Nothing Special   »   [go: up one dir, main page]

JP2012181804A - 血糖値予測方法および血糖値予測システム - Google Patents

血糖値予測方法および血糖値予測システム Download PDF

Info

Publication number
JP2012181804A
JP2012181804A JP2011046004A JP2011046004A JP2012181804A JP 2012181804 A JP2012181804 A JP 2012181804A JP 2011046004 A JP2011046004 A JP 2011046004A JP 2011046004 A JP2011046004 A JP 2011046004A JP 2012181804 A JP2012181804 A JP 2012181804A
Authority
JP
Japan
Prior art keywords
meal
information
prediction
blood glucose
glucose level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011046004A
Other languages
English (en)
Other versions
JP5974348B2 (ja
Inventor
Munetake Ishii
統丈 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011046004A priority Critical patent/JP5974348B2/ja
Publication of JP2012181804A publication Critical patent/JP2012181804A/ja
Application granted granted Critical
Publication of JP5974348B2 publication Critical patent/JP5974348B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

【課題】摂取カロリー、食事の順番、食事時間などの食事情報に基づき血糖値を予測し、簡易に血糖値の変化傾向を知ることができる血糖値予測方法を提供する。
【解決手段】食事開始時間記録と食事提供順番記録と食事情報記録と食事終了時間記録との入力を受け付ける入力受付ステップと、前記食事情報から計算した摂取カロリーに対する第1予測曲線を算出する第1予測アルゴリズム算出ステップと、前記摂取カロリーに対する血糖値の変化傾向を解析して第1モデル波形を生成する第1モデル波形生成ステップと、前記第1予測曲線と前記第1モデル波形の血糖値変化とを比較し、前記第1予測曲線を変形する第1予測曲線変形ステップと、前記ユーザーが実施する運動による消費カロリーに対する第2予測曲線を算出する第2予測アルゴリズム算出ステップと、を備えることを特徴とする血糖値予測方法。
【選択図】図2

