および1.4の原子比で含むケギン型ヘテロポリ酸の酸性塩からなるものであった。なお、三酸化モリブデンは検出されなかった。
この新品触媒の活性試験および寿命試験の結果を表1に示す。
<Reference Example 1>
(Preparation of new catalyst)
In 224 kg of ion-exchanged water heated to 40 ° C., 38.2 kg of cesium nitrate [CsNO 3 ], 27.4 kg of 75 wt% orthophosphoric acid, and 25.2 kg of 70 wt% nitric acid were dissolved, and this was designated as solution A.
On the other hand, after dissolving 297 kg of ammonium molybdate tetrahydrate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] in 330 kg of ion-exchanged water heated to 40 ° C., ammonium metavanadate [NH 4 VO 3 ] 8.19 kg was suspended and this was used as B liquid.
The liquid A and the liquid B were adjusted to 40 ° C., and the liquid A was added dropwise to the liquid B with stirring. Then, the liquid was stirred at 120 ° C. for 5.8 hours, and then antimony trioxide [Sb 2 O 3 ] 10 .2 kg and 10.2 kg of copper nitrate trihydrate [Cu (NO 3 ) 2 .3H 2 O] were suspended in 23 kg of ion-exchanged water and then stirred in a sealed container at 120 ° C. for 5 hours. .
The mixture thus obtained was spray-dried with a spray dryer, and 100 parts by weight of the dried powder was kneaded by adding 4 parts by weight of ceramic fibers, 13 parts by weight of ammonium nitrate, and 9.7 parts by weight of ion-exchanged water, It was extruded into a cylindrical shape having a diameter of 5 mm and a height of 6 mm. The molded body was dried at a temperature of 90 ° C. and a relative humidity of 30% for 3 hours, and then heat-treated (pre-fired) in the order of 22 hours at 220 ° C. in an air stream and 1 hour at 250 ° C. in an air stream. The temperature was raised to 435 ° C. in an air stream and held at the same temperature for 3 hours. Furthermore, after cooling to 300 ° C. in a nitrogen stream, the nitrogen is switched to air containing 3.5% by volume of water, the temperature is raised to 390 ° C. in the air stream, and the air temperature is maintained for 3 hours. After cooling to 70 ° C., a new catalyst was taken out.
This new catalyst is an acid of Keggin type heteropolyacid containing phosphorus, molybdenum, vanadium, antimony, copper and cesium in atomic ratios of 1.5, 12, 0.50, 0.5, 0.3 and 1.4, respectively. It consisted of salt. Molybdenum trioxide was not detected.
The results of the activity test and life test of this new catalyst are shown in Table 1.

<参考例2>
(使用済触媒の調製およびその活性試験)
参考例1で得られた新品触媒を、長時間メタクロレインの接触気相酸化反応に付し、使用済触媒を得た。この使用済触媒に含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅及びセシウムをそれぞれ1.3、9.9、0.49、0.5、0.3および1.4であった。なお、三酸化モリブデンが検出された。
この使用済触媒について活性試験を行なった。その結果を表1に示す。
<Reference Example 2>
(Preparation of spent catalyst and its activity test)
The new catalyst obtained in Reference Example 1 was subjected to a methacrolein catalytic gas phase oxidation reaction for a long time to obtain a used catalyst. The atomic ratio of the metal elements contained in this used catalyst is 1.3, 9.9, 0.49, 0.5, 0.3 and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper and cesium, respectively. Met. Molybdenum trioxide was detected.
An activity test was performed on this spent catalyst. The results are shown in Table 1.

