Nothing Special   »   [go: up one dir, main page]

JP2012185948A - Plasma processing device, and control method therefor - Google Patents

Plasma processing device, and control method therefor Download PDF

Info

Publication number
JP2012185948A
JP2012185948A JP2011047071A JP2011047071A JP2012185948A JP 2012185948 A JP2012185948 A JP 2012185948A JP 2011047071 A JP2011047071 A JP 2011047071A JP 2011047071 A JP2011047071 A JP 2011047071A JP 2012185948 A JP2012185948 A JP 2012185948A
Authority
JP
Japan
Prior art keywords
antenna
inductive coupling
inductively coupled
plasma
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011047071A
Other languages
Japanese (ja)
Inventor
Takahiro Yuhara
崇弘 湯原
Masaharu Gushiken
正春 具志堅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011047071A priority Critical patent/JP2012185948A/en
Publication of JP2012185948A publication Critical patent/JP2012185948A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma processing device capable of controlling the ratio of currents of inductive coupling antennas over a wide range with stability, and a control method therefor.SOLUTION: The plasma processing device has two or more lines of inductive coupling antennas, and a capacitive coupling antenna. In the device, the inductive coupling antennas and the capacitive coupling antenna are electrically connected in series. The plasma processing device comprises: a first regulator circuit operable to regulate RF currents flowing through the inductive coupling antennas; a second regulator circuit operable to regulate the ratio of RF currents flowing through the inductive coupling antennas and the capacitive coupling antenna; sensors operable to measure the RF currents flowing through the inductive coupling antennas respectively; and control means operable to control the ratio of currents flowing through the inductive coupling antennas to make the ratio constant while performing the monitoring for an excessive current toward the first regulator circuit based on signals from the sensors.

Description

本発明はプラズマ処理装置及びその制御方法に関するものである。 The present invention relates to a plasma processing apparatus and a control method thereof.

従来のプラズマ処理装置としては、例えば特許文献1には、誘導結合アンテナを用いたプラズマ処理において、誘導結合アンテナと容量結合アンテナの間からインピーダンスの大きさを可変可能な負荷を介してアースに接地し、負荷のインピーダンスの大きさを調整することで、真空容器内壁への反応生成物の付着を抑制することが記載されている。また、単一電源から2系統の前記誘導結合アンテナに分岐しており、一方のアンテナ側に可変負荷を配置することにより、2つの誘導結合アンテナの電流比を調整し、プラズマ分布の制御を行うものが知られている。   As a conventional plasma processing apparatus, for example, in Patent Document 1, in plasma processing using an inductively coupled antenna, grounding is performed via a load capable of changing the magnitude of impedance between the inductively coupled antenna and the capacitively coupled antenna. In addition, it is described that the adhesion of the reaction product to the inner wall of the vacuum vessel is suppressed by adjusting the magnitude of the impedance of the load. In addition, branching from a single power supply to the two systems of inductively coupled antennas, and by arranging a variable load on one antenna side, the current ratio of the two inductively coupled antennas is adjusted, and the plasma distribution is controlled. Things are known.

また、特許文献2には、処理チャンバ内に配置されたウエハを横切って制御可能なプラズマの均一性を与える処理チャンバ上に配置された複数のコイルへ、単一電源から電力を分配するための方法及び装置が記載されている。処理チャンバ上に配置された2つ以上のコイルへ電源から電力を分配するための装置は、電源と第1のコイル間の接続、電源と第2のコイルとの間に接続された直列可変キャパシタ、及び第2のコイルと電源間のノードに接続された並列可変キャパシタを用いて電力分配制御を行うものが知られている。   Also, Patent Document 2 discloses a method for distributing power from a single power source to a plurality of coils disposed on a processing chamber that provides controllable plasma uniformity across a wafer disposed in the processing chamber. Methods and apparatus are described. An apparatus for distributing power from a power source to two or more coils disposed on a processing chamber includes a connection between the power source and the first coil, a series variable capacitor connected between the power source and the second coil. , And a device that performs power distribution control using a parallel variable capacitor connected to a node between a second coil and a power source.

特開2000−323298号公報JP 2000-323298 A 特表2004−531856号公報JP-T-2004-53856 Publication

特許文献1の従来技術は、誘導結合アンテナと容量結合アンテナとの組み合わせにおいて、容量結合アンテナの電流制御によって、プラズマ状態が変化し、複数の誘導結合アンテナの電流比が変化する点について配慮されていなかった。すなわち、プラズマの変化に伴う誘導結合アンテナの電流比の変化という問題があった。   In the prior art of Patent Document 1, in the combination of an inductively coupled antenna and a capacitively coupled antenna, consideration is given to the fact that the plasma state changes due to current control of the capacitively coupled antenna, and the current ratio of a plurality of inductively coupled antennas varies. There wasn't. That is, there has been a problem that the current ratio of the inductively coupled antenna changes with the change of plasma.

なお、複数の誘導結合アンテナへの電流比を制御するものとして、特許文献2のような従来技術があるが、複数の誘導結合アンテナの電流比を広範囲に安定して制御する点について十分配慮されていなかった。すなわち、誘導結合アンテナの電流比の調整手段である可変負荷への過電流発生という問題があった。このため、本発明は、複数の誘導結合アンテナの電流比を広範囲に安定して制御することができるプラズマ処理装置及びその制御方法を提供する。   Although there is a conventional technique such as Patent Document 2 for controlling the current ratio to a plurality of inductively coupled antennas, sufficient consideration is given to stably controlling the current ratio of a plurality of inductively coupled antennas over a wide range. It wasn't. That is, there is a problem of overcurrent generation to a variable load that is a means for adjusting the current ratio of the inductively coupled antenna. Therefore, the present invention provides a plasma processing apparatus and a control method therefor that can stably control the current ratio of a plurality of inductively coupled antennas over a wide range.

本発明は、プラズマが形成される領域を囲む面に対して配置された2系統以上の誘導結合アンテナと、プラズマが形成される領域を囲む面に対して配置された容量結合アンテナとを有し、前記誘導結合アンテナと前記容量結合アンテナとを電気的に直列に接続したプラズマ処理装置において、前記各誘導結合アンテナを流れる高周波電流の大きさを調整する第一の調整回路と、前記各誘導結合アンテナと前記容量結合アンテナとに流れる高周波電流の割合を調整する第二の調整回路と、前記各誘導結合アンテナを流れるそれぞれの高周波電流の大きさを測定するセンサと、前記センサからの信号を基に前記第一の調整回路への過電流の監視と並行して各誘導結合アンテナを流れる電流の比率を一定に制御する制御手段を有することを特徴とするプラズマ処理装置である。   The present invention includes two or more systems of inductively coupled antennas disposed with respect to a surface surrounding a region where plasma is formed, and a capacitively coupled antenna disposed with respect to a surface surrounding a region where plasma is formed. In the plasma processing apparatus in which the inductively coupled antenna and the capacitively coupled antenna are electrically connected in series, a first adjustment circuit for adjusting a magnitude of a high-frequency current flowing through each inductively coupled antenna, and each inductive coupling A second adjustment circuit for adjusting a ratio of the high-frequency current flowing through the antenna and the capacitive coupling antenna; a sensor for measuring the magnitude of each high-frequency current flowing through each inductive coupling antenna; and a signal from the sensor. And control means for controlling the ratio of the current flowing through each inductively coupled antenna to be constant in parallel with the overcurrent monitoring to the first adjustment circuit. It is a plasma processing apparatus.

また、本発明は、プラズマが形成される領域を囲む面に対して配置された2系統以上の誘導結合アンテナと、プラズマが形成される領域を囲む面に対して配置され前記誘導アンテナと電気的に直列に接続された容量結合アンテナと、前記各誘導結合アンテナを流れる高周波電流の大きさを調整する第一の調整回路と、前記各誘導結合アンテナと前記容量結合アンテナとに流れる高周波電流の割合を調整する第二の調整回路と、前記各誘導結合アンテナを流れるそれぞれの高周波電流の大きさを測定するセンサとを備えるプラズマ処理装置を用いた制御方法において、前記センサからの信号を基に前記第一の調整回路への過電流の監視と並行して各誘導結合アンテナを流れる電流の比率を一定に制御することを特徴とする制御方法である。   Further, the present invention provides two or more systems of inductively coupled antennas arranged with respect to a surface surrounding a region where plasma is formed, and an electrical connection between the induction antenna and the surface surrounding a region where plasma is formed. A capacitive coupling antenna connected in series, a first adjustment circuit for adjusting a magnitude of a high frequency current flowing through each inductive coupling antenna, and a ratio of a high frequency current flowing through each inductive coupling antenna and the capacitive coupling antenna In a control method using a plasma processing apparatus comprising a second adjustment circuit that adjusts the frequency and a sensor that measures the magnitude of each high-frequency current flowing through each inductively coupled antenna, the control method using the signal from the sensor In the control method, the ratio of the current flowing through each inductive coupling antenna is controlled to be constant in parallel with the overcurrent monitoring to the first adjustment circuit.