Description

本発明は、血糖値予測方法および血糖値予測システムに関する。
従来から、日常の生活習慣に起因する生活習慣病に関して、健康診断の結果(血圧、血糖値、体重、および体脂肪率などのバイタルデータ)、食生活、および運動量などの情報から、食事などの目標摂取量、および運動などによる一日あたりの目標消費カロリーなどを設定する必要がある。さらに、これらの設定に基づき、実際の摂取カロリーおよび消費カロリーならびにバイタルデータを比較して、その後の食事および運動の実施を促す方法がある。
このような方法として、献立および栄養素情報テーブル、食事摂取情報テーブルおよび検診結果などから食事および運動指導を実施する方法が開示されている(たとえば、特許文献1参照)。また、食事を提供する宅配業者などと、医療機関または予防医療センターなどとが提供する食事のメニューまたは健康管理を実施する方法が開示されている(たとえば、特許文献2参照)。
特開2008−310401号公報 特開2004−240792号公報
しかしながら、摂取した食事および食後に実行した運動が、その後の血糖値にどのように影響を与えるか、つまり血糖値の上昇または低下を予測していないため、特に血糖値が低くなり過ぎる低血糖状態などを予想することはできないという課題がある。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
[適用例1]本適用例に係る血糖値予測方法は、ユーザーが食事を開始した時間が記録された食事開始時間記録と、前記食事の順番が記録された食事提供順番記録と、前記食事の内容を示す食事情報が記録された食事情報記録と、前記食事の終了時間が記録された食事終了時間記録と、の入力を受け付ける入力受付ステップと、前記食事情報から計算した摂取カロリーに対する第1予測曲線を算出する第1予測アルゴリズム算出ステップと、前記摂取カロリーに対する血糖値の変化傾向を解析して第1モデル波形を生成する第1モデル波形生成ステップと、前記第1予測曲線と前記第1モデル波形の血糖値変化とを比較し、前記第1予測曲線を変形する第1予測曲線変形ステップと、前記ユーザーが実施する運動による消費カロリーに対する第2予測曲線を算出する第2予測アルゴリズム算出ステップと、を備えることを特徴とする。
本適用例によれば、血糖値を予測するために特に重要な摂取カロリー、食事の順番、食事時間、といった食事情報をシステムを通して血糖値予測装置に送信することで簡単に正確な血糖値を予測できることになり、これによってユーザーは食事中に食事時間や食事の順番といったことに煩わされることなく、簡易に血糖値の変化傾向を知ることができる。特に、血糖値が低下してしまうような変化を避けることが可能になる。
[適用例2]上記適用例に記載の血糖値予測方法において、前記情報送信ステップで、前記ユーザーの位置情報を送信すること、を特徴とする。
本適用例によれば、ユーザーの位置情報を送信することにより、既に知っている食事提供者だけでなく、ユーザーの不案内な場所などにおいても、適切な食事メニューを取得することができる。これにより、選択肢が増えて、摂取する食事が偏ることなく摂取でき、血糖値予測システムを飽きることなく使い続けることができる。
[適用例3]本適用例に係る血糖値予測システムは、ユーザーの血糖値、食事情報、および運動情報の入力を受付ける操作部と、前記ユーザーの履歴情報が記憶されている記憶部と、前記食事情報に対する摂取カロリーを取得する摂取エネルギー取得部と、前記摂取カロリーによる前記血糖値の変化を予測した第1予測曲線、および前記運動情報に対する消費カロリーによる前記血糖値の変化を予測した第2予測曲線を求める算出部と、前記運動情報により消費カロリーを取得する消費エネルギー取得部と、前記第1予測曲線から算出される最適摂取カロリーを送信する第1通信部とを備える血糖値予測装置と、前記第1通信部から前記最適摂取カロリーを送信する第2通信部と、前記最適摂取カロリーに適合する食事情報を抽出する検索部とを備える食事メニューシステムと、前記第2通信部と送受信する食事メニューデータベースと食事開始時間と食事終了時間を記録することのできるPOSシステムと、提供する食事の順番を記録することのできる調理管理システムを有し、前記第2通信部および前記第1通信部により前記血糖値予測装置へ前記最適摂取カロリーに適合する食事情報を送信すること、を特徴とする。
本適用例によれば、POSシステム、調理管理システムからの詳細な食事情報を血糖値予測装置へ送信することにより、実際の食事内容に沿っていて、かつ精度の高い血糖値予測システムを提供することができる。
[適用例4]上記適用例に記載の血糖値予測システムは、前記血糖値予測装置に位置情報取得部を備えることを特徴とする。
本適用例によれば、位置情報取得部により、ユーザーの位置情報を取得するので、既に知っている食事提供者だけでなく、ユーザーの不案内な場所などにおいても、ユーザーの位置情報をもとに検索して、食事提供者を抽出することができる。これにより、より簡易的にユーザーの食事情報を取得することができる。
実施形態に係る血糖値予測システムの構成を示す概略構成図。 実施形態に係る血糖値予測システムの各構成を示す概略構成図。 実施形態に係る食事メニューデータベース、食事メニュー情報、運動種類種別、および食事順序の例を示す図。 実施形態に係る履歴情報の例を示す図。 実施形態に係る血糖値予測装置の機能構成例を示す図。 実施形態に係る第1予測曲線および第2予測曲線を説明する図。 実施形態に係る血糖値予測方法の動作フローを示すフローチャート。 実施形態に係る血糖値予測方法の食事時間・順序サブルーチンを示すフローチャート。
以下、本発明の血糖値予測方法および血糖値予測システムの好適な実施形態の一例について説明する。
(第1実施形態)
以下、本実施形態の血糖値予測方法および血糖値予測システムについて、図1から図8を参照して説明する。
(概要)
本実施形態に係る血糖値予測システム1は、図1に示すように、各患者(ユーザー)によって使用される血糖値予測装置10(10a,10b、10n)と、通信回線20,22と、食事メニューシステム30と、食事メニューデータベース50と、食事管理システム60とで構成されている。
