Nothing Special   »   [go: up one dir, main page]

JP2012174623A - Manufacturing method of electrode material for fuel battery and fuel battery - Google Patents

Manufacturing method of electrode material for fuel battery and fuel battery Download PDF

Info

Publication number
JP2012174623A
JP2012174623A JP2011037838A JP2011037838A JP2012174623A JP 2012174623 A JP2012174623 A JP 2012174623A JP 2011037838 A JP2011037838 A JP 2011037838A JP 2011037838 A JP2011037838 A JP 2011037838A JP 2012174623 A JP2012174623 A JP 2012174623A
Authority
JP
Japan
Prior art keywords
ion exchange
electrode material
exchange resin
solution
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011037838A
Other languages
Japanese (ja)
Other versions
JP5482690B2 (en
Inventor
Akira Morita
亮 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011037838A priority Critical patent/JP5482690B2/en
Publication of JP2012174623A publication Critical patent/JP2012174623A/en
Application granted granted Critical
Publication of JP5482690B2 publication Critical patent/JP5482690B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology capable of surely forming a three-phase interface in an electrode material for a fuel battery.SOLUTION: The manufacturing method of an electrode material for a fuel battery includes: a process of preparing a solution obtained by dissolving an ion exchange resin in a solvent including an acidic aqueous solution; a process of immersing a first conductor that includes a carrier carrying a catalyst on the surface and a second conductor in the solution prepared in the solution preparation process; and a process of electrolyzing water in the solution by applying voltage between the immersed conductors and attaching oxygen generated by electrolyzation and the ion exchange resin to the catalyst.

Description

本発明は、燃料電池用電極材料の製造方法および燃料電池に関する。   The present invention relates to a method for producing a fuel cell electrode material and a fuel cell.

燃料電池、例えば、固体高分子形燃料電池は、触媒を担持させた導電性の担体と電解質(以下、触媒を担持させた導電性の担体と電解質とを併せて電極材料とも記す)とを有する電極を備える。燃料電池の電気化学反応は、この電極において、反応ガスと電解質と触媒とが接する界面(以下、三相界面と記す)で進行する。   2. Description of the Related Art A fuel cell, for example, a polymer electrolyte fuel cell has a conductive carrier carrying a catalyst and an electrolyte (hereinafter, the conductive carrier carrying a catalyst and the electrolyte are also referred to as electrode materials). With electrodes. In this electrode, the electrochemical reaction of the fuel cell proceeds at an interface (hereinafter referred to as a three-phase interface) where the reaction gas, the electrolyte, and the catalyst are in contact.

例えば、特許文献1に記載の技術では、イオン交換樹脂が被覆された導電性粒子と、触媒作用と導電性とを有しイオン交換樹脂が被覆されていない粒子とを混合することで、三相界面の形成を図っている。しかしこの技術において三相界面を形成するためには、一方の粒子の周りを他方の粒子で立体的に取り囲む必要があり、このような構造によって三相界面を確実に形成できるか否かについては不明であった。   For example, in the technique described in Patent Document 1, conductive particles coated with an ion exchange resin are mixed with particles that have catalytic action and conductivity and are not coated with an ion exchange resin, thereby obtaining a three-phase structure. The formation of the interface is attempted. However, in order to form a three-phase interface in this technology, it is necessary to surround one particle three-dimensionally with the other particle, and whether such a structure can reliably form a three-phase interface. It was unknown.

特開2004−103593号公報JP 2004-103593 A 特開2000−12041号公報JP 2000-12041 A 特開2008−34162号公報JP 2008-34162 A 特開2003−59505号公報JP 2003-59505 A

前述の問題を考慮し、本発明が解決しようとする課題は、燃料電池用の電極材料において三相界面をより確実に形成可能な技術を提供することである。   In view of the above-described problems, the problem to be solved by the present invention is to provide a technique capable of more reliably forming a three-phase interface in an electrode material for a fuel cell.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]燃料電池用電極材料の製造方法であって、酸性水溶液を含む溶媒に、イオン交換樹脂を溶解させた溶液を調製する溶液調製工程と、触媒を担持する担体を表面に有する第1の導電体と、第2の導電体とを、前記溶液調製工程で調製した溶液に浸漬する浸漬工程と、前記第1の導電体と前記第2の導電体との間に電圧を印加することで、前記溶液中の水を電気分解し、前記溶液中の前記電気分解により発生した酸素と、前記イオン交換樹脂とを前記触媒に付着させる付着工程と、を備える燃料電池用電極材料の製造方法。 [Application Example 1] A method for producing an electrode material for a fuel cell, comprising: a solution preparation step of preparing a solution in which an ion exchange resin is dissolved in a solvent containing an acidic aqueous solution; A voltage is applied between the first conductor and the second conductor, and an immersion process in which the first conductor and the second conductor are immersed in the solution prepared in the solution preparation process. Manufacturing an electrode material for a fuel cell comprising: an electrolyzing water in the solution; and an attaching step of attaching the oxygen generated by the electrolysis in the solution and the ion exchange resin to the catalyst. Method.

この方法によれば、水の電気分解によって触媒上で酸素が発生し、それとともにイオン交換樹脂が触媒上に付着するため、電極材料において三相界面を確実に形成可能になる。   According to this method, oxygen is generated on the catalyst by electrolysis of water, and the ion exchange resin adheres to the catalyst together with it, so that a three-phase interface can be reliably formed in the electrode material.

[適用例2]適用例1に記載の燃料電池用電極材料の製造方法であって、付着工程後に、前記溶媒の少なくとも一部を蒸発させる蒸発工程を備える燃料電池用電極材料の製造方法。 [Application Example 2] A method of manufacturing a fuel cell electrode material according to Application Example 1, which includes an evaporation step of evaporating at least a part of the solvent after the attaching step.

この方法によれば、付着工程にて付着した溶媒の少なくとも一部を蒸発させた電極材料を製造することができる。   According to this method, it is possible to manufacture an electrode material obtained by evaporating at least a part of the solvent attached in the attaching step.

