Nothing Special   »   [go: up one dir, main page]

JP2012006200A - Polyimide metal laminate and printed wiring board obtained by using the same - Google Patents

Polyimide metal laminate and printed wiring board obtained by using the same Download PDF

Info

Publication number
JP2012006200A
JP2012006200A JP2010142817A JP2010142817A JP2012006200A JP 2012006200 A JP2012006200 A JP 2012006200A JP 2010142817 A JP2010142817 A JP 2010142817A JP 2010142817 A JP2010142817 A JP 2010142817A JP 2012006200 A JP2012006200 A JP 2012006200A
Authority
JP
Japan
Prior art keywords
polyimide
layer
printed wiring
wiring board
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010142817A
Other languages
Japanese (ja)
Inventor
Kouya Matsuura
航也 松浦
Goji Asano
剛司 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2010142817A priority Critical patent/JP2012006200A/en
Publication of JP2012006200A publication Critical patent/JP2012006200A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyimide metal laminate which is used as a two-layer flexible substrate having excellent heat resistance and has excellent connection reliability when bent in electronic equipment and to provide a printed wiring board obtained by using the polyimide metal laminate.SOLUTION: The polyimide metal laminate 1 includes: a non-thermoplastic polyimide film 13; an adhesive polyimide layer 14 arranged on at least one side of the non-thermoplastic polyimide film 13; and a metal layer 12 arranged on the adhesive polyimide layer 14. The non-thermoplastic polyimide film 13 has ≤4 GPa elastic modulus, the adhesive polyimide layer 14 has 1-3 μm thickness and the metal layer 12 has ≤1.0 μm ten-point average roughness Rz on the contact surface abutted on the adhesive polyimide layer 14.

Description

本発明は、フレキシブル配線板などに使用されるポリイミド金属積層体に関する。   The present invention relates to a polyimide metal laminate used for flexible wiring boards and the like.

近年、電子機器の高性能化とともに、小型化、高機能化などの技術進歩を求められ、それらを構成する電子部品にも電気特性、機械特性、耐熱性なども、より高性能なものを求められている。   In recent years, along with higher performance of electronic devices, technological advances such as miniaturization and higher functionality have been demanded, and electronic components that make up these devices are also required to have higher performance in terms of electrical characteristics, mechanical characteristics, heat resistance, etc. It has been.

従来より、電子部品や半導体チップ等の実装面に回路を形成したプリント配線板が、電子部品や半導体チップ等を実装するために広く用いられている。これまで、一般的には金属箔と耐熱性フィルム(例えば、ポリイミドフィルム)とをエポキシ樹脂等の熱硬化性接着剤を介して積層した銅張積層板が使われてきた。こうした目的で使用される銅張積層板用材料は一般に三層フレキシブル基板と呼ばれる。   2. Description of the Related Art Conventionally, printed wiring boards in which a circuit is formed on a mounting surface for electronic components and semiconductor chips have been widely used for mounting electronic components and semiconductor chips. Conventionally, a copper clad laminate in which a metal foil and a heat resistant film (for example, a polyimide film) are laminated via a thermosetting adhesive such as an epoxy resin has been used. The copper clad laminate material used for such purposes is generally called a three-layer flexible substrate.

しかし、三層フレキシブル基板は、接着剤としてエポキシ樹脂を用いるため耐熱性に問題があり、半田や超音波等を用いた基板上の電極と半導体チップとの接合工程等の高温を要する工程で問題が生じる問題があった。   However, the three-layer flexible substrate uses an epoxy resin as an adhesive, so there is a problem in heat resistance, and there is a problem in a process requiring high temperature such as a bonding process between an electrode on a substrate and a semiconductor chip using solder or ultrasonic waves. There was a problem that occurred.

こうした問題を解決する手段として、エポキシ樹脂といった低耐熱性の熱硬化性接着剤等を使用することなく、ポリイミド層に金属層を形成する方法による種々の材料が上市されており、それらは上記の三層フレキシブル基板に対して、二層フレキシブル基板と呼ばれる。   As a means for solving these problems, various materials based on a method of forming a metal layer on a polyimide layer without using a low heat-resistant thermosetting adhesive such as an epoxy resin have been put on the market. In contrast to a three-layer flexible substrate, it is called a two-layer flexible substrate.

近年の電子機器の軽薄短小化、高機能化に伴い、プリント配線板の小型化、折り曲げやすさが強く望まれている。例えば、電子機器の1つである携帯電話において、ヒンジ部の繰り返し屈曲耐性に優れていることが求められており、カバーレイフィルムの弾性率と曲げ剛性を調節することにより、屈曲性の高いヒンジ部を用いた携帯電話が開示されている(特許文献1)。   As electronic devices have become lighter, thinner, more sophisticated, and more sophisticated in recent years, there has been a strong demand for miniaturization and easy folding of printed wiring boards. For example, a mobile phone which is one of electronic devices is required to have excellent resistance to repeated bending of the hinge portion. By adjusting the elastic modulus and bending rigidity of the coverlay film, the hinge having high flexibility A mobile phone using a part is disclosed (Patent Document 1).

また、電子機器の軽薄短小化に伴い、電子機器内の空間を有効利用するため、プリント配線板を折り曲げた状態で電子機器内に組み込まれることが求められている。折り曲げやすいプリント配線板として、スティフネス値を調整した屈曲性のプリント配線板が開示されている(特許文献2)。   In addition, as electronic devices become lighter, thinner, and smaller, it is required to be incorporated in an electronic device in a state where a printed wiring board is bent in order to effectively use the space in the electronic device. As a printed wiring board that is easy to bend, a flexible printed wiring board having an adjusted stiffness value is disclosed (Patent Document 2).

しかしながら、折り曲げた状態で電子機器内に組み込まれたプリント配線板には、元に戻ろうとする反発力があり、プリント配線板の部品実装部、異方導電性フィルムを介した接合部の接続信頼性が不十分という問題があった。   However, the printed wiring board incorporated in the electronic device in a bent state has a repulsive force to return to the original, and the connection reliability of the printed wiring board component mounting part and the joint part via the anisotropic conductive film There was a problem of insufficient sex.

特開2006−261444号公報JP 2006-261444 A 特開2007−208087号公報JP 2007-208087 A

本発明はかかる点に鑑みてなされたものであり、耐熱性に優れた二層フレキシブル基板において、電子機器内に折り曲げた状態での接続信頼性に優れる、ポリイミド金属積層体及びそれを用いたプリント配線板を提供することを目的とする。   The present invention has been made in view of such a point, and in a two-layer flexible substrate excellent in heat resistance, a polyimide metal laminate excellent in connection reliability in a state folded in an electronic device and a print using the same An object is to provide a wiring board.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、本発明をなすに至っ
た。すなわち、本発明は以下のとおりである。
As a result of intensive studies to solve the above problems, the present inventors have made the present invention. That is, the present invention is as follows.

本発明のポリイミド金属積層体は、非熱可塑性ポリイミドフィルムと、前記非熱可塑性ポリイミドフィルムの少なくとも一方の面上に設けられた接着性ポリイミド層と、前記接着性ポリイミド層上に設けられた金属層とを備え、前記非熱可塑性ポリイミドフィルムの弾性率が4GPa以下であり、接着性ポリイミド層の厚みが1μm〜3μmであり、且つ、前記金属層は、前記接着性ポリイミド層と接する接触面の十点平均粗さRzが1.0μm以下であることを特徴とする。   The polyimide metal laminate of the present invention includes a non-thermoplastic polyimide film, an adhesive polyimide layer provided on at least one surface of the non-thermoplastic polyimide film, and a metal layer provided on the adhesive polyimide layer. The elastic modulus of the non-thermoplastic polyimide film is 4 GPa or less, the thickness of the adhesive polyimide layer is 1 μm to 3 μm, and the metal layer has a contact surface in contact with the adhesive polyimide layer. The point average roughness Rz is 1.0 μm or less.