一般に血糖値は血糖の状態の判断に用いられることが多く、ユーザーの健康状態、食事、運動等、ユーザーの状態によって血糖値(単位:mg/dl)は変動する。そのため、血糖値が高い場合であっても血糖の状態が悪くない場合や、血糖値が低い場合であっても血糖の状態が悪い場合がある。医療機関では、血糖の状態を判断する指標として血液中のHbA1cを用いており、HbA1cは一般に医療機関で検査されている。HbA1cは、検査時点から1〜2ヶ月前までの血糖の状態を表すものとされており、HbA1cの値がある一定の範囲内であれば正常であり、一定の範囲を超える場合には糖尿病であると判断され、HbA1cによって糖尿病の進行具合を推定することができる。
以下、本実施形態に係る血糖値予測システム1の詳細について説明する。
図2は、血糖値予測システム1の各構成を示す図である。
以下、血糖値予測装置10、食事メニューシステム30、食事メニューデータベース50、および食事管理システム60の各部を説明する。
(血糖値予測装置10)
血糖値予測装置10は、ユーザーの手首等に装着可能に構成されており、制御部110、活動量測定部120、操作部130、記憶部140、表示部150、計時部160、位置情報取得部180、及び第1通信部170を備える。血糖値予測装置10は、ユーザーの血糖値の時系列変化を予測する。
制御部110は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)のメモリーを含み、RAMをワーキングエリアとしてROMに予め記憶されている制御プログラムを実行することにより、制御部110と接続されている各部を制御する。
活動量測定部120は、ユーザーが消費した消費カロリーを求め、求めた消費カロリーを消費エネルギー情報として制御部110へ送出する。活動量測定部120は、例えば、ユーザーの運動状態を検出するための加速度センサーや速度センサー等のセンサーを有し、ユーザーの歩行や運動などの動作によって検出されたセンサーからの出力信号を予め定義された演算式を用いて消費カロリーに変換する。
また、消費カロリーを精度よく求めるため、脈波RR間隔、体温、血圧、および睡眠などの生体データを、光学検出、電気信号検出、圧力検出などを用いて検出してもよい。
操作部130は、例えば、数字や文字等の入力キーを有する操作ボタン群を有し、ユーザーによって操作された入力キーに対応する操作信号を制御部110へ送出する。本実施形態では、特に、操作部130は、測定されたユーザーの血糖値およびHbA1cの入力を受付けると共に、ユーザーが摂取した食事内容(食事メニューおよび摂取カロリー)を示す食事情報やユーザーが行った運動内容を示す運動情報のデータの入力を受付ける。
表示部150は、液晶ディスプレイ等の表示装置で構成され、制御部110の制御の下、食事情報や運動情報の入力画面、血糖値の予測曲線等の各種画像を表示する。
位置情報取得部180は、たとえばGPS(Global Positioning System)を備え、血糖値予測装置10を装着したユーザーの位置情報を取得する。
計時部160は、所定のクロックをカウントして時刻を計時する。
第1通信部170は、通信回線20と接続され、制御部110の制御の下、予め設定されたアドレスに基づいて血糖値予測装置10と食事メニューシステム30との間で通信を確立し、血糖値予測装置10と食事メニューシステム30との間で各種データを送受信する。
記憶部140は、不揮発性の記憶媒体で構成され、たとえば医療機関における診察券番号等のユーザーを識別する識別情報(以下、ユーザーIDと称する)、ユーザーの血糖値に関する情報を含む履歴情報200及び運動種別情報212等のテーブルを記憶している。そして、食事メニューデータベース50から提供された詳細食事メニュー情報213(図3参照)を食事メニュー情報211に記憶する。
ここで、食事メニューデータベース50、食事メニュー情報211、詳細食事メニュー情報213、運動種別情報212、履歴情報200、および食事管理システム60について以下に説明する。
図3(a)は、食事メニューデータベース50の一例を示す図である。食事メニューデータベース50には、院内食堂、社内食堂などの食事提供者から提供される単品の食品名や料理名等の食事メニューおよび食事メニューに対応する摂取カロリーなどがそれぞれ記憶されている。食事メニューデータベース50は、ユーザーが食事を摂取する時に参照される。
たとえば食事前は、血糖値予測装置10にある位置情報取得部180の情報によって食事提供者が判明することで、該当した食事提供者の食事メニュー情報211を参照することができる。
食事中は、各食事メニューが提供された順番が調理管理システム610によって記録され、食事開始時間と食事終了時間はPOSシステム600によって記録される。
食事後は、食事メニュー情報211に食事開始時間、食事終了時間、および食事順番情報を付加することで、詳細食事メニュー情報213を作成する。
図3(c)は、運動種別情報212の一例を示す図である。運動種別情報212には、運動種別と運動内容とが記憶されている。運動種別情報212は、ユーザーが運動情報を入力する際に参照される。
履歴情報200には、図4(a)に示す血糖値情報200aと、図4(b)に示す行動情報200bとが含まれている。血糖値情報200aには、例えば、ユーザーが過去に糖尿病に関する教育入院を行ったとき等の1〜2週間程度の教育入院期間の血糖値と食事および運動などの行動履歴とが記憶されている。履歴情報200には、この行動履歴に加えて、教育入院期間後の毎日の血糖値と食事および運動などの行動履歴が予測血糖値データとして記憶される。
ユーザーが食事を摂取する際は、上述のようにして詳細な食事メニューを取得する。そして、ユーザーが運動を行う際は、上述のようにして、運動情報を入力し運動を行う。
図4(a)には、一例として、2010年2月1日と2月2日のユーザーの血糖値情報200aを示している。この図の波形41は、ユーザーの血糖値の時系列変化を表している。また、時間軸における「朝食」、「散歩」、「昼食」・・・等は、ユーザーが摂った食事や運動のタイミング等の行動履歴を示している。図4(b)には、図4(a)の各行動履歴に対応する行動情報200bを示しており、各行動履歴に対応する行動内容(食事内容、運動内容)と、行動内容に対応するカロリー(摂取カロリー、消費カロリー)とが対応づけられている。
