JP2012015257A - 光電変換装置および光電変換装置の製造方法 - Google Patents
光電変換装置および光電変換装置の製造方法 Download PDFInfo
- Publication number
- JP2012015257A JP2012015257A JP2010149218A JP2010149218A JP2012015257A JP 2012015257 A JP2012015257 A JP 2012015257A JP 2010149218 A JP2010149218 A JP 2010149218A JP 2010149218 A JP2010149218 A JP 2010149218A JP 2012015257 A JP2012015257 A JP 2012015257A
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- semiconductor layer
- conversion device
- layer
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
【課題】光電変換効率の高い光電変換装置を提供すること。
【解決手段】光電変換装置10は、VI族元素がカルコゲン元素であるI−III−VI族化合物半導体を主成分とするとともに珪素元素および酸素元素を含む半導体層3を具備する。また、光電変換装置10の製造方法は、I族元素およびIII族元素を含む前駆体層を作製する工程と、前駆体層およびシリコーンを焼成炉内に載置し、焼成炉にカルコゲン元素を含むガスを導入しながら前駆体層およびシリコーンを加熱することによって半導体層3を作製する工程とを具備する。
【選択図】図1
【解決手段】光電変換装置10は、VI族元素がカルコゲン元素であるI−III−VI族化合物半導体を主成分とするとともに珪素元素および酸素元素を含む半導体層3を具備する。また、光電変換装置10の製造方法は、I族元素およびIII族元素を含む前駆体層を作製する工程と、前駆体層およびシリコーンを焼成炉内に載置し、焼成炉にカルコゲン元素を含むガスを導入しながら前駆体層およびシリコーンを加熱することによって半導体層3を作製する工程とを具備する。
【選択図】図1
Description
本発明は、I−III−VI族化合物半導体を含む光電変換装置に関する。
太陽光発電などに使用される光電変換装置として、光吸収係数が高いCIGSなどのカルコパイライト系のI−III−VI族化合物半導体にて光吸収層を形成したものがある。I−III−VI族化合物半導体は光吸収係数が高く、光電変換装置の薄膜化や大面積化や低コスト化に適しており、これを用いた次世代太陽電池の研究開発が進められている。
このようなI−III−VI族化合物半導体層を用いた光電変換装置は、そのI−III−VI族化合物半導体層中に存在する欠陥により、光電変換効率を向上するのが困難である。特許文献1では、I−III−VI族化合物半導体層を形成する際に水または水酸基を導入することにより、I−III−VI族化合物半導体層中に生じるアニオン空孔を酸素で埋めて欠陥を抑制することが記載されている。
しかしながら、特許文献1の方法では、I−III−VI族化合物半導体層を形成する際、原料金属の酸化が進行するため、良好なI−III−VI族化合物半導体層を作製することが困難である。よって、光電変換効率を十分に高められない。
本発明は、上記課題に鑑みてなされたものであり、欠陥の少ないI−III−VI族化合物半導体層を良好に形成し、光電変換効率の高い光電変換装置を提供することを目的とする。
本発明の一実施形態に係る光電変換装置は、VI族元素がカルコゲン元素であるI−III−VI族化合物半導体を主成分とするとともに珪素元素および酸素元素を含む半導体層を具備することを特徴とする。
本発明の一実施形態に係る光電変換装置の製造方法は、I族元素およびIII族元素を含む前駆体層を作製する工程と、前記前駆体層およびシリコーンを焼成炉内に載置し、該焼成炉にカルコゲン元素を含むガスを導入しながら前記前駆体層および前記シリコーンを加熱することによって前記半導体層を作製する工程とを具備することを特徴とする。
本発明によれば、光電変換効率の高い光電変換装置を提供することができる。
図1は、本発明の光電変換装置の実施の形態の一例を示す斜視図であり、図2はその断面図である。また、図3は本発明の光電変換装置の実施の形態の他の例を示す要部拡大断面図である。また、図4は本発明の光電変換装置の実施の形態の他の例を示す断面図である。(図3、図4において図1,2と同じ構成の部位には同じ符号を付している)。光電変換装置10は、基板1と、第1の半導体層3と、第2の半導体層4と、第2の電極層5とを含んで構成される。また、本実施例においては、第1の半導体層3が光吸収層であり、第2の半導体層4が第1の半導体層3に接合されたバッファ層である例を示すがこれに限定されず、第2の半導体層4が光吸収層であってもよい。
図1、図2において、光電変換装置10は、光電変換セル11が複数並べて形成されている。そして、光電変換セル11は、第1の半導体層3の基板1側に第1の電極層2と離間して設けられた第3の電極層6を具備している。そして、第1の半導体層3に設けられた接続導体7によって、第2の電極層5と第3の電極層6とが電気的に接続されている。この第3の電極層6は、隣接する光電変換セル11の第1の電極層2と一体化されている。この構成により、隣接する光電変セル11同士が直列接続されている。なお、一つの光電変換セル11内において、接続導体7は第1の半導体層3および第2の半導体層4を貫通するように設けられており、第1の電極層2と第2の電極層5とで挟まれた第1の半導体層3と第2の半導体層4とで光電変換が行なわれる。
基板1は、光電変換装置10を支持するためのものである。基板1に用いられる材料としては、例えば、ガラス、セラミックス、樹脂および金属等が挙げられる。
第1の電極層2および第3の電極層6は、Mo、Al、TiまたはAu等の導電体が用いられ、基板1上にスパッタリング法または蒸着法等で形成される。
第1の半導体層3はVI族元素がカルコゲン元素であるI−III−VI族化合物半導体を主成分(第1の半導体層3を構成する化合物の60mol%以上を占める)としたカルコパイライト構造であり、例えば、厚みが1.0〜2.5μmの層状に形成されている。なお、カルコゲン元素とは、VI-B族元素(16族元素ともいう)のうち、S,Se,Teをいう。また、I−III−VI族化合物半導体とは、I−B族元素(11族元素ともいう)とIII−B族元素(13族元素ともいう)とVI−B族元素との化合物半導体であり、カルコパイライト構造を有し、カルコパイライト系化合物半導体と呼ばれる。I−III−VI族化合物半導体としては、例えば、Cu(In,Ga)Se2(CIGSともいう)、Cu(In,Ga)(Se,S)2(CIGSSともいう)、およびCuInS2(CISともいう)が挙げられる。なお、Cu(In,Ga)Se2とは、CuとInとGaとSeとから主に構成された化合物をいう。また、Cu(In,Ga)(Se,S)2とは、CuとInとGaとSeとSとから主に構成された化合物をいう。
第1の半導体層3は、さらに珪素元素および酸素元素を含んでいる。これにより、珪素元素が酸素元素と良好に結合した状態でI−III−VI族化合物半導体中に満遍なく取り込まれることとなる。その結果、I−III−VI族化合物半導体の原料金属の酸化を抑制しながら、酸素元素によりI−III−VI族化合物半導体中の欠陥を埋めることができ、欠陥の少ない良好なI−III−VI族化合物半導体となる。その結果、光電変換装置10の光電変換効率を高めることができる。
第1の半導体層3において、光電変換効率を高めるという観点からは、珪素元素の濃度は5〜40at%であることが好ましく、酸素元素の濃度は5〜60at%であることが好ましい。さらに、第1の電極層2との密着性を高めるという観点からは、珪素元素の濃
度は10〜30at%であることが好ましく、酸素元素の濃度は30〜60at%であることが好ましい。このような珪素元素の濃度および酸素元素の濃度は、第1の半導体層3の断面を、偏りなく選んだ任意の10点以上の点に対して、エネルギー分散形X線分析(EDS分析)により測定した濃度を平均することで測定できる。
度は10〜30at%であることが好ましく、酸素元素の濃度は30〜60at%であることが好ましい。このような珪素元素の濃度および酸素元素の濃度は、第1の半導体層3の断面を、偏りなく選んだ任意の10点以上の点に対して、エネルギー分散形X線分析(EDS分析)により測定した濃度を平均することで測定できる。