<実施例1>
(再生触媒の調製)
イオン交換水7.32kgに参考例2で得られた使用済触媒4.20kgを加え攪拌した。参考例1で得られた新品触媒に対する使用済触媒の不足成分(飛散成分)の種類および量を蛍光X線分析により算出し、これを補うために、三酸化モリブデン[MoO3]0.65kg、75重量%オルトリン酸0.06kg、メタバナジン酸アンモニウム[NH4VO3]0.004kgを添加した。
次に、イオン交換水1.08kgに硝酸アンモニウム[NH4NO3]1.44kgを加えて調製した溶液を添加し、70℃に昇温して同温度で1時間保持した。その後、25重量%アンモニア水0.26kgを添加し、70℃にて1時間保持した後、密閉容器中120℃で5時間攪拌した。この水性スラリーA中の硝酸根1モルに対するアンモニウム根は、1.2モルであった。また水性スラリーAに含まれる金属元素の原子比は、リン、モリブデン、バナジウム、アンチモン、銅およびセシウムがそれぞれ1.5、12、0.50、0.5、0.3および1.4であり、モリブデンに対するセシウムの原子比は1.4/12であった。
該水性スラリーAをスプレードライヤーを用いて120℃にて噴霧乾燥し、得られた乾燥物に、該乾燥物100重量部に対して硝酸アンモニウム9重量部、イオン交換水8重量部を加えて混練し、直径5mm、高さ6mmの円柱状に押出成形した。この成形体を、温度90℃、相対湿度30%で3時間乾燥した後、空気気流中で220℃にて22時間、250℃にて1時間の順に熱処理(前焼成)して、ケギン型ヘテロポリ酸塩からなる前焼成された触媒前駆体を得た。
次いで、空気とスチームとの混合ガス(水の含有量は1.4容量%)の気流中で390℃に昇温して、同温度で4時間保持して第一段焼成を行なった後、空気を窒素に切り換え、窒素気流中で435℃に昇温して、同温度で4時間保持して第二段焼成を行なった。その後、窒素気流中で70℃まで冷却してから、再生触媒(1)を取り出した。
この再生触媒(1)は、リン、モリブデン、バナジウム、アンチモン、銅およびセシウムをそれぞれ1.5、12、0.50、0.5、0.3および1.4の原子比で含むケギン型ヘテロポリ酸の酸性塩からなるものであった。なお、三酸化モリブデンは検出されなかった。
この再生触媒(1)の活性試験および寿命試験の結果を表1に示す。
<Example 1>
(Preparation of regenerated catalyst)
4.20 kg of the used catalyst obtained in Reference Example 2 was added to 7.32 kg of ion-exchanged water and stirred. The type and amount of the deficient component (scattered component) of the spent catalyst with respect to the new catalyst obtained in Reference Example 1 was calculated by fluorescent X-ray analysis, and in order to compensate for this, molybdenum trioxide [MoO 3 ] 0.65 kg, 0.06 kg of 75 wt% orthophosphoric acid and 0.004 kg of ammonium metavanadate [NH 4 VO 3 ] were added.
Next, a solution prepared by adding 1.44 kg of ammonium nitrate [NH 4 NO 3 ] to 1.08 kg of ion-exchanged water was added, and the temperature was raised to 70 ° C. and kept at the same temperature for 1 hour. Thereafter, 0.26 kg of 25 wt% aqueous ammonia was added and held at 70 ° C. for 1 hour, and then stirred at 120 ° C. for 5 hours in a sealed container. The amount of ammonium root relative to 1 mol of nitrate in this aqueous slurry A was 1.2 mol. The atomic ratio of the metal elements contained in the aqueous slurry A is 1.5, 12, 0.50, 0.5, 0.3, and 1.4 for phosphorus, molybdenum, vanadium, antimony, copper, and cesium, respectively. The atomic ratio of cesium to molybdenum was 1.4 / 12.
The aqueous slurry A was spray dried at 120 ° C. using a spray dryer, and 9 parts by weight of ammonium nitrate and 8 parts by weight of ion-exchanged water were added to 100 parts by weight of the dried product and kneaded. And extruded into a cylindrical shape having a diameter of 5 mm and a height of 6 mm. The molded body was dried at a temperature of 90 ° C. and a relative humidity of 30% for 3 hours, and then heat treated (pre-fired) in an air stream at 220 ° C. for 22 hours and 250 ° C. for 1 hour in order. A pre-calcined catalyst precursor consisting of the acid salt was obtained.
Next, after raising the temperature to 390 ° C. in an air stream of a mixed gas of air and steam (water content is 1.4% by volume) and holding at that temperature for 4 hours, The air was switched to nitrogen, the temperature was raised to 435 ° C. in a nitrogen stream, and maintained at the same temperature for 4 hours to perform the second stage baking. Then, after cooling to 70 degreeC in nitrogen stream, the reproduction | regeneration catalyst (1) was taken out.
This regenerated catalyst (1) is a Keggin-type heteropolyethylene containing phosphorus, molybdenum, vanadium, antimony, copper and cesium in atomic ratios of 1.5, 12, 0.50, 0.5, 0.3 and 1.4, respectively. It consisted of an acid acid salt. Molybdenum trioxide was not detected.
Table 1 shows the results of the activity test and life test of this regenerated catalyst (1).