本発明は、上述した燃料電池用電極材料の製造方法としての構成のほか、この方法を用いて製造した電極材料をアノードおよびカソードの少なくとも一方に備える燃料電池や、その燃料電池を備えた移動用車両や建物等に設置する定置型の発電装置としても構成することができる。   In addition to the above-described structure as a method for producing an electrode material for a fuel cell, the present invention provides a fuel cell having an electrode material produced by using this method in at least one of an anode and a cathode, and a moving cell equipped with the fuel cell. It can also be configured as a stationary power generator installed in a vehicle or a building.

本発明の一実施形態としての固体高分子形燃料電池の概略構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows schematic structure of the polymer electrolyte fuel cell as one Embodiment of this invention. カソード側電極近傍の構造を拡大して示した模式図である。It is the schematic diagram which expanded and showed the structure of the cathode side electrode vicinity. 触媒粒子近傍を拡大した図である。It is the figure which expanded the catalyst particle vicinity. 電極材料の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of an electrode material. 図4に示した方法における製造の様子を示す説明図である。It is explanatory drawing which shows the mode of manufacture in the method shown in FIG. Pt担持カーボンの拡大図である。It is an enlarged view of Pt carrying carbon. イオン交換樹脂が触媒粒子の表面を被覆する割合と燃料電池の発電効率との関係を調べるためのモデル試験の説明図である。It is explanatory drawing of the model test for investigating the relationship between the ratio which the ion exchange resin coat | covers the surface of a catalyst particle, and the power generation efficiency of a fuel cell. 作用極の拡大断面図である。It is an expanded sectional view of a working electrode. 作用極に流れる電流を測定した結果を示す図である。It is a figure which shows the result of having measured the electric current which flows into a working electrode. 各被覆率における酸素還元電流を測定した結果を示す図である。It is a figure which shows the result of having measured the oxygen reduction current in each coverage. 従来の電極材料を示す図である。It is a figure which shows the conventional electrode material.

A.燃料電池の構成:
図1は、本発明の一実施形態としての固体高分子形燃料電池10の概略構成を示す断面模式図である。燃料電池10は、電解質膜30と、電解質膜30の両面に形成されるカソード側電極31cおよびアノード側電極31aと、それら電極上に形成されるカソード側ガス拡散層32cおよびアノード側ガス拡散層32aとを有する膜電極接合体20を備える。また、燃料電池10は、膜電極接合体20の両面に、カソード側セパレータ33cおよびアノード側セパレータ33aを備える。カソード側ガス拡散層32cとカソード側セパレータ33cとの間には、酸化剤ガス流路34cが、アノード側ガス拡散層32aとアノード側セパレータ33aの間には、燃料ガス流路34aが形成されている。電解質膜30は、湿潤状態で良好なプロトン伝導性を有する膜を使用することができ、例えばデュポン社のナフィオン(登録商標)を用いることができる。
A. Fuel cell configuration:
FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a polymer electrolyte fuel cell 10 as one embodiment of the present invention. The fuel cell 10 includes an electrolyte membrane 30, a cathode side electrode 31c and an anode side electrode 31a formed on both surfaces of the electrolyte membrane 30, and a cathode side gas diffusion layer 32c and an anode side gas diffusion layer 32a formed on these electrodes. The membrane electrode assembly 20 having Further, the fuel cell 10 includes a cathode side separator 33 c and an anode side separator 33 a on both surfaces of the membrane electrode assembly 20. An oxidant gas flow path 34c is formed between the cathode side gas diffusion layer 32c and the cathode side separator 33c, and a fuel gas flow path 34a is formed between the anode side gas diffusion layer 32a and the anode side separator 33a. Yes. As the electrolyte membrane 30, a membrane having good proton conductivity in a wet state can be used. For example, Nafion (registered trademark) manufactured by DuPont can be used.

図2は、図1に示すカソード側電極31c近傍の構造を拡大して示した模式図である。カソード側電極31cは、カーボン担体130に触媒粒子120を担持した触媒担持カーボン110と、触媒担持カーボン110の周囲を覆うイオン交換樹脂140とを備える電極材料150を有する。図3は、図2の触媒粒子120近傍を拡大した図である。本実施形態では、電極材料150において、図3に示すように、触媒粒子120の表面と、イオン交換樹脂140との双方に接する気泡状の空洞部135が形成されている。   FIG. 2 is an enlarged schematic view showing the structure in the vicinity of the cathode side electrode 31c shown in FIG. The cathode-side electrode 31 c includes an electrode material 150 including a catalyst-carrying carbon 110 that carries catalyst particles 120 on a carbon carrier 130, and an ion exchange resin 140 that covers the periphery of the catalyst-carrying carbon 110. FIG. 3 is an enlarged view of the vicinity of the catalyst particle 120 of FIG. In the present embodiment, as shown in FIG. 3, in the electrode material 150, a bubble-like cavity 135 that is in contact with both the surface of the catalyst particle 120 and the ion exchange resin 140 is formed.

図2に示すカソード側電極31cには、図1に示す酸化剤ガス流路34cから、カソード側ガス拡散層32cを介して、空気(酸素)が供給される。加えて、カソード側電極31cには、電解質膜30からプロトンが供給され、カソード側ガス拡散層32cからアノード側で生じた電子が供給される。さらに、プロトンはイオン交換樹脂140を通って、電子は触媒担持カーボン110を通って触媒粒子120表面へそれぞれ到達する。そして以下の式(1)に示す酸素還元反応が生じる。   Air (oxygen) is supplied to the cathode side electrode 31c shown in FIG. 2 from the oxidant gas flow path 34c shown in FIG. 1 via the cathode side gas diffusion layer 32c. In addition, protons are supplied from the electrolyte membrane 30 to the cathode side electrode 31c, and electrons generated on the anode side are supplied from the cathode side gas diffusion layer 32c. Further, protons reach the surface of the catalyst particles 120 through the ion exchange resin 140 and electrons through the catalyst-supporting carbon 110, respectively. And the oxygen reduction reaction shown in the following formula (1) occurs.

+ 4e + 4H+ → 2HO ・・・(1) O 2 + 4e + 4H + → 2H 2 O (1)

式(1)の反応を進行させるためには、多くの酸素を触媒粒子120表面へ到達させることにより、酸素とイオン交換樹脂140と触媒粒子120とが接する三相界面を多く形成することが好ましい。一般的に、イオン交換樹脂140が触媒粒子120全面を被覆している場合において、酸素はイオン交換樹脂140中を拡散して触媒粒子120表面に到達する。しかし本実施形態では、図3に示すように触媒粒子120表面に、イオン交換樹脂140と触媒粒子120との双方に接する気泡状の空洞部135を形成することで、イオン交換樹脂140だけでなく気泡状の空洞部135をも酸素の供給経路として確保している。   In order to advance the reaction of Formula (1), it is preferable to form a large number of three-phase interfaces where oxygen, the ion exchange resin 140, and the catalyst particles 120 are in contact with each other by causing a large amount of oxygen to reach the surface of the catalyst particles 120. . In general, when the ion exchange resin 140 covers the entire surface of the catalyst particles 120, oxygen diffuses through the ion exchange resin 140 and reaches the surfaces of the catalyst particles 120. However, in the present embodiment, as shown in FIG. 3, not only the ion exchange resin 140 but also the ion cavities 135 are formed on the surface of the catalyst particles 120 so as to be in contact with both the ion exchange resin 140 and the catalyst particles 120. A bubble-like cavity 135 is also secured as an oxygen supply path.

B.電極材料の製造方法:
図4は、図3に示した電極材料150の製造方法を示すフローチャートである。図5は、この方法における製造の様子を示す説明図である。
B. Manufacturing method of electrode material:
FIG. 4 is a flowchart showing a manufacturing method of the electrode material 150 shown in FIG. FIG. 5 is an explanatory view showing the state of manufacture in this method.

まず、本実施形態では、所定の容器4内で、少なくとも酸性水溶液からなる溶媒に、イオン交換樹脂6を溶解して溶液5を調製する(溶液調製工程S10)。酸性水溶液として例えば硫酸を用いることができる。なお、イオン交換樹脂6の分散性(溶解性)が悪い場合には、溶媒に有機溶媒を加えることで、イオン交換樹脂6の分散性を向上させることができる。有機溶媒として例えば、エタノールを用いることができる。   First, in this embodiment, the ion exchange resin 6 is dissolved in at least a solvent composed of an acidic aqueous solution in a predetermined container 4 to prepare a solution 5 (solution preparation step S10). For example, sulfuric acid can be used as the acidic aqueous solution. In addition, when the dispersibility (solubility) of the ion exchange resin 6 is bad, the dispersibility of the ion exchange resin 6 can be improved by adding an organic solvent to the solvent. For example, ethanol can be used as the organic solvent.

つづいて、カーボン担体にPt(白金)が担持されたPt担持カーボン3を塗布した第一導電体1と、第二導電体2とを、溶液5に浸漬する(浸漬工程S20)。第一導電体1及び第二導電体2は、導電性と耐酸性とを持つものであればよく、例えば、カーボン板などを用いることができる。また、第一導電体1及び第二導電体2の材質は同じでも異なってもかまわない。さらに、第二導電体は触媒作用を有していてもよい。   Subsequently, the first conductor 1 coated with the Pt-supported carbon 3 having Pt (platinum) supported on the carbon carrier and the second conductor 2 are immersed in the solution 5 (immersion step S20). The 1st conductor 1 and the 2nd conductor 2 should just have electroconductivity and acid resistance, for example, a carbon plate etc. can be used. The materials of the first conductor 1 and the second conductor 2 may be the same or different. Furthermore, the second conductor may have a catalytic action.

第一導電体1と第二導電体2とを溶液5に浸漬した後、溶液5を、例えばスターラ7で攪拌しつつ、第一導電体1と第二導電体2の間に所定の電圧を印加する。電圧を印加することで、溶液5中の水の電気分解がおき、第一導電体1の表面からは酸素が、第二導電体2の表面からは水素が発生する。より詳細には、第一導電体1に塗布されたPt担持カーボン3上のPtの表面では、以下の式(2)、(3)に代表される反応が生じ、この反応と同時に、イオン交換樹脂6が相互作用(例えば、物理吸着や化学吸着など)により触媒粒子に付着する(付着工程S30)。なお、以下に示す反応式は、Pt担持カーボン3上のPtの表面で生じる反応の例であり、例えば、電気分解の条件によっては価数が異なるため、これに限定されるものではない。   After immersing the first conductor 1 and the second conductor 2 in the solution 5, a predetermined voltage is applied between the first conductor 1 and the second conductor 2 while stirring the solution 5 with, for example, a stirrer 7. Apply. By applying a voltage, water in the solution 5 is electrolyzed, and oxygen is generated from the surface of the first conductor 1 and hydrogen is generated from the surface of the second conductor 2. More specifically, reactions represented by the following formulas (2) and (3) occur on the surface of Pt on the Pt-supported carbon 3 applied to the first conductor 1, and at the same time as this reaction, ion exchange The resin 6 adheres to the catalyst particles by interaction (for example, physical adsorption or chemical adsorption) (attachment step S30). The reaction formula shown below is an example of a reaction that occurs on the surface of Pt on the Pt-supported carbon 3, and is not limited to this because, for example, the valence varies depending on the electrolysis conditions.

O → 1/2O+ 2H + 2e・・・(2)
Pt + HO → PtOH + H+ + e・・・(3)
H 2 O → 1 / 2O 2 + 2H + + 2e (2)
Pt + H 2 O → PtOH + H + + e (3)

図6はカーボン担体8にPt9が担持されたPt担持カーボン3の拡大図である。図6に示すように、上述した付着工程S30によれば、第一導電体1に塗布されたPt担持カーボン3上のPt9の表面には、溶液5に含まれるイオン交換樹脂6が付着する箇所と、酸素が発生することによりイオン交換樹脂6が付着しない箇所とが形成される。ここで、イオン交換樹脂6が付着しない箇所が、図3における空洞部135となる。また、酸素は、Pt9上にそのまま存在する場合もあれば、Pt9の酸化物としてPt9上に存在する場合もあり、溶液5へ拡散していく場合もある。なお、本実施形態では、イオン交換樹脂6として、スルホン酸基を備えるイオン交換樹脂を用いた。   FIG. 6 is an enlarged view of the Pt-supporting carbon 3 in which Pt9 is supported on the carbon carrier 8. As shown in FIG. 6, according to the above-described adhesion step S <b> 30, the location where the ion exchange resin 6 contained in the solution 5 adheres to the surface of Pt 9 on the Pt-supported carbon 3 applied to the first conductor 1. And the location where the ion exchange resin 6 does not adhere due to the generation of oxygen is formed. Here, the portion where the ion exchange resin 6 does not adhere becomes the cavity 135 in FIG. In addition, oxygen may be present as it is on Pt 9, may be present on Pt 9 as an oxide of Pt 9, and may diffuse into the solution 5. In the present embodiment, an ion exchange resin having a sulfonic acid group is used as the ion exchange resin 6.

