Nothing Special   »   [go: up one dir, main page]

JP2012036829A - Blowby gas returning device - Google Patents

Blowby gas returning device Download PDF

Info

Publication number
JP2012036829A
JP2012036829A JP2010177845A JP2010177845A JP2012036829A JP 2012036829 A JP2012036829 A JP 2012036829A JP 2010177845 A JP2010177845 A JP 2010177845A JP 2010177845 A JP2010177845 A JP 2010177845A JP 2012036829 A JP2012036829 A JP 2012036829A
Authority
JP
Japan
Prior art keywords
passage
intake
blow
compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010177845A
Other languages
Japanese (ja)
Other versions
JP5822445B2 (en
Inventor
Yuta Sekine
雄太 關根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010177845A priority Critical patent/JP5822445B2/en
Publication of JP2012036829A publication Critical patent/JP2012036829A/en
Application granted granted Critical
Publication of JP5822445B2 publication Critical patent/JP5822445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a system with a simple construction by which the ventilation of a blowby gas can be suitably performed even in an operation region in which supercharging is not performed.SOLUTION: An upper stream side and a downstream side of a compressor 51 in an intake passage 3 are connected by a bypass passage 61, a jet pump 62 generating negative pressure is provided on the bypass passage 61 and a blowby passage 63 conducted from a crank chamber 7 is made to communicate with the bypass passage 61 via the jet pump 62. Furthermore, an intake throttle valve 65 is installed further upstream from a connection part of the bypass passage 61 in the intake passage 3. Upon non-supercharging, pressure on the upstream side of the compressor 51 is made negative with respect to that of the downstream side by throttling the intake throttle valve 65 and the blowby gas is sucked out of the crank chamber 7.

Description

本発明は、過給機が付帯した内燃機関のブローバイガス還流装置に関する。   The present invention relates to a blow-by gas recirculation device for an internal combustion engine accompanied by a supercharger.

一般に、内燃機関のクランク室は、シリンダ及びピストンにより燃焼室から隔絶されている。しかし、この隔絶は完全なものではなく、内燃機関の圧縮行程では未燃焼ガスが、また膨張行程では燃焼ガスが、シリンダとピストンとの隙間からクランク室内に漏洩する。この漏洩したブローバイガスは、クランク室内に蓄えている潤滑油の劣化や、内燃機関本体の腐食を招くおそれがある。   In general, the crank chamber of an internal combustion engine is isolated from the combustion chamber by a cylinder and a piston. However, this isolation is not perfect, and unburned gas leaks in the compression stroke of the internal combustion engine, and combustion gas leaks into the crank chamber from the gap between the cylinder and the piston in the expansion stroke. The leaked blow-by gas may cause deterioration of the lubricating oil stored in the crank chamber and corrosion of the internal combustion engine body.

そのために、従来より、クランク室に溜まるブローバイガスを換気する機構を実装することが通例となっている。例えば、吸気通路におけるコンプレッサの上流側と下流側とをバイパス通路で接続し、当該バイパス通路上に負圧を発生させるジェットポンプを設けるとともに、クランク室から導いたブローバイ通路をジェットポンプを介してバイパス通路に連通せしめる構成のブローバイガス還流装置(エゼクタシステム)が既知である(下記特許文献を参照)。   For this reason, conventionally, it is common to implement a mechanism for ventilating blow-by gas accumulated in the crank chamber. For example, an upstream side and a downstream side of the compressor in the intake passage are connected by a bypass passage, and a jet pump that generates negative pressure is provided on the bypass passage, and the blow-by passage led from the crank chamber is bypassed via the jet pump. A blow-by gas recirculation device (ejector system) configured to communicate with a passage is known (see the following patent document).

上掲のブローバイガス還流装置では、過給時にコンプレッサの上流側と下流側との間で発生する圧力差を利用してジェットポンプを機能させ、その負圧によりクランク室内のブローバイガスを吸い出して、コンプレッサの上流側へと還流させる。しかしながら、非過給時には、コンプレッサの上流側と下流側との間の圧力差が小さくなることから、ブローバイガス換気作用を営まないという弱みがあった。   In the above blow-by gas recirculation device, the jet pump functions by utilizing the pressure difference generated between the upstream side and the downstream side of the compressor at the time of supercharging, and the blow-by gas in the crank chamber is sucked out by the negative pressure, Return to the upstream side of the compressor. However, at the time of non-supercharging, since the pressure difference between the upstream side and the downstream side of the compressor becomes small, there is a weakness that the blow-by gas ventilation action is not performed.

特開2009−299645号公報JP 2009-299645 A

本発明は、過給を行わない運転領域においてもブローバイガスの換気を好適に行うことができるシステムを、簡便な構成で実現しようとするものである。   The present invention intends to realize a system capable of suitably ventilating blow-by gas even in an operation region where supercharging is not performed with a simple configuration.