<実施例2>
(再生触媒の調製)
実施例1における第一段焼成において、空気とスチームとの混合ガス(水の含有量は1.4容量%)の気流に代えて、空気とスチームとの混合ガス(水の含有量は0.5容量%)の気流中で390℃に昇温した以外は、実施例1と同様の操作を行って再生触媒(2)を得た。なお、三酸化モリブデンは検出されなかった。
この再生触媒(2)の活性試験および寿命試験の結果を表1に示す。
<Example 2>
(Preparation of regenerated catalyst)
In the first stage firing in Example 1, instead of the air stream of the mixed gas of air and steam (the content of water is 1.4% by volume), the mixed gas of air and steam (the content of water is 0.1%). A regenerated catalyst (2) was obtained in the same manner as in Example 1 except that the temperature was raised to 390 ° C. in a 5 vol% flow). Molybdenum trioxide was not detected.
The results of the activity test and life test of this regenerated catalyst (2) are shown in Table 1.

<比較例1>
(再生触媒の調製)
実施例1における第一段焼成において、空気とスチームとの混合ガス(水の含有量は1.4容量%)の気流に代えて、空気とスチームとの混合ガス(水の含有量は2.8容量%)の気流中で390℃に昇温した以外は、実施例1と同様の操作を行って再生触媒(C1)を得た。なお、三酸化モリブデンは検出されなかった。
この再生触媒(C1)の活性試験および寿命試験の結果を表1に示す。
<Comparative Example 1>
(Preparation of regenerated catalyst)
In the first stage firing in Example 1, instead of the air stream of the mixed gas of air and steam (the content of water is 1.4% by volume), the mixed gas of air and steam (the content of water is 2. A regenerated catalyst (C1) was obtained in the same manner as in Example 1, except that the temperature was raised to 390 ° C. in an air flow of 8 vol%). Molybdenum trioxide was not detected.
Table 1 shows the results of the activity test and life test of this regenerated catalyst (C1).

<比較例2>
(再生触媒の調製)
実施例1における第一段焼成において、空気とスチームとの混合ガス(水の含有量は1.4容量%)の気流に代えて、空気(水の含有量は0容量%)気流中で390℃に昇温した以外は、実施例1と同様の操作を行って再生触媒(C2)を得た。なお、三酸化モリブデンが検出された。
この再生触媒(C2)の活性試験の結果を表1に示す。
<Comparative example 2>
(Preparation of regenerated catalyst)
In the first stage firing in Example 1, instead of an air stream of a mixed gas of air and steam (water content is 1.4% by volume), 390 in an air stream (water content is 0% by volume) A regenerated catalyst (C2) was obtained in the same manner as in Example 1 except that the temperature was raised to ° C. Molybdenum trioxide was detected.
The results of the activity test of this regenerated catalyst (C2) are shown in Table 1.