好ましくは、図3に示すように、上記の珪素元素および酸素元素を高濃度に含む粒状領域9が第1の半導体層3層中に点在していることが好ましい。これにより、I−III−VI族化合物半導体中の欠陥を良好に埋めることができるとともにI−III−VI族化合物半導体中での電荷移動が良好に行われる。なお、珪素元素および酸素元素を高濃度に含むというのは、粒状領域9における珪素元素および酸素元素の合計の濃度が、その粒状領域9の周辺における珪素元素および酸素元素の合計の濃度よりも4倍以上高いことをいう。
このような粒状領域9の平均粒径は、電荷移動を良好にするとともに第1の半導体層3中に満遍なく酸素を供給するという観点から、5〜100nmであることが好ましい。
このような第1の半導体層3は、次のようにして作製される。まず、第1の電極層2上に、第1の半導体層3の原料金属(I−B族元素およびIII−B族元素)を含む前駆体層を形成する。前駆体層は、原料金属をスパッタリング等の薄膜形成方法を用いて皮膜形成することにより、あるいは、原料金属を含む有機金属塩や有機金属錯体等の溶液を塗布して皮膜形成することにより、形成することができる。なお、これらの前駆体層中にはカルコゲン元素を含んでいてもよい。
そして、この前駆体層を加熱炉内に載置し、加熱炉内を第1の半導体層3を構成するカルコゲン元素を含む雰囲気にして前駆体層を加熱する。この際、加熱炉の雰囲気中に珪素元素および酸素元素を含ませることにより、前駆体層の原料金属をカルコゲン化してI−III−VI族化合物半導体にすると同時に、珪素元素および酸素元素をこのI−III−VI族化合物半導体中に取り込ませることができる。なお、上記カルコゲン元素を含む雰囲気とは、カルコゲン元素の単体の気体、あるいは、カルコゲン元素の水素化物のようなカルコゲン化合物の気体を含む雰囲気である。
上記加熱炉の雰囲気中に珪素元素および酸素元素を含ませる方法としては、例えば、珪素元素を含む化合物および酸素元素を含む化合物を加熱して、あるいは、珪素元素および酸素元素をともに含む化合物を加熱して、熱分解により生じた分解物質を、上記カルコゲン元素を含む雰囲気中に混合させればよい。このような珪素元素を含む化合物、酸素元素を含む化合物、および珪素元素および酸素元素をともに含む化合物としては、有機化合物や無機化合物、有機無機ハイブリッド材料等が用いられる。そして、このような化合物の熱分解条件、具体的には、上記化合物の熱分解温度や加熱温度、昇温速度等を調整することにより、第1の半導体層3中への珪素元素および酸素元素の混入量、混入状態を制御することができる。
好ましくは、珪素と酸素からなるシロキサン結合を骨格とする化合物を上記加熱炉内に載置し、これを加熱するのがよい。これにより、珪素と酸素とが良好に結合した状態で第1の半導体層3中に取り込まれ、第1の半導体層3の原料金属の酸化を良好に抑制することができる。
このような珪素と酸素からなるシロキサン結合を骨格とする化合物としては、熱分解温度が、第1の半導体層3を構成するI−III−VI族化合物半導体を形成する際の結晶化温度(例えば、500〜600℃)よりも高い温度であるシリコーンを用いるのがよい。シリコーンは有機物を含んでいるため、熱分解温度よりも低い場合でも、徐々に劣化が進行し、特に粒状の状態となって第1の半導体層3中に珪素元素および酸素元素が取り込まれ
やすくなる。
やすくなる。
あるいは第1の半導体層3の他の作製方法として、第1の半導体層3の原料金属を含む有機金属塩や有機金属錯体等の溶液中に、珪素元素を含む化合物、酸素元素を含む化合物、または珪素元素および酸素元素をともに含む化合物を混入させ、これを塗布して皮膜形成し、これを熱処理することにより、形成することもできる。
また、第1の半導体層3に含有される珪素元素および酸素元素はアルカリ金属元素も良好にトラップさせる作用をも有する。よって、第1の半導体層3の原料を含む前駆体層中にアルカリ金属元素を含有させて結晶化を促進させようとした場合、アルカリ金属元素を良好にトラップし、結晶化中にアルカリ金属元素を良好に供給することができる。つまり、アルカリ金属元素は拡散しやすいために結晶化がある程度進行すると第1の半導体層3中には残存し難くなるが、本発明のように珪素元素および酸素元素によってトラップさせることにより、結晶化が進行してからも継続してアルカリ金属元素を供給することができ、結晶化をより高めることが可能となる。
光電変換装置10は、上記第1の半導体層3を光吸収層として用い、この第1の半導体層3上に第2の半導体層4が10〜200nmの厚みで形成され、この第2の半導体層4上に第2の電極層5が形成される。なお、第2の半導体層4を形成せず、第1の半導体層3上に第2の電極層5を形成してもよい。あるいは第2の電極層5を形成せず、第2の半導体層4を電極として機能させることもできる。
第2の半導体層4は、第1の半導体層3に対してヘテロ接合を行う半導体層をいう。第1の半導体層3と第2の半導体層4とは異なる導電型であることが好ましく、例えば、第1の半導体層3がp型半導体である場合、第2の半導体層4はi型またはn型半導体である。好ましくはリーク電流を低減するという観点からは、第2の半導体層は、抵抗率が1Ω・cm以上の層であるのがよい。第2の半導体層4としては、CdS、ZnS、ZnO、In2Se3、In(OH,S)、(Zn,In)(Se,OH)、および(Zn,Mg)O等が挙げられ、例えばケミカルバスデポジション(CBD)法等で形成される。なお、In(OH,S)とは、InとOHとSとから主に構成された化合物をいう。(Zn,In)(Se,OH)は、ZnとInとSeとOHとから主に構成された化合物をいう。(Zn,Mg)Oは、ZnとMgとOとから主に構成された化合物をいう。第2の半導体層4は第1の半導体層3の吸収効率を高めるため、第1の半導体層3が吸収する光の波長領域に対して光透過性を有するものが好ましい。
第2の電極層5は、ITO、ZnO等の0.05〜3.0μmの透明導電膜である。第2の電極層5は、スパッタリング法、蒸着法または化学的気相成長(CVD)法等で形成される。第2の電極層5は、第2の半導体層4よりも抵抗率の低い層であり、第1の半導体層3で生じた電荷を取り出すためのものである。電荷を良好に取り出すという観点からは、第2の電極層5の抵抗率が1Ω・cm未満でシート抵抗が50Ω/□以下であるのがよい。なお、第2の電極層5は、第1の半導体層と異なる導電型の半導体層であってもよく、いわゆる窓層と呼ばれるものも含まれる。
第2の電極層5は第1の半導体層3の吸収効率を高めるため、第1の半導体層3の吸収光に対して光透過性を有するものが好ましい。光透過性を高めると同時に光反射ロス防止効果および光散乱効果を高め、さらに光電変換によって生じた電流を良好に伝送するという観点から、第2の電極層5は0.05〜0.5μmの厚さとするのが好ましい。また、第2の電極層5と第2の半導体層4との界面での光反射ロスを防止する観点からは、第2の電極層5と第2の半導体層4の屈折率は等しいのが好ましい。
光電変換装置10は、第1および第2の半導体層3,4を第1および第2の電極層1,5で挟んだ構成の光電変換セル11を、複数個並べてこれらを電気的に接続して成る。隣接する光電変換せる11同士を容易に直列接続するために、図1、図2に示すように、光電変換セル11は、第1の半導体層3の基板1側に第1の電極層2と離間して設けられた第3の電極層6を具備している。そして、第1の半導体層3に設けられた接続導体7によって、第2の電極層5と第3の電極層6とが電気的に接続されている。
接続導体7は、第1および第2の半導体層3,4よりも電気抵抗率の低い材料で構成されている。このような接続導体7は、例えば、第1および第2の半導体層3,4を貫通する溝を形成し、この溝内に導体を形成することにより形成することができる。このような導体としては、例えば、第1および第2の半導体層3,4を貫通する溝を形成した後、上部電極層5をこの溝内にも形成することで接続導体7を形成してもよく(図1,2参照)、上記溝内に導電ペーストを充填することで接続導体7を形成してもよい(図4参照)。なお、図4は、集電電極8を導電ペーストで形成する際、第1および第2の半導体層3,4を貫通する溝内にも導電ペーストを充填して接続導体7を形成している。あるいは、上記のような溝を形成せず、第1および第2の半導体層3,4の一部を改質して電気抵抗率を低くすることによっても形成することができる。
また、光電変換装置10は、図1,図2に示すように、第2の電極層5上に集電電極8が形成されていてもよい。集電電極8は、第2の電極層5の電気抵抗を小さくするためのものである。集電電極8は、例えば、図1に示すように、光電変換セル11の一端から接続導体7にかけて線状に形成されている。これにより、第1の半導体層3の光電変換により生じた電流を第2の電極層5を介して集電電極8に集電し、これを接続導体7を介して隣接する光電変換セル11に良好に導電することができる。よって、集電電極8が設けられていることにより、第2電極層5を薄くしても第1の半導体層3で発生した電流を効率よく取り出すことができる。その結果、発電効率を高めることができる。
集電電極8は第1の半導体層3への光を遮るのを抑制するとともに良好な導電性を有するという観点からは、50〜400μmの幅を有するのが好ましい。また、集電電極8は、枝分かれした複数の分岐部を有していてもよい。
集電電極8は、例えば、Ag等の金属粉を樹脂バインダー等に分散させた金属ペーストをパターン状に印刷し、これを硬化することによって形成することができる。
本発明の光電変換装置について、以下のようにして評価した。まず、I-B族元素の有機金属錯体としてCu(CH3CN)4・PF6を1mmolと、ルイス塩基性有機化合物としてP(C6H5)3を2mmolと、をそれぞれ10mlのアセトニトリルに溶解させた。これらの溶液が均一に溶解したのを確認した後、マグネチックスターラーにて室温で5時間攪拌させ、第1錯体を含有する第1錯体溶液1を作製した。一方、NaOCH3を4mmolと、カルコゲン元素含有有機化合物としてのHSeC6H5を4mmolと、を30mlのメタノールに溶解させた後、InCl3を0.7mmolおよびGaCl3を0.3mmol溶解させた。完全に溶解したのを確認した後、マグネチックスターラーにて室温で5時間攪拌させ、第2錯体を含有する第2錯体溶液2を作製した。次に、第1錯体溶液1に第2錯体溶液2を1分間に10mlの速度で滴下した。これにより、滴下中に白い析出物が生成することが確認された。滴下終了後、マグネチックスターラーにて室温で1時間攪拌させたところ、析出物が沈殿していた。この沈殿物のみを取り出すために、遠心分離機にて溶媒を分離し、メタノール50mlに分散させて遠心分離をかけるという操作を2回繰り返した。その結果、最終生成物には、Naの残留量が1ppm以下となっていることが確認された。この沈殿物を真空中において室温で乾燥させて溶媒を取り
除いた後、この沈殿物の組成分析を発光分光分析(ICP)で行った。その結果、沈殿物はトリフェニルフォスフィン、フェニルセレノール、Cu、InおよびGaを含んだ単一源前駆体であることを確認した。この沈殿物中のCuとInとGaとSeのモル比は、1.04:0.77:0.23:4.05であった。
除いた後、この沈殿物の組成分析を発光分光分析(ICP)で行った。その結果、沈殿物はトリフェニルフォスフィン、フェニルセレノール、Cu、InおよびGaを含んだ単一源前駆体であることを確認した。この沈殿物中のCuとInとGaとSeのモル比は、1.04:0.77:0.23:4.05であった。
次にこの沈殿物にピリジンを添加して沈殿物が全量中50質量%の溶液を作製したあと、この溶液に第3錯体としてインジウムアセチルアセトナートおよびガリウムアセチルアセトナートを添加して溶解し、この溶液中のCuとInとGaのモル比が、0.84:0.62:0.38になるようにして原料溶液を作製した。
次に、表面にMoから成る第1の電極層が形成されたガラス基板を用意し、上記原料溶液をブレード法にて塗布した後、200℃で乾燥し皮膜を形成した。
このブレード法による塗布を合計2回行った後、この皮膜を形成した試料基板を加熱炉内に載置し、水素ガスおよびセレン蒸気を含む雰囲気下で熱処理を実施した。この時、加熱炉内にシリコーン(製品名:タイガースポリマー株式会社製SR型物)の塊も載置しておいた。熱処理条件は、560℃まで12℃/minで昇温した後、500℃にして1時間保持することで行った。これを自然冷却し、厚み2μmのCIGSから成る第1の半導体層を作製した。
次に、ヨウ化カドミウムとチオ尿素をアンモニア水に溶解し、これに上記第1の半導体層を形成した基板を浸漬し、第1の半導体層上に厚み50nmのCdSからなる第2の半導体層を形成した。さらに、第2の半導体層の上に、スパッタリング法にてAlドープ酸化亜鉛膜からなる透明の第2の電極層を形成した。最後に蒸着にてアルミ電極(取出電極)を形成して、サンプルとしての光電変換装置を作製した。
また、比較例としての光電変換装置を、加熱炉内に上記シリコーンを載置せずに熱処理を行うこと以外は上記サンプルとしての光電変換装置と同様の方法で作製した。
上記のように作製した、サンプルとしての光電変換装置と、比較例としての光電変換装置について、第1の半導体層の断面をTEMで観察した。その結果、サンプルとしての光電変換装置の第1の半導体層には、平均粒径が60nmの粒状領域が互いの粒状体間の平均間隔が500nmの状態で点在しているのが観察された。一方、比較例ではそのような粒状領域は観察されなかった。
次に、この第1の半導体層の断面をEDS分析した。その結果、サンプルとしての光電変換装置の第1の半導体層は、粒状領域以外の残部における珪素元素濃度が3.1at%、酸素元素濃度が7.27at%であるのに対し、粒状領域における珪素元素濃度が17.4at%、酸素元素濃度が42.6at%と高くなっていた。一方、比較例としての光電変換装置の第1の半導体層は、特に珪素元素濃度および酸素元素濃度の高い部分はなく、珪素元素濃度が0.3at%、酸素元素濃度が1.83at%であった。
そして、これらの光電変換装置について、それぞれ光電変換効率を測定した。なお、光電変換効率については、いわゆる定常光ソーラシミュレーターが用いられて、光電変換装置10の受光面に対する光の照射強度が100mW/cm2であり且つAM(エアマス)が1.5である条件下での変換効率が測定された。
測定の結果、比較例としての光電変換装置の光電変換効率は11.65%であったのに対し、サンプルとしての光電変換装置の光電変換効率は12.89%であり、優れていることがわかった。
1:基板
2:第1の電極層
3:第1の半導体層
4:第2の半導体層
5:第2の電極層
6:第3の電極層
7:接続導体
8:集電電極
9:粒状領域
10:光電変換装置
2:第1の電極層
3:第1の半導体層
4:第2の半導体層
5:第2の電極層
6:第3の電極層
7:接続導体
8:集電電極
9:粒状領域
10:光電変換装置
Claims (3)
- VI族元素がカルコゲン元素であるI−III−VI族化合物半導体を主成分とするとともに珪素元素および酸素元素を含む半導体層を具備することを特徴とする光電変換装置。
- 前記珪素元素および前記酸素元素を高濃度に含む粒状の領域が前記半導体層中に点在している、請求項1に記載の光電変換装置。
- 請求項1または2に記載の光電変換装置の製造方法であって、
I族元素およびIII族元素を含む前駆体層を作製する工程と、
前記前駆体層およびシリコーンを焼成炉内に載置し、該焼成炉にカルコゲン元素を含むガスを導入しながら前記前駆体層および前記シリコーンを加熱することによって前記半導体層を作製する工程と
を具備することを特徴とする光電変換装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010149218A JP2012015257A (ja) | 2010-06-30 | 2010-06-30 | 光電変換装置および光電変換装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010149218A JP2012015257A (ja) | 2010-06-30 | 2010-06-30 | 光電変換装置および光電変換装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012015257A true JP2012015257A (ja) | 2012-01-19 |
Family
ID=45601357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010149218A Withdrawn JP2012015257A (ja) | 2010-06-30 | 2010-06-30 | 光電変換装置および光電変換装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012015257A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013111498A1 (ja) * | 2012-01-25 | 2013-08-01 | 京セラ株式会社 | 光電変換装置 |
EP4138324A1 (en) | 2011-07-13 | 2023-02-22 | Sun Patent Trust | Terminal apparatus and transmission method |
-
2010
- 2010-06-30 JP JP2010149218A patent/JP2012015257A/ja not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4138324A1 (en) | 2011-07-13 | 2023-02-22 | Sun Patent Trust | Terminal apparatus and transmission method |
WO2013111498A1 (ja) * | 2012-01-25 | 2013-08-01 | 京セラ株式会社 | 光電変換装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5340314B2 (ja) | 化合物半導体の製造方法および光電変換装置の製造方法ならびに半導体形成用溶液 | |
JP5261581B2 (ja) | 半導体層の製造方法、光電変換装置の製造方法および半導体層形成用溶液 | |
WO2011149008A1 (ja) | 光電変換装置および光電変換装置の製造方法 | |
US9184329B2 (en) | Photoelectric conversion device | |
JP2012015257A (ja) | 光電変換装置および光電変換装置の製造方法 | |
JP2013098191A (ja) | 光電変換装置 | |
JP2012033730A (ja) | 光電変換装置の製造方法 | |
JP5451899B2 (ja) | 光電変換装置 | |
JP5566335B2 (ja) | 光電変換装置の製造方法 | |
JP5570650B2 (ja) | 半導体層の製造方法および光電変換装置の製造方法 | |
JP5683377B2 (ja) | 半導体層の製造方法および光電変換装置の製造方法 | |
JP2013012722A (ja) | 光電変換装置の製造方法 | |
JP5832229B2 (ja) | 光電変換装置 | |
JP2012114344A (ja) | I−iii−vi族化合物半導体形成用前駆体、i−iii−vi族化合物半導体の製造方法および光電変換装置の製造方法 | |
JP2012033542A (ja) | 光電変換装置および光電変換装置の製造方法 | |
JP2012049358A (ja) | 金属カルコゲナイド粒子の製造方法および光電変換装置の製造方法 | |
JP5618942B2 (ja) | 光電変換装置の製造方法 | |
JP2012033728A (ja) | 金属カルコゲナイド粒子の製造方法および光電変換装置の製造方法 | |
JP2011249560A (ja) | 半導体層の製造方法および光電変換装置の製造方法 | |
JP2014022562A (ja) | 光電変換装置の製造方法 | |
JP2012049452A (ja) | 光電変換装置の製造方法 | |
JP2012160514A (ja) | 金属カルコゲナイド層の製造方法および光電変換装置の製造方法 | |
JP2012169485A (ja) | 半導体形成用化合物の製造方法、半導体層の製造方法および光電変換装置の製造方法 | |
JP2012209302A (ja) | 半導体層の製造方法および光電変換装置の製造方法 | |
US20140345693A1 (en) | Photoelectric conversion device and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130617 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20131024 |