本発明に係るブローバイガス還流装置は、過給機が付帯した内燃機関に適用されるブローバイガス還流装置であって、吸気通路におけるコンプレッサの上流側と下流側とを接続するバイパス通路と、前記バイパス通路上にあって負圧を発生させるジェットポンプと、ブローバイガスが溜まる内室を前記ジェットポンプを介して前記バイパス通路に連通せしめるブローバイ通路と、吸気通路におけるコンプレッサの上流側に接続している前記バイパス通路の接続箇所よりもさらに上流側に設置した吸気絞り弁とを具備してなる。ここで、内室とは、ブローバイガスが発生するクランク室や、クランク室に連通しているカム室等を包括した概念である。   A blow-by gas recirculation device according to the present invention is a blow-by gas recirculation device applied to an internal combustion engine with a supercharger, the bypass passage connecting the upstream side and the downstream side of the compressor in the intake passage, and the bypass A jet pump on the passage for generating negative pressure; a blow-by passage for connecting an inner chamber in which blow-by gas is accumulated to the bypass passage via the jet pump; and the upstream side of the compressor in the intake passage. And an intake throttle valve installed further upstream than the bypass passage connection point. Here, the inner chamber is a concept including a crank chamber in which blow-by gas is generated, a cam chamber communicating with the crank chamber, and the like.

非過給時には、吸気絞り弁を絞ることにより、コンプレッサの上流側を下流側に対して負圧化し、内室からブローバイガスを吸い出す。   At the time of non-supercharging, the intake throttle valve is throttled to make the upstream side of the compressor negative with respect to the downstream side, and blow-by gas is sucked out from the inner chamber.

本発明によれば、過給を行わない運転領域においても好適にブローバイガスの換気を行うことができるシステムが実現される。   ADVANTAGE OF THE INVENTION According to this invention, the system which can ventilate blow-by gas suitably also in the driving | running area | region which does not perform supercharging is implement | achieved.

本発明の一実施形態における内燃機関及びブローバイガス還流装置の構成を示す図。The figure which shows the structure of the internal combustion engine and blow-by gas recirculation apparatus in one Embodiment of this invention. ジェットポンプの構造を例示する図。The figure which illustrates the structure of a jet pump.

本発明の一実施形態を、図面を参照して説明する。図1に、本実施形態のブローバイガス還流装置6が適用される車両用内燃機関0の概要を示す。本実施形態における内燃機関0は、複数の気筒1(図1には、そのうち一つを図示している)と、各気筒1内に燃料を噴射するインジェクタ11と、各気筒1に吸気を供給するための吸気通路3と、各気筒1から排気を排出するための排気通路4と、吸気通路3を流通する吸気を過給する排気ターボ過給機5と、排気通路4から吸気通路3に向けてEGRガスを還流させる外部EGR通路2とを備えている。   An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the outline | summary of the internal combustion engine 0 for vehicles to which the blowby gas recirculation apparatus 6 of this embodiment is applied is shown. The internal combustion engine 0 in this embodiment includes a plurality of cylinders 1 (one of which is shown in FIG. 1), an injector 11 that injects fuel into each cylinder 1, and intake air to each cylinder 1. An intake passage 3 for exhausting the exhaust gas, an exhaust passage 4 for discharging exhaust gas from each cylinder 1, an exhaust turbocharger 5 for supercharging intake air flowing through the intake passage 3, and an exhaust passage 4 to the intake passage 3. And an external EGR passage 2 for refluxing the EGR gas.

本実施形態における内燃機関0は、二気筒の4サイクルエンジンであり、第一気筒1の行程と第二気筒1の行程との間には360°CA(クランク角度)の位相差が存在する。換言すれば、第一気筒1のピストン12と第二気筒1のピストン12とは同時に上昇し、また同時に下降する。よって、内燃機関0のクランクケース内のクランク室7の容積は、三気筒以上の多気筒エンジンと比べて大きく拡大/縮小する。   The internal combustion engine 0 in this embodiment is a two-cylinder four-cycle engine, and there is a phase difference of 360 ° CA (crank angle) between the stroke of the first cylinder 1 and the stroke of the second cylinder 1. In other words, the piston 12 of the first cylinder 1 and the piston 12 of the second cylinder 1 are simultaneously raised and simultaneously lowered. Therefore, the volume of the crank chamber 7 in the crankcase of the internal combustion engine 0 is greatly expanded / reduced compared to a multi-cylinder engine having three or more cylinders.

吸気通路3は、外部から空気を取り入れて気筒1の吸気ポートへと導く。吸気通路3上には、エアクリーナ31、吸気絞り弁65、過給機5のコンプレッサ51、インタクーラ32、スロットルバルブ33、サージタンク34を、上流からこの順序に配置している。   The intake passage 3 takes in air from the outside and guides it to the intake port of the cylinder 1. On the intake passage 3, an air cleaner 31, an intake throttle valve 65, a compressor 51 of the supercharger 5, an intercooler 32, a throttle valve 33, and a surge tank 34 are arranged in this order from the upstream.