下記の表1では、第一段焼成における、空気とスチームとの混合ガスの水の含有量が少ない例から順に記載してある。

Figure 2012196608
In Table 1 below, the contents of water in the mixed gas of air and steam in the first stage firing are described in order from an example with a small content.
Figure 2012196608

Claims (7)

リン及びモリブデンを含むヘテロポリ酸化合物からなるメタクリル酸製造用触媒の再生方法であって、
メタクリル酸の製造に使用された使用済触媒、アンモニウム根、硝酸根及び水を含む水性スラリーを乾燥して触媒前駆体を得、該触媒前駆体を0.1容量%以上2.0容量%未満の水分を含む酸化性ガスの雰囲気下に360〜410℃で第一段焼成した後、非酸化性ガスの雰囲気下に420〜500℃で第二段焼成することを特徴とするメタクリル酸製造用触媒の再生方法。
A method for regenerating a catalyst for producing methacrylic acid comprising a heteropolyacid compound containing phosphorus and molybdenum,
An aqueous slurry containing the used catalyst, ammonium radical, nitrate radical and water used in the production of methacrylic acid is dried to obtain a catalyst precursor, and the catalyst precursor is 0.1 vol% or more and less than 2.0 vol% For first-stage baking at 360-410 ° C. in an atmosphere of oxidizing gas containing a large amount of water, followed by second-stage baking at 420-500 ° C. in an atmosphere of non-oxidizing gas Catalyst regeneration method.
ヘテロポリ酸化合物が、さらにカリウム、ルビジウム、セシウム及びタリウムからなる群より選ばれる少なくとも1種の元素Xを含み、水性スラリーに含まれるモリブデンに対する元素Xの原子比(X/Mo)が0.5/12〜2/12である請求項1に記載のメタクリル酸製造用触媒の再生方法。   The heteropolyacid compound further contains at least one element X selected from the group consisting of potassium, rubidium, cesium and thallium, and the atomic ratio (X / Mo) of element X to molybdenum contained in the aqueous slurry is 0.5 / The method for regenerating a catalyst for methacrylic acid production according to claim 1, which is 12 to 2/12. 水性スラリーに含まれるアンモニウム根の含有量が、硝酸根1モルに対して1.3モル以下である請求項1または2に記載のメタクリル酸製造用触媒の再生方法。   The method for regenerating a catalyst for methacrylic acid production according to claim 1 or 2, wherein the content of ammonium radicals contained in the aqueous slurry is 1.3 moles or less per mole of nitrate radicals. 水性スラリーを100℃以上で熱処理した後に乾燥して触媒前駆体を得る請求項1〜3のいずれかに記載のメタクリル酸製造用触媒の再生方法。   The method for regenerating a catalyst for methacrylic acid production according to any one of claims 1 to 3, wherein the aqueous slurry is heat-treated at 100 ° C or higher and then dried to obtain a catalyst precursor. 触媒前駆体を40〜100℃で0.5〜10時間、相対湿度10〜60%の雰囲気下にさらした後、前記第一段焼成に付す請求項1〜4のいずれかに記載のメタクリル酸製造用触媒の再生方法。   The methacrylic acid according to any one of claims 1 to 4, wherein the catalyst precursor is exposed to an atmosphere having a relative humidity of 10 to 60% at 40 to 100 ° C for 0.5 to 10 hours and then subjected to the first stage baking. A method for regenerating a catalyst for production. ヘテロポリ酸化合物が、さらにバナジウムと、銅、ヒ素、アンチモン、ホウ素、銀、ビスマス、鉄、コバルト、ランタン及びセリウムからなる群より選ばれる少なくとも1種の元素とを含む請求項1〜5のいずれかに記載のメタクリル酸製造用触媒の再生方法。   The heteropolyacid compound further comprises vanadium and at least one element selected from the group consisting of copper, arsenic, antimony, boron, silver, bismuth, iron, cobalt, lanthanum, and cerium. A method for regenerating a catalyst for producing methacrylic acid as described in 1. 請求項1〜6のいずれかに記載の再生方法によりメタクリル酸製造用触媒を再生し、この再生された触媒の存在下に、メタクロレイン、イソブチルアルデヒド、イソブタン及びイソ酪酸から選ばれる化合物を気相接触酸化反応に付す、メタクリル酸の製造方法。   A catalyst for producing methacrylic acid is regenerated by the regeneration method according to any one of claims 1 to 6, and a compound selected from methacrolein, isobutyraldehyde, isobutane and isobutyric acid is vapor-phased in the presence of the regenerated catalyst. A method for producing methacrylic acid, which is subjected to a catalytic oxidation reaction.
JP2011061152A 2011-03-18 2011-03-18 Method for regenerating methacrylic acid producing catalyst and method for producing methacrylic acid Withdrawn JP2012196608A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011061152A JP2012196608A (en) 2011-03-18 2011-03-18 Method for regenerating methacrylic acid producing catalyst and method for producing methacrylic acid
SG2012016952A SG184652A1 (en) 2011-03-18 2012-03-09 Method for regenerating catalyst for production of methacrylic acid and process for producing methacrylic acid
DE102012005249A DE102012005249A1 (en) 2011-03-18 2012-03-14 Regenerating catalyst containing phosphorus and molybdenum-containing heteropoly acid compound, useful for producing methacrylic acid, comprises e.g. drying aqueous slurry, containing used catalyst, ammonium ion, nitrate ion and water
KR1020120026906A KR20120106634A (en) 2011-03-18 2012-03-16 Method for regenerating catalyst for production of methacrylic acid and process for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011061152A JP2012196608A (en) 2011-03-18 2011-03-18 Method for regenerating methacrylic acid producing catalyst and method for producing methacrylic acid

Publications (1)

Publication Number Publication Date
JP2012196608A true JP2012196608A (en) 2012-10-18

Family

ID=46756998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011061152A Withdrawn JP2012196608A (en) 2011-03-18 2011-03-18 Method for regenerating methacrylic acid producing catalyst and method for producing methacrylic acid

Country Status (4)

Country Link
JP (1) JP2012196608A (en)
KR (1) KR20120106634A (en)
DE (1) DE102012005249A1 (en)
SG (1) SG184652A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872919B (en) * 2012-09-27 2014-04-16 浙江天蓝环保技术股份有限公司 Preparation process of honeycomb SCR (selective catalytic reduction) denitration catalyst
WO2024155043A1 (en) * 2023-01-19 2024-07-25 주식회사 엘지화학 Catalyst for producing (meth)acrylic acid, and method for producing catalyst for producing (meth)acrylic acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715712B2 (en) 2006-10-13 2011-07-06 住友化学株式会社 A method for regenerating a catalyst for producing methacrylic acid and a method for producing methacrylic acid.

Also Published As

Publication number Publication date
SG184652A1 (en) 2012-10-30
KR20120106634A (en) 2012-09-26
DE102012005249A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP4957628B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4715712B2 (en) A method for regenerating a catalyst for producing methacrylic acid and a method for producing methacrylic acid.
JP4957627B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4900449B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
KR101722061B1 (en) Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid comprising a heteropoly acid, method of making and method of using thereof
JP5335490B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4715699B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP5214500B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4715707B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP4595769B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4200744B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2012196608A (en) Method for regenerating methacrylic acid producing catalyst and method for producing methacrylic acid
JP4352856B2 (en) A method for producing a catalyst for producing methacrylic acid, a catalyst for producing methacrylic acid obtained thereby, and a method for producing methacrylic acid.
JP5024183B2 (en) Method for producing shaped catalyst comprising heteropolyacid compound
JP2013086008A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP2013091016A (en) Method for producing catalyst for producing methacrylic acid, and method for producing methacrylic acid
JP2013000734A (en) Method for regenerating catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4996735B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP2008284508A (en) Production method of catalyst for methacrylic-acid production and production method of methacrylic acid
JP3797146B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4900532B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP5214499B2 (en) Method for regenerating catalyst for methacrylic acid production and method for producing methacrylic acid
JP2013180251A (en) Method of producing catalyst for producing methacrylic acid and method of producing methacrylic acid
JP2005021727A (en) Method for producing catalyst for producing methacrylic acid method for producing methacrylic acid
JP2010155197A (en) Method for regenerating catalyst for producing methacrylic acid and method for producing the methacrylic acid

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603