例えば、図4(a)の2010年2月1日の朝食の食事内容は、図3(b)に示した詳細食事メニュー情報213の中から選択した「和食A」であり、和食Aの摂取カロリーは「500kcal」であったことを示している。また、図4(a)の2010年2月1日の午前に行った「散歩」の消費カロリーは「50kcal」であったことを示している。このように、本実施形態では、履歴情報200において、ユーザーの血糖値の変化と合わせてユーザーの行動に対する摂取カロリーと消費カロリーが記憶されている。
(制御部110の機能構成)
図5は、上述した制御部110の機能を中心とする機能構成図である。制御部110は、取得手段の一例である摂取エネルギー取得部111、消費エネルギー取得部112と、算出部113、解析部114、生成部115、及び送信制御部116を含む。
摂取エネルギー取得部111は、ユーザーが入力した血糖値データと、摂取エネルギー情報として食事メニューシステム30から食事情報(食事内容)を取得し、取得した食事情報と、食事メニュー情報211に基づいて食事情報に対する摂取カロリーを取得する。
消費エネルギー取得部112は、ユーザーの消費エネルギー情報として消費カロリーを活動量測定部120から一定時間毎に取得する。
算出部113は、摂取エネルギー取得部111で求めた摂取カロリーまたは食事情報に対する摂取カロリーと予め定められた第1予測アルゴリズムとに基づいて、摂取カロリーに対する血糖値の変化を予測した予測曲線(以下、第1予測曲線と称する)を求める。また、算出部113は、消費エネルギー取得部112で取得された消費カロリーと予め定められた第2予測アルゴリズムとに基づいて、消費カロリーに対する血糖値の変化を予測した予測曲線(以下、第2予測曲線と称する)を求める。
解析部114は、摂取エネルギー情報として操作部130から入力された食事情報と対応する履歴情報200を抽出する抽出条件を用いて履歴情報200を抽出し、抽出した履歴情報200を用いて当該食事情報に対するユーザーの血糖値の変化傾向を解析する。
具体的には、例えば、図3(b)に示した詳細食事メニュー情報213の中から選択して入力された食事情報が和食Aの場合、和食Aを摂取したときの血糖値の変化を表す波形として、和食Aを摂取した時点から次の行動(食事又は運動)が行われるまでの期間の波形データが抽出される。図4(a)に示す血糖値情報200aの例では、2010年2月1日の朝食を摂取した時点から次の行動、つまり散歩が行われるまでの期間の波形データが抽出される。なお、散歩が行われなければ、朝食を摂取した時点から昼食を摂取するまでの期間の波形データが抽出される。このようにして、同じ食事内容を摂取したときの血糖値の変化を表す波形を第1モデル波形として抽出する。なお、複数の波形が抽出された場合には、解析部114は、抽出した複数の波形を平均化する等の処理を行い、当該食事情報に対する血糖値の変化傾向を示す第1モデル波形を生成する。
また、解析部114は、操作部130から入力された運動情報(運動内容)と対応する履歴情報200を抽出する抽出条件を用いて履歴情報200を抽出し、抽出した履歴情報200を用いて当該運動情報に対するユーザーの血糖値の変化傾向を解析する。本実施形態では、活動量測定部120によりユーザーの消費カロリーが逐次算出されるように構成されているが、算出された消費カロリーがどのような動作を行ったときのものであるかを区別するために、通常の動作以外の運動については、ユーザーが運動を行う前に運動種別を入力する。
具体的には、例えば、入力された運動情報がウォーキングである場合には、ウォーキングを行ったときの血糖値の変化を表す波形として、図4(a)に示す血糖値情報200aにおける2010年2月1日のウォーキング開始時から次の行動、つまり軽食を摂取するまでの波形データが抽出される。このようにして、同じ運動を行ったときの血糖値の変化を表す波形を第2モデル波形として抽出する。なお、複数の波形が抽出された場合には、解析部114は、抽出された複数の波形を平均化する等の処理を行い、当該運動情報に対する血糖値の変化傾向を示す第2モデル波形を生成する。
生成部115は、算出部113において算出された第1予測曲線及び第2予測曲線を、解析部114の解析結果に基づいて変形し、変形した第1予測曲線と第2予測曲線とを統合して予測血糖値曲線を生成する。
具体的には、図6に示すように、生成部115は、第1予測曲線の上昇期間d2における血糖値のピーク値までの上昇値h11と、第1モデル波形のピーク値までの上昇値とを比較し、上昇値の差分が予め定めた閾値以上である場合には、第1予測曲線の上昇値h11が第1モデル波形の上昇値となるように係数αを調整する。また、生成部115は、第1予測曲線の平衡期間d3と、第1モデル波形において血糖値のピーク値が継続する継続期間とを比較し、平衡期間d3と継続期間との差分が予め定めた閾値以上である場合には、第1予測曲線の平衡期間d3を継続期間と一致させるように平衡期間d3を設定する。なお、第1モデル波形において、血糖値のピーク値が予め定められた閾値の範囲内で下降している期間はピーク値が継続しているものとし、閾値の範囲を下回った時点を継続期間の終期と判断する。
また、生成部115は、第1予測曲線の下降期間d4においてピーク値から血糖値が低下した低下量(h11)と、第1モデル波形のピーク値から血糖値が低下した低下量とを比較し、低下量の差分が予め定めた閾値以上である場合には、第1予測曲線の下降期間d4における低下量(h11)が第1モデル波形における低下量となるように、傾きs2の係数βを調整する。
生成部115は、第2予測曲線についても第1予測曲線と同様に変形する。具体的には、生成部115は、第2予測曲線の下降期間e2における血糖値の単位時間当たりの低下量Δcと、第2モデル波形における血糖値の単位時間当たりの低下量とを比較し、低下量の差分が予め定めた閾値以上である場合には、第2予測曲線の低下量Δcを第2モデル波形における低下量となるように係数γを調整する。
生成部115は、上記のようにして第1予測曲線と第2予測曲線を各々変形し、変形した第1予測曲線と第2予測曲線とを統合した予測血糖値曲線を生成し、生成した予測血糖値曲線を記憶部140に記憶する。