排気通路4は、気筒1内で燃料を燃焼させた結果発生した排気を気筒1の排気ポートから外部へと導く。この排気通路4上には、過給機5の駆動タービン52及び三元触媒41を配置している。   The exhaust passage 4 guides exhaust generated as a result of burning fuel in the cylinder 1 from the exhaust port of the cylinder 1 to the outside. A drive turbine 52 and a three-way catalyst 41 of the supercharger 5 are disposed on the exhaust passage 4.

排気ターボ過給機5は、駆動タービン52とコンプレッサ51とを同軸で連結し連動するように構成したものである。そして、駆動タービン52を排気のエネルギを利用して回転駆動し、その回転力を以てコンプレッサ51にポンプ作用を営ませることにより、吸入空気を加圧圧縮(過給)して気筒1に送り込む。   The exhaust turbocharger 5 is configured such that the drive turbine 52 and the compressor 51 are connected and linked in a coaxial manner. Then, the driving turbine 52 is rotationally driven by using the energy of the exhaust gas, and the compressor 51 is pumped by using the rotational force, whereby the intake air is pressurized and compressed (supercharged) and sent to the cylinder 1.

外部EGR通路2は、いわゆる低圧ループEGRを実現するものである。低圧ループEGR通路2の圧力損失は、数百Pa程度と非常に小さい。外部EGR通路2の入口は、排気通路4における三元触媒41の下流の所定箇所に接続している。外部EGR通路2の出口は、吸気通路3における吸気絞り弁65の下流、かつコンプレッサ51の上流の所定箇所に接続している。外部EGR通路2上には、EGRクーラ21及びEGRバルブ22を設けてある。   The external EGR passage 2 realizes a so-called low pressure loop EGR. The pressure loss in the low-pressure loop EGR passage 2 is as small as several hundred Pa. The inlet of the external EGR passage 2 is connected to a predetermined location downstream of the three-way catalyst 41 in the exhaust passage 4. The outlet of the external EGR passage 2 is connected to a predetermined location in the intake passage 3 downstream of the intake throttle valve 65 and upstream of the compressor 51. An EGR cooler 21 and an EGR valve 22 are provided on the external EGR passage 2.

低圧ループEGRでは、大気圧に近い低圧の排気ガスをEGR通路2を通じて吸気通路3に還流する。そのために、EGR通路2の出口の上流にある吸気絞り弁65を絞ることで、EGR通路2の出口の周囲を負圧化する。なお、吸気通路3における、吸気絞り弁65よりも上流側の圧力は略大気圧、またはコンプレッサ51の稼働によって幾分負圧となる。因みに、内燃機関0の減速時に吸気絞り弁65が絞られていると、吸気絞り弁65が抵抗となってEGR通路2の出口の周囲の圧力に乱れが発生し、EGR通路2を流れるEGRガス量が大きく振動する。そこで、内燃機関0の減速時には吸気絞り弁65を一旦全開し、エンジントルクが低下した後に本来あるべき開度に戻す過渡制御を実施する。   In the low-pressure loop EGR, low-pressure exhaust gas close to atmospheric pressure is recirculated to the intake passage 3 through the EGR passage 2. For this purpose, the pressure around the outlet of the EGR passage 2 is reduced to a negative pressure by restricting the intake throttle valve 65 upstream of the outlet of the EGR passage 2. It should be noted that the pressure upstream of the intake throttle valve 65 in the intake passage 3 becomes substantially atmospheric pressure or somewhat negative pressure due to the operation of the compressor 51. Incidentally, if the intake throttle valve 65 is throttled when the internal combustion engine 0 is decelerated, the intake throttle valve 65 becomes a resistance and the pressure around the outlet of the EGR passage 2 is disturbed, and the EGR gas flowing through the EGR passage 2 The amount vibrates greatly. Therefore, when the internal combustion engine 0 is decelerated, the intake throttle valve 65 is fully opened once, and the transient control is performed to return to the original opening after the engine torque is reduced.

内燃機関0の運転制御を司るECU(電子制御装置)9は、プロセッサ、メモリ、入力インタフェース、出力インタフェース等を有したマイクロコンピュータシステムである。入力インタフェースには、車速を検出する車速センサから出力される車速信号a、エンジン回転数を検出する回転数センサから出力される回転数信号b、スロットルバルブ33の開度を検出するスロットルポジションセンサから出力されるスロットル開度信号c、サージタンク34内の吸気圧(過給圧)を検出する圧力センサから出力される吸気圧信号d、冷却水温を検出する水温センサから出力される水温信号e等が入力される。出力インタフェースからは、インジェクタ11に対して燃料噴射信号f、点火プラグ(のイグニッションコイル)に対して点火信号g、EGRバルブ22に対して開度操作信号h、吸気絞り弁65に対して開度操作信号i等を出力する。   An ECU (electronic control unit) 9 that controls operation of the internal combustion engine 0 is a microcomputer system having a processor, a memory, an input interface, an output interface, and the like. The input interface includes a vehicle speed signal a output from the vehicle speed sensor that detects the vehicle speed, a rotation speed signal b output from the rotation speed sensor that detects the engine rotation speed, and a throttle position sensor that detects the opening of the throttle valve 33. The output throttle opening signal c, the intake pressure signal d output from the pressure sensor for detecting the intake pressure (supercharging pressure) in the surge tank 34, the water temperature signal e output from the water temperature sensor for detecting the cooling water temperature, etc. Is entered. From the output interface, the fuel injection signal f for the injector 11, the ignition signal g for the ignition plug (ignition coil thereof), the opening operation signal h for the EGR valve 22, and the opening degree for the intake throttle valve 65. An operation signal i or the like is output.

ECU9のプロセッサは、予めメモリに格納されているプログラムを解釈、実行して、内燃機関0の運転を制御する。ECU9は、内燃機関0の運転制御に必要な各種情報a、b、c、d、eを入力インタフェースを介して取得し、それらに基づいて吸入空気量や要求燃料噴射量、点火時期、目標EGR率等を演算する。そして、演算結果に対応した各種制御信号f、g、h、iを出力インタフェースを介して印加する。   The processor of the ECU 9 controls the operation of the internal combustion engine 0 by interpreting and executing a program stored in the memory in advance. The ECU 9 acquires various information a, b, c, d, and e necessary for controlling the operation of the internal combustion engine 0 via the input interface, and based on them, the intake air amount, the required fuel injection amount, the ignition timing, the target EGR Calculate the rate, etc. Then, various control signals f, g, h, i corresponding to the calculation result are applied through the output interface.

しかして、本実施形態のブローバイガス還流装置6は、内燃機関0の内室7、8で発生するブローバイガスを吸気通路3に送り出すためのものであって、バイパス通路61と、ジェットポンプ62と、ブローバイ通路63と、新気通路64と、吸気絞り弁65と、PCV通路66とを具備してなる。   Thus, the blow-by gas recirculation device 6 of this embodiment is for sending blow-by gas generated in the inner chambers 7 and 8 of the internal combustion engine 0 to the intake passage 3, and includes a bypass passage 61, a jet pump 62, The blow-by passage 63, the fresh air passage 64, the intake throttle valve 65, and the PCV passage 66 are provided.

バイパス通路61は、吸気通路3におけるコンプレッサ51の上流側と下流側とを接続する。特に、このバイパス通路61の出口は、コンプレッサ51の上流であって吸気絞り弁65よりも下流の箇所に接続している。   The bypass passage 61 connects the upstream side and the downstream side of the compressor 51 in the intake passage 3. In particular, the outlet of the bypass passage 61 is connected to a location upstream of the compressor 51 and downstream of the intake throttle valve 65.

ジェットポンプ62は、バイパス通路61上にあって負圧を発生させる。図2に例示するように、ジェットポンプ62は、コンプレッサ51の下流側に接続している入口方に設けたノズル621と、コンプレッサ52の上流側に接続している出口方に設けたディフューザ622と、これらノズル621とディフューザ622との間に介在した減圧室623とを要素とする。バイパス通路61の入口の圧力が出口の圧力よりも高いとき、ノズル621からディフューザ622に向けて空気が噴出され、減圧室623に負圧が発生する。この負圧の大きさは、バイパス通路61の入口と出口との圧力差、即ちコンプレッサ51の上流側と下流側との圧力差に応じて変動する。   The jet pump 62 is on the bypass passage 61 and generates a negative pressure. As illustrated in FIG. 2, the jet pump 62 includes a nozzle 621 provided on the inlet side connected to the downstream side of the compressor 51, and a diffuser 622 provided on the outlet side connected to the upstream side of the compressor 52. The decompression chamber 623 interposed between the nozzle 621 and the diffuser 622 serves as an element. When the pressure at the inlet of the bypass passage 61 is higher than the pressure at the outlet, air is ejected from the nozzle 621 toward the diffuser 622, and a negative pressure is generated in the decompression chamber 623. The magnitude of the negative pressure varies depending on the pressure difference between the inlet and the outlet of the bypass passage 61, that is, the pressure difference between the upstream side and the downstream side of the compressor 51.

ブローバイ通路63は、内燃機関0のクランク室7をバイパス通路61に連通せしめる。ブローバイ通路63の一端は、ジェットポンプ62の減圧室623に接続している。また、内燃機関0が二気筒エンジンである場合には、ブローバイ通路63上にリードバルブ631を設けておくことが好ましい。リードバルブ631は、その前後の差圧により作動する。リードバルブ631は、クランク室7の容積縮小時(各気筒1のピストン12の下降時)に開き、クランク室7の容積拡大時(各気筒1のピストン12の上昇時)に閉じる。   The blow-by passage 63 allows the crank chamber 7 of the internal combustion engine 0 to communicate with the bypass passage 61. One end of the blow-by passage 63 is connected to the decompression chamber 623 of the jet pump 62. When the internal combustion engine 0 is a two-cylinder engine, it is preferable to provide a reed valve 631 on the blow-by passage 63. The reed valve 631 is operated by a differential pressure before and after that. The reed valve 631 is opened when the volume of the crank chamber 7 is reduced (when the piston 12 of each cylinder 1 is lowered) and closed when the volume of the crank chamber 7 is enlarged (when the piston 12 of each cylinder 1 is raised).

新気通路64は、内燃機関0のシリンダヘッドカバー内のカム室8を吸気通路3に連通せしめる。カム室8は、図示しない内部通路を介してクランク室7と繋がっており、クランク室7との間で相互に新気やブローバイガスを行き来させることができる。新気通路64の一端は、吸気通路3における、吸気絞り弁65よりも上流の箇所に接続している。   The fresh air passage 64 allows the cam chamber 8 in the cylinder head cover of the internal combustion engine 0 to communicate with the intake passage 3. The cam chamber 8 is connected to the crank chamber 7 via an internal passage (not shown), and fresh air and blow-by gas can be exchanged with the crank chamber 7. One end of the fresh air passage 64 is connected to a location upstream of the intake throttle valve 65 in the intake passage 3.

PCV通路66は、内燃機関0のクランク室7を吸気通路3に連通せしめる。PCV通路66の一端は、サージタンク34に接続している。PCV通路66上には、PCVバルブ661を設けてある。PCVバルブ661は、サージタンク34内の吸気圧が大気圧以上であるときには閉じ、サージタンク34内の吸気圧が低くなるほど(大気圧に対して負圧になるほど)その開度が大きく開く。但し、アイドル時等、サージタンク34内の吸気圧が顕著に低下して所定の閾値を下回った場合には開度を小さくする。   The PCV passage 66 allows the crank chamber 7 of the internal combustion engine 0 to communicate with the intake passage 3. One end of the PCV passage 66 is connected to the surge tank 34. A PCV valve 661 is provided on the PCV passage 66. The PCV valve 661 is closed when the intake pressure in the surge tank 34 is equal to or higher than the atmospheric pressure, and the opening degree of the PCV valve 661 increases as the intake pressure in the surge tank 34 decreases (as the negative pressure with respect to atmospheric pressure). However, when the intake pressure in the surge tank 34 is significantly reduced and falls below a predetermined threshold, such as during idling, the opening is reduced.

ブローバイ通路63、新気通路64及びPCV通路66のそれぞれの他端近傍には、オイルセパレータ632、641、662が存在している。オイルセパレータ632、641、662は、ラビリンス構造を有し、流通するガスに含まれる潤滑油を当該ガスから分離させる気液分離作用を営むもので、クランク室7から潤滑油が失われることを抑止する。   Oil separators 632, 641, 662 exist near the other ends of the blow-by passage 63, the fresh air passage 64, and the PCV passage 66. The oil separators 632, 641, 662 have a labyrinth structure and perform a gas-liquid separation action to separate the lubricating oil contained in the flowing gas from the gas, and prevent the lubricating oil from being lost from the crank chamber 7. To do.

過給機5が仕事をする過給域(または、正圧域)にあっては、当然にコンプレッサ51の下流側の圧力がコンプレッサ51の上流側の圧力よりも高くなる。このコンプレッサ51の上流側と下流側との間の圧力差に起因して、ジェットポンプ62の減圧室623内に負圧が発生する。この負圧により、クランク室7内のブローバイガスが、ブローバイ通路63を通じて減圧室623に吸い出され、バイパス通路61の出口から吸気通路3におけるコンプレッサ51の上流側へと還流する。同時に、吸気通路3から新気通路64経由でカム室8及びクランク室7に新気が流れ込み、クランク室7内のブローバイガスを追い出す。   In the supercharging region (or positive pressure region) in which the supercharger 5 performs work, the pressure on the downstream side of the compressor 51 is naturally higher than the pressure on the upstream side of the compressor 51. Due to the pressure difference between the upstream side and the downstream side of the compressor 51, a negative pressure is generated in the decompression chamber 623 of the jet pump 62. Due to this negative pressure, the blow-by gas in the crank chamber 7 is sucked into the decompression chamber 623 through the blow-by passage 63 and flows back from the outlet of the bypass passage 61 to the upstream side of the compressor 51 in the intake passage 3. At the same time, fresh air flows from the intake passage 3 via the fresh air passage 64 into the cam chamber 8 and the crank chamber 7, and expells blow-by gas in the crank chamber 7.

翻って、過給機5が仕事をしない軽負荷域(または、負圧域)にあっては、ECU9から吸気絞り弁65に開度操作信号iを入力し、吸気絞り弁65の開度を絞る操作を行う。さすれば、コンプレッサ51の上流側に負圧が発生し、コンプレッサ51の下流側の圧力が相対的にコンプレッサ51の上流側の圧力よりも高くなる。従って、ジェットポンプ62の減圧室623内に負圧が発生し、クランク室7内のブローバイガスが吸い出されてバイパス通路61の出口から吸気通路3におけるコンプレッサ51の上流側へと還流する。この際にも、新気通路64経由でカム室8及びクランク室7に新気が流れ込むことは言うまでもない。   On the other hand, when the turbocharger 5 is in a light load range (or negative pressure range) where no work is performed, an opening operation signal i is input from the ECU 9 to the intake throttle valve 65, and the opening degree of the intake throttle valve 65 is set. Perform the squeezing operation. Then, a negative pressure is generated on the upstream side of the compressor 51, and the pressure on the downstream side of the compressor 51 is relatively higher than the pressure on the upstream side of the compressor 51. Accordingly, a negative pressure is generated in the decompression chamber 623 of the jet pump 62, and blow-by gas in the crank chamber 7 is sucked out and recirculates from the outlet of the bypass passage 61 to the upstream side of the compressor 51 in the intake passage 3. Also in this case, it goes without saying that fresh air flows into the cam chamber 8 and the crank chamber 7 via the fresh air passage 64.

さらに、軽負荷域において、サージタンク34内の吸気圧が極端に低下しない限り、PCVバルブ661が開弁するため、PCV通路61経由でもブローバイガスを排出することができる。   Furthermore, since the PCV valve 661 is opened unless the intake pressure in the surge tank 34 is extremely reduced in the light load region, blow-by gas can be discharged also through the PCV passage 61.

本実施形態では、過給機5が付帯した内燃機関0に適用され、吸気通路3におけるコンプレッサ51の上流側と下流側とを接続するバイパス通路61と、前記バイパス通路61上にあって負圧を発生させるジェットポンプ62と、ブローバイガスが溜まる内室7、8を前記ジェットポンプ62を介して前記バイパス通路61に連通せしめるブローバイ通路63と、吸気通路3におけるコンプレッサ51の上流側に接続している前記バイパス通路61の接続箇所よりもさらに上流側に設置した吸気絞り弁65とを具備するブローバイガス還流装置6を構成した。   In this embodiment, the present invention is applied to the internal combustion engine 0 accompanied by the supercharger 5, and a bypass passage 61 connecting the upstream side and the downstream side of the compressor 51 in the intake passage 3, and the negative pressure on the bypass passage 61. Are connected to the upstream side of the compressor 51 in the intake passage 3, the jet pump 62 for generating air, the inner chambers 7 and 8 in which the blow-by gas is accumulated, and the bypass passage 61 via the jet pump 62. The blow-by gas recirculation device 6 including the intake throttle valve 65 installed further upstream than the connection portion of the bypass passage 61 is configured.

本実施形態によれば、非過給時にあっても、吸気絞り弁65を絞ることでコンプレッサ51の上流側を下流側に対して負圧化し、内室7、8からブローバイ通路63を通じてブローバイガスを吸い出すことができる。ひいては、過給時、非過給時を問わず、好適にブローバイガスの換気を行うことが可能となる。   According to this embodiment, even during non-supercharging, the intake throttle valve 65 is throttled so that the upstream side of the compressor 51 becomes negative with respect to the downstream side, and the blow-by gas is passed from the inner chambers 7 and 8 through the blow-by passage 63. Can be sucked out. As a result, it becomes possible to ventilate the blow-by gas suitably regardless of whether it is supercharged or non-supercharged.

アイドル時にはサージタンク34内の吸気圧が顕著に低下し、PCVバルブ661が閉じるが、このときにもブローバイ通路63からバイパス通路61を経由して吸気通路3にブローバイガスを還流させることができる。換言すれば、ブローバイガスの換気の目的でアイドル時にPCVバルブ611を開かずに済むので、アイドル運転が安定化する。   At the time of idling, the intake pressure in the surge tank 34 is remarkably lowered and the PCV valve 661 is closed. At this time, the blowby gas can be recirculated from the blowby passage 63 to the intake passage 3 via the bypass passage 61. In other words, since it is not necessary to open the PCV valve 611 during idling for the purpose of ventilation of blow-by gas, idling operation is stabilized.

クランク室7内の圧力を十分に低下させることができるため、ピストン12の下降動作に対する抵抗が減ってポンプロスが低減し、燃費の向上にも寄与する。加えて、オイルパンに蓄えている潤滑油面の変動や、オイルパン−シリンダブロック間の潤滑油漏れ等を抑制できる。   Since the pressure in the crank chamber 7 can be sufficiently reduced, the resistance to the downward movement of the piston 12 is reduced, the pump loss is reduced, and the fuel efficiency is improved. In addition, fluctuations in the lubricating oil level stored in the oil pan, leakage of lubricating oil between the oil pan and the cylinder block, and the like can be suppressed.

なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、内燃機関0が三気筒以上の多気筒エンジンである場合には、クランク室7の容積はさほど拡縮せず、リードバルブ631は不要である。   The present invention is not limited to the embodiment described in detail above. For example, when the internal combustion engine 0 is a multi-cylinder engine having three or more cylinders, the volume of the crank chamber 7 does not expand or contract so much, and the reed valve 631 is unnecessary.

その他各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Other specific configurations of each part can be variously modified without departing from the spirit of the present invention.

本発明は、車両等に搭載される過給機付きの内燃機関に適用することができる。   The present invention can be applied to an internal combustion engine with a supercharger mounted on a vehicle or the like.

0…内燃機関
3…吸気通路
5…過給機
51…コンプレッサ
6…ブローバイガス還流装置
61…バイパス通路
62…ジェットポンプ
63…ブローバイ通路
65…吸気絞り弁
7、8…内室(クランク室、カム室)
DESCRIPTION OF SYMBOLS 0 ... Internal combustion engine 3 ... Intake passage 5 ... Supercharger 51 ... Compressor 6 ... Blow-by gas recirculation device 61 ... Bypass passage 62 ... Jet pump 63 ... Blow-by passage 65 ... Intake throttle valve 7, 8 ... Inner chamber (crank chamber, cam) Room)

Claims (1)

過給機が付帯した内燃機関に適用されるブローバイガス還流装置であって、
吸気通路におけるコンプレッサの上流側と下流側とを接続するバイパス通路と、
前記バイパス通路上にあって負圧を発生させるジェットポンプと、
ブローバイガスが溜まる内室を前記ジェットポンプを介して前記バイパス通路に連通せしめるブローバイ通路と、
吸気通路におけるコンプレッサの上流側に接続している前記バイパス通路の接続箇所よりもさらに上流側に設置した吸気絞り弁と
を具備するブローバイガス還流装置。
A blowby gas recirculation device applied to an internal combustion engine with a supercharger,
A bypass passage connecting the upstream side and the downstream side of the compressor in the intake passage;
A jet pump on the bypass passage for generating negative pressure;
A blow-by passage that allows an internal chamber in which blow-by gas is accumulated to communicate with the bypass passage via the jet pump;
A blow-by gas recirculation device comprising: an intake throttle valve installed further upstream than a connection portion of the bypass passage connected to the upstream side of the compressor in the intake passage.
JP2010177845A 2010-08-06 2010-08-06 Blowby gas recirculation system Active JP5822445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010177845A JP5822445B2 (en) 2010-08-06 2010-08-06 Blowby gas recirculation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177845A JP5822445B2 (en) 2010-08-06 2010-08-06 Blowby gas recirculation system

Publications (2)

Publication Number Publication Date
JP2012036829A true JP2012036829A (en) 2012-02-23
JP5822445B2 JP5822445B2 (en) 2015-11-24

Family

ID=45849081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177845A Active JP5822445B2 (en) 2010-08-06 2010-08-06 Blowby gas recirculation system

Country Status (1)

Country Link
JP (1) JP5822445B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014163347A (en) * 2013-02-27 2014-09-08 Daihatsu Motor Co Ltd Blowby gas recirculation device
US8839607B2 (en) 2012-12-13 2014-09-23 Ford Global Technologies, Llc Ejector in conjunction with post-catalyst exhaust throttle for vacuum generation
JP2015102021A (en) * 2013-11-25 2015-06-04 トヨタ自動車株式会社 Control device for vehicle
US9429110B2 (en) 2013-01-16 2016-08-30 Ford Global Technologies, Llc Method and system for vacuum control
US9556771B2 (en) 2013-01-16 2017-01-31 Ford Global Technologies, Llc Method and system for catalyst temperature control
JP2017078350A (en) * 2015-10-20 2017-04-27 アイシン精機株式会社 Intake system of internal combustion engine mounted with supercharger
EP3578770A1 (en) * 2018-06-04 2019-12-11 Mazda Motor Corporation Blow-by gas device of supercharger-equipped engine
JP2019210930A (en) * 2018-06-04 2019-12-12 マツダ株式会社 Blow-by gas device for engine with supercharger
WO2020090284A1 (en) * 2018-10-30 2020-05-07 愛三工業株式会社 Engine system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655756U (en) * 1979-10-08 1981-05-14
JPS56127862U (en) * 1980-02-29 1981-09-29
JPS62117212U (en) * 1986-01-17 1987-07-25
JPH01136615U (en) * 1988-03-10 1989-09-19
JPH0457616U (en) * 1990-09-26 1992-05-18
JPH06108818A (en) * 1992-09-29 1994-04-19 Mazda Motor Corp Crank chamber inner pressure regulating device for internal combustion engine
JP2008180200A (en) * 2007-01-26 2008-08-07 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008180175A (en) * 2007-01-25 2008-08-07 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2009013839A (en) * 2007-07-03 2009-01-22 Toyota Motor Corp Control device of internal combustion engine
JP2009299645A (en) * 2008-06-17 2009-12-24 Aisan Ind Co Ltd Blowby gas returning device
JP2011094557A (en) * 2009-09-30 2011-05-12 Aisan Industry Co Ltd Blow-by gas refluxing device
JP2011236825A (en) * 2010-05-11 2011-11-24 Toyota Motor Corp Blow-by gas treatment device of internal combustion engine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655756U (en) * 1979-10-08 1981-05-14
JPS56127862U (en) * 1980-02-29 1981-09-29
JPS62117212U (en) * 1986-01-17 1987-07-25
JPH01136615U (en) * 1988-03-10 1989-09-19
JPH0457616U (en) * 1990-09-26 1992-05-18
JPH06108818A (en) * 1992-09-29 1994-04-19 Mazda Motor Corp Crank chamber inner pressure regulating device for internal combustion engine
JP2008180175A (en) * 2007-01-25 2008-08-07 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2008180200A (en) * 2007-01-26 2008-08-07 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009013839A (en) * 2007-07-03 2009-01-22 Toyota Motor Corp Control device of internal combustion engine
JP2009299645A (en) * 2008-06-17 2009-12-24 Aisan Ind Co Ltd Blowby gas returning device
JP2011094557A (en) * 2009-09-30 2011-05-12 Aisan Industry Co Ltd Blow-by gas refluxing device
JP2011236825A (en) * 2010-05-11 2011-11-24 Toyota Motor Corp Blow-by gas treatment device of internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839607B2 (en) 2012-12-13 2014-09-23 Ford Global Technologies, Llc Ejector in conjunction with post-catalyst exhaust throttle for vacuum generation
US9719391B2 (en) 2013-01-16 2017-08-01 Ford Global Technologies, Llc Method and system for vacuum control
US9429110B2 (en) 2013-01-16 2016-08-30 Ford Global Technologies, Llc Method and system for vacuum control
US9556771B2 (en) 2013-01-16 2017-01-31 Ford Global Technologies, Llc Method and system for catalyst temperature control
US10711672B2 (en) 2013-01-16 2020-07-14 Ford Global Technologies, Llc Method and system for catalyst temperature control
JP2014163347A (en) * 2013-02-27 2014-09-08 Daihatsu Motor Co Ltd Blowby gas recirculation device
JP2015102021A (en) * 2013-11-25 2015-06-04 トヨタ自動車株式会社 Control device for vehicle
JP2017078350A (en) * 2015-10-20 2017-04-27 アイシン精機株式会社 Intake system of internal combustion engine mounted with supercharger
EP3578770A1 (en) * 2018-06-04 2019-12-11 Mazda Motor Corporation Blow-by gas device of supercharger-equipped engine
JP2019210930A (en) * 2018-06-04 2019-12-12 マツダ株式会社 Blow-by gas device for engine with supercharger
US10927752B2 (en) 2018-06-04 2021-02-23 Mazda Motor Corporation Blow-by gas device of supercharger-equipped engine
JP7196629B2 (en) 2018-06-04 2022-12-27 マツダ株式会社 Blow-by gas system for supercharged engines
WO2020090284A1 (en) * 2018-10-30 2020-05-07 愛三工業株式会社 Engine system

Also Published As

Publication number Publication date
JP5822445B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5822445B2 (en) Blowby gas recirculation system
JP5527486B2 (en) Ventilation control device for internal combustion engine
EP3290667B1 (en) Blowby gas treatment device for internal combustion engine with supercharger
JP2010024974A (en) Control device of internal combustion engine with supercharger
JP2007231906A (en) Multi-cylinder engine
JP5916403B2 (en) Control device for internal combustion engine
US20160146076A1 (en) Vehicle with integrated turbocharger oil control restriction
US10480366B2 (en) Throttled PCV system for an engine
JP2013096229A (en) Blowby gas recirculation device
JP2012237231A (en) Blowby gas reflux device
JP2008303744A (en) Control device of internal combustion engine
JP2011202591A (en) Blowby gas recirculation device
JP5812711B2 (en) Internal combustion engine
JP2012171565A (en) Ram air adjusting device
JP2008184935A (en) Blow-by gas reductor
JP2012007507A (en) Blow-by gas reflux device
JP6750220B2 (en) Engine controller
JP5700987B2 (en) Blowby gas recirculation system
JP2013189887A (en) Control device
JP2013002371A (en) Internal combustion engine
JP6157147B2 (en) Blowby gas recirculation system
JP2012097683A (en) Internal combustion engine
JP6835655B2 (en) EGR device
JP2018184870A (en) Control device for engine
JP2017194009A (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151006

R150 Certificate of patent or registration of utility model

Ref document number: 5822445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250