本発明のポリイミド金属積層体においては、はぜ折り耐性試験値が1回以上であることが好ましい。   In the polyimide metal laminate of the present invention, it is preferable that the test value for the fold resistance is one or more.

本発明のプリント配線板は、上記ポリイミド金属積層体の金属層に回路を形成してなることを特徴とする。   The printed wiring board of the present invention is characterized in that a circuit is formed on the metal layer of the polyimide metal laminate.

本発明のカバーレイ付プリント配線板は、上記プリント配線板と、前記プリント配線板の回路形成面上に設けられたカバーレイとを備えたことを特徴とする。   A printed wiring board with a cover lay according to the present invention includes the printed wiring board and a cover lay provided on a circuit forming surface of the printed wiring board.

本発明のカバーレイ付プリント配線板においては、はぜ折り耐性試験値が4回以上であることが好ましい。   In the printed wiring board with a coverlay of the present invention, it is preferable that the test value of the fold resistance is 4 times or more.

本発明のカバーレイ付プリント配線板においては、前記カバーレイの弾性率が4GPa以下であることが好ましい。   In the printed wiring board with a coverlay of the present invention, the coverlay preferably has an elastic modulus of 4 GPa or less.

本発明によれば、耐熱性に優れた二層フレキシブル基板において、電子機器内に折り曲げた状態での接続信頼性に優れる、ポリイミド金属積層体及びそれを用いたプリント配線板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the two-layer flexible substrate excellent in heat resistance, the polyimide metal laminated body which is excellent in the connection reliability in the state bent in the electronic device, and a printed wiring board using the same can be provided. .

(a)、(b)は、本発明の実施の形態に係るポリイミド金属積層体の断面模式図である。(A), (b) is a cross-sectional schematic diagram of the polyimide metal laminated body which concerns on embodiment of this invention.

本発明は、耐熱性に優れ、折り曲げた状態での接続信頼性に優れるポリイミド金属積層体、およびそれを用いたプリント配線板に関するものである。   The present invention relates to a polyimide metal laminate having excellent heat resistance and excellent connection reliability in a bent state, and a printed wiring board using the same.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
まず、図1を参照して、本実施の形態に係るポリイミド金属積層体の積層構造について説明する。図1(a)、(b)は、本発明の実施の形態に係るポリイミド金属積層体の断面模式図である。図1(a)に示すように、本実施の形態に係るポリイミド金属積層体1は、ポリイミド層11と、このポリイミド層11の一方の主面上に設けられた金属層12とを備える。ポリイミド層11は、非熱可塑性ポリイミドフィルム13と、この非熱可塑性ポリイミドフィルム13と金属層12との間に設けられ、非熱可塑性ポリイミドフィルム13及び金属層12を接着する接着性ポリイミド層14とを含む。なお、図1(b)に示すように、ポリイミド層11の他方の主面上にさらに金属層15を設ける構成としてもよい。この場合においては、ポリイミド層11は、非熱可塑性ポリイミドフィルム13と金属層15との間に設けられ、非熱可塑性ポリイミドフィルム13と金属層15とを接着する接着性ポリイミド層16を含む。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
First, with reference to FIG. 1, the laminated structure of the polyimide metal laminated body which concerns on this Embodiment is demonstrated. 1A and 1B are schematic cross-sectional views of a polyimide metal laminate according to an embodiment of the present invention. As shown in FIG. 1A, the polyimide metal laminate 1 according to the present embodiment includes a polyimide layer 11 and a metal layer 12 provided on one main surface of the polyimide layer 11. The polyimide layer 11 is provided between the non-thermoplastic polyimide film 13 and the non-thermoplastic polyimide film 13 and the metal layer 12, and an adhesive polyimide layer 14 that adheres the non-thermoplastic polyimide film 13 and the metal layer 12. including. In addition, as shown in FIG.1 (b), it is good also as a structure which further provides the metal layer 15 on the other main surface of the polyimide layer 11. FIG. In this case, the polyimide layer 11 includes an adhesive polyimide layer 16 that is provided between the non-thermoplastic polyimide film 13 and the metal layer 15 and adheres the non-thermoplastic polyimide film 13 and the metal layer 15.

このように、本実施の形態に係るポリイミド金属積層体においては、ポリイミド層11の片面又は両面に金属層12、15が設けられ、ポリイミド層11は、非熱可塑性ポリイミドフィルム13と金属層12とを熱圧着可能な接着性ポリイミド層14及び非熱可塑性ポリイミドフィルム13と金属層15とを熱圧着可能な接着性ポリイミド層16を含む。そして、非熱可塑性ポリイミドフィルム13と金属層12、15が接着性ポリイミド層14、16を介して結合された積層体となっている。   Thus, in the polyimide metal laminate according to the present embodiment, the metal layers 12 and 15 are provided on one or both sides of the polyimide layer 11, and the polyimide layer 11 includes the non-thermoplastic polyimide film 13 and the metal layer 12. And an adhesive polyimide layer 16 capable of thermocompression bonding the non-thermoplastic polyimide film 13 and the metal layer 15. And the non-thermoplastic polyimide film 13 and the metal layers 12 and 15 become the laminated body couple | bonded through the adhesive polyimide layers 14 and 16. FIG.

(非熱可塑性ポリイミドフィルム)
非熱可塑性ポリイミドフィルムとしては、公知のあらゆるポリイミド又はポリイミド前駆体であるポリアミド酸をイミド化したポリイミドを適用することができる。本発明に用いられるポリアミド酸は、通常、テトラカルボン酸二無水物の少なくとも1種と、ジアミンの少なくとも1種とを実質的等モル量、有機溶媒中に溶解、反応させて得ることができる。
(Non-thermoplastic polyimide film)
As the non-thermoplastic polyimide film, any known polyimide or polyimide obtained by imidizing polyamic acid which is a polyimide precursor can be applied. The polyamic acid used in the present invention can be usually obtained by dissolving and reacting at least one tetracarboxylic dianhydride and at least one diamine in a substantially equimolar amount in an organic solvent.

ポリアミド酸のイミド化には、熱キュア法およびケミカルキュア法のいずれかを用いる。熱キュア法は、脱水閉環剤等を作用させずに、加熱だけでイミド化反応を進行させる方法である。また、ケミカルキュア法は、ポリアミド酸有機溶媒溶液に、無水酢酸等の酸無水物に代表される化学的転化剤(脱水剤)と、イソキノリン、β−ピコリン、ピリジン等の第三級アミン類等に代表される触媒とを作用させる方法である。ケミカルキュア法と熱キュア法を併用することも出来る。イミド化の反応条件は、ポリアミド酸の種類、フィルムの厚さ、熱キュア法及び/又はケミカルキュア法の選択等により変動し得る。   For the imidization of the polyamic acid, either a thermal cure method or a chemical cure method is used. The thermal cure method is a method in which an imidization reaction proceeds by heating alone without using a dehydrating ring-closing agent or the like. In addition, the chemical cure method includes a polyamic acid organic solvent solution, a chemical conversion agent (dehydrating agent) represented by acid anhydrides such as acetic anhydride, and tertiary amines such as isoquinoline, β-picoline, and pyridine. This is a method in which a catalyst represented by A chemical cure method and a thermal cure method can be used in combination. The reaction conditions for imidization can vary depending on the type of polyamic acid, film thickness, thermal curing method and / or chemical curing method.