次に、第一導電体1を容器4から取り出し、第一導電体1に付着している溶媒を例えば大気中で蒸発・除去することで、電極材料150の製造が完了する(蒸発工程S40)。こうして得られた電極材料150を、電解質膜30に塗布することで、図1に示したカソード側電極31cが形成される。なお、蒸発工程S40にて溶媒の一部だけを蒸発させて、電極材料150を電解質膜30に塗布することもできる。   Next, the production of the electrode material 150 is completed by taking out the first conductor 1 from the container 4 and evaporating and removing the solvent adhering to the first conductor 1, for example, in the atmosphere (evaporation step S40). . By applying the electrode material 150 thus obtained to the electrolyte membrane 30, the cathode-side electrode 31c shown in FIG. 1 is formed. It is also possible to apply the electrode material 150 to the electrolyte membrane 30 by evaporating only a part of the solvent in the evaporation step S40.

以上、カソード側電極31cに用いられる電極材料150の製造方法を説明したが、アノード側電極31aに用いる電極材料も、同様に製造することができる。   The manufacturing method of the electrode material 150 used for the cathode side electrode 31c has been described above, but the electrode material used for the anode side electrode 31a can also be manufactured in the same manner.

C.三相界面と燃料電池の発電効率との関係:
図7は、図3に示したイオン交換樹脂140が触媒粒子120の表面を被覆する割合と、燃料電池の発電効率との関係を調べるためのモデル試験の説明図である。この試験では、イオン交換樹脂140と同様の材料によって形成されたイオン交換樹脂板40を用意し、固定具42上に設置する。次に、参照極DHE、作用極WE、対極CEとを用意し、これらを所定の間隔をあけてイオン交換樹脂板40に大気中で接触させる。そして、ポテンショスタット41を用いて作用極WEにおける酸化還元電流を測定する。ポテンショスタット41は、例えば、作用極WEに参照極DHEと所定の電位差を与え、作用極WEと対極CEに流れる電流を測定することができる。なお、ここではイオン交換樹脂板40は、例えばデュポン社のナフィオン溶液をシャーレに滴下し、大気中で溶媒を蒸発させた後、160度で30分間熱処理して100〜200μmの厚さにしたものを使用した。また、対極CEとしてPt線を使用した。
C. Relationship between three-phase interface and power generation efficiency of fuel cell:
FIG. 7 is an explanatory diagram of a model test for examining the relationship between the ratio of the ion exchange resin 140 shown in FIG. 3 covering the surfaces of the catalyst particles 120 and the power generation efficiency of the fuel cell. In this test, an ion exchange resin plate 40 formed of the same material as the ion exchange resin 140 is prepared and installed on the fixture 42. Next, a reference electrode DHE, a working electrode WE, and a counter electrode CE are prepared, and these are brought into contact with the ion exchange resin plate 40 in the air at a predetermined interval. Then, the redox current at the working electrode WE is measured using the potentiostat 41. The potentiostat 41 can measure a current flowing through the working electrode WE and the counter electrode CE, for example, by giving the working electrode WE a predetermined potential difference from the reference electrode DHE. Here, the ion exchange resin plate 40 is, for example, made by dropping a Nafion solution from DuPont into a petri dish, evaporating the solvent in the atmosphere, and then heat-treating it at 160 degrees for 30 minutes to a thickness of 100 to 200 μm. It was used. A Pt wire was used as the counter electrode CE.

図8は、本実施形態で用いた作用極WEの拡大断面図である。作用極WEは、直径50μmのPt43の周囲を円筒状のガラス44で被うことで形成されている。本モデル試験では、この作用極WEをイオン交換樹脂板40の表面に接触させる。こうして接触させたPt43とイオン交換樹脂板40との接触面は、図3において触媒粒子120の表面をイオン交換樹脂140が被覆している箇所とみなすことができる。   FIG. 8 is an enlarged cross-sectional view of the working electrode WE used in the present embodiment. The working electrode WE is formed by covering the periphery of Pt 43 having a diameter of 50 μm with a cylindrical glass 44. In this model test, the working electrode WE is brought into contact with the surface of the ion exchange resin plate 40. The contact surface between Pt 43 and the ion exchange resin plate 40 brought into contact with each other can be regarded as a portion where the surface of the catalyst particle 120 is covered with the ion exchange resin 140 in FIG.

ここで、作用極WEの上部からイオン交換樹脂板40に対して付与されている荷重を変化させると、Pt43とイオン交換樹脂板40の接触面積が変化する。荷重は、例えば作用極WEの上部に締め付け具45を配置し、締め付け具45の締め付け力を調整することで変化させることができる。本モデル試験では、荷重を十分にかけた状態を状態A、状態Aから任意に荷重を減少させた状態を状態B、状態Bよりもさらに荷重を減少させた状態を状態Cとし、これらの3つの状態において、ポテンショスタット41を用いて作用極WEと参照極DHEの間の電圧を1.1〜1.5Vになるように掃引速度50(mV/s)で掃引し、作用極WEに流れる電流を測定する。このとき、作用極WEでは、式(3)に代表されるPt43の酸化反応が生じる。   Here, when the load applied to the ion exchange resin plate 40 from the upper part of the working electrode WE is changed, the contact area between the Pt 43 and the ion exchange resin plate 40 changes. The load can be changed, for example, by placing the fastening tool 45 on the working electrode WE and adjusting the fastening force of the fastening tool 45. In this model test, the state in which the load is sufficiently applied is state A, the state in which the load is arbitrarily reduced from state A is state B, and the state in which the load is further reduced from state B is state C. In this state, the potentiostat 41 is used to sweep the voltage between the working electrode WE and the reference electrode DHE at a sweep speed of 50 (mV / s) so as to be 1.1 to 1.5 V, and the current flowing through the working electrode WE Measure. At this time, an oxidation reaction of Pt43 represented by the formula (3) occurs in the working electrode WE.