ここで、図6を参照して、算出部113における第1予測曲線と第2予測曲線の算出について説明する。図6(a)は、本実施形態における第1予測曲線の一例を示す図である。
第1予測曲線は、摂取カロリーと第1予測アルゴリズムとに基づいて求められる。第1予測曲線は、遅延期間d1、上昇期間d2、平衡期間d3、および下降期間d4を有する。以下、各期間における血糖値曲線を求める第1予測アルゴリズムの一例を説明する。
遅延期間d1は、食事を開始してから、食事開始時における血糖値(基準値)C0を超えるまでの期間を示している。遅延期間d1には、食事の開始時点から予め定められた時間(例えば、15分)が設定されおり、食事開始時の血糖値C0を維持する。なお、食事開始時の血糖値C0は、当該時刻においてユーザーが測定した血糖値を用いるが、測定できなかった場合には、例えば、予め設定されたユーザーの血糖値の標準値等を用いるようにしてもよい。
上昇期間d2は、遅延期間d1の終期から始まり、血糖値が上昇を開始して血糖値がピークとなる値(ピーク値)に到達するまでの期間を示している。ピーク値は、傾きs1で血糖値が上昇し、食事開始時の血糖値C0に血糖値の上昇値h11を合算した値である。
血糖値の上昇値h11は、例えば、h11=(摂取カロリー)×(インスリン分泌量)×(係数α)で求められる。本実施形態では、インスリン分泌量と係数α(>0)は、ユーザーに応じて予め設定された固定値である。なお、インスリン分泌量及び係数は、予め設定された固定値だけなく、ユーザーの属性(年齢、性別、身長、体重)に応じて定められた値や可変値であってもよい。
平衡期間d3は、上昇期間d2の終期から血糖値のピーク値を維持する期間であり、本実施形態では、予め定義された固定値が設定されている。なお、例えば、摂取カロリーとユーザーに固有の係数とを乗算した値を、前回の摂取カロリーとの差に応じた係数で除算する等、摂取カロリーと予め定められた演算式とを用いて平衡期間d3を求めるようにしてもよい。
下降期間d4は、平衡期間d3の終期から血糖値が傾きs2で下降を開始して基準値に到達するまでの期間を示している。つまり、下降期間d4は、血糖値がピーク値から基準値(食事開始時の血糖値C0)に戻るまでの期間である。傾きs2は、例えば、s2=(摂取カロリー)×(係数β)で求められる。本実施形態では、係数βは、ユーザーに応じて予め定められた固定値(<0)であるが、ユーザーの属性(年齢、性別、身長、体重)に応じて予め定められた値や可変値であってもよい。
次に、第2予測曲線について説明する。図6(b)は、本実施形態における第2予測曲線の一例を示す図である。
第2予測曲線は、消費カロリーと第2予測アルゴリズムとに基づいて求められる。第2予測曲線は、遅延期間e1と下降期間e2を含んで構成されている。以下、各期間における血糖値曲線を求める第2予測アルゴリズムの一例を説明する。
遅延期間e1は、運動を開始してから血糖値が下降し始めるまでの期間を示し、運動開始時の血糖値が維持される期間である。本実施形態では、遅延期間e1には、予め定められた期間(例えば、2分)が設定されている。下降期間e2は、遅延期間e1の終期から傾きs3(単位時間当たりの血糖値の低下量Δc)で血糖値が下降する期間である。低下量Δcは、例えば、Δc=(消費カロリー)×(インスリン分泌量)×(係数γ)で求められる。消費カロリーは、活動量測定部120において計測されたユーザーの消費カロリーであり、本実施形態では、ユーザーが運動を意識していない通常の動作時においても活動量測定部120によりユーザーの消費カロリーが算出されて逐次入力される。インスリン分泌量はユーザーに応じて予め設定された固定値であり、係数γ(<0)は、血糖値に応じた可変値であってもよいし、ユーザーの属性に応じて定められた固定値であってもよい。
図3(a)に示すように、食事メニューシステム30は、院内食堂、社内食堂、または宅配業者などの食事提供者が持つ食事内容(食事メニューおよび摂取カロリー)などの詳細栄養情報が保存されている。
図2に示すように、食事メニューシステム30は、検索部310、情報取得部320、記憶部350、および第2通信部340を備える。
食事メニューシステム30は、食事管理システム60と連携して、詳細な食事情報(食事内容)を食事提供者から取り出すシステムである。
検索部310は、ユーザーの位置情報から食事提供者を検索し抽出する。
情報取得部320は、食事メニューデータベース50(図1参照)から食事情報を取得する。また、ユーザーの位置情報を取得する。
記憶部350は、不揮発性の記憶媒体で構成され、検索部310および情報取得部320で取得された食事情報およびユーザーの位置情報を保存する。
第2通信部340は、通信回線22と接続され、予め設定されたアドレスに基づいて食事メニューシステム30と食事メニューデータベース50、および食事管理システム60との間で通信を確立し、食事メニューシステム30と食事メニューデータベース50、および食事管理システム60との間で各種データを送受信する。
図2に示すように、食事管理システム60は、各食事提供者の内部システムと連携することで、食事開始時間、食事終了時間、食事順番などの詳細な食事メニュー情報が保存されている。
POSシステム600は、ユーザーの注文時や会計時の時刻を記憶することで、ユーザーの食事時間情報を保存する。
調理管理システム610は、調理場と連携することでユーザーへの食事の提供順序を保存する。
(動作)
次に、本実施形態に係る血糖値予測システム1の動作について説明する。
まず、血糖値予測方法の動作について説明する。
(血糖値予測方法)
図7は、血糖値予測方法の動作フローを示している。図8は、血糖値予測方法における食事情報入力処理サブルーチンを示している。本実施形態では、ユーザーによって毎日朝食前に血糖値が実測される。血糖値予測方法は、その実測値を用いて、食事を摂取し食事情報が入力される毎、ユーザーの消費カロリーが測定される毎に血糖値の予測を行い、予測血糖値曲線を出力する。
ユーザーは、実測した血糖値のデータを血糖値予測装置10の操作部130を介して入力する。制御部110は、操作部130を介して入力された血糖値データと入力時間とを受付けると、入力された血糖値データを基準値C0として設定し、血糖値データ受付ステップを実施し、血糖値予測を開始する(ステップS11)。
GPSなどの位置情報取得手段からの取得したユーザーの位置情報を、血糖値予測装置10から食事メニューシステム30に送信する食事提供者抽出ステップを実施する(ステップS61)。食事メニューシステム30では、位置情報をもとに利用される食事提供者を確定する。
抽出された食事提供者の食事管理システム60では、POSシステム600によってユーザーが食事を開始した時間を記録する食事開始時間記録ステップを実施する(ステップS62)。ユーザーが食事を注文した時間等からPOSシステム600が時間を記録する。
次に、食事管理システム60では、調理管理システム610によってユーザーが行った食事の順番を記録する食事提供記録ステップを実施する(ステップS63)。調理管理システム610によって、食事がユーザーに提供される順番を調理現場と連動して記録する。
最後に食事管理システム60では、POSシステム600によってユーザーが食事を終了した時間を記録する食事開始時間記録ステップを実施する(ステップS64)。ユーザーが食事を会計を行った時間等からPOSシステム600が時間を記録する。
ユーザーが操作部130を介して食事情報入力画面を表示させる操作を行うと、制御部110は、詳細食事メニュー情報213を表示部150に表示し、ユーザーからの食事メニューの入力を受付ける入力受付ステップを実施する(ステップS12)。
制御部110は、操作部130を介して詳細食事メニュー情報213としての食事メニューがユーザーによって選択されることによって入力されると(ステップS12:YES)、食事メニューとともに、摂取エネルギー情報として入力された食事メニューに対応する摂取カロリーを詳細食事メニュー情報213から取得する。そして、取得した摂取カロリーに対する第1予測曲線を第1予測アルゴリズムにより算出する第1予測アルゴリズム算出ステップを実施する(ステップS13)。
制御部110は、ステップS12において入力された食事メニューに対応する履歴情報200を抽出し、食事情報である摂取カロリーに対する過去の血糖値の変化傾向を解析して第1モデル波形を生成する第1モデル波形生成ステップを実施する(ステップS14)。
制御部110は、ステップS13において算出された第1予測曲線における各期間(d1,d2,d3,d4)の血糖値変化と、ステップS14において生成された第1モデル波形の血糖値変化とを比較し、比較結果に応じて第1予測曲線を変形する第1予測曲線変形ステップを実施する(ステップS15)。
また、制御部110は、消費エネルギー情報として、活動量測定部120において一定時間毎に計測されるユーザーの消費カロリーを活動量測定部120から受付け(ステップS16)、受付けた消費カロリーに対する第2予測曲線を第2予測アルゴリズムをにより算出する(ステップS17)。ユーザーが実施する運動による消費カロリーに対する第2予測曲線を算出する第2予測アルゴリズム算出ステップを実施する。
ユーザーは、操作部130を介して運動情報入力画面を表示させる操作を行うと、制御部110は、運動種別情報212を表示部150に表示し、ユーザーからの入力を受付ける(ステップS18)。
制御部110は、運動情報として、操作部130を介して運動種別がユーザーによって入力されると(ステップS18:YES)、入力された運動情報に対応する履歴情報200を抽出し、運動情報に対する過去の血糖値の変化傾向を解析して第2モデル波形を生成する(ステップS19)。
制御部110は、ステップS17において算出された第2予測曲線における下降期間e2の血糖値変化と、ステップS19において生成された第2モデル波形の血糖値変化とを比較し、比較結果に応じて第2予測曲線を変形する(ステップS20)。
制御部110は、第1予測曲線と第2予測曲線とを同一時間軸上で統合させた予測血糖値曲線を生成し、生成した予測血糖値曲線を示す画像を表示部150に表示する(ステップS21)。なお、ステップS12において、ユーザーにより食事情報が入力されなかった場合には(ステップS12:NO)、制御部110は、ステップS16の処理を行う。また、ステップS18において、ユーザーにより運動情報が入力されなかった場合には(ステップS18:NO)、制御部110は、ステップS21の処理を行う。
なお、ユーザーによって入力された血糖値データと食事情報と運動情報とは、ユーザーの過去の血糖値に関する情報として制御部110により記憶部140の履歴情報200として記憶されるようにしてもよい。
このように、本実施形態では、摂取エネルギー情報と消費エネルギー情報とが入力される毎に第1予測曲線、第2予測曲線が算出され、算出された第1予測曲線と第2予測曲線に基づいて予測血糖値曲線が生成される。
本実施形態によれば、ユーザーの食事開始時間、終了時間、食事順番といった詳細な食事情報をもつ詳細食事メニュー情報213をもとに、血糖値予測システムが血糖を予測する。食事のもつカロリーのみから血糖値の変化傾向を予測する場合と比べて、血糖値の変化傾向を正確に解析することができる。また、食事開始時間、食事終了時間、食事順番といった情報を食事管理システム60が取得することで、食事中に情報取得に気を煩わせることなく、簡易に血糖値の変化傾向を詳細に知ることができる。
1…血糖値予測システム、10,10a,10b,10n…血糖値予測装置、20,22…通信回線、30…食事メニューシステム、41…波形、50…食事メニューデータベース、60…食事管理システム、110…制御部、111…摂取エネルギー取得部、112…消費エネルギー取得部、113…算出部、114…解析部、115…生成部、116…送信制御部、120…活動量測定部、130…操作部、140…記憶部、150…表示部、160…計時部、170…第1通信部、180…位置情報取得部、200…履歴情報、200a…血糖値情報、200b…行動情報、211…食事メニュー情報、212…運動種別情報、213…詳細食事メニュー情報、310…検索部、320…情報取得部、340…第2通信部、350…記憶部、600…POSシステム、610…調理管理システム、s1,s2,s3…傾き、e1,d1…遅延期間、e2,d4…下降期間、d2…上昇期間、d3…平衡期間、h11…上昇値。