非熱可塑性ポリイミドフィルムにおけるテトラカルボン酸二無水物成分としては、従来公知のものを使用することができる。具体的には、3,3’,4,4’−ビフェニルテトラカルボン酸、1,3−ジヒドロ−1,3−ジオキソ−5−イソベンゾフランカルボン酸−1,4−フェニレンエステル、2,3,3’,4’−ビフェニルテトラカルボン酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、オキシジフタル酸、ジフェニルスルホンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、シクロブタンテトラカルボン酸、シクロヘキサンテトラカルボン酸等の酸二無水物があげられる。熱膨張係数やガラス転移温度等の耐熱性の観点から、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,3−ジヒドロ−1,3−ジオキソ−5−イソベンゾフランカルボン酸−1,4−フェニレンエステル二無水物、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物を使用することが好ましい。また、各々のテトラカルボン酸二無水物を単独で用いても、併用して用いてもよい。弾性率の観点から、ピロメリット酸二無水物を使用することがより好ましい。   A conventionally well-known thing can be used as a tetracarboxylic dianhydride component in a non-thermoplastic polyimide film. Specifically, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 1,3-dihydro-1,3-dioxo-5-isobenzofurancarboxylic acid-1,4-phenylene ester, 3 ', 4'-biphenyltetracarboxylic acid, pyromellitic acid, benzophenonetetracarboxylic acid, oxydiphthalic acid, diphenylsulfonetetracarboxylic acid, 2,3,6,7-naphthalenetetracarboxylic acid, cyclobutanetetracarboxylic acid, cyclohexanetetracarboxylic And acid dianhydrides such as acids. From the viewpoint of heat resistance such as thermal expansion coefficient and glass transition temperature, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,3-dihydro-1,3-dioxo-5-isobenzofurancarboxylic It is preferable to use acid-1,4-phenylene ester dianhydride, pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride. Moreover, each tetracarboxylic dianhydride may be used alone or in combination. From the viewpoint of elastic modulus, it is more preferable to use pyromellitic dianhydride.

非熱可塑性ポリイミドフィルムにおけるジアミン成分としては、従来公知のものを使用することができる。例えば、パラフェニレンジアミン、メタフェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノベンズアニリド、2,2−ジメチル−4,4−ジアミノビフェニル、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、ビス(4−(3−アミノフェノキシ)フェニル)スルホン等があげられる。各々のジアミンを単独で用いても、併用してもよい。熱膨張係数やガラス転移温度等の耐熱性の観点、弾性率の観点から、パラフェニレンジアミン、4,4’−ジアミノジフェニルエーテルを併用することが好ましい。   A conventionally well-known thing can be used as a diamine component in a non-thermoplastic polyimide film. For example, paraphenylenediamine, metaphenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminobenzanilide, 2,2-dimethyl-4,4-diaminobiphenyl, 1, 3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis (4-aminophenoxyphenyl) propane, bis (4- (4-aminophenoxy) phenyl) Examples include sulfone and bis (4- (3-aminophenoxy) phenyl) sulfone. Each diamine may be used alone or in combination. From the viewpoint of heat resistance such as thermal expansion coefficient and glass transition temperature, and from the viewpoint of elastic modulus, it is preferable to use paraphenylenediamine and 4,4'-diaminodiphenyl ether in combination.

非熱可塑性ポリイミドフィルムに特に好ましい酸二無水物成分とジアミン成分との組み合わせは、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)からなる群から選ばれた少なくとも一つの酸二無水物と、4,4’−ジアミノジフェニルエーテル及び/又はパラフェニレンジアミンとの組み合わせである。これらのモノマーを組み合わせて合成したポリイミドは適度な弾性率、寸法安定性、低吸水率等の優れた特性を発現し、本発明に係るポリイミド金属積層体に用いるのに好適である。   A particularly preferred combination of an acid dianhydride component and a diamine component for a non-thermoplastic polyimide film is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, p-phenylenebis. A combination of at least one acid dianhydride selected from the group consisting of (trimellitic acid monoester acid anhydride) and 4,4′-diaminodiphenyl ether and / or paraphenylenediamine. Polyimides synthesized by combining these monomers exhibit excellent properties such as moderate elastic modulus, dimensional stability, and low water absorption, and are suitable for use in the polyimide metal laminate according to the present invention.

ポリアミド酸を合成するための好ましい溶媒としては、例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどのアミド系溶媒が挙げられる。また、これらの溶媒を単独あるいは、混合して使用することもできる。   Preferable solvents for synthesizing the polyamic acid include amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methyl-2-pyrrolidone. These solvents can be used alone or in combination.

非熱可塑性ポリイミドフィルムには、公知の方法で無機あるいは有機物のフィラー、有機リン化合物等の滑剤や酸化防止剤を添加することが出来る。   Lubricants and antioxidants such as inorganic or organic fillers and organic phosphorus compounds can be added to the non-thermoplastic polyimide film by known methods.

また、非熱可塑性ポリイミドフィルムの表面は、プラズマ処理やコロナ処理や、サンドブラスト処理などといった公知慣用の処理がされていてもよい。   Further, the surface of the non-thermoplastic polyimide film may be subjected to a known and conventional treatment such as plasma treatment, corona treatment, sand blast treatment and the like.

また、非熱可塑性ポリイミドフィルムの弾性率は、折り曲げやすさの観点から4GPa以下が好ましい。弾性率が4GPa以下であることにより、非熱可塑性ポリイミドフィルムが折り曲げやすい状態となり、折り曲げた状態での接続信頼性が良好となる。また弾性率は好ましくは3.8GPa以下である。また、非熱可塑性ポリイミドフィルム走行時の扱い易さの観点から3.0GPa以上が好ましい。   Further, the elastic modulus of the non-thermoplastic polyimide film is preferably 4 GPa or less from the viewpoint of ease of bending. When the elastic modulus is 4 GPa or less, the non-thermoplastic polyimide film is easily bent and the connection reliability in the bent state is improved. The elastic modulus is preferably 3.8 GPa or less. Moreover, 3.0 GPa or more is preferable from a viewpoint of the ease of handling at the time of non-thermoplastic polyimide film travel.

また、非熱可塑性ポリイミドフィルムとして市販のポリイミドフィルムも使用できる。例えば、ユーピレックス(登録商標)S、ユーピレックス(登録商標)SGA、ユーピレックス(登録商標)SN(宇部興産社製、商品名)、カプトン(登録商標)H、カプトン(登録商標)V、カプトン(登録商標)EN(東レ・デュポン社製、商品名)、アピカル(登録商標)AH、アピカル(登録商標)NPI、アピカル(登録商標)NPP、アピカル(登録商標)HP、アピカル(登録商標)FPI(社カネカ製、商品名)等があげられる。   A commercially available polyimide film can also be used as the non-thermoplastic polyimide film. For example, Upilex (registered trademark) S, Upilex (registered trademark) SGA, Upilex (registered trademark) SN (trade name), Kapton (registered trademark) H, Kapton (registered trademark) V, Kapton (registered trademark) ) EN (made by Toray DuPont, trade name), Apical (registered trademark) AH, Apical (registered trademark) NPI, Apical (registered trademark) NPP, Apical (registered trademark) HP, Apical (registered trademark) FPI (Kaneka Corporation) Product name).

非熱可塑性ポリイミドフィルムの厚みは、2μm〜125μmであることが好ましい。さらに折り曲げやすく、且つハンドリングし易いという観点から5μm〜50μmが好ましい。   The thickness of the non-thermoplastic polyimide film is preferably 2 μm to 125 μm. Furthermore, from a viewpoint that it is easy to bend and it is easy to handle, 5 micrometers-50 micrometers are preferable.

(接着性ポリイミド層)
接着性ポリイミド層は、可溶性ポリイミド溶液を塗布した後、加熱により溶媒を乾燥させるか、またはポリアミド酸溶液を塗布し加熱により溶媒を乾燥させた後、加熱もしくは加熱とイミド化触媒の併用によりアミド酸部位を閉環イミド化することで得られる。塗布後の工程が溶媒の乾燥だけでよいため厚み精度を出し易いという観点から、可溶性ポリイミド溶液を用いることが好ましい。
(Adhesive polyimide layer)
The adhesive polyimide layer is coated with a soluble polyimide solution, and then the solvent is dried by heating, or after applying the polyamic acid solution and drying the solvent by heating, amidic acid is heated or combined with an imidization catalyst. It is obtained by ring-closing imidization of the site. It is preferable to use a soluble polyimide solution from the viewpoint that it is easy to obtain thickness accuracy because the step after coating only needs to dry the solvent.

可溶性ポリイミドの構造は、金属層(金属箔)と加熱加圧下で接着できるものなら、特に制限はなく公知慣用のものが使用できるが、銅箔との密着性の観点から、ビシクロ[2,2,2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、3,5−ジアミノ安息香酸、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,3−ビス(3−アミノフェノキシ)ベンゼンを成分に含む構造であることが好ましい。異なる2種類以上のテトラカルボン酸二無水物成分及び/又はジアミン成分を用いる場合は、それより得られる可溶性ポリイミドはランダム構造であってもブロック構造であってもよい。また、それらポリマーの末端はモノアミンまたは酸無水物で封止されていてもよい。本発明において、「可溶性」とは、溶解した時に塗布剤として使用可能な溶媒に室温20℃〜100℃の温度範囲において1質量%以上溶解することをいう。   The structure of the soluble polyimide is not particularly limited as long as it can be bonded to the metal layer (metal foil) under heat and pressure, and a known and conventional one can be used. From the viewpoint of adhesion to the copper foil, bicyclo [2,2 , 2] octo-7-ene-2,3,5,6-tetracarboxylic dianhydride, 3,5-diaminobenzoic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, A structure containing 1,3-bis (3-aminophenoxy) benzene as a component is preferable. When two or more different tetracarboxylic dianhydride components and / or diamine components are used, the soluble polyimide obtained therefrom may have a random structure or a block structure. Moreover, the terminal of these polymers may be sealed with monoamine or acid anhydride. In the present invention, “soluble” means that 1% by mass or more dissolves in a solvent that can be used as a coating agent when dissolved in a temperature range of room temperature to 20 ° C. to 100 ° C.

また、ポリアミド酸の構造は、それをイミド化したポリイミドが金属箔と加熱加圧下で接着できるものなら、特に制限はなく公知慣用のものが使用できる。イミド化には加熱キュア法または、加熱キュア法とケミカルキュア法の併用により行われる。異なる2種類以上のテトラカルボン酸二無水物成分及び/又はジアミン成分を用いる場合は、それより得られるイミド化後のポリイミドはランダム構造であってもブロック構造であってもよい。また、それらポリマーの末端はモノアミンまたは酸無水物で封止されていてもよい。   The structure of the polyamic acid is not particularly limited as long as the polyimide obtained by imidizing it can be bonded to the metal foil under heat and pressure, and any known and conventional one can be used. The imidization is performed by a heat cure method or a combination of a heat cure method and a chemical cure method. When two or more different tetracarboxylic dianhydride components and / or diamine components are used, the polyimide after imidization obtained therefrom may have a random structure or a block structure. Moreover, the terminal of these polymers may be sealed with monoamine or acid anhydride.

接着性ポリイミド層に用いられる可溶性ポリイミド溶液又はポリアミド酸溶液には、非熱可塑性ポリイミドフィルムとの密着力向上などの目的でアルキル化メラミン樹脂やアルキル化尿素樹脂の加えても良く、また物性を損なわない範囲で他の耐熱性樹脂、例えば、ポリカーボネート、ポリアリレート、ポリアミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニルスルフィド、変性ポリフェニレンオキシド、ポリアミドイミド、ポリエーテルイミド、ポリエステル、シアネートエステル等を適当量配合することも可能である。   The soluble polyimide solution or polyamic acid solution used for the adhesive polyimide layer may be added with an alkylated melamine resin or an alkylated urea resin for the purpose of improving adhesion to a non-thermoplastic polyimide film, and the physical properties are impaired. Other heat resistant resins such as polycarbonate, polyarylate, polyamide, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, polyphenylsulfide, modified polyphenyleneoxide, polyamideimide, polyetherimide, polyester, It is also possible to mix an appropriate amount of cyanate ester or the like.

また、物性を損なわない範囲で、添加剤として、脱水剤、シリカ等のフィラー、及びシランカップリング剤やチタネートカップリング剤等の表面改質剤をさらに加えてもよい。それらフィラー類は、予め上記の表面改質剤で処理されていてもよい。   Moreover, as long as the physical properties are not impaired, fillers such as a dehydrating agent and silica, and surface modifiers such as a silane coupling agent and a titanate coupling agent may be further added as additives. These fillers may be previously treated with the above surface modifier.

また、上記接着性ポリイミド層のガラス転移温度は、TMAで測定した場合に183℃以上であることが好ましい。プリント配線板では、配線との接続に半田が一般的に使用される。共晶半田の融点は183℃であることから、接着性ポリイミド層のガラス転移温度はそれ以上であることが好ましい。また半田の融点より10℃以上高いことがより好ましく、接着性ポリイミド層のガラス転移温度は200℃以上であることがより好ましい。生産性の観点から200℃以上、300℃以下であることが更に好ましい。   The glass transition temperature of the adhesive polyimide layer is preferably 183 ° C. or higher when measured by TMA. In a printed wiring board, solder is generally used for connection with wiring. Since the melting point of eutectic solder is 183 ° C., the glass transition temperature of the adhesive polyimide layer is preferably higher than that. The melting point of the solder is more preferably 10 ° C. or higher, and the glass transition temperature of the adhesive polyimide layer is more preferably 200 ° C. or higher. From the viewpoint of productivity, it is more preferably 200 ° C. or higher and 300 ° C. or lower.

接着性ポリイミド層の厚みは、品質の観点から、1μm以上が好ましい。また、熱ロールラミネート又はダブルベルトプレスによって金属層と接着させる際、ロール及びベルトにある傷、歪み等の欠点がポリイミド金属積層体に転写され、ポリイミド金属積層体に欠点が現れることを避けるという点から1μm以上が好ましい。また多層ポリイミド層としての耐熱性の観点から、接着性ポリイミド層の厚みは3μm以下が好ましい。プリント配線板では、配線との接続に半田が一般的に使用され、半田ごてが用いられる。半田ごての温度は300℃以上であり、プリント配線板には300℃以上の耐熱性が求められている。接着性ポリイミド層が厚いと、ガラス転移温度以上の温度で接着性ポリイミド層の軟化により、回路の沈み込み等が発生するため、接着性ポリイミド層は薄い方が回路沈み込み抑制の観点から好ましい。接着性ポリイミド層の厚みは、1μm以上3μm以下が好ましい。   The thickness of the adhesive polyimide layer is preferably 1 μm or more from the viewpoint of quality. In addition, when bonding with a metal layer by hot roll lamination or double belt press, defects such as scratches and distortions on the roll and belt are transferred to the polyimide metal laminate, and it is avoided that defects appear in the polyimide metal laminate. To 1 μm or more is preferable. From the viewpoint of heat resistance as the multilayer polyimide layer, the thickness of the adhesive polyimide layer is preferably 3 μm or less. In a printed wiring board, solder is generally used for connection with wiring, and a soldering iron is used. The temperature of the soldering iron is 300 ° C. or higher, and the printed wiring board is required to have heat resistance of 300 ° C. or higher. When the adhesive polyimide layer is thick, the adhesive polyimide layer is softened at a temperature equal to or higher than the glass transition temperature, so that circuit sinking or the like occurs. Therefore, the thinner adhesive polyimide layer is preferable from the viewpoint of suppressing circuit sinking. The thickness of the adhesive polyimide layer is preferably 1 μm or more and 3 μm or less.

(金属層)
ポリイミド金属積層体に用いられる金属層としては、本発明の目的に適う限り、公知の金属箔、合金箔が適用可能であるが、配線形成性の観点から、電解銅箔、圧延銅箔、キャリア付銅箔が好ましい。さらに、柔軟性つまり折り曲げた状態での接続信頼性の観点から、厚さ18μm以下の銅箔が好ましい。銅箔表面には、粗化処理、ニッケルや亜鉛など公知のメッキ処理、クロメート処理、アルミニウムアルコラート処理、アルミニウムキレート処理、シランカップリング剤処理等の表面処理を行ってもよい。
(Metal layer)
As the metal layer used in the polyimide metal laminate, known metal foils and alloy foils can be applied as long as they meet the purpose of the present invention. From the viewpoint of wiring formability, electrolytic copper foil, rolled copper foil, carrier A copper foil is preferred. Furthermore, from the viewpoint of flexibility, that is, connection reliability in a bent state, a copper foil having a thickness of 18 μm or less is preferable. The copper foil surface may be subjected to a surface treatment such as a roughening treatment, a known plating treatment such as nickel or zinc, a chromate treatment, an aluminum alcoholate treatment, an aluminum chelate treatment, or a silane coupling agent treatment.

ポリイミド金属積層体の接着性ポリイミド層と接する金属層は、折り曲げの際に、金属層と接着性ポリイミド層と接する接触面12a、15a(図1(a)、(b)参照)における金属層の粗化されている部分に応力集中が働き、この部分を起点として金属層の破断が発生する。このため、金属層の破断を避けるという点から、金属層の接着性ポリイミド層と接する接触面の十点平均粗さが1.0μm以下となることが好ましい。また、より金属層の破断を防ぎ、折り曲げた状態での接続信頼性を向上させるという点から、金属層の粗化処理を行わない、もしくは粗化処理を最低限にするという観点から、0.7μm以下となることがさらに好ましい。   The metal layer in contact with the adhesive polyimide layer of the polyimide metal laminate is the metal layer on the contact surfaces 12a and 15a (see FIGS. 1A and 1B) in contact with the metal layer and the adhesive polyimide layer during bending. Stress concentration acts on the roughened portion, and the metal layer breaks starting from this portion. For this reason, it is preferable that the ten-point average roughness of the contact surface of the metal layer in contact with the adhesive polyimide layer is 1.0 μm or less from the viewpoint of avoiding breakage of the metal layer. Further, from the viewpoint of preventing the metal layer from being broken and improving the connection reliability in the bent state, the metal layer is not subjected to the roughening treatment or the roughening treatment is minimized. More preferably, it is 7 μm or less.

また、折り曲げの際には、ポリイミド金属積層体、及びプリント配線板は回路面を内側にあるいは外側に曲げられるため、金属層の接着性ポリイミド層と接しない非接触面12b、15b(図1(a)、(b)参照)にもと同様に曲げ応力が発生する。よって、金属層の接着性ポリイミド層と接しない非接触面の粗度も、接着性ポリイミド層と接する面同様小さい方が好ましい。粗度が原因で断線が発生することを防ぐ目的から十点平均粗さは2.0μm以下が好ましい。   In addition, since the polyimide metal laminate and the printed wiring board are bent inward or outward at the time of bending, the non-contact surfaces 12b and 15b that do not contact the adhesive polyimide layer of the metal layer (FIG. 1 ( A bending stress is generated in the same manner as in a) and (b). Therefore, the roughness of the non-contact surface that does not contact the adhesive polyimide layer of the metal layer is preferably as small as the surface that contacts the adhesive polyimide layer. The ten-point average roughness is preferably 2.0 μm or less for the purpose of preventing disconnection due to roughness.

また、本実施の形態に係るポリイミド金属積層体1においては、金属層と接着性ポリイミド層とを積層するため、金属層の粗度が接着性ポリイミド層の金属層と接する接触面14a、16a(図1(a)、(b)参照)側に保持されると考えられる。よって、ポリイミド金属積層体から、金属層を除去し、接着性ポリイミド層の金属層と接する接触面側の粗度を測定することで、接着性ポリイミド層と接していた面の金属層の粗度とすることができる。   Moreover, in the polyimide metal laminated body 1 which concerns on this Embodiment, in order to laminate | stack a metal layer and an adhesive polyimide layer, the roughness of a metal layer is contact surface 14a, 16a (in contact with the metal layer of an adhesive polyimide layer). 1 (a) and 1 (b)). Therefore, by removing the metal layer from the polyimide metal laminate and measuring the roughness of the contact surface side in contact with the metal layer of the adhesive polyimide layer, the roughness of the metal layer on the surface in contact with the adhesive polyimide layer It can be.

(ポリイミド金属積層体)
本実施の形態に係るポリイミド金属積層体は、ポリイミド層の片面または両面に金属層があり、ポリイミド層は非熱可塑性ポリイミドフィルムと接着性ポリイミド層とを含む。そして、非熱可塑性ポリイミドフィルムと金属層とが接着性ポリイミド層を介して結合されたポリイミド金属積層体である。本実施の形態に係るポリイミド金属積層体は、はぜ折り耐性試験値が1回以上である。
(Polyimide metal laminate)
The polyimide metal laminate according to the present embodiment has a metal layer on one or both sides of the polyimide layer, and the polyimide layer includes a non-thermoplastic polyimide film and an adhesive polyimide layer. And it is a polyimide metal laminated body with which the non-thermoplastic polyimide film and the metal layer were couple | bonded through the adhesive polyimide layer. The polyimide metal laminate according to the present embodiment has a seam fold resistance test value of one or more times.

上記の通り、はぜ折り耐性試験値が良好であることから、フレキシブルプリント配線板の両面に電子部品を実装する際に、はぜ折り部に荷重がかかることで回路に異常が生じることを避けることができる。また、上記の通り、はぜ折り耐性を有することから、小型の電子機器内にフレキシブル配線板を組み込むことができる。   As mentioned above, since the test value for the resistance to folding is good, when mounting electronic components on both sides of the flexible printed wiring board, avoid the occurrence of abnormalities in the circuit due to the load applied to the folding section be able to. Further, as described above, since it has a resistance to folding, a flexible wiring board can be incorporated in a small electronic device.

なお、「はぜ折り耐性」とは、ポリイミド金属積層体を180°折り曲げてその折り曲げ部に荷重をかけ、その後ポリイミド金属積層体を開いて折り曲げ部を逆方向に180°折り曲げて折り曲げ部に荷重かける。この操作を1回のはぜ折り耐性試験とし、その回数をはぜ折り耐性試験値として数えた。   “Peel fold resistance” means that the polyimide metal laminate is bent 180 ° and a load is applied to the bent portion, then the polyimide metal laminate is opened and the bent portion is bent 180 ° in the opposite direction and the load is applied to the bent portion. Call. This operation was regarded as a one-time folding resistance test, and the number of times was counted as a folding resistance test value.

本実施の形態に係るポリイミド金属積層体の製造方法としては、例えば、加熱処理後に熱圧着可能な接着性ポリイミド層となるポリアミド酸溶液または可溶性ポリイミド溶液を非熱可塑性ポリイミドフィルム上に塗布し、加熱処理を行って得た多層ポリイミドフィルムに金属箔(以下「金属層」ともいう)を貼り合わせる方法がある。   As a manufacturing method of the polyimide metal laminate according to the present embodiment, for example, a polyamic acid solution or a soluble polyimide solution that becomes an adhesive polyimide layer that can be thermocompression bonded after heat treatment is applied on a non-thermoplastic polyimide film and heated. There is a method of bonding a metal foil (hereinafter also referred to as “metal layer”) to a multilayer polyimide film obtained by performing the treatment.

上記方法では、加熱処理後に熱圧着可能な接着性ポリイミド層となるポリアミド酸溶液または可溶性ポリイミド溶液の非熱可塑性ポリイミドフィルム上への塗布は、特に限定されないが、ダイコート法、ナイフコート法、グラビアコート法、コンマコーター、3本リバースコーター、スロットダイコーター、リップコーター、クローズドエッジダイ等、公知慣用の方法によって行うことができる。ポリアミド酸溶液や可溶性ポリイミド溶液には吸湿し易い塗布溶剤が用いられるため、液を密閉系で用いて吸湿を抑えることができ、塗工中に液性変化が少ないという観点から、スロットダイコーターやリップコーターやクローズドエッジダイコーターが特に好ましい。その後、加熱処理を行って多層ポリイミドフィルムが得られる。   In the above method, the application to the non-thermoplastic polyimide film of the polyamic acid solution or soluble polyimide solution that becomes an adhesive polyimide layer capable of thermocompression bonding after the heat treatment is not particularly limited, but is a die coating method, a knife coating method, a gravure coating. It can be carried out by a conventional method such as a method, a comma coater, a three reverse coater, a slot die coater, a lip coater or a closed edge die. Since a coating solvent that easily absorbs moisture is used for the polyamic acid solution and the soluble polyimide solution, the liquid can be used in a closed system to suppress moisture absorption, and from the viewpoint that there is little change in liquidity during coating, a slot die coater or Particularly preferred are lip coaters and closed edge die coaters. Thereafter, a heat treatment is performed to obtain a multilayer polyimide film.

多層ポリイミドフィルムとして、非熱可塑性ポリイミドフィルムの両面に、加熱処理後に熱圧着可能な接着性ポリイミド層となるポリアミド酸溶液または可溶性ポリイミド溶液を塗布し、加熱処理すると両面接着性多層ポリイミドフィルムが得られる。そのような両面接着性多層ポリイミドフィルムを得るには、上記のような方法にて両面それぞれに加熱処理後に熱圧着可能な接着性ポリイミド層となるポリアミド酸溶液または可溶性ポリイミド溶液を塗布した後、両面をまとめて乾燥してもよいし、あるいは、片面塗布後にその面がタックフリーとなる程度まで乾燥後さらに反対面を塗布してから両面合わせて乾燥してもよいし、あるいは、塗布と乾燥を片面ずつ逐次で行ってもよい。また、両面に形成される接着性ポリイミド樹脂層の組成は同じでも、異なっていてもよい。また、それぞれの膜厚は同じでも異なっていてもよい。接着性ポリイミド樹脂層の厚みは1μm〜3μmが好適に利用できる。   As a multilayer polyimide film, a polyamic acid solution or a soluble polyimide solution that becomes an adhesive polyimide layer that can be thermocompression bonded after heat treatment is applied to both surfaces of the non-thermoplastic polyimide film, and a double-sided adhesive multilayer polyimide film is obtained by heat treatment. . In order to obtain such a double-sided adhesive multi-layer polyimide film, after applying a polyamic acid solution or a soluble polyimide solution to be an adhesive polyimide layer that can be thermocompression bonded after heat treatment to each of both sides by the method described above, May be dried together, or may be dried to the extent that the surface becomes tack-free after application on one side, and then the opposite side may be applied, and then both sides may be combined and dried, or application and drying may be performed. You may carry out sequentially one side at a time. Moreover, the composition of the adhesive polyimide resin layer formed on both surfaces may be the same or different. Moreover, each film thickness may be the same or different. The thickness of the adhesive polyimide resin layer is preferably 1 μm to 3 μm.

加熱処理方法としては、非熱可塑性ポリイミドフィルムの片面に塗布する場合は、通常のロール搬送のドライヤーが使用できる。また、非熱可塑性ポリイミドフィルムの両面に塗布する場合はフローティングドライヤーが好適である。   As a heat treatment method, when applying to one side of a non-thermoplastic polyimide film, a normal roll transport dryer can be used. Moreover, when apply | coating to both surfaces of a non-thermoplastic polyimide film, a floating dryer is suitable.

加熱処理は塗布膜中に残存する溶媒量が所定量に減少するまで行う。熱圧着可能な接着性ポリイミド層内の残存溶媒量は、金属箔と積層させる際、あるいは、ポリイミド金属積層体からなるプリント配線板をはんだ耐熱試験に供した場合に発泡を防ぐという観点から、残存溶媒量が加熱処理後膜の質量に対して1質量%以下が好ましい。   The heat treatment is performed until the amount of the solvent remaining in the coating film is reduced to a predetermined amount. The amount of residual solvent in the adhesive polyimide layer capable of thermocompression bonding remains from the viewpoint of preventing foaming when laminated with a metal foil or when a printed wiring board made of a polyimide metal laminate is subjected to a solder heat resistance test. The amount of the solvent is preferably 1% by mass or less with respect to the mass of the film after the heat treatment.

上記の多層ポリイミドフィルムを用いたポリイミド金属積層体は、多層ポリイミドフィルムの片側または両側に金属層を重ね、公知の加熱及び/又は加圧を伴った方法により、多層ポリイミドフィルムと金属層とを積層することで得ることができる。積層方法は単板プレスによるバッチ処理、熱ロールラミネートあるいはダブルベルトプレスによる連続処理等公知の方法を用いることができる。長尺を得る場合には、均一な圧力を掛けられる点でダブルベルトプレスを用いることが好ましく、特に、加熱オイルや加熱ガスといった熱媒を用いてベルトを加圧する方式のダブルベルトプレスがより均一な圧の印加が可能という点で好ましい。   The polyimide metal laminate using the above-mentioned multilayer polyimide film is obtained by laminating a multilayer polyimide film and a metal layer by a known method involving heating and / or pressurization, with a metal layer being stacked on one side or both sides of the multilayer polyimide film. You can get it. As the laminating method, a known method such as batch processing by a single plate press, hot roll lamination or continuous processing by a double belt press can be used. When obtaining a long length, it is preferable to use a double belt press in terms of being able to apply a uniform pressure. In particular, a double belt press that pressurizes the belt using a heating medium such as heated oil or heated gas is more uniform. It is preferable in that it is possible to apply an appropriate pressure.

本実施の形態に係るポリイミド金属積層体は、フレキシブルプリント配線板製造に用いることができる。それらプリント配線板を製造する際の積層方法における加熱方式は特に限定されるものではなく、例えば、熱循環方式、熱風加熱方式、誘導加熱方式等、所定の温度で加熱し得る従来公知の方式を採用した加熱手段を用いることができる。同様に、上記積層方法における加圧方式も特に限定されるものではなく、例えば、油圧方式、空気圧方式、ギャップ間圧力方式等、所定の圧力を加えることができる従来公知の方式を採用した加圧手段を用いることができる。   The polyimide metal laminate according to the present embodiment can be used for manufacturing a flexible printed wiring board. The heating method in the laminating method when manufacturing these printed wiring boards is not particularly limited. For example, a conventionally known method that can be heated at a predetermined temperature, such as a heat circulation method, a hot air heating method, an induction heating method, or the like. The employed heating means can be used. Similarly, the pressurization method in the laminating method is not particularly limited, and for example, a pressurization employing a conventionally known method that can apply a predetermined pressure, such as a hydraulic method, a pneumatic method, a gap pressure method, or the like. Means can be used.

(プリント配線板)
本発明に係るプリント配線板は、上記ポリイミド金属積層体をサブトラクティブ法等によって回路を形成することによって得ることができる。サブトラクティブ法とは、通常フォトレジスト層を金属層上に形成し、このフォトレジスト層を選択露光及び現像処理することで配線状にパターニングし、パターニングしたフォトレジスト層をエッチングマスクとして金属層をエッチング処理し、その後にフォトレジスト層を完全に除去する方法をとる。ここで、フォトレジストとしては液状あるいはドライフィルムレジストが用いられ、エッチング液としては、塩化鉄系、塩化銅系、過酸系等の溶液が用いられる。
(Printed wiring board)
The printed wiring board according to the present invention can be obtained by forming a circuit from the polyimide metal laminate by a subtractive method or the like. In the subtractive method, a photoresist layer is usually formed on a metal layer, this photoresist layer is selectively exposed and developed to form a wiring pattern, and the metal layer is etched using the patterned photoresist layer as an etching mask. The method is followed by processing, followed by complete removal of the photoresist layer. Here, a liquid or dry film resist is used as the photoresist, and an iron chloride-based, copper chloride-based or peracid-based solution is used as the etching solution.

本発明に係るプリント配線板は、上記ポリイミド金属積層体より形成されてなるプリント配線板と、プリント配線板の回路上に設けられたカバーレイを備えることが好ましい。このように、カバーレイを備えることにより、回路を保護することができる。   The printed wiring board according to the present invention preferably includes a printed wiring board formed from the polyimide metal laminate and a cover lay provided on the circuit of the printed wiring board. Thus, by providing the coverlay, the circuit can be protected.

(カバーレイ)
本発明に係るカバーレイは、ポリイミドフィルムに接着剤を積層したものを用いることができる。接着剤層を介してプリント配線板の回路面を保護するものであればよい。上記接着剤としては、アクリル系、エポキシ系、ポリイミド系等を用いることができる。また、カバーレイ用のインクをプリント配線板の回路面に塗布して乾燥する方法を用いてもよい。
(Coverlay)
As the coverlay according to the present invention, a polyimide film laminated with an adhesive can be used. What is necessary is just to protect the circuit surface of a printed wiring board through an adhesive bond layer. As the adhesive, acrylic, epoxy, polyimide, or the like can be used. Further, a method of applying the coverlay ink to the circuit surface of the printed wiring board and drying it may be used.

本発明に係るカバーレイは折り曲げ易さの観点から、弾性率4GPa以下であることが好ましい。弾性率が4GPa以下であることにより、カバーレイが折り曲げやすい状態となり、折り曲げた状態での接続信頼性が良好となる。また弾性率は好ましくは3.5GPa以下がより好ましい。また、回路保護の点から1GPa以上が好ましい。   The cover lay according to the present invention preferably has an elastic modulus of 4 GPa or less from the viewpoint of easy folding. When the elastic modulus is 4 GPa or less, the coverlay is easily bent, and the connection reliability in the bent state is improved. The elastic modulus is preferably 3.5 GPa or less. Moreover, 1 GPa or more is preferable from the point of circuit protection.

なお、本発明に係るカバーレイ付プリント配線板は、電子機器への組み込み方法の自由度の点から、はぜ折り耐性試験値が4回以上であることが好ましい。通常カバーレイを保護膜として積層すると、剛直性によるカバーレイ自体の破断し易さのため、はぜ折り耐性試験値が悪くなる。しかしながら、上記のようにカバーレイの弾性率が4GPa以下の場合には、カバーレイを付けたプリント配線板におけるはぜ折り耐性試験値も良好な値となり、折り曲げた時の接続信頼性を向上させることができる。   The printed wiring board with coverlay according to the present invention preferably has a fold resistance test value of 4 times or more from the viewpoint of the degree of freedom of the method of incorporation into an electronic device. In general, when a coverlay is laminated as a protective film, the cover fold resistance test value deteriorates because the coverlay itself is easy to break due to rigidity. However, when the elastic modulus of the coverlay is 4 GPa or less as described above, the test value of the resistance to folding on the printed wiring board with the coverlay is also good, and the connection reliability when bent is improved. be able to.

(十点平均粗さRz)
本発明で言う、十点平均粗さRzとは、JIS B0601:1982に記載の方法で測定したものを意味する。
(10-point average roughness Rz)
The ten-point average roughness Rz referred to in the present invention means that measured by the method described in JIS B0601: 1982.

(実施例)
次に、本発明の効果を明確にするために行った実施例に基づいて具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、以下の実施例において十点平均粗さRz、弾性率、厚み、はぜ折り耐性試験、及び耐熱性測定は次のようにして行った。
(Example)
Next, although it demonstrates concretely based on the Example performed in order to clarify the effect of this invention, this invention is not limited at all by these Examples. In the following examples, ten-point average roughness Rz, elastic modulus, thickness, shell fold resistance test, and heat resistance measurement were performed as follows.

[十点平均粗さRz測定]
JIS B0601:1982に記載の十点平均粗さRzを、サーフコーダ(小坂研究
所社製、SE−30D)で測定した。
[10-point average roughness Rz measurement]
Ten-point average roughness Rz described in JIS B0601: 1982 was measured with a surf coder (SE-30D manufactured by Kosaka Laboratory Ltd.).

[弾性率測定]
弾性率の測定は、以下のように実施した。試験片サンプルを幅10mm、長さ320mmにカットし、23±2℃、湿度50±5RH%に調湿された環境内24時間以上調湿後、テンシロン(エー・アンド・デイ社製)にて、3MPa以上のAir圧力で試験片サンプルを挟んでサンプルセットした。チャック間距離は250mmに調整した。その後0.3Nをかけた状態から25mm/分の引張速度で測定を行い、測定機と接続したパーソナルコンピューターはサンプリング間隔20μmでサンプリングを行った。測定本数は5本とし、弾性率を求めた。弾性率の算出方法は、引張伸度0.4%〜1.0%間の傾きを計算することにより算出し、平均値を求めた。
[Elastic modulus measurement]
The elastic modulus was measured as follows. A test specimen was cut to a width of 10 mm and a length of 320 mm, and conditioned at 23 ± 2 ° C. and humidity of 50 ± 5 RH% for 24 hours or longer in an environment, then Tensilon (manufactured by A & D). A sample set was sandwiched between test pieces at an Air pressure of 3 MPa or more. The distance between chucks was adjusted to 250 mm. Thereafter, measurement was performed at a tensile speed of 25 mm / min from the state where 0.3 N was applied, and the personal computer connected to the measuring machine sampled at a sampling interval of 20 μm. The number of measurements was five and the elastic modulus was determined. The elastic modulus was calculated by calculating the slope between the tensile elongation of 0.4% and 1.0%, and the average value was obtained.

[厚み測定]
接着性ポリイミド樹脂層の厚みは、多層ポリイミドフィルムの厚みを測定後、非熱可塑性ポリイミドフィルムの厚みを引くことで求めた。測定は、接触式膜厚計(ミツトヨ社製:ライトマチックVL−50AS、測定力0.26N)で測定した。厚みは、幅方向5cm間隔で測定し、平均値を求めた。
[Thickness measurement]
The thickness of the adhesive polyimide resin layer was determined by subtracting the thickness of the non-thermoplastic polyimide film after measuring the thickness of the multilayer polyimide film. The measurement was performed with a contact-type film thickness meter (manufactured by Mitutoyo Corporation: Lightmatic VL-50AS, measuring force 0.26 N). The thickness was measured at intervals of 5 cm in the width direction, and an average value was obtained.

[はぜ折り耐性試験]
(ポリイミド金属積層体のはぜ折り耐性試験)
ポリイミド金属積層体の片面にライン100μm、スペース100μmの回路を形成し、反対面の金属層をエッチングで除去したはぜ折り耐性試験片と、回路面と反対側の銅箔を全て残したはぜ折り耐性試験片を形成した。試験片の回路パターンは、JIS C 6471に決められた耐折性試験用試料を参考に、100μm幅、長さ110mmの6本の回路が、ライン100μm、スペース100μmで平行になるようにした。また、両端の回路を引き伸ばして回路抵抗測定用の直径3mmの電極を設け、一箇所でも回路に異常があれば、1回の抵抗値測定で変化が捉えられるパターンとした。はぜ折り耐性試験片を幅10mm、長さ13cmにカットし、試験片の長手方向の中心部ではぜ折りした。始めに回路面を内側にしてはぜ折りし、1kgの重りを5秒載せた。その後、回路面を外側にしてはぜ折り部が重なるようにはぜ折りし、1kgの重りを5秒載せた。上記操作を1回のはぜ折り耐性試験とし、試験後の回路の抵抗値を測定した。抵抗値の測定は、試験サンプルをはぜ折り部で折り曲げた状態で実施した。回路抵抗値変化のあった時を回路破断とみなし、直前の回数まではぜ折り耐性があるとした。回路面と反対側の金属層をエッチングで除去した試験片、回路面と反対側の金属層を全て残した試験片のはぜ折り耐性回数の少ない方をはぜ折り耐性回数とした。また、はぜ折り耐性試験時の荷重は、参考文献(COF実装の高密度化における材料・工法の問題点とその対策)のスズめっきCOFテープの180°折り曲げ性評価を参考にして1kgfとした。
[Shell fold resistance test]
(Plastic fold resistance test of polyimide metal laminate)
A circuit having a line of 100 μm and a space of 100 μm was formed on one side of the polyimide metal laminate, and the metal layer on the opposite side was removed by etching, and the copper foil on the side opposite to the circuit side was left behind. A fold resistance test piece was formed. The circuit pattern of the test piece was such that six circuits having a width of 100 μm and a length of 110 mm were parallel to each other with a line of 100 μm and a space of 100 μm with reference to a sample for folding resistance test determined in JIS C 6471. In addition, the circuit at both ends was stretched to provide electrodes with a diameter of 3 mm for circuit resistance measurement, and if there was an abnormality in the circuit even at one location, the pattern was such that a change could be captured by a single resistance measurement. The test specimens were cut into a width of 10 mm and a length of 13 cm and were folded at the center in the longitudinal direction of the test piece. First, it was folded with the circuit surface inside, and a 1 kg weight was placed for 5 seconds. Then, the circuit surface was turned outside and the folded portion was folded so that the folded portion overlapped, and a 1 kg weight was placed for 5 seconds. The above operation was a one-time fold resistance test, and the resistance value of the circuit after the test was measured. The measurement of the resistance value was performed in a state where the test sample was bent at the helical fold. When there was a change in the circuit resistance value, it was regarded as a circuit breakage, and it was assumed that it had resistance to folding up to the previous number of times. The test piece from which the metal layer opposite to the circuit surface was removed by etching and the test piece from which all the metal layer opposite to the circuit surface was left had the smaller number of times of folding resistance. In addition, the load during the shell fold resistance test was set to 1 kgf with reference to the 180 ° bendability evaluation of the tin-plated COF tape in the reference literature (problems and countermeasures of materials and construction methods in densification of COF mounting). .

(カバーレイ付きプリント配線板のはぜ折り耐性試験)
また、上記を同様の方法で、ポリイミド金属積層体の片面にライン100μm、スペース100μmの回路を形成し、回路形成面の反対面の金属層をエッチングで除去した試験片と、回路形成面と反対側の銅箔を全て残した試験片とを形成した。さらに試験片の両面にカバーレイを160℃ 40分 4MPa 真空下の条件で積層し、カバーレイ付きはぜ折り耐性試験片を作成した。カバーレイ付きはぜ折り耐性試験片を幅10mm、長さ13cmにカットし、試験片の長手方向の中心部ではぜ折りした。始めに回路面を内側にしてはぜ折りし、1kgの重りを5秒載せた。その後、回路面を外側にしてはぜ折り部が重なるようにはぜ折りし、1kgの重りを5秒載せた。上記操作を1回のはぜ折り耐性試験とし、試験後のカバーレイ外観を観察、回路の抵抗値を測定した。抵抗値の測定は、試験サンプルをはぜ折り部で折り曲げた状態で実施した。4回のはぜ折り耐性試験を実施し、カバーレイ外観異常、回路抵抗値変化のないものを○、カバーレイ外観異常、回路抵抗値変化のあったものを×とした。
(Plastic fold resistance test of printed wiring board with coverlay)
Also, in the same manner as described above, a test piece in which a circuit having a line of 100 μm and a space of 100 μm is formed on one side of a polyimide metal laminate, and the metal layer on the opposite side of the circuit formation side is removed by etching, is opposite to the circuit formation side. The test piece which left all the copper foil of the side was formed. Furthermore, a coverlay was laminated on both sides of the test piece under the conditions of 160 ° C., 40 minutes, 4 MPa under vacuum, and a fold-resistant test piece with a coverlay was prepared. With a cover lay, the test piece for resistance to folding was cut to a width of 10 mm and a length of 13 cm, and then folded at the center in the longitudinal direction of the test piece. First, it was folded with the circuit surface inside, and a 1 kg weight was placed for 5 seconds. Then, the circuit surface was turned outside and the folded portion was folded so that the folded portion overlapped, and a 1 kg weight was placed for 5 seconds. The above operation was a one-time fold resistance test, the appearance of the coverlay after the test was observed, and the resistance value of the circuit was measured. The measurement of the resistance value was performed in a state where the test sample was bent at the helical fold. A four-fold resistance test was conducted. A case where there was no coverlay appearance abnormality and no change in circuit resistance