図9は、上記のようにして、電極電位1.1〜1.5V間で作用極WEに流れる電流を測定した結果(電流−電位曲線)を示す図である。図9において、横軸は参照極DHEに対する電位、縦軸は酸化電流値である。状態A、状態B、状態Cそれぞれにおける電流値を、電位1.1〜1.5Vに対して積分すると、それぞれの荷重におけるPt43の酸化量を算出することができる。上記のように状態Aは荷重を十分にかけた状態であり、イオン交換樹脂板40がPt43全面を被覆している。この状態は、図3において、イオン交換樹脂140が触媒粒子120全面を被覆している状態とみなすことができるため、以下の式(4)によりイオン交換樹脂140が触媒粒子120表面を被覆する割合(被覆率)を算出することができる。この式(4)から求めた被覆率は、状態Aにおいて100%、状態Bにおいて85%、状態Cにおいて18%であった。   FIG. 9 is a diagram showing a result (current-potential curve) of measuring the current flowing through the working electrode WE between the electrode potentials of 1.1 to 1.5 V as described above. In FIG. 9, the horizontal axis represents the potential with respect to the reference electrode DHE, and the vertical axis represents the oxidation current value. When the current values in state A, state B, and state C are integrated with respect to the potential of 1.1 to 1.5 V, the amount of oxidation of Pt43 at each load can be calculated. As described above, the state A is a state in which a load is sufficiently applied, and the ion exchange resin plate 40 covers the entire surface of Pt43. Since this state can be regarded as a state where the ion exchange resin 140 covers the entire surface of the catalyst particles 120 in FIG. 3, the ratio of the ion exchange resin 140 covering the surfaces of the catalyst particles 120 according to the following equation (4): (Coverage) can be calculated. The coverage determined from this equation (4) was 100% in state A, 85% in state B, and 18% in state C.

被覆率 = ((それぞれの荷重における、1.1〜1.5V間のPt43の酸化量)/(イオン交換樹脂板40がPt43の全面を被覆したときのPt43の酸化量))×100・・・(4)   Coverage rate = ((Oxidation amount of Pt43 between 1.1 to 1.5 V at each load) / (Oxidation amount of Pt43 when the ion exchange resin plate 40 covers the entire surface of Pt43)) × 100 (4)

次に、被覆率100%、85%、18%に相当する荷重を図7の作用極WEにかけた際に、式(1)に示す還元反応が起こるようにポテンショスタット41を操作し、還元電流を測定した。図10は、各被覆率における酸素還元電流を測定した結果を示す図である。横軸は参照極DHEに対する電位、縦軸は酸素還元電流値である。測定時には、電位を0.5Vから低電位へ向けて掃引し0.05Vで折り返しているため、図10には、各被覆率に対して電流−電位曲線が2本表示されている。図10に示すように、この測定結果によれば、イオン交換樹脂140が触媒粒子120全面を被覆している被覆率が100%の状態と比較すると、酸素還元電流は、被覆率85%の状態において増加し、被覆率18%の状態において減少した。つまり、被覆率が100%の状態よりも、被覆率が85%の状態の方が、発電効率が向上することになる。   Next, when a load corresponding to a coverage of 100%, 85%, and 18% is applied to the working electrode WE in FIG. 7, the potentiostat 41 is operated so that the reduction reaction shown in the formula (1) occurs, and the reduction current Was measured. FIG. 10 is a diagram showing the results of measuring the oxygen reduction current at each coverage. The horizontal axis represents the potential with respect to the reference electrode DHE, and the vertical axis represents the oxygen reduction current value. At the time of measurement, since the potential is swept from 0.5 V toward a low potential and turned back at 0.05 V, two current-potential curves are displayed for each coverage in FIG. As shown in FIG. 10, according to this measurement result, the oxygen reduction current is in a state where the coverage is 85% as compared with the state where the coverage of the ion exchange resin 140 covering the entire surface of the catalyst particles 120 is 100%. And decreased at a coverage of 18%. That is, the power generation efficiency is improved when the coverage is 85% than when the coverage is 100%.

被覆率が100%の状態は、Pt43の全面がイオン交換樹脂板40によって覆われている状態であるため、図3に示した電極材料150において、空洞部135が存在しない状態とみなすことができる。これに対して、被覆率が85%の状態は、Pt43の一部が大気に曝されている状態であるため、図3に示したように、イオン交換樹脂140と空洞部135の双方が触媒粒子120の表面に存在する状態であるとみなすことができる。そのため、上述のモデル試験によれば、触媒粒子120を全てイオン交換樹脂140で覆うよりも、図3に示したように触媒粒子120の表面上に空洞部135を設けた方が、燃料電池10の発電効率を向上することが可能になることが確認できた。なお、被覆率が18%の状態は、触媒粒子に対して酸素は多く供給できるものの、プロトンの伝導経路であるイオン交換樹脂が他の状態に比べて十分ではないために、発電効率が低下したと考えられる。   The state in which the coverage is 100% is a state in which the entire surface of Pt 43 is covered with the ion exchange resin plate 40, and thus can be regarded as a state in which the cavity 135 does not exist in the electrode material 150 shown in FIG. . On the other hand, the state where the coverage is 85% is a state where a part of Pt43 is exposed to the atmosphere. Therefore, as shown in FIG. 3, both the ion exchange resin 140 and the cavity 135 are the catalyst. It can be considered that the surface exists on the surface of the particle 120. Therefore, according to the above-described model test, the fuel cell 10 is provided with the cavity 135 on the surface of the catalyst particle 120 as shown in FIG. 3 rather than covering all the catalyst particles 120 with the ion exchange resin 140. It was confirmed that it was possible to improve the power generation efficiency. In the state where the coverage is 18%, a large amount of oxygen can be supplied to the catalyst particles, but the ion exchange resin, which is the proton conduction path, is not sufficient as compared with the other states, resulting in a decrease in power generation efficiency. it is conceivable that.

以上説明したように、本実施形態の電極材料の製造方法によれば、溶液中の水の電気分解によって触媒粒子とイオン交換樹脂との双方に接する気泡状の空洞部を形成することができるため、発電時において、式(1)の反応が生じる場である三相界面をより確実に形成することができる。また、触媒表面にプロトンの伝導経路のみならず反応ガスの供給経路を形成することができるので、触媒表面に、より多くの反応ガスを取り入れることができる。よって、本実施形態の電極材料をカソード側電極やアノード側電極として燃料電池に採用すれば、その発電効率を向上させることができる。また、その発電効率の向上は、触媒粒子表面をイオン交換樹脂が被覆する割合を調整することで変化させることができる。   As described above, according to the method for producing an electrode material of the present embodiment, a bubble-like cavity that contacts both the catalyst particles and the ion exchange resin can be formed by electrolysis of water in the solution. During power generation, a three-phase interface that is a place where the reaction of formula (1) occurs can be more reliably formed. Moreover, since not only a proton conduction path but also a reaction gas supply path can be formed on the catalyst surface, a larger amount of reaction gas can be taken into the catalyst surface. Therefore, if the electrode material of the present embodiment is employed in a fuel cell as a cathode side electrode or an anode side electrode, the power generation efficiency can be improved. Moreover, the improvement of the power generation efficiency can be changed by adjusting the ratio at which the surface of the catalyst particles is covered with the ion exchange resin.

さらに、本実施形態の製造方法は、図3において、触媒粒子120の目付量が少ない場合にも効果的である。触媒粒子120はPtなどの高価な材料が使用されるため、触媒粒子120を有効に利用し、式(1)の反応を進行させることが、燃料電池の製造コスト低減にとって好ましい。図11は触媒粒子120の全面をイオン交換樹脂140が被覆している従来の電極材料を示した図である。従来の電極材料においては、反応ガスは、図11に示すようにイオン交換樹脂140の中を拡散して触媒粒子120へ到達するため、例えば、イオン交換樹脂140に厚く覆われている触媒粒子120においては、式(1)の反応の進行が滞る場合がある。しかし、本実施形態の製造方法によれば、反応ガスの供給経路となる空洞部135が触媒粒子120の表面に形成されるので、この空洞部135を通じて反応ガスを速やかに触媒粒子120の表面まで輸送することが可能になる。この結果、触媒粒子120を有効に利用することができるので、触媒粒子120の目付量が少ない場合であっても燃料電池の発電効率を向上させることができる。   Furthermore, the manufacturing method of this embodiment is also effective when the basis weight of the catalyst particles 120 is small in FIG. Since an expensive material such as Pt is used for the catalyst particles 120, it is preferable to effectively utilize the catalyst particles 120 and advance the reaction of the formula (1) in order to reduce the manufacturing cost of the fuel cell. FIG. 11 is a view showing a conventional electrode material in which the entire surface of the catalyst particle 120 is covered with the ion exchange resin 140. In the conventional electrode material, since the reaction gas diffuses through the ion exchange resin 140 and reaches the catalyst particles 120 as shown in FIG. 11, for example, the catalyst particles 120 covered with the ion exchange resin 140 thickly. In, the progress of the reaction of formula (1) may be delayed. However, according to the manufacturing method of the present embodiment, the cavity 135 serving as the reaction gas supply path is formed on the surface of the catalyst particle 120, so that the reaction gas can be quickly transferred to the surface of the catalyst particle 120 through the cavity 135. It becomes possible to transport. As a result, since the catalyst particles 120 can be used effectively, the power generation efficiency of the fuel cell can be improved even when the basis weight of the catalyst particles 120 is small.

D.変形例:
以上、本発明の一実施形態について説明したが、本発明はこのような実施形態に限定されず、その趣旨を逸脱しない範囲で種々の構成を採ることができる。例えば、本発明の製造方法は、電極材料を使用する様々な技術分野に適用することができる。そのほか、以下のような変形が可能である。
D. Variations:
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to such Embodiment, A various structure can be taken in the range which does not deviate from the meaning. For example, the manufacturing method of the present invention can be applied to various technical fields using electrode materials. In addition, the following modifications are possible.

D1.変形例1:
上記実施形態では、触媒粒子120の表面と、イオン交換樹脂140との双方に接する気泡状の空洞部135がイオン交換樹脂140内に存在する様態を示したが、空洞部135はイオン交換樹脂140を分断するように開孔していてもよい。
D1. Modification 1:
In the above embodiment, a state in which the bubble-like cavity 135 in contact with both the surface of the catalyst particle 120 and the ion-exchange resin 140 is present in the ion-exchange resin 140 is shown. The hole may be opened so as to divide.

D2.変形例2:
上記実施形態では、触媒としてPtを用いたが、本発明はこれに限定されるものではない。触媒としては、金、銀、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム等の貴金属や、鉄、ニッケル、マンガン、コバルト、クロム、銅、亜鉛、モリブデン、タングステン、ゲルマニウム、錫等の卑金属や、これら貴金属と卑金属との合金、また金属酸化物、金属錯体などの化合物を採用することもできる。
D2. Modification 2:
In the above embodiment, Pt is used as the catalyst, but the present invention is not limited to this. Catalysts include noble metals such as gold, silver, ruthenium, rhodium, palladium, osmium, iridium, base metals such as iron, nickel, manganese, cobalt, chromium, copper, zinc, molybdenum, tungsten, germanium, tin, and these noble metals. It is also possible to employ alloys such as metal and base metals, and compounds such as metal oxides and metal complexes.

D3.変形例3:
上記実施形態では、付着工程S30において第一導電体1に付着させるイオン交換樹脂6として、スルホン酸基を備えるイオン交換樹脂を示したが(図6参照)、イオン交換樹脂6が備えるイオン交換基は、スルホン酸基以外であっても良く、例えば、ホスホン酸基、リン酸基、カルボキシル基であっても良い。また、蒸発工程S40後に電極材料150を電解質膜30へ塗布していたが、電解質膜30に代えてカソード側ガス拡散層32cに用いる部材(例えば、カーボンペーパー)へ、電極材料150を塗布してもよい。また、電解質膜30とカソード側ガス拡散層32cとの双方に電極材料150を塗布してもよい。
D3. Modification 3:
In the said embodiment, although ion exchange resin provided with a sulfonic acid group was shown as the ion exchange resin 6 made to adhere to the 1st conductor 1 in adhesion process S30 (refer FIG. 6), the ion exchange group with which ion exchange resin 6 is provided. May be other than a sulfonic acid group, for example, a phosphonic acid group, a phosphoric acid group, or a carboxyl group. In addition, the electrode material 150 is applied to the electrolyte membrane 30 after the evaporation step S40, but the electrode material 150 is applied to a member (for example, carbon paper) used for the cathode-side gas diffusion layer 32c instead of the electrolyte membrane 30. Also good. Further, the electrode material 150 may be applied to both the electrolyte membrane 30 and the cathode side gas diffusion layer 32c.

D4.変形例4:
上記実施形態では、蒸発工程S40で作製が完了した電極材料150を電解質膜30に塗布することで、カソード側電極31cを形成したが、電極材料150を造孔材と混合し電解質膜30に塗布した後に、造孔剤を熱処理や溶解などにより除去してもよい。こうすることによって、電極全体に酸素の供給経路が確保されるので、さらに燃料電池の発電性能を向上させることができる。
D4. Modification 4:
In the above embodiment, the cathode material electrode 31c is formed by applying the electrode material 150, which has been completed in the evaporation step S40, to the electrolyte membrane 30, but the electrode material 150 is mixed with the pore former and applied to the electrolyte membrane 30. After that, the pore former may be removed by heat treatment or dissolution. By doing so, an oxygen supply path is ensured in the entire electrode, so that the power generation performance of the fuel cell can be further improved.

D5.変形例5:
上記実施形態の付着工程S30では、第一導電体1と第二導電体2の間に印加する電圧を調整してもよい。こうすることによって、所望の被覆率をもつ電極材料150を製造することができる。ここで、電極材料150の被覆率を求める方法は、例えば、試作した電極材料150の空洞部135の大きさや量を電子顕微鏡などで観察し、それを所望の大きさや量になるような値を実験的に求める方法などが挙げられる。
D5. Modification 5:
In the adhesion step S30 of the above embodiment, the voltage applied between the first conductor 1 and the second conductor 2 may be adjusted. By doing so, an electrode material 150 having a desired coverage can be manufactured. Here, the method for obtaining the coverage of the electrode material 150 is, for example, observing the size and amount of the cavity portion 135 of the prototype electrode material 150 with an electron microscope or the like, and setting the value to a desired size or amount. Examples include a method for experimental determination.

1…第一導電体
2…第二導電体
3…Pt担持カーボン
4…容器
5…溶液
6…イオン交換樹脂
7…スターラ
8…カーボン担体
9…Pt
10…燃料電池
20…膜電極接合体
30…電解質膜
31a…アノード側電極
31c…カソード側電極
32a…アノード側ガス拡散層
32c…カソード側ガス拡散層
33a…アノード側セパレータ
33c…カソード側セパレータ
34a…燃料ガス流路
34c…酸化剤ガス流路
40…イオン交換樹脂板
41…ポテンショスタット
42…固定具
43…Pt
44…ガラス
45…締め付け具
110…触媒担持カーボン
120…触媒粒子
130…カーボン担体
135…空洞部
140…イオン交換樹脂
150…電極材料
WE…作用極
CE…対極
DHE…参照極
DESCRIPTION OF SYMBOLS 1 ... 1st conductor 2 ... 2nd conductor 3 ... Pt carrying | support carbon 4 ... Container 5 ... Solution 6 ... Ion exchange resin 7 ... Stirrer 8 ... Carbon carrier 9 ... Pt
DESCRIPTION OF SYMBOLS 10 ... Fuel cell 20 ... Membrane electrode assembly 30 ... Electrolyte membrane 31a ... Anode side electrode 31c ... Cathode side electrode 32a ... Anode side gas diffusion layer 32c ... Cathode side gas diffusion layer 33a ... Anode side separator 33c ... Cathode side separator 34a ... Fuel gas flow path 34c ... Oxidant gas flow path 40 ... Ion exchange resin plate 41 ... Potentiostat 42 ... Fixing tool 43 ... Pt
44 ... Glass 45 ... Fastening tool 110 ... Catalyst support carbon 120 ... Catalyst particles 130 ... Carbon carrier 135 ... Cavity 140 ... Ion exchange resin 150 ... Electrode material WE ... Working electrode CE ... Counter electrode DHE ... Reference electrode

Claims (3)

燃料電池用電極材料の製造方法であって、
酸性水溶液を含む溶媒に、イオン交換樹脂を溶解させた溶液を調製する溶液調製工程と、
触媒を担持する担体を表面に有する第1の導電体と、第2の導電体とを、前記溶液調製工程で調製した溶液に浸漬する浸漬工程と、
前記第1の導電体と前記第2の導電体との間に電圧を印加することで、前記溶液中の水を電気分解し、前記溶液中の前記電気分解により発生した酸素と、前記イオン交換樹脂とを前記触媒に付着させる付着工程と、
を備える燃料電池用電極材料の製造方法。
A method for producing an electrode material for a fuel cell, comprising:
A solution preparation step of preparing a solution in which an ion exchange resin is dissolved in a solvent containing an acidic aqueous solution;
A dipping step of immersing the first conductor having a carrier carrying a catalyst on the surface and the second conductor in the solution prepared in the solution preparation step;
By applying a voltage between the first conductor and the second conductor, water in the solution is electrolyzed, and oxygen generated by the electrolysis in the solution is exchanged with the ion exchange. An attaching step of attaching a resin to the catalyst;
The manufacturing method of the electrode material for fuel cells provided with this.
請求項1に記載の燃料電池用電極材料の製造方法であって、
前記付着工程後に、前記溶媒の少なくとも一部を蒸発させる蒸発工程を備える燃料電池用電極材料の製造方法。
It is a manufacturing method of the electrode material for fuel cells according to claim 1,
The manufacturing method of the electrode material for fuel cells provided with the evaporation process which evaporates at least one part of the said solvent after the said adhesion process.
請求項1又は請求項2に記載の製造方法により製造した燃料電池用電極材料を備える燃料電池。   A fuel cell comprising an electrode material for a fuel cell manufactured by the manufacturing method according to claim 1.
JP2011037838A 2011-02-24 2011-02-24 Method for producing electrode material for fuel cell and fuel cell Expired - Fee Related JP5482690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011037838A JP5482690B2 (en) 2011-02-24 2011-02-24 Method for producing electrode material for fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011037838A JP5482690B2 (en) 2011-02-24 2011-02-24 Method for producing electrode material for fuel cell and fuel cell

Publications (2)

Publication Number Publication Date
JP2012174623A true JP2012174623A (en) 2012-09-10
JP5482690B2 JP5482690B2 (en) 2014-05-07

Family

ID=46977342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037838A Expired - Fee Related JP5482690B2 (en) 2011-02-24 2011-02-24 Method for producing electrode material for fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP5482690B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067878A1 (en) * 2014-10-29 2016-05-06 日産自動車株式会社 Electrode catalyst layer for fuel cell, manufacturing method for same, and membrane electrode assembly and fuel cell using same
JP2017072504A (en) * 2015-10-08 2017-04-13 日産自動車株式会社 Evaluation method of structure including catalyst and electrolyte, and manufacturing method of fuel cell using evaluation method
US10535881B2 (en) 2013-04-25 2020-01-14 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
US10573901B2 (en) 2013-04-25 2020-02-25 Tanaka Kikinzoku Kogyo K.K. Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10535881B2 (en) 2013-04-25 2020-01-14 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
US10573901B2 (en) 2013-04-25 2020-02-25 Tanaka Kikinzoku Kogyo K.K. Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst
US11031604B2 (en) 2013-04-25 2021-06-08 Nissan Motor Co., Ltd. Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
WO2016067878A1 (en) * 2014-10-29 2016-05-06 日産自動車株式会社 Electrode catalyst layer for fuel cell, manufacturing method for same, and membrane electrode assembly and fuel cell using same
JPWO2016067878A1 (en) * 2014-10-29 2017-08-31 日産自動車株式会社 ELECTRODE CATALYST LAYER FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL
US10367218B2 (en) 2014-10-29 2019-07-30 Nissan Motor Co., Ltd. Electrode catalyst layer for fuel cell, method for producing the same, and membrane electrode assembly and fuel cell using the catalyst layer
JP2017072504A (en) * 2015-10-08 2017-04-13 日産自動車株式会社 Evaluation method of structure including catalyst and electrolyte, and manufacturing method of fuel cell using evaluation method

Also Published As

Publication number Publication date
JP5482690B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
Rezaei et al. Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction
Eshghi et al. Pd, Pd–Ni and Pd–Ni–Fe nanoparticles anchored on MnO2/Vulcan as efficient ethanol electro-oxidation anode catalysts
Askari et al. Ultra-small ReS2 nanoparticles hybridized with rGO as cathode and anode catalysts towards hydrogen evolution reaction and methanol electro-oxidation for DMFC in acidic and alkaline media
Kim et al. Comparative study on hydrogen evolution reaction activity of electrospun nanofibers with diverse metallic Ir and IrO2 composition ratios
JP6598159B2 (en) ELECTRODE MATERIAL FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME, ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL
Ojani et al. Pt–Co nanostructures electrodeposited on graphene nanosheets for methanol electrooxidation
Ke et al. Pd-decorated three-dimensional nanoporous Au/Ni foam composite electrodes for H 2 O 2 reduction
Cheng et al. Pd doped Co3O4 nanowire array as the H2O2 electroreduction catalyst
Hosseini et al. The comparison of direct borohydride-hydrogen peroxide fuel cell performance with membrane electrode assembly prepared by catalyst coated membrane method and catalyst coated gas diffusion layer method using Ni@ Pt/C as anodic catalyst
Park et al. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis
Javan et al. Design of new anodic bimetallic nanocatalyst composed of Ni–Cu supported by reduced carbon quantum dots for the methanol oxidation reaction
JP5482690B2 (en) Method for producing electrode material for fuel cell and fuel cell
CN104685682A (en) Method for producing catalyst for fuel cells, and fuel cell which comprises catalyst for fuel cells produced by said production method
Moriau et al. Synthesis and advanced electrochemical characterization of multifunctional electrocatalytic composite for unitized regenerative fuel cell
Cheng et al. Pd nanofilm supported on C@ TiO2 nanocone core/shell nanoarrays: a facile preparation of high performance electrocatalyst for H2O2 electroreduction in acid medium
Li et al. Bifunctional Ni–Fe–CoSe2 nanosheets electrodeposited on Ni foam for efficient catalysis of the oxidation of water and urea
US9755246B2 (en) Hollow platinum nanoparticles for fuel cells
Yang et al. Au-and Pd-modified porous Co film supported on Ni foam substrate as the high performance catalysts for H2O2 electroreduction
Mitzel et al. Electrodeposition of PEM fuel cell catalysts by the use of a hydrogen depolarized anode
Awad et al. Impact of SO2 poisoning of platinum nanoparticles modified glassy carbon electrode on oxygen reduction
Sambandam et al. Platinum-carbon black-titanium dioxide nanocomposite electrocatalysts for fuel cell applications
Mahmoodi et al. Novel electrocatalysts for borohydride fuel cells: enhanced power generation by optimizing anodic core–shell nanoparticles on reduced graphene oxide
Carmo et al. Electrocatalysts for the hydrogen evolution reaction
Raoof et al. Fabrication of a bimetallic Cu/Pt particle-modified carbon nanotube paste electrode and its use for the electrocatalytic oxidation of methanol
Kamyabi et al. Silica template as a morphology-controlling agent for deposition of platinum nanostructure on 3D-Ni-foam and its superior electrocatalytic performance towards methanol oxidation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

LAPS Cancellation because of no payment of annual fees