本発明の構成により、複数の誘導結合アンテナの電流比を広範囲に安定して制御することができる。   With the configuration of the present invention, the current ratio of a plurality of inductively coupled antennas can be stably controlled over a wide range.

本発明の一実施例を示すプラズマ処理装置の概略断面図である。It is a schematic sectional drawing of the plasma processing apparatus which shows one Example of this invention. 真空容器2の縦断面図である。3 is a longitudinal sectional view of the vacuum vessel 2. FIG. 放電部2a及び整合器3の等価回路図である。It is an equivalent circuit diagram of the discharge part 2a and the matching device 3. 可変負荷の静電容量に対する最大許容電流の特性図である。It is a characteristic view of the maximum allowable current with respect to the capacitance of the variable load. 可変負荷16の静電容量と、第二の誘導結合アンテナ1bおよび可変負荷16に流れる電流の関係を示した図である。FIG. 6 is a diagram showing the relationship between the capacitance of the variable load 16 and the current flowing through the second inductively coupled antenna 1b and the variable load 16. アンテナ電流比制御・過電流検出回路を示す図である。It is a figure which shows an antenna current ratio control and an overcurrent detection circuit.

以下、本発明の実施例を図1より説明する。図1に、本発明の一実施例であるプラズマ処理装置の概略断面図を示す。真空容器2は、この場合、内部にプラズマ生成部を形成する絶縁材料(例えば、石英,セラミック等の非導電性材料)でなる放電部2aと、被処理物である試料、例えばウエハ13を載置するための電極5が内部に設置された処理部2bからなる。処理部2bはアースに接地されており、電極5は絶縁材を介して処理部2bに取り付けられている。放電部2aの外側には2系統のコイル状の誘電結合アンテナである第一の誘導結合アンテナ1a,第二の誘導結合アンテナ1bが配置されている。また、放電部2aの大気側には、プラズマ6と静電容量的に結合する円盤状の容量結合アンテナであるファラデーシールド8が設けられている。第一の誘導結合アンテナ1a,第二の誘導結合アンテナ1bとファラデーシールド8は、整合器3の中にあるインピーダンスマッチング回路12を介して第一の高周波電源10に直列に接続されている。また、第二の誘導結合アンテナ1bにはインピーダンスの大きさが可変可能な可変負荷16が直列に接続されており、ファラデーシールド8には並列に接続された可変可能な可変負荷17がコイル18を介してアースに接地されている。さらに、第一の誘導結合アンテナ1a,第二の誘導結合アンテナ1bは第一の電流センサ14a,第二の電流センサ14bを介してアンテナ電流比制御・過電流検出回路15に接続されており、ファラデーシールド8はFSV検出・制御回路19に接続されている。ここで、FSV(Faraday Shield Voltage)とはファラデーシールドに印加された高周波電圧のことで以下、FSVと称する。真空容器2内にはガス供給装置4から処理ガスが供給され、真空容器2内は排気装置7によって所定の圧力に減圧排気されている。電極5には、第二の高周波電源11が接続されている。   An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a schematic cross-sectional view of a plasma processing apparatus according to an embodiment of the present invention. In this case, the vacuum vessel 2 mounts a discharge part 2a made of an insulating material (for example, non-conductive material such as quartz or ceramic) that forms a plasma generation part therein, and a sample, for example, a wafer 13, which is an object to be processed. The electrode 5 for placing it is composed of a processing section 2b installed inside. The processing unit 2b is grounded to the ground, and the electrode 5 is attached to the processing unit 2b via an insulating material. A first inductive coupling antenna 1a and a second inductive coupling antenna 1b, which are two types of coiled dielectric coupling antennas, are disposed outside the discharge part 2a. Further, a Faraday shield 8 that is a disk-shaped capacitively coupled antenna that is capacitively coupled to the plasma 6 is provided on the atmosphere side of the discharge part 2a. The first inductively coupled antenna 1 a, the second inductively coupled antenna 1 b, and the Faraday shield 8 are connected in series to the first high frequency power supply 10 via the impedance matching circuit 12 in the matching unit 3. In addition, a variable load 16 whose impedance magnitude is variable is connected in series to the second inductively coupled antenna 1b, and a variable variable load 17 connected in parallel to the Faraday shield 8 is connected to the coil 18. Is grounded through the ground. Furthermore, the first inductive coupling antenna 1a and the second inductive coupling antenna 1b are connected to the antenna current ratio control / overcurrent detection circuit 15 via the first current sensor 14a and the second current sensor 14b. The Faraday shield 8 is connected to the FSV detection / control circuit 19. Here, FSV (Faraday Shield Voltage) is a high-frequency voltage applied to the Faraday shield, and is hereinafter referred to as FSV. A processing gas is supplied from the gas supply device 4 into the vacuum vessel 2, and the inside of the vacuum vessel 2 is evacuated to a predetermined pressure by the exhaust device 7. A second high frequency power source 11 is connected to the electrode 5.

上記のように構成された装置では、ガス供給装置4によって真空容器2内に処理ガスを供給し、第一の誘導結合アンテナ1a,第二の誘導結合アンテナ1bと容量結合アンテナであるファラデーシールド8により発生する電界の作用によって、上記の処理ガスをプラズマ化する。プラズマ化された処理ガスは、排気装置7によって排気される。第一の高周波電源10により発生した、例えば13.56MHz,27.12MHz,40.68MHzなどのHF帯や、さらに周波数が高いVHF帯などの高周波電力を第一の誘導結合アンテナ1aと第二の誘導結合アンテナ1b、そしてファラデーシールド8に供給することにより、プラズマ生成用の誘導磁場や電場を得ているが、電力の反射を抑えるためにインピーダンスマッチング回路12を用いて、アンテナのインピーダンスを第一の高周波電源10の出力インピーダンスに一致させている。インピーダンスマッチング回路12は、一般的な逆L型とも呼ばれる静電容量を可変可能なバリコンを2個用いたものを使用している。また、処理されるウエハ13は電極5上に載置され、プラズマ中のイオンをウエハ13に引き込むために、電極5に第二の高周波電源11によりバイアス電圧を印加する。   In the apparatus configured as described above, the process gas is supplied into the vacuum vessel 2 by the gas supply device 4, and the first inductively coupled antenna 1a, the second inductively coupled antenna 1b, and the Faraday shield 8 which is a capacitively coupled antenna. The processing gas is turned into plasma by the action of the electric field generated by. The plasma-ized processing gas is exhausted by the exhaust device 7. For example, high-frequency power generated by the first high-frequency power supply 10 such as 13.56 MHz, 27.12 MHz, 40.68 MHz, or a higher frequency VHF band is supplied to the first inductively coupled antenna 1a and the second inductive coupling antenna 1a. By supplying the inductive coupling antenna 1b and the Faraday shield 8, an induction magnetic field or electric field for plasma generation is obtained. In order to suppress reflection of power, the impedance of the antenna is first set using an impedance matching circuit 12. It is made to correspond to the output impedance of the high frequency power source 10. As the impedance matching circuit 12, a circuit using two variable capacitors that can change the capacitance, which is also called a general inverted L type, is used. The wafer 13 to be processed is placed on the electrode 5, and a bias voltage is applied to the electrode 5 by the second high frequency power supply 11 in order to draw ions in the plasma into the wafer 13.

図1のように構成された装置では、2系統の第一の誘導結合アンテナ1a,第二の誘導結合アンテナ1bに流れる高周波電流の大きさを制御することで、プラズマ分布を制御することができる。以下、プラズマ分布の制御方法について述べる。   In the apparatus configured as shown in FIG. 1, the plasma distribution can be controlled by controlling the magnitude of the high-frequency current flowing in the two systems of the first inductively coupled antenna 1a and the second inductively coupled antenna 1b. . Hereinafter, a method for controlling the plasma distribution will be described.

図2は真空容器2の縦断面図である。2系統の誘導結合アンテナである第一の誘導結合アンテナ1aと第二の誘導結合アンテナ1bが作る誘導磁場が強い領域はそれぞれ領域24aと領域24bである。また、ファラデーシールド8が作る電界が強い領域は24cである。これらの誘導磁場と電界が強い領域でプラズマの生成が行われる。真空容器2の放電部2aは、上方に向かい径を小さくすることにより、領域24aの径と領域24bの径のそれぞれの大きさが異なる。この場合は、領域24aの径の大きさが領域24bの径の大きさより小さくなっている。これに伴って第一の誘導結合アンテナ1aが作るプラズマは中央の密度が高いプラズマとなり、第二の誘導結合アンテナ1bが作るプラズマは外周の密度が高いプラズマとなる。したがって、誘導結合アンテナである第一の誘導結合アンテナ1aと第二の誘導結合アンテナ1bとに流れる電流の割合を調整することによって、プラズマ分布を制御することができる。   FIG. 2 is a longitudinal sectional view of the vacuum vessel 2. Regions 24a and 24b are regions where the induction magnetic field generated by the first inductively coupled antenna 1a and the second inductively coupled antenna 1b, which are two types of inductively coupled antennas, is strong. The region where the electric field generated by the Faraday shield 8 is strong is 24c. Plasma is generated in a region where these induction magnetic field and electric field are strong. The discharge part 2a of the vacuum vessel 2 has a different diameter in the region 24a and in the region 24b by decreasing the diameter upward. In this case, the diameter of the region 24a is smaller than the diameter of the region 24b. Along with this, the plasma produced by the first inductively coupled antenna 1a becomes a plasma having a high density at the center, and the plasma produced by the second inductively coupled antenna 1b becomes a plasma having a high density at the outer periphery. Therefore, the plasma distribution can be controlled by adjusting the ratio of the current flowing through the first inductively coupled antenna 1a and the second inductively coupled antenna 1b which are inductively coupled antennas.

次に第一の誘導結合アンテナ1aと第二の誘導結合アンテナ1bに流れる高周波電流の割合を調整する方法について説明する。図3に図1の放電部2a及び整合器3の等価回路を示す。図1中の第一の誘導結合アンテナ1aを負荷9a、第二の誘導結合アンテナ1bを負荷9b、ファラデーシールド8を負荷22として等価的に示している。負荷9aのインピーダンスの大きさをZa、負荷9bと可変可能な可変負荷16を合成したインピーダンスの大きさをZbとすると、負荷9aと負荷9bに流れる高周波電流の大きさは、1/Zaと1/Zbに比例する。誘導結合アンテナは正のリアクタンスを持つが、負のリアクタンスをもつバリコンでZbを正の値からゼロまで変化させることで、電流を制御することができる。   Next, a method for adjusting the ratio of the high-frequency current flowing through the first inductively coupled antenna 1a and the second inductively coupled antenna 1b will be described. FIG. 3 shows an equivalent circuit of the discharge unit 2a and the matching unit 3 of FIG. In FIG. 1, the first inductively coupled antenna 1a is equivalently shown as a load 9a, the second inductively coupled antenna 1b as a load 9b, and the Faraday shield 8 as a load 22. Assuming that the magnitude of the impedance of the load 9a is Za and the magnitude of the impedance obtained by combining the load 9b and the variable load 16 variable is Zb, the magnitude of the high-frequency current flowing through the load 9a and the load 9b is 1 / Za and 1 Proportional to / Zb. The inductively coupled antenna has a positive reactance, but the current can be controlled by changing Zb from a positive value to zero with a variable capacitor having a negative reactance.

第一の電流センサ14aにより負荷9a、第二の電流センサ14bにより負荷9bに流れる高周波電流を検出し、アンテナ電流比制御・過電流検出回路15にて任意の電流比になるよう制御を行う。   The first current sensor 14a detects the high-frequency current flowing through the load 9a and the second current sensor 14b through the load 9b, and the antenna current ratio control / overcurrent detection circuit 15 controls the current to have an arbitrary current ratio.

図4にプラズマ処理装置に一般的に使用されている可変負荷の静電容量と最大許容電流の関係を示す。可変負荷の静電容量は仕様の範囲で可変させることができるが、ある静電容量以下では、静電容量の減少にしたがって、その最大許容電流が減衰していくことが分かる。そのため、仕様としての最大許容電流以下の電流でも、静電容量が低ければ可変負荷に過電流が流れる恐れがあり、可変負荷の寿命の低下、あるいは可変負荷の故障の原因となる。   FIG. 4 shows the relationship between the capacitance of a variable load generally used in a plasma processing apparatus and the maximum allowable current. Although the capacitance of the variable load can be varied within the specification range, it can be seen that the maximum allowable current decreases as the capacitance decreases below a certain capacitance. For this reason, even if the current is less than the maximum allowable current as a specification, if the capacitance is low, an overcurrent may flow through the variable load, resulting in a decrease in the life of the variable load or a failure of the variable load.

図5に、可変負荷16の静電容量と、第二の誘導結合アンテナ1bおよび可変負荷16に流れる電流の関係を示す。可変負荷16に流れる電流は、可変負荷の静電容量が最も低いときに最も大きく、静電容量が増加すると減少していく。そのため、可変負荷16が低い静電容量のとき、過電流が流れている恐れがある。過電流による故障を防ぐためには、最大許容電流が変化しない領域で可変負荷の静電容量を変化させればよいが、静電容量の可変範囲が狭くなるため、制御できる電流比の範囲が制限されてしまう。本発明では誘導結合アンテナの電流比を広範囲で安定して制御するためにアンテナ電流比制御・過電流検出回路15が設けられている。   FIG. 5 shows the relationship between the capacitance of the variable load 16 and the current flowing through the second inductively coupled antenna 1 b and the variable load 16. The current flowing through the variable load 16 is greatest when the capacitance of the variable load is the lowest, and decreases as the capacitance increases. Therefore, when the variable load 16 has a low capacitance, an overcurrent may flow. To prevent failure due to overcurrent, it is only necessary to change the capacitance of the variable load in a region where the maximum allowable current does not change. However, since the variable range of the capacitance becomes narrow, the range of the controllable current ratio is limited. Will be. In the present invention, an antenna current ratio control / overcurrent detection circuit 15 is provided to stably control the current ratio of the inductively coupled antenna over a wide range.

図6にアンテナ電流比制御・過電流検出回路の構成を示す。第一の電流センサ14a,第二の電流センサ14bより得られた値からアンテナ電流比制御部・過電流検出部23において誘導結合アンテナの電流比を算出する。そして予め設定された任意の電流比と比較し、偏差を検出して、偏差が減少する向きにVC4のステッピングモータ26が駆動するようステッピングモータ駆動回路25に信号を送る。以上の動作を上記の偏差が予め設定された偏差内に収まるまで繰り返されることにより、2系統の誘導アンテナに流れる電流の電流比を、所望の電流比に維持することができる。   FIG. 6 shows the configuration of the antenna current ratio control / overcurrent detection circuit. The antenna current ratio controller / overcurrent detector 23 calculates the current ratio of the inductively coupled antenna from the values obtained from the first current sensor 14a and the second current sensor 14b. The deviation is detected by comparing with an arbitrary current ratio set in advance, and a signal is sent to the stepping motor drive circuit 25 so that the stepping motor 26 of the VC 4 is driven in a direction in which the deviation decreases. By repeating the above operation until the above deviation falls within a preset deviation, the current ratio of the currents flowing through the two induction antennas can be maintained at a desired current ratio.

また、過電流検出部では、第二の電流センサ14bから得られた電流値に基づいて、可変負荷への過電流が検出されると、第一の高周波電源10からの出力を中断するため、異常信号の伝送を行う。この場合の過電流と判定する電流値は、以下のようにして設定される。先ず、アンテナ電流比制御部・過電流検出部23へ位置検出器21から可変負荷の静電容量が可変範囲のどの位置にあるのかを示す情報が送られており、この情報を基に可変負荷の静電容量を算出する。次に、図4のような可変負荷16の静電容量に対する最大許容電流の特性に基づいて、上記の算出された静電容量の値に応じて最大許容電流値を算出し、この算出された最大許容電流値を過電流と判定するための電流値に設定する。このように過電流を設定するため、可変負荷の静電容量に応じて適正な過電流の電流値を設定できる。このため、可変負荷の静電容量が低いときにも許容電流を超えることがなく、電流比を広範囲に安定して制御することができる。   Further, in the overcurrent detection unit, when the overcurrent to the variable load is detected based on the current value obtained from the second current sensor 14b, the output from the first high frequency power supply 10 is interrupted. Abnormal signal transmission. The current value determined as an overcurrent in this case is set as follows. First, information indicating where the electrostatic capacity of the variable load is in the variable range is sent from the position detector 21 to the antenna current ratio control unit / overcurrent detection unit 23, and the variable load is based on this information. Is calculated. Next, based on the characteristic of the maximum allowable current with respect to the capacitance of the variable load 16 as shown in FIG. 4, the maximum allowable current value is calculated according to the calculated value of the capacitance, and this calculated The maximum allowable current value is set to a current value for determining an overcurrent. Since the overcurrent is set in this manner, an appropriate overcurrent current value can be set according to the capacitance of the variable load. For this reason, even when the capacitance of the variable load is low, the allowable current is not exceeded, and the current ratio can be stably controlled over a wide range.

以上、上述した通り、本発明は、可変負荷の静電容量が小さい範囲で発生し易いアンテナ電流比制御・過電流検出回路15への過電流を防止して、複数の誘導結合アンテナの電流比を一定に制御できるので、複数の誘導結合アンテナの電流比を広範囲に安定して制御することができる。   As described above, the present invention prevents the overcurrent to the antenna current ratio control / overcurrent detection circuit 15 which is likely to occur in the range where the capacitance of the variable load is small, and the current ratio of the plurality of inductively coupled antennas. Therefore, the current ratio of the plurality of inductively coupled antennas can be stably controlled over a wide range.

1a 第一の誘導結合アンテナ
1b 第二の誘導結合アンテナ
2 真空容器
2a 放電部
2b 処理部
3 整合器
4 ガス供給装置
5 電極
6 プラズマ
7 排気装置
8 ファラデーシールド
9a,9b,20,22 負荷
10 第一の高周波電源
11 第二の高周波電源
12 インピーダンスマッチング回路
13 ウエハ
14a 第一の電流センサ
14b 第二の電流センサ
15 アンテナ電流比制御・過電流検出回路
16,17 可変負荷
18 コイル
19 FSV検出・制御回路
21 位置検出器
23 アンテナ電流比制御部・過電流検出部
24a,24b,24c 領域
25 ステッピングモータ駆動回路
26 ステッピングモータ
DESCRIPTION OF SYMBOLS 1a 1st inductive coupling antenna 1b 2nd inductive coupling antenna 2 Vacuum vessel 2a Discharge part 2b Processing part 3 Matching device 4 Gas supply device 5 Electrode 6 Plasma 7 Exhaust device 8 Faraday shield 9a, 9b, 20, 22 Load 10 1st One high-frequency power source 11 Second high-frequency power source 12 Impedance matching circuit 13 Wafer 14a First current sensor 14b Second current sensor 15 Antenna current ratio control / overcurrent detection circuits 16, 17 Variable load 18 Coil 19 FSV detection / control Circuit 21 Position detector 23 Antenna current ratio control unit / overcurrent detection unit 24a, 24b, 24c Region 25 Stepping motor drive circuit 26 Stepping motor

Claims (2)

プラズマが形成される領域を囲む面に対して配置された2系統以上の誘導結合アンテナと、プラズマが形成される領域を囲む面に対して配置された容量結合アンテナとを有し、前記誘導結合アンテナと前記容量結合アンテナとを電気的に直列に接続したプラズマ処理装置において、前記各誘導結合アンテナを流れる高周波電流の大きさを調整する第一の調整回路と、前記各誘導結合アンテナと前記容量結合アンテナとに流れる高周波電流の割合を調整する第二の調整回路と、前記各誘導結合アンテナを流れるそれぞれの高周波電流の大きさを測定するセンサと、前記センサからの信号を基に前記第一の調整回路への過電流の監視と並行して各誘導結合アンテナを流れる電流の比率を一定に制御する制御手段を有することを特徴とするプラズマ処理装置。   Two or more inductive coupling antennas arranged with respect to a surface surrounding a region where plasma is formed, and a capacitively coupled antenna arranged with respect to a surface surrounding a region where plasma is formed, the inductive coupling In a plasma processing apparatus in which an antenna and the capacitively coupled antenna are electrically connected in series, a first adjustment circuit for adjusting a magnitude of a high-frequency current flowing through each of the inductively coupled antennas, each of the inductively coupled antennas and the capacitor A second adjustment circuit for adjusting a ratio of a high-frequency current flowing through the coupling antenna; a sensor for measuring a magnitude of each high-frequency current flowing through each inductive coupling antenna; and the first based on a signal from the sensor. Characterized in that it has a control means for controlling the ratio of the current flowing through each inductively coupled antenna to be constant in parallel with the overcurrent monitoring to the adjustment circuit of Management apparatus. プラズマが形成される領域を囲む面に対して配置された2系統以上の誘導結合アンテナと、プラズマが形成される領域を囲む面に対して配置され前記誘導アンテナと電気的に直列に接続された容量結合アンテナと、前記各誘導結合アンテナを流れる高周波電流の大きさを調整する第一の調整回路と、前記各誘導結合アンテナと前記容量結合アンテナとに流れる高周波電流の割合を調整する第二の調整回路と、前記各誘導結合アンテナを流れるそれぞれの高周波電流の大きさを測定するセンサとを備えるプラズマ処理装置を用いた制御方法において、
前記センサからの信号を基に前記第一の調整回路への過電流の監視と並行して各誘導結合アンテナを流れる電流の比率を一定に制御することを特徴とする制御方法。
Two or more systems of inductively coupled antennas arranged with respect to the surface surrounding the region where plasma is formed, and electrically connected in series with the induction antenna disposed over the surface surrounding the region where plasma is formed A capacitive coupling antenna; a first adjustment circuit for adjusting a magnitude of a high-frequency current flowing through each inductive coupling antenna; and a second adjustment circuit configured to adjust a ratio of a high-frequency current flowing through each inductive coupling antenna and the capacitive coupling antenna. In a control method using a plasma processing apparatus comprising an adjustment circuit and a sensor for measuring the magnitude of each high-frequency current flowing through each inductive coupling antenna,
A control method characterized in that the ratio of the current flowing through each inductively coupled antenna is controlled to be constant in parallel with monitoring of the overcurrent to the first adjustment circuit based on a signal from the sensor.
JP2011047071A 2011-03-04 2011-03-04 Plasma processing device, and control method therefor Pending JP2012185948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011047071A JP2012185948A (en) 2011-03-04 2011-03-04 Plasma processing device, and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011047071A JP2012185948A (en) 2011-03-04 2011-03-04 Plasma processing device, and control method therefor

Publications (1)

Publication Number Publication Date
JP2012185948A true JP2012185948A (en) 2012-09-27

Family

ID=47015882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011047071A Pending JP2012185948A (en) 2011-03-04 2011-03-04 Plasma processing device, and control method therefor

Country Status (1)

Country Link
JP (1) JP2012185948A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140059422A (en) * 2012-11-08 2014-05-16 엘아이지에이디피 주식회사 Inductively coupled plasma processing apparatus and control method thereof
JP2021018923A (en) * 2019-07-19 2021-02-15 日新電機株式会社 Plasma processing apparatus
JP7515423B2 (en) 2021-01-22 2024-07-12 東京エレクトロン株式会社 Method for detecting abnormality in plasma processing apparatus and plasma processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311647A (en) * 1995-05-17 1996-11-26 Ulvac Japan Ltd Abnormal discharge quenching device for vacuum equipment
JP2000323298A (en) * 1999-03-09 2000-11-24 Hitachi Ltd Plasma treatment device and method
JP2001297854A (en) * 2000-04-14 2001-10-26 Keyence Corp Corona discharge lamp
JP2004531856A (en) * 2001-04-13 2004-10-14 アプライド マテリアルズ インコーポレイテッド Inductively coupled plasma source with controllable power distribution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311647A (en) * 1995-05-17 1996-11-26 Ulvac Japan Ltd Abnormal discharge quenching device for vacuum equipment
JP2000323298A (en) * 1999-03-09 2000-11-24 Hitachi Ltd Plasma treatment device and method
JP2001297854A (en) * 2000-04-14 2001-10-26 Keyence Corp Corona discharge lamp
JP2004531856A (en) * 2001-04-13 2004-10-14 アプライド マテリアルズ インコーポレイテッド Inductively coupled plasma source with controllable power distribution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140059422A (en) * 2012-11-08 2014-05-16 엘아이지에이디피 주식회사 Inductively coupled plasma processing apparatus and control method thereof
JP2021018923A (en) * 2019-07-19 2021-02-15 日新電機株式会社 Plasma processing apparatus
JP7290080B2 (en) 2019-07-19 2023-06-13 日新電機株式会社 Plasma processing equipment
JP7515423B2 (en) 2021-01-22 2024-07-12 東京エレクトロン株式会社 Method for detecting abnormality in plasma processing apparatus and plasma processing apparatus

Similar Documents

Publication Publication Date Title
US11908661B2 (en) Apparatus and methods for manipulating power at an edge ring in plasma process device
TWI505354B (en) Dry etching apparatus and dry etching method
US7190119B2 (en) Methods and apparatus for optimizing a substrate in a plasma processing system
JP5160802B2 (en) Plasma processing equipment
US20130240482A1 (en) Methods and apparatus for selectively modifying rf current paths in a plasma processing system
KR20040018343A (en) Inductive plasma processor having coil with plural windings and method of controlling plasma density
TW201642303A (en) Plasma processing apparatus and plasma processing method
US20180068835A1 (en) Plasma processing apparatus
JP2004535039A (en) Plasma processing apparatus method and apparatus
WO2002084699A1 (en) Apparatus and method for controlling the voltage applied to an electrostatic shield used in a plasma generator
US20140053984A1 (en) Symmetric return liner for modulating azimuthal non-uniformity in a plasma processing system
US20210296083A1 (en) Plasma processing device
KR20200044686A (en) Adjustment method for filter unit and plasma processing apparatus
US10825657B2 (en) Plasma processing apparatus
KR20220143947A (en) Apparatus and methods for manipulating power in an edge ring of a plasma processing device
JP2012185948A (en) Plasma processing device, and control method therefor
KR101682881B1 (en) An plasma generating module and plasma processing apparatus comprising the same
KR102207755B1 (en) Plasma treatment device
US20230253185A1 (en) Systems and Methods for Radiofrequency Signal Generator-Based Control of Impedance Matching System
KR20160068254A (en) The plasma generating module and the plasma process apparatus having that
US20240355586A1 (en) Multi-electrode source assembly for plasma processing
US20240355587A1 (en) Multi-electrode source assembly for plasma processing
KR101643674B1 (en) Antenna assembly for plasma processing apparatus and plasma processing apparatus comprising the same
WO2024226135A1 (en) A multi-electrode source assembly for plasma processing
KR101710678B1 (en) The plasma generating module and the plasma process apparatus having that

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028