Claims (4)

  1. ユーザーが食事を開始した時間が記録された食事開始時間記録と、前記食事の順番が記録された食事提供順番記録と、前記食事の内容を示す食事情報が記録された食事情報記録と、前記食事の終了時間が記録された食事終了時間記録と、の入力を受け付ける入力受付ステップと、
    前記食事情報から計算した摂取カロリーに対する第1予測曲線を算出する第1予測アルゴリズム算出ステップと、
    前記摂取カロリーに対する血糖値の変化傾向を解析して第1モデル波形を生成する第1モデル波形生成ステップと、
    前記第1予測曲線と前記第1モデル波形の血糖値変化とを比較し、前記第1予測曲線を変形する第1予測曲線変形ステップと、
    前記ユーザーが実施する運動による消費カロリーに対する第2予測曲線を算出する第2予測アルゴリズム算出ステップと、
    を備えることを特徴とする血糖値予測方法。
  2. 請求項1に記載の血糖値予測方法において、
    前記情報送信ステップで、前記ユーザーの位置情報を送信することを特徴とする血糖値予測方法。
  3. ユーザーの血糖値、食事情報、および運動情報の入力を受付ける操作部と、
    前記ユーザーの履歴情報が記憶されている記憶部と、
    前記食事情報に対する摂取カロリーを取得する摂取エネルギー取得部と、
    前記摂取カロリーによる前記血糖値の変化を予測した第1予測曲線、および前記運動情報に対する消費カロリーによる前記血糖値の変化を予測した第2予測曲線を求める算出部と、
    前記運動情報により消費カロリーを取得する消費エネルギー取得部と、
    前記第1予測曲線から算出される最適摂取カロリーを送信する第1通信部とを備える血糖値予測装置と、
    前記第1通信部から前記最適摂取カロリーを送信する第2通信部と、
    前記最適摂取カロリーに適合する食事情報を抽出する検索部とを備える食事メニューシステムと、
    前記第2通信部と送受信する食事メニューデータベースと
    食事開始時間と食事終了時間を記録することのできるPOSシステムと、
    提供する食事の順番を記録することのできる調理管理システムを有し、
    前記第2通信部および前記第1通信部により前記血糖値予測装置へ詳細な食事情報を送信することを特徴とする血糖値予測システム。
  4. 請求項3に記載の血糖値予測システムにおいて、
    前記血糖値予測装置に位置情報取得部を備えることを特徴とする血糖値予測システム。
JP2011046004A 2011-03-03 2011-03-03 血糖値予測方法および血糖値予測システム Expired - Fee Related JP5974348B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046004A JP5974348B2 (ja) 2011-03-03 2011-03-03 血糖値予測方法および血糖値予測システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046004A JP5974348B2 (ja) 2011-03-03 2011-03-03 血糖値予測方法および血糖値予測システム

Publications (2)

Publication Number Publication Date
JP2012181804A true JP2012181804A (ja) 2012-09-20
JP5974348B2 JP5974348B2 (ja) 2016-08-23

Family

ID=47012927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046004A Expired - Fee Related JP5974348B2 (ja) 2011-03-03 2011-03-03 血糖値予測方法および血糖値予測システム

Country Status (1)

Country Link
JP (1) JP5974348B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101600379B1 (ko) * 2015-08-03 2016-03-07 (주) 비비비 당뇨병 환자를 위한 혈당 관리 방법
JP2017108901A (ja) * 2015-12-16 2017-06-22 凸版印刷株式会社 生体情報測定システム及び生体情報測定方法
WO2019039808A1 (ko) * 2017-08-21 2019-02-28 포항공과대학교 산학협력단 저혈당 예측 장치, 방법 및 프로그램과, 저혈당 예측 모델 생성 장치, 방법 및 프로그램
JP2022500797A (ja) * 2018-09-07 2022-01-04 インフォームド データ システムズ インコーポレイテッド ディー/ビー/エー ワン ドロップ 血糖濃度の予測
KR102418342B1 (ko) * 2021-08-13 2022-07-08 주식회사 유투메드텍 식이정보를 이용한 혈당변화 예측 장치 및 그 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503556A (ja) * 1996-02-12 2000-03-28 ノキア モービル フォーンズ リミティド 患者の血液サンプルの血糖値測定と予測による患者の健康状態のモニター方法
JP2003532214A (ja) * 2000-04-28 2003-10-28 ヘルセテック インコーポレイテッド ダイエットコントロール方法及び装置
JP2005328924A (ja) * 2004-05-18 2005-12-02 Toyama Univ 血糖値予測装置、血糖値予測モデル作成装置、およびプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503556A (ja) * 1996-02-12 2000-03-28 ノキア モービル フォーンズ リミティド 患者の血液サンプルの血糖値測定と予測による患者の健康状態のモニター方法
JP2003532214A (ja) * 2000-04-28 2003-10-28 ヘルセテック インコーポレイテッド ダイエットコントロール方法及び装置
JP2005328924A (ja) * 2004-05-18 2005-12-02 Toyama Univ 血糖値予測装置、血糖値予測モデル作成装置、およびプログラム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101600379B1 (ko) * 2015-08-03 2016-03-07 (주) 비비비 당뇨병 환자를 위한 혈당 관리 방법
JP2017108901A (ja) * 2015-12-16 2017-06-22 凸版印刷株式会社 生体情報測定システム及び生体情報測定方法
WO2019039808A1 (ko) * 2017-08-21 2019-02-28 포항공과대학교 산학협력단 저혈당 예측 장치, 방법 및 프로그램과, 저혈당 예측 모델 생성 장치, 방법 및 프로그램
KR20190020516A (ko) * 2017-08-21 2019-03-04 포항공과대학교 산학협력단 저혈당 예측 장치, 방법 및 프로그램과, 저혈당 예측 모델 생성 장치, 방법 및 프로그램
KR102003667B1 (ko) * 2017-08-21 2019-07-25 포항공과대학교 산학협력단 저혈당 예측 장치, 방법 및 프로그램과, 저혈당 예측 모델 생성 장치, 방법 및 프로그램
US11389117B2 (en) 2017-08-21 2022-07-19 Postech Academy-Industry Foundation Apparatus, method, and program for predicting hypoglycemia, and apparatus, method, and program for generating hypoglycemia prediction model
JP2022500797A (ja) * 2018-09-07 2022-01-04 インフォームド データ システムズ インコーポレイテッド ディー/ビー/エー ワン ドロップ 血糖濃度の予測
KR102418342B1 (ko) * 2021-08-13 2022-07-08 주식회사 유투메드텍 식이정보를 이용한 혈당변화 예측 장치 및 그 방법

Also Published As

Publication number Publication date
JP5974348B2 (ja) 2016-08-23

Similar Documents

Publication Publication Date Title
JP7518878B2 (ja) ヘルストラッキングデバイス
EP2715583B1 (en) Location enabled food database
CN102084368B (zh) 心脏年龄评估
JP5803083B2 (ja) 血糖値予測方法および血糖値予測システム
JP5636859B2 (ja) 血糖値予測システム
JP5974348B2 (ja) 血糖値予測方法および血糖値予測システム
JP5601102B2 (ja) 血糖値予測システム
TWI668664B (zh) Method for dynamically analyzing blood sugar level, system thereof and computer program product
JP2014207027A (ja) 血糖値予測装置
JP2014211918A (ja) 血糖値変化情報生成システム及び血糖値変化情報生成装置
US20200321093A1 (en) Information processing device, method, and non-transitory computer-readable storage medium storing program
JP5589652B2 (ja) 血糖値予測システム、血糖値予測装置、及びサービス情報処理装置
JP2012024439A (ja) 血糖値予測システム
JP2012063979A (ja) 血糖値予測方法および血糖値予測システム
JP5949847B2 (ja) カロリー情報決定方法及び血糖値予測方法
JP2012027758A (ja) 血糖値予測装置
JP7564836B2 (ja) システム、携帯端末、サーバ、情報処理装置、プログラム、又は方法
JP2015037602A (ja) 端末装置及び消費カロリー算出システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160330

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5974348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees