Nothing Special   »   [go: up one dir, main page]

JP2012024050A - Protein containing organic inorganic compound hydrogel, method of producing the same, and method of stabilizing protein - Google Patents

Protein containing organic inorganic compound hydrogel, method of producing the same, and method of stabilizing protein Download PDF

Info

Publication number
JP2012024050A
JP2012024050A JP2010168035A JP2010168035A JP2012024050A JP 2012024050 A JP2012024050 A JP 2012024050A JP 2010168035 A JP2010168035 A JP 2010168035A JP 2010168035 A JP2010168035 A JP 2010168035A JP 2012024050 A JP2012024050 A JP 2012024050A
Authority
JP
Japan
Prior art keywords
protein
compound
inorganic composite
containing organic
clay mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010168035A
Other languages
Japanese (ja)
Other versions
JP4704510B1 (en
Inventor
Kazutoshi Haraguchi
和敏 原口
Mieko Fukazawa
三惠子 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2010168035A priority Critical patent/JP4704510B1/en
Application granted granted Critical
Publication of JP4704510B1 publication Critical patent/JP4704510B1/en
Publication of JP2012024050A publication Critical patent/JP2012024050A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a protein containing organic inorganic compound hydrogel in which thermal stability of a protein is raised, and which can demonstrate function also at a higher temperature, and to provide a method of producing the same, and a method of stabilizing a protein.SOLUTION: The stability of a protein is improved by using the protein containing organic inorganic compound hydrogel which contains a protein in a hydrogel or the decomposition product thereof in which a polymer which has a branching structure or a network structure in which two or more polyethylene glycol chains are chemically crosslinked and a clay mineral which carried out stratified peeling are compounded.

Description

本発明は、タンパク質を安定的に用いる方法に関する。   The present invention relates to a method for stably using a protein.

タンパク質はアミノ酸が一次元的につながったひも状高分子であり、ひもは折れたたまれることにより特異的な立体構造をつくり、その結果、タンパク質は多彩な機能を発揮している。その代表例が酵素や抗体である。機能性タンパク質として、具体的には、アミラーゼ、プロテアーゼ、リパーゼ、セルラーゼ、オキシダーゼ、デヒドロゲナーゼ、ゼラチン、コラーゲン、フィブロネクチン、アルブミン、IgG、マクログロブリン、血液凝固因子、モノクロール抗体、ポリクローナル抗体などが例示される。   A protein is a string-like polymer in which amino acids are linked one-dimensionally, and the string is folded to create a specific three-dimensional structure. As a result, the protein exhibits various functions. Typical examples are enzymes and antibodies. Specific examples of functional proteins include amylase, protease, lipase, cellulase, oxidase, dehydrogenase, gelatin, collagen, fibronectin, albumin, IgG, macroglobulin, blood coagulation factor, monoclonal antibody, polyclonal antibody and the like. .

このように、タンパク質の機能は疎水的相互作用、ファンデアワールス相互作用、水素結合など非共有結合により安定化された立体構造に基づき発現しているため、熱により立体構造が壊れやすく、加熱処理などにより、その機能を失活することが大きな課題となっている。   In this way, protein functions are expressed on the basis of three-dimensional structures stabilized by non-covalent bonds such as hydrophobic interactions, van der Waals interactions, and hydrogen bonds. Deactivating the function has become a major issue.

これまで、タンパク質の耐熱性を向上させるために幾つかの方法が検討されている。例えば、タンパク質中のアミノ酸残基を置換して改良型タンパク質を得る方法(特許文献1)、突然変異酵素を取得して熱安定性タンパク質を得る方法(特許文献2)、カチオン界面活性剤によりタンパク質を熱安定化する方法(特許文献3)などが例示される。しかし、有効な耐熱性向上としては必ずしも十分な結果は得られていない。   Heretofore, several methods have been studied to improve the heat resistance of proteins. For example, a method for obtaining an improved protein by substituting amino acid residues in a protein (Patent Document 1), a method for obtaining a thermostable protein by obtaining a mutant enzyme (Patent Document 2), a protein using a cationic surfactant And a method for thermally stabilizing (Patent Document 3) and the like. However, sufficient results are not always obtained for effective heat resistance improvement.

特開2009−118749号JP 2009-118749 A 特開2001−78786号JP 2001-78786 A 特表2004−500005号Special table 2004-500005

本発明が解決しようとする課題は、タンパク質の熱安定性をあげ、より高い温度でも機能を発揮できるようなタンパク質含有有機無機複合ヒドロゲル及びその製造方法、並びにタンパク質の安定化方法を提供することにある。   The problem to be solved by the present invention is to provide a protein-containing organic-inorganic composite hydrogel that can increase the thermal stability of the protein and exhibit its function even at higher temperatures, a method for producing the same, and a method for stabilizing the protein. is there.

本発明者らは、上記課題を解決すべく鋭意研究に取り組んだ結果、架橋されたポリエチレングリコール中に、層状剥離した粘土鉱物を均一に微細分散し、それらが三次元網目を形成するように複合化させた有機無機複合ゲルの中にタンパク質を含有させたもの、及びそのゲルの分解物において、タンパク質の熱安定性が向上することを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have uniformly dispersed finely dispersed clay minerals in a cross-linked polyethylene glycol so that they form a three-dimensional network. It has been found that the thermal stability of the protein is improved in the organic organic / inorganic composite gel containing the protein and the degradation product of the gel, and the present invention has been completed.

即ち本発明は、複数のポリエチレングリコール鎖が化学的に架橋された分岐構造又は網目構造を有する高分子化合物(A)と層状剥離した粘土鉱物(B)とが複合化したヒドロゲル又はその分解物中にタンパク質(C)を含有していることを特徴とするタンパク質含有有機無機複合ヒドロゲルを提供する。   That is, the present invention relates to a hydrogel in which a polymer compound (A) having a branched structure or network structure in which a plurality of polyethylene glycol chains are chemically cross-linked and a clay mineral (B) exfoliated in a layer form, or a decomposition product thereof. A protein-containing organic-inorganic composite hydrogel characterized by containing a protein (C).

また、本発明は、上記のタンパク質含有有機無機複合ヒドロゲルを用いた生体埋め込み材料を提供する。   The present invention also provides a living body implant material using the protein-containing organic-inorganic composite hydrogel.

また、本発明は、粘土鉱物(B)を水媒体中で層状剥離させることにより該粘土鉱物(B)の水分散液を製造し、
その層状剥離した粘土鉱物及びタンパク質(C)の存在下で、
同一分子中にポリエチレングリコール鎖と複数の反応性官能基(Q1)とを有する化合物(a1)と、
該反応性官能基(Q1)と反応しうる複数の反応性官能基(Q2)を有する化合物(a2)とを反応させる工程を行なう、
ことを特徴とする上記のタンパク質含有有機無機複合ヒドロゲルの製造方法を提供する。
The present invention also provides an aqueous dispersion of the clay mineral (B) by layering the clay mineral (B) in an aqueous medium.
In the presence of the delaminated clay mineral and protein (C),
A compound (a1) having a polyethylene glycol chain and a plurality of reactive functional groups (Q1) in the same molecule;
Performing a step of reacting the compound (a2) having a plurality of reactive functional groups (Q2) capable of reacting with the reactive functional group (Q1),
A method for producing the protein-containing organic-inorganic composite hydrogel described above is provided.

更に、本発明は、複数のポリエチレングリコール鎖が化学的に架橋された分岐構造又は網目構造を有する高分子化合物(A)と層状剥離した粘土鉱物(B)とが複合化した有機無機複合ヒドロゲル又はその分解物中にタンパク質(C)を含有させることにより、該タンパク質(C)の安定性を向上させることを特徴とするタンパク質安定化方法を提供する。   Furthermore, the present invention provides an organic-inorganic composite hydrogel in which a polymer compound (A) having a branched structure or network structure in which a plurality of polyethylene glycol chains are chemically cross-linked and a clay mineral (B) exfoliated in a layer form is combined. Provided is a protein stabilization method characterized by improving the stability of the protein (C) by containing the protein (C) in the decomposition product.

本発明により、タンパク質の熱安定性が向上し、例えば、酵素の酵素活性がより高温で、長時間継続する効果が得られる。   According to the present invention, the thermal stability of the protein is improved, and for example, the effect that the enzyme activity of the enzyme is continued at a higher temperature for a long time can be obtained.

実施例1および比較例1、比較例2における酵素(Horse radish peroxidase)の活性の時間変化を示す図である。It is a figure which shows the time change of the activity of the enzyme (Horse radish peroxidase) in Example 1, Comparative Example 1, and Comparative Example 2. 実施例2および比較例3における酵素(Horse radish peroxidase)の活性の変化を示す図である。It is a figure which shows the change of the activity of the enzyme (Horse radish peroxidase) in Example 2 and Comparative Example 3.

本発明で用いる高分子化合物(A)としては、複数のポリエチレングリコール鎖が化学的に架橋された分岐構造、又は網目構造を有する高分子化合物であり、複数の直鎖状ポリエチレングリコールが複数の架橋点、又は分岐点により結ばれた構造を有する。このような構造であれば、本発明の効果を損なわない限り特に限定なく使用可能である。特に、好ましくは、その高分子鎖の一部に、粘土鉱物との相互作用を生じる官能基、例えば、水酸基、カルボキシル基、アミノ基、スルホン酸基、アミド基、エステル基や、4級アンモニウムイオン基などのイオン性基の一種または複数種を導入したものが用いられる。   The polymer compound (A) used in the present invention is a polymer compound having a branched structure or network structure in which a plurality of polyethylene glycol chains are chemically crosslinked, and a plurality of linear polyethylene glycols are a plurality of crosslinked molecules. It has a structure connected by points or branch points. Such a structure can be used without particular limitation as long as the effects of the present invention are not impaired. In particular, it is preferable that a part of the polymer chain has a functional group that causes interaction with a clay mineral, such as a hydroxyl group, a carboxyl group, an amino group, a sulfonic acid group, an amide group, an ester group, or a quaternary ammonium ion. A group into which one or a plurality of ionic groups such as a group is introduced is used.

中でも、高分子化合物(A)の化学的架橋がアミド結合によるものであり、分子鎖の一部にエステル基を有する構造の化合物は分解性に優れているため好ましい。より具体的には、少なくとも一部にエステル基を含むポリエチレングリコール鎖がアミド結合により化学的に架橋された分岐構造、又は網目構造を有する高分子化合物であり、複数の直鎖状ポリエチレングリコールが複数の架橋点、又は分岐点により結ばれた構造を有する化合物である。   Among them, the chemical crosslinking of the polymer compound (A) is due to an amide bond, and a compound having a structure having an ester group in a part of the molecular chain is preferable because it is excellent in decomposability. More specifically, it is a polymer compound having a branched structure or network structure in which a polyethylene glycol chain containing an ester group at least partially is chemically cross-linked by an amide bond, and a plurality of linear polyethylene glycols are plural. A compound having a structure connected by a crosslinking point or a branching point.

更に、本発明で用いる高分子化合物(A)としては、同一分子中にポリエチレングリコール鎖と複数の反応性官能基(Q1)とを有する化合物(a1)と、該反応性官能基(Q1)と反応しうる複数の反応性官能基(Q2)を有する化合物(a2)とを反応させることにより製造することができる。   Furthermore, the polymer compound (A) used in the present invention includes a compound (a1) having a polyethylene glycol chain and a plurality of reactive functional groups (Q1) in the same molecule, and the reactive functional group (Q1) It can be produced by reacting a compound (a2) having a plurality of reactive functional groups (Q2) capable of reacting.

上記化合物(a1)又は化合物(a2)として、例えば、下記式(4)又は式(5)で表される化合物を用いることができる。   As the compound (a1) or compound (a2), for example, a compound represented by the following formula (4) or formula (5) can be used.

Figure 2012024050
Figure 2012024050

Figure 2012024050
Figure 2012024050

上記式(4)及び式(5)中、Rは下記式(3)、式(6)〜式(11)で表される基であり、nは1以上の整数である。また、1分子中の4つのnの合計は、50〜1000が好ましく、100〜800がより好ましく、150〜500が特に好ましい。   In the above formula (4) and formula (5), R is a group represented by the following formula (3), formula (6) to formula (11), and n is an integer of 1 or more. Moreover, 50-1000 are preferable, as for the sum total of four n in 1 molecule, 100-800 are more preferable, and 150-500 are especially preferable.

Figure 2012024050
Figure 2012024050

Figure 2012024050
Figure 2012024050

Figure 2012024050
Figure 2012024050

Figure 2012024050
Figure 2012024050

Figure 2012024050
Figure 2012024050

Figure 2012024050
Figure 2012024050

Figure 2012024050
Figure 2012024050

上記式(4)及び式(5)で表される化合物の重量平均分子量は1000〜100000であることが好ましく、5000〜50000であることがより好ましく、5000〜40000であることが特に好ましい。   The weight average molecular weight of the compounds represented by the formulas (4) and (5) is preferably 1000 to 100,000, more preferably 5000 to 50000, and particularly preferably 5000 to 40000.

そのような化合物の市販品としては、
(1)Rが上記式(3)のタイプ
SUNBRIGHT PTE−050GS(重量平均分子量5000)、PTE−100GS(重量平均分子量10000)、PTE−150GS(重量平均分子量15000)、PTE−200GS(重量平均分子量20000)、PTE−400GS(重量平均分子量40000)
(2)Rが上記式(6)のタイプ
PTE−100HS(重量平均分子量10000)、PTE−200HS(重量平均分子量20000)、PTE−400HS(重量平均分子量40000)
(3)Rが上記式(8)のタイプ
PTE−100MA(重量平均分子量10000)、PTE−200MA(重量平均分子量20000)、PTE−400MA(重量平均分子量40000)
(4)Rが上記式(9)のタイプ
PTE−100PA(重量平均分子量10000)、PTE−150PA(重量平均分子量15000)、PTE−200PA(重量平均分子量20000)、PTE−400PA(重量平均分子量40000)
(5)Rが上記式(11)のタイプ
PTE−050SH(重量平均分子量5000)、PTE−100SH(重量平均分子量10000)、PTE−200SH(重量平均分子量20000)
等がある。
As a commercial product of such a compound,
(1) R is the type SUNBRIGHT PTE-050GS (weight average molecular weight 5000), PTE-100GS (weight average molecular weight 10,000), PTE-150GS (weight average molecular weight 15000), PTE-200GS (weight average molecular weight) of the above formula (3) 20000), PTE-400GS (weight average molecular weight 40000)
(2) R is the type PTE-100HS (weight average molecular weight 10,000) of the above formula (6), PTE-200HS (weight average molecular weight 20000), PTE-400HS (weight average molecular weight 40000)
(3) R is type PTE-100MA (weight average molecular weight 10,000) of the above formula (8), PTE-200MA (weight average molecular weight 20000), PTE-400MA (weight average molecular weight 40000)
(4) R is the type PTE-100PA (weight average molecular weight 10,000) of the above formula (9), PTE-150PA (weight average molecular weight 15000), PTE-200PA (weight average molecular weight 20000), PTE-400PA (weight average molecular weight 40000) )
(5) R is type PTE-050SH (weight average molecular weight 5000), PTE-100SH (weight average molecular weight 10000), PTE-200SH (weight average molecular weight 20000) of the above formula (11)
Etc.

上記式(3)、式(6)〜式(11)で表される基の中からいずれかの基を反応性官能基(Q1)として選択し、この反応性官能基(Q1)と反応可能な反応性官能基(Q2)を選択する。そして、これらの反応性官能基(Q1)及び(Q2)を有する化合物をそれぞれ化合物(a1)、化合物(a2)として反応させれば本発明で使用可能な高分子化合物(A)を製造することができる。   Any group selected from the groups represented by the above formulas (3) and (6) to (11) is selected as the reactive functional group (Q1) and can react with the reactive functional group (Q1). Reactive functional group (Q2) is selected. And if the compound which has these reactive functional groups (Q1) and (Q2) is made to react as a compound (a1) and a compound (a2), respectively, the high molecular compound (A) which can be used by this invention will be manufactured. Can do.

また、上記式(4)及び式(5)で表される化合物の中から、いずれかの化合物を選択し、これを反応性官能基(Q1)を有する化合物(a1)として用い、上記式(4)及び式(5)で表される化合物以外であり、この反応性官能基(Q1)と反応可能な複数の反応性官能基(Q2)を有する公知の化合物(C)を化合物(a2)として用いても本発明で使用可能な高分子化合物(A)を製造することができる。   Moreover, any compound is selected from the compounds represented by the above formulas (4) and (5), and this is used as the compound (a1) having a reactive functional group (Q1). Compound (a2) is a known compound (C) having a plurality of reactive functional groups (Q2) other than the compounds represented by 4) and formula (5) and having a plurality of reactive functional groups (Q2) capable of reacting with this reactive functional group (Q1). The polymer compound (A) that can be used in the present invention can also be produced.

このような化合物(C)としては、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、フェニレンジアミン、ブタンジアミン、ペンタンジアミン、またアルギニン、アスパラギン、リジンなどのアミノ酸およびこれらを含有するタンパク質等が用いられる。   Examples of such a compound (C) include ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, phenylenediamine, butanediamine, pentanediamine, and amino acids such as arginine, asparagine, lysine, and the like. Protein etc. are used.

本発明で使用する高分子化合物(A)としては、より好ましくは、架橋点間分子量が均一になるように化学架橋されているものが有効に用いられる。架橋点間分子量が均一になるように化学架橋されたポリエチレングリコールの例としては、例えば、非特許文献2、7に記載の2種の反応性4本鎖ポリエチレングリコール(末端にアミンを有するアミン末端4本鎖ポリエチレングリコール(TAPEG)および末端にN−ヒドロキシサクシイミドグルタレイト末端を有するポリエチレングリコール(TNPEG))を混合し反応させて得られるポリエチレングリコールがあげられる。この場合、ポリエチレングリコール鎖中には、アミド基やエステル基が存在する。また、化学架橋の架橋点間分子量は4本鎖ポリエチレングリコールの分子量の1/2となるが、その値は好ましくは1000〜50000、より好ましくは2000〜30000、特に好ましくは3000〜20000である。架橋点間分子量の値が1000より小さいと柔軟性が不足したり、延伸倍率が小さくなる。また、50000より大きいと、弾性率が低すぎたり、取り扱い性が悪くなったりする。   As the polymer compound (A) used in the present invention, it is more preferable to use a compound that has been chemically cross-linked so that the molecular weight between cross-linking points is uniform. Examples of polyethylene glycol chemically cross-linked so that the molecular weight between the cross-linking points is uniform include, for example, two reactive 4-chain polyethylene glycols described in Non-Patent Documents 2 and 7 (amine end having an amine at the end) Examples thereof include polyethylene glycol obtained by mixing and reacting 4-chain polyethylene glycol (TAPEG) and polyethylene glycol having an N-hydroxysuccinimide glutarate terminal at the terminal (TNPEG). In this case, an amide group or an ester group exists in the polyethylene glycol chain. Moreover, although the molecular weight between the crosslinking points of chemical crosslinking becomes 1/2 of the molecular weight of 4-chain polyethylene glycol, the value becomes like this. Preferably it is 1000-50000, More preferably, it is 2000-30000, Most preferably, it is 3000-20000. When the value of the molecular weight between cross-linking points is less than 1000, the flexibility is insufficient or the draw ratio is reduced. On the other hand, if it is larger than 50000, the elastic modulus is too low or the handleability is deteriorated.

本発明では、非特許文献2、7に記載のポリエチレングリコールの如く、化合物(a1)として下記式(1)で表される化合物であり、化合物(a2)として下記式(2)で表される化合物であり、共に重量平均分子量が1000〜100000である化合物を使用することが特に好ましい。   In the present invention, like the polyethylene glycol described in Non-Patent Documents 2 and 7, the compound (a1) is a compound represented by the following formula (1), and the compound (a2) is represented by the following formula (2). It is particularly preferable to use compounds that are both compounds and have a weight average molecular weight of 1,000 to 100,000.

Figure 2012024050
(式中、Xは下記式(3)
Figure 2012024050
(In the formula, X represents the following formula (3)

Figure 2012024050
で表される基であり、nは整数である。)
Figure 2012024050
And n is an integer. )

Figure 2012024050
(式中、Yは-CH2CH2CH2NH2で表される基であり、nは整数である。)
Figure 2012024050
(In the formula, Y is a group represented by —CH 2 CH 2 CH 2 NH 2 , and n is an integer.)

上記式(1)で表される化合物と式(2)で表される化合物の架橋反応を下記の反応式で示した。   The crosslinking reaction of the compound represented by the above formula (1) and the compound represented by the formula (2) is shown by the following reaction formula.

Figure 2012024050
Figure 2012024050

本発明で用いられる粘土鉱物(B)としては、層状に剥離可能な膨潤性粘土鉱物が用いられ、特に好ましくは水中で分子状(単一層)又は1〜10層以内に層状剥離して均一分散可能な粘土鉱物が用いられる。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。   As the clay mineral (B) used in the present invention, a swellable clay mineral that can be peeled in layers is used, and particularly preferably, it is molecularly dispersed (single layer) in water or layered within 1 to 10 layers for uniform dispersion. Possible clay minerals are used. For example, water-swellable smectite or water-swellable mica is used. Specifically, water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, water-swellable synthetic mica, etc. Can be mentioned.

本発明においては、層状剥離した粘土鉱物(B)と前記高分子化合物(A)が相互作用して三次元網目を形成していることが好ましい。粘土鉱物と高分子化合物(A)間の相互作用は、効果的な三次元網目を形成できれば、イオン結合、水素結合、疎水結合、配位結合、共有結合などのいずれか一つまたは複数であって良い。特に好ましくは、高分子化合物(A)の有するアミド基および/またはエステル基と粘土鉱物(B)が水素結合により三次元網目を形成しているものである。   In the present invention, it is preferable that the layered exfoliated clay mineral (B) and the polymer compound (A) interact to form a three-dimensional network. As long as an effective three-dimensional network can be formed, the interaction between the clay mineral and the polymer compound (A) is one or more of ionic bond, hydrogen bond, hydrophobic bond, coordination bond, and covalent bond. Good. Particularly preferably, the amide group and / or ester group of the polymer compound (A) and the clay mineral (B) form a three-dimensional network by hydrogen bonding.

なお、かかる三次元網目形成を妨げない限り、または物性を向上させ、または制御する目的で、有機または無機の各種機能性分子や粒子を添加しておくことは可能である。例えば無機粒子としては、シリカ、チタニア、ジルコニア、パラジウム、銀、金、白金などのナノ粒子を共存させることは有効に用いられる。   It should be noted that various organic or inorganic functional molecules or particles can be added for the purpose of improving or controlling physical properties, as long as such three-dimensional network formation is not hindered. For example, as inorganic particles, it is effective to use nanoparticles such as silica, titania, zirconia, palladium, silver, gold, and platinum together.

本発明における有機・無機複合ヒドロゲルは、高分子化合物(A)に対する粘土鉱物(B)の質量比(B/A)が0.03〜3であることが好ましく、より好ましくは0.04〜1.5、特に好ましくは0.05〜0.5である。質量比が0.03以下では機械的性質の向上が不十分となりやすく、3以上では粘土鉱物の均一微細分散が困難となってくる場合が多い。   In the organic / inorganic composite hydrogel in the present invention, the mass ratio (B / A) of the clay mineral (B) to the polymer compound (A) is preferably 0.03 to 3, more preferably 0.04 to 1. .5, particularly preferably 0.05 to 0.5. When the mass ratio is 0.03 or less, improvement of mechanical properties tends to be insufficient, and when it is 3 or more, uniform fine dispersion of the clay mineral is often difficult.

本発明で用いられるタンパク質(C)としては、オリゴペプチドやポリペプチドを含む単純タンパク質と、糖タンパク質、リポタンパク質、リン酸化タンパク質などの複合タンパク質のいずれもが使用できる。これらは生体由来の天然物、人工的な合成物、もしくはDNA組み替えによって細菌細胞等からの産出物のいずれであっても良い。さらに、これらは何らかの生理活性を有する機能性タンパク質であることが好ましく、例えば、血清タンパク質、酵素、免疫活性物質、抗血栓性物質、細胞接着性因子、ホルモン、サイトカイン、細菌、ウイルスなどが挙げられる。   As the protein (C) used in the present invention, any of simple proteins including oligopeptides and polypeptides and complex proteins such as glycoproteins, lipoproteins, and phosphorylated proteins can be used. These may be natural products derived from living organisms, artificial synthetic products, or products produced from bacterial cells or the like by DNA recombination. Furthermore, these are preferably functional proteins having some physiological activity, and examples thereof include serum proteins, enzymes, immunoactive substances, antithrombotic substances, cell adhesion factors, hormones, cytokines, bacteria, viruses and the like. .

機能性タンパク質として、具体的には、アミラーゼ、プロテアーゼ、リパーゼ、セルラーゼ、ペルオキシダーゼ、オキシダーゼ、デヒドロゲナーゼ、ゼラチン、コラーゲン、フィブロネクチン、アルブミン、IgG、マクログロブリン、血液凝固因子、モノクロール抗体、ポリクローナル抗体などが例示される。これらの中から、一種または複数が選択して用いられる。   Specific examples of functional proteins include amylase, protease, lipase, cellulase, peroxidase, oxidase, dehydrogenase, gelatin, collagen, fibronectin, albumin, IgG, macroglobulin, blood coagulation factor, monoclonal antibody, polyclonal antibody, etc. Is done. One or more of these are selected and used.

本発明で用いられるタンパク質(C)の有機・無機複合ヒドロゲル中での含有量は均一分散が出来るは濃度範囲で目的に応じて設定できる。   The content of the protein (C) used in the present invention in the organic / inorganic composite hydrogel can be uniformly dispersed, but can be set according to the purpose within a concentration range.

本発明のタンパク質含有有機・無機複合ヒドロゲルゲルの形成に用いる溶媒は、水であるが、タンパク質含有ゲルの形成が行われる限り、水と混和し、水溶性モノマーや粘土鉱物およびタンパク質と均一溶液を形成する水と混和する有機溶剤を含むことも可能である。また、均一溶液を形成する限り、塩などを含む水溶液も使用可能である。   The solvent used for the formation of the protein-containing organic / inorganic composite hydrogel gel of the present invention is water, but as long as the protein-containing gel is formed, it is miscible with water and mixed with water-soluble monomers, clay minerals and proteins in a uniform solution. It is also possible to include an organic solvent that is miscible with the water that forms. In addition, an aqueous solution containing a salt or the like can be used as long as a uniform solution is formed.

水と混和する有機溶剤としては、メタノール、エタノール、プロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド及びそれらの混合溶媒が挙げられる。   Examples of the organic solvent miscible with water include methanol, ethanol, propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, and a mixed solvent thereof.

本発明のタンパク質含有有機・無機複合ゲルは、架橋されたポリエチレングリコール鎖と粘土鉱物とが複合化して形成された三次元網目中に水とタンパク質を含有するゲルである。即ち、架橋されたポリエチレングリコール鎖と粘土鉱物が水中で分子レベルで複合化することにより形成された三次元網目の中にタンパク質が各種相互作用(イオン性相互作用、水素結合、疎水相互作用、キレート形成、高分子絡み合いなど)の働きで微細に分散して旦持された特徴を有する。   The protein-containing organic / inorganic composite gel of the present invention is a gel containing water and protein in a three-dimensional network formed by complexing crosslinked polyethylene glycol chains and clay minerals. That is, proteins interact with each other (ionic interactions, hydrogen bonds, hydrophobic interactions, chelates) in a three-dimensional network formed by complexing crosslinked polyethylene glycol chains and clay minerals in water at the molecular level. It has the characteristics of being dispersed finely by the action of formation, polymer entanglement, etc.

本発明におけるタンパク質含有有機・無機複合ヒドロゲルは、無機含有率によらず均一で、透明性を有し、粘土鉱物の凝集は観測されなかった。最終的な粘土鉱物の含有率は熱重量分析(TGA)により、また微細分散性は透過型電子顕微鏡(TEM)観察により測定される。本発明では、用いた粘土の全量が複合体に含まれていることがTGAにより確認され、且つ1層または2〜10層以内の層状剥離した粘土層が均一に分散しているのがTEMにより確認された。また、本発明で得られたタンパク質含有有機・無機複合ヒドロゲルは、優れた力学物性を示し、ほとんどの場合500%以上の破断伸びを示した。また、引っ張り強度や弾性率は広い範囲で制御が可能である。   The protein-containing organic / inorganic composite hydrogel in the present invention was uniform and transparent regardless of the inorganic content, and no aggregation of clay minerals was observed. The final clay mineral content is measured by thermogravimetric analysis (TGA), and the fine dispersibility is measured by transmission electron microscope (TEM) observation. In the present invention, it is confirmed by TGA that the total amount of clay used is contained in the composite, and TEM indicates that one or two to ten layers of exfoliated clay layers are uniformly dispersed. confirmed. Moreover, the protein-containing organic / inorganic composite hydrogel obtained in the present invention exhibited excellent mechanical properties, and in most cases, exhibited elongation at break of 500% or more. Further, the tensile strength and elastic modulus can be controlled in a wide range.

本発明において、タンパク質を有機・無機複合ゲルの中に担持させることにより、タンパク質の安定性が向上する。具体的には、例えば、タンパク質(酵素)含有有機・無機複合ゲルを37℃水中に保持して、周囲の液中における酵素活性を測定すると、単に酵素を37℃水中に入れておいたのに比較して高い酵素活性が長時間に渡って観測される。このことは、有機・無機複合ゲルの中に酵素を担持させておくことにより、また、その分解物の中に酵素を担持させておくことにより、酵素の安定化が図られたことを意味する。   In the present invention, the protein stability is improved by supporting the protein in the organic / inorganic composite gel. Specifically, for example, when a protein (enzyme) -containing organic / inorganic composite gel is held in 37 ° C. water and the enzyme activity in the surrounding liquid is measured, the enzyme is simply placed in the 37 ° C. water. In comparison, high enzyme activity is observed over a long period of time. This means that the enzyme was stabilized by supporting the enzyme in the organic / inorganic composite gel and by supporting the enzyme in the degradation product. .

本発明におけるタンパク質含有有機・無機複合ヒドロゲルは、好ましくは、同一分子中にポリエチレングリコール鎖と複数の反応性官能基とを有する化合物の水溶液と層状剥離した粘土鉱物水分散液とタンパク質を予め混合し、次いで、該化合物の架橋反応を進める複合化手法が用いられる。より好ましくは、優れた均一性・機械的性質を有するタンパク質含有有機・無機複合ヒドロゲルを得るために、以下のことを行う。
(1)ピロリン酸ナトリウムに塩酸を添加してpHを調整した液をバッファーとして用いること。
(2)予め層状剥離させた粘土鉱物水分散液に上記の化合物(a1)及び化合物(a2)のいずれか片方を添加し、その後、他方の化合物を溶解させること。
(3)層状剥離した粘土鉱物を粘土鉱物の質量/化合物(a1)及び化合物(a2)の合計質量が0.03〜3となるようにすること。
更に好ましくは、
(4)タンパク質含有有機・無機複合ヒドロゲルを合成後に洗浄によりピロリン酸を除くことを行う。
The protein-containing organic / inorganic composite hydrogel in the present invention is preferably prepared by previously mixing an aqueous solution of a compound having a polyethylene glycol chain and a plurality of reactive functional groups in the same molecule, a layered exfoliated clay mineral aqueous dispersion, and a protein. Then, a composite method is used to advance the crosslinking reaction of the compound. More preferably, in order to obtain a protein-containing organic / inorganic composite hydrogel having excellent uniformity and mechanical properties, the following is performed.
(1) Use a solution prepared by adding hydrochloric acid to sodium pyrophosphate to adjust the pH.
(2) Either one of the above-mentioned compound (a1) and compound (a2) is added to the clay mineral aqueous dispersion which has been exfoliated in advance, and then the other compound is dissolved.
(3) The layered exfoliated clay mineral is adjusted so that the mass of the clay mineral / the total mass of the compound (a1) and the compound (a2) is 0.03 to 3.
More preferably,
(4) After synthesizing the protein-containing organic / inorganic composite hydrogel, pyrophosphate is removed by washing.

ポリエチレングリコールと層状剥離した粘土鉱物を複合化する手法としては、好ましくは高分子化合物(A)と層状剥離した粘土鉱物を予め混合して用いること、より好ましくは層状剥離した粘土鉱物がより安定に存在する片方の反応性4本鎖ポリエチレングリコールと混合させ、次いで、もう一種の反応性4本鎖ポリエチレングリコールを混合して、反応させることが用いられる。且つ、上記反応において、ピロリン酸をバッファーとすること、タンパク質を共存させておくこと、粘土鉱物/ポリエチレングリコールの質量比を0.03〜3とすることが併せて用いられ、優れた均一性と機械的性質を併せ持つタンパク質含有有機・無機複合ヒドロゲルが得られる。   As a method of combining polyethylene glycol and layered exfoliated clay mineral, it is preferable to use a mixture of polymer compound (A) and layered exfoliated clay mineral in advance, more preferably layered exfoliated clay mineral is more stable. It is used to mix with one reactive 4-chain polyethylene glycol present and then mix with another reactive 4-chain polyethylene glycol to react. In the above reaction, pyrophosphoric acid is used as a buffer, protein is allowed to coexist, and a clay mineral / polyethylene glycol mass ratio of 0.03 to 3 is used in combination. A protein-containing organic / inorganic composite hydrogel having both mechanical properties can be obtained.

更に、本発明で得られる分解性を有するタンパク質含有有機・無機複合ゲルは、生体内における安全性、生体適合性を有するものが多く、分解性生体埋め込み材料やドラッグデリバリーシステムとして用いることが可能である。本発明における分解性を有するタンパク質含有有機・無機複合ゲルは、埋め込みに際して円柱状、棒状、フィルム状、糸状を初めとして目的に応じた種々の形状で用いることが可能であり、その埋め込み初期における力学物性もゲル組成(高分子化合物や粘土鉱物の濃度、含液率)によって広範囲に制御することが可能である。また、本発明で得られた分解性を有するタンパク質含有有機・無機複合ゲルは、単独で用いられるほか、一端、分解させて、水分散体としても用いることができる。   Furthermore, many of the protein-containing organic / inorganic composite gels having degradability obtained in the present invention have in-vivo safety and biocompatibility, and can be used as degradable bio-implantable materials and drug delivery systems. is there. The protein-containing organic / inorganic composite gel having degradability according to the present invention can be used in various shapes depending on the purpose such as columnar shape, rod shape, film shape, and thread shape at the time of embedding. Physical properties can also be controlled over a wide range by gel composition (concentration of polymer compound or clay mineral, liquid content). Moreover, the protein-containing organic / inorganic composite gel having degradability obtained in the present invention can be used alone or can be decomposed and used as an aqueous dispersion.

次いで本発明を実施例により、より具体的に説明するが、もとより本発明は、以下に示す実施例にのみ限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention more concretely, this invention is not limited only to the Example shown below from the first.

(実施例1)
粘土鉱物には、[Mg5.34Li0.66Si20(OH)]Na 0.66の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG、ロックウッド社製)を洗浄後、凍結乾燥して用いた。反応性4本鎖ポリエチレングリコールは、重量平均分子量20000の、SUNBRIGHT PTE200GS(以下、PTE200GSと略す)、およびSUNBRIGHT PTE200PA(重量平均分子量20000、以下、PTE200PAと略す)(共に日本油脂株式会社製)を用いた。100mMのピロリン酸ナトリウム(無水)(別名:二リン酸ナトリウム)に塩酸を添加することでpHを7.4に調整した水溶液3mlにラポナイトXLG0.16gを分散させた。次いで、PTE200PA240mgとHRP酵素(Horse radish peroxidase:hemeprotein:分子量44000、EC No. 1.11.1.7) 320μgを加え、均一に混合した。別途、100mMのピロリン酸ナトリウムに塩酸を添加し、pHを7.2に調整した水溶液1mlにPTE200GS240mgを溶解した。次いで、得られたPTE200PA/クレイ/HRP水溶液とPTE200GS水溶液を氷浴中で冷却後、混合し、15秒間強く攪拌した。混合した溶液を80mm×50mm×1mmのガラス容器に充填し、25℃で2時間反応させた。その結果、透明・均質なヒドロゲルが得られた。
Example 1
The clay mineral is washed with a water-swellable synthetic hectorite (trademark Laponite XLG, manufactured by Rockwood) having a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na + 0.66 Thereafter, it was lyophilized before use. Reactive four-chain polyethylene glycol uses SUNBRIGHT PTE200GS (hereinafter abbreviated as PTE200GS) and SUNBRIGHT PTE200PA (weight average molecular weight 20000, hereinafter abbreviated as PTE200PA) (both manufactured by NOF Corporation) having a weight average molecular weight of 20000. It was. Laponite XLG 0.16 g was dispersed in 3 ml of an aqueous solution adjusted to pH 7.4 by adding hydrochloric acid to 100 mM sodium pyrophosphate (anhydrous) (also known as sodium diphosphate). Next, 240 mg of PTE200PA and 320 μg of HRP enzyme (Horse radish peroxidase: hemeprotein: molecular weight 44000, EC No. 1.11.1.7) were added and mixed uniformly. Separately, hydrochloric acid was added to 100 mM sodium pyrophosphate, and 240 mg of PTE200GS was dissolved in 1 ml of an aqueous solution adjusted to pH 7.2. Next, the obtained PTE200PA / clay / HRP aqueous solution and PTE200GS aqueous solution were cooled in an ice bath, mixed, and stirred vigorously for 15 seconds. The mixed solution was filled in an 80 mm × 50 mm × 1 mm glass container and reacted at 25 ° C. for 2 hours. As a result, a transparent and homogeneous hydrogel was obtained.

得られたゲルを1g切り出し、100mlの水中(37℃)に入れ、12日間保持した。12日の間の所定の時間毎に200μlずつ液を採取し、酵素活性を測定した。測定方法は、サンプリングした溶液を37℃にしておき、96ウェルプレートにSTEバッファー(組成:100mMTris−HCl、pH8.0、1MNaCl、10mMEDTA)5μl、溶液45μl、TMB(3,3',5,5'-tetramethylbenzidine)基質50μlを添加し、25℃で1分間反応させた後、1N−塩酸50μlを添加して酵素反応を停止させ、次いで、プレートリーダーで450nmの吸光度を測定し、サンプリングした溶液1μLあたりの吸光度(ABS/μL溶液)で、酵素活性を評価した。   1 g of the obtained gel was cut out, put into 100 ml of water (37 ° C.), and held for 12 days. 200 μl of liquid was sampled at predetermined time intervals during 12 days, and enzyme activity was measured. In the measurement method, the sampled solution was kept at 37 ° C., and STE buffer (composition: 100 mM Tris-HCl, pH 8.0, 1 M NaCl, 10 mM EDTA) 5 μl, solution 45 μl, TMB (3,3 ′, 5,5) were placed in a 96-well plate. '-tetramethylbenzidine) substrate (50 μl) was added and reacted at 25 ° C. for 1 minute. Then, 1 N hydrochloric acid (50 μl) was added to stop the enzyme reaction, and then the absorbance at 450 nm was measured with a plate reader. The enzyme activity was evaluated based on the absorbance (ABS / μL solution).

結果を図1に示す。比較例1(HRPを37℃水中で分散して保持)や比較例2(HRPを37℃のクレイ水溶液に分散して保持)と比べて高い活性を示し、有機・無機複合ゲルの分解物中に含まれた酵素は熱安定性が向上しているのがわかった。   The results are shown in FIG. Compared to Comparative Example 1 (HRP dispersed and held in 37 ° C. water) and Comparative Example 2 (HRP dispersed and held in 37 ° C. clay aqueous solution), it shows a high activity and is in a decomposition product of organic / inorganic composite gel. It was found that the enzyme contained in had improved thermal stability.

(比較例1)
HRP酵素を有機・無機複合ゲル中に担持させず、100mlの水中(37℃)に0.8μgのHRP(実施例1でのHRP担持量と一緒)を入れ、12日間保持し、その間の所定の時間で200μlずつ採取し、実施例1と同様の方法で酵素活性を評価した。その結果を図1に示す。低い酵素活性を示した。
(Comparative Example 1)
HRP enzyme is not supported in the organic / inorganic composite gel, but 0.8 μg of HRP (along with the amount of HRP supported in Example 1) is placed in 100 ml of water (37 ° C.) and held for 12 days. 200 μl each was collected at the time of, and the enzyme activity was evaluated in the same manner as in Example 1. The result is shown in FIG. Showed low enzyme activity.

(比較例2)
HRP酵素を有機・無機複合ゲル中に担持させず、クレイ3.81gを含む100mlのクレイ水溶液中(37℃)に0.8μgのHRP(実施例1でのHRP担持量と一緒)を入れ、12日間保持し、その間の所定の時間で200μlずつ採取し、実施例1と同様の方法で酵素活性を評価した。その結果を図1に示す。酵素活性は殆ど示さなかった。
(Comparative Example 2)
Without supporting the HRP enzyme in the organic / inorganic composite gel, 0.8 μg of HRP (along with the amount of HRP supported in Example 1) was put in 100 ml of an aqueous clay solution (37 ° C.) containing 3.81 g of clay, The sample was held for 12 days, and 200 μl was collected at a predetermined time during that time, and the enzyme activity was evaluated in the same manner as in Example 1. The result is shown in FIG. Almost no enzyme activity was shown.

(実施例2、比較例3)
実施例1で得られたHRP酵素含有有機・無機複合ゲルを密閉容器に移し、実施例2では37℃で4日間保存した。その後、ゲル1gを100gの水中(37℃)に浸漬して1日間保持し、水をサンプリングして実施例1と同様な方法により酵素活性を測定した。また比較例3ではHRPを37の℃水中にて4日間保持し、その後、更に、37℃の水中で1日間保持した後、水をサンプリングして同様に酵素活性を調べた。なお、実施例2および比較例3の酵素活性保持率は、37℃で保持する前に測定した値を100%として表示した。実施例2は比較例3と比べて高い活性を示した。
(Example 2, Comparative Example 3)
The HRP enzyme-containing organic / inorganic composite gel obtained in Example 1 was transferred to a sealed container, and in Example 2, it was stored at 37 ° C. for 4 days. Thereafter, 1 g of the gel was immersed in 100 g of water (37 ° C.) and held for 1 day, and water was sampled to measure the enzyme activity in the same manner as in Example 1. In Comparative Example 3, HRP was kept in water at 37 ° C. for 4 days, and further kept in water at 37 ° C. for 1 day, and then the water was sampled and the enzyme activity was similarly examined. In addition, the enzyme activity retention rate of Example 2 and Comparative Example 3 was displayed with the value measured before maintaining at 37 ° C. as 100%. Example 2 showed higher activity than Comparative Example 3.

Claims (12)

複数のポリエチレングリコール鎖が化学的に架橋された分岐構造又は網目構造を有する高分子化合物(A)と層状剥離した粘土鉱物(B)とが複合化したヒドロゲル又はその分解物中にタンパク質(C)を含有していることを特徴とするタンパク質含有有機無機複合ヒドロゲル。   Protein (C) in a hydrogel in which a polymer compound (A) having a branched structure or network structure in which a plurality of polyethylene glycol chains are chemically cross-linked and a clay mineral (B) exfoliated in layers is complexed or a decomposition product thereof A protein-containing organic-inorganic composite hydrogel comprising: 前記高分子化合物(A)と層状剥離した粘土鉱物(B)の質量比((B)/(A))が0.03〜3である請求項1記載のタンパク質含有有機無機複合ヒドロゲル。 The protein-containing organic-inorganic composite hydrogel according to claim 1, wherein a mass ratio ((B) / (A)) of the polymer compound (A) and the layered exfoliated clay mineral (B) is 0.03 to 3. 前記層状剥離した粘土鉱物(B)が水膨潤性無機粘土鉱物である請求項1又は2に記載のタンパク質含有有機無機複合ヒドロゲル。 The protein-containing organic-inorganic composite hydrogel according to claim 1 or 2, wherein the layered exfoliated clay mineral (B) is a water-swellable inorganic clay mineral. 前記高分子化合物(A)の化学的架橋がアミド結合によるものであり、且つ、(A)と(B)が三次元網目を形成している請求項1〜3のいずれかに記載のタンパク質含有有機無機複合ヒドロゲル。 The protein-containing product according to any one of claims 1 to 3, wherein the chemical crosslinking of the polymer compound (A) is based on an amide bond, and (A) and (B) form a three-dimensional network. Organic inorganic composite hydrogel. 前記高分子化合物(A)がエステル基を有し、前記アミド結合に対するエステル基のモル比が、0.1〜2である請求項4記載のタンパク質含有有機無機複合ヒドロゲル。 The protein-containing organic-inorganic composite hydrogel according to claim 4, wherein the polymer compound (A) has an ester group, and the molar ratio of the ester group to the amide bond is 0.1-2. 前記高分子化合物(A)が、同一分子中にポリエチレングリコール鎖と複数の反応性官能基(Q1)とを有する化合物(a1)と、該反応性官能基(Q1)と反応しうる複数の反応性官能基(Q2)を有する化合物(a2)とを反応させた化合物である請求項1、2又は3記載のタンパク質含有有機無機複合ヒドロゲル。 The polymer compound (A) has a compound (a1) having a polyethylene glycol chain and a plurality of reactive functional groups (Q1) in the same molecule, and a plurality of reactions capable of reacting with the reactive functional group (Q1). The protein-containing organic-inorganic composite hydrogel according to claim 1, 2 or 3, which is a compound obtained by reacting a compound (a2) having a functional functional group (Q2). 前記化合物(a1)が下記式(1)で表される化合物であり、化合物(a2)が下記式(2)で表される化合物であり、共に重量平均分子量が1000〜100000である請求項6記載のタンパク質含有有機無機複合ヒドロゲル。
Figure 2012024050
(式中、Xは下記式(3)
Figure 2012024050
で表される基であり、nは整数である。)
Figure 2012024050
(式中、Yは-CH2CH2CH2NH2で表される基であり、nは整数である。)
The compound (a1) is a compound represented by the following formula (1), the compound (a2) is a compound represented by the following formula (2), and both have a weight average molecular weight of 1,000 to 100,000. The protein-containing organic-inorganic composite hydrogel described.
Figure 2012024050
(In the formula, X represents the following formula (3)
Figure 2012024050
And n is an integer. )
Figure 2012024050
(In the formula, Y is a group represented by —CH 2 CH 2 CH 2 NH 2 , and n is an integer.)
請求項1〜7のいずれかに記載のタンパク質含有有機無機複合ヒドロゲルを用いた生体埋め込み材料。 A biological implant material using the protein-containing organic-inorganic composite hydrogel according to claim 1. 粘土鉱物(B)を水媒体中で層状剥離させることにより該粘土鉱物(B)の水分散液を製造し、
その層状剥離した粘土鉱物及びタンパク質(C)の存在下で、
同一分子中にポリエチレングリコール鎖と複数の反応性官能基(Q1)とを有する化合物(a1)と、
該反応性官能基(Q1)と反応しうる複数の反応性官能基(Q2)を有する化合物(a2)とを反応させる工程を行なう、
ことを特徴とする請求項1〜7のいずれかに記載のタンパク質含有有機無機複合ヒドロゲルの製造方法。
An aqueous dispersion of the clay mineral (B) is produced by layering the clay mineral (B) in an aqueous medium,
In the presence of the delaminated clay mineral and protein (C),
A compound (a1) having a polyethylene glycol chain and a plurality of reactive functional groups (Q1) in the same molecule;
Performing a step of reacting the compound (a2) having a plurality of reactive functional groups (Q2) capable of reacting with the reactive functional group (Q1),
The method for producing a protein-containing organic-inorganic composite hydrogel according to any one of claims 1 to 7.
前記化合物(a1)と化合物(a2)の反応をピロリン酸の存在下で行なう請求項9記載のタンパク質含有有機無機複合ヒドロゲルの製造方法。 The method for producing a protein-containing organic-inorganic composite hydrogel according to claim 9, wherein the reaction between the compound (a1) and the compound (a2) is carried out in the presence of pyrophosphate. 前記粘土鉱物(B)及びタンパク質(C)の水分散液に前記化合物(a1)及び化合物(a2)のいずれか片方を添加し、その後、他方の化合物を添加して反応させる請求項9又は10記載のタンパク質含有有機無機複合ヒドロゲルの製造方法。 The compound (a1) or the compound (a2) is added to the aqueous dispersion of the clay mineral (B) and the protein (C), and then the other compound is added and reacted. The manufacturing method of protein containing organic-inorganic composite hydrogel of description. 複数のポリエチレングリコール鎖が化学的に架橋された分岐構造又は網目構造を有する高分子化合物(A)と層状剥離した粘土鉱物(B)とが複合化した有機無機複合ヒドロゲル又はその分解物中にタンパク質(C)を含有させることにより、該タンパク質(C)の安定性を向上させることを特徴とするタンパク質安定化方法。   An organic-inorganic composite hydrogel in which a polymer compound (A) having a branched structure or network structure in which a plurality of polyethylene glycol chains are chemically cross-linked and a clay mineral (B) exfoliated in a layer form a composite, or a protein in a decomposition product thereof A protein stabilization method comprising improving the stability of the protein (C) by containing (C).
JP2010168035A 2010-07-27 2010-07-27 Protein-containing organic-inorganic composite hydrogel, method for producing the same, and method for stabilizing protein Expired - Fee Related JP4704510B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168035A JP4704510B1 (en) 2010-07-27 2010-07-27 Protein-containing organic-inorganic composite hydrogel, method for producing the same, and method for stabilizing protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168035A JP4704510B1 (en) 2010-07-27 2010-07-27 Protein-containing organic-inorganic composite hydrogel, method for producing the same, and method for stabilizing protein

Publications (2)

Publication Number Publication Date
JP4704510B1 JP4704510B1 (en) 2011-06-15
JP2012024050A true JP2012024050A (en) 2012-02-09

Family

ID=44237108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168035A Expired - Fee Related JP4704510B1 (en) 2010-07-27 2010-07-27 Protein-containing organic-inorganic composite hydrogel, method for producing the same, and method for stabilizing protein

Country Status (1)

Country Link
JP (1) JP4704510B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199950A1 (en) * 2020-03-31 2021-10-07 テルモ株式会社 Artificial blood vessel and method for manufacturing artificial blood vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199950A1 (en) * 2020-03-31 2021-10-07 テルモ株式会社 Artificial blood vessel and method for manufacturing artificial blood vessel

Also Published As

Publication number Publication date
JP4704510B1 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
Monavari et al. 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO2-CaO nanoparticles for bone tissue engineering
Li et al. A bioinspired alginate-gum arabic hydrogel with micro-/nanoscale structures for controlled drug release in chronic wound healing
Sagnella et al. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials
Koyano et al. Surface states of PVA/chitosan blended hydrogels
Zhang et al. Properties and biocompatibility of chitosan films modified by blending with PEG
Pavinatto et al. Chitosan in nanostructured thin films
Hou et al. Enzymatically crosslinked alginate hydrogels with improved adhesion properties
Ran et al. Rational design of a stable, effective, and sustained dexamethasone delivery platform on a titanium implant: An innovative application of metal organic frameworks in bone implants
EP3044163B1 (en) Nanoparticles for use in bioadhesion
Abraham et al. Poly (carboxybetaine methacrylamide)-modified nanoparticles: a model system for studying the effect of chain chemistry on film properties, adsorbed protein conformation, and clot formation kinetics
Kouser et al. Functionalization of halloysite nanotube with chitosan reinforced poly (vinyl alcohol) nanocomposites for potential biomedical applications
Desimone et al. In vitro studies and preliminary in vivo evaluation of silicified concentrated collagen hydrogels
Verdejo et al. Reactive polyurethane carbon nanotube foams and their interactions with osteoblasts
Chen et al. Enhanced skin adhesive property of hydrophobically modified poly (vinyl alcohol) films
JP2011057962A (en) Organic/inorganic composite hydrogel, and method for producing the same
WO2001007582A1 (en) Three-dimensional cell incubation media and method for incubating cells by using the same
Becerra et al. Improving Fibrin Hydrogels’ Mechanical Properties, through Addition of Silica or Chitosan‐Silica Materials, for Potential Application as Wound Dressings
Müller et al. Hardening of bio-silica in sponge spicules involves an aging process after its enzymatic polycondensation: Evidence for an aquaporin-mediated water absorption
Ates et al. Biomedical applications of hybrid polymer composite materials
JP4704510B1 (en) Protein-containing organic-inorganic composite hydrogel, method for producing the same, and method for stabilizing protein
Tong et al. Protein adsorption and cell adhesion on RGD-functionalized silicon substrate surfaces
Kros et al. Silane-based hybrids for biomedical applications
Jukarainen et al. Block and graft copolymers of poly (ethylene glycol) and poly (dimethylsiloxane) for blood contacting biomedical materials applications
CN102240416A (en) Heparinizing method and application thereof
Arai et al. Preparation of silk fibroin and polyallylamine composites

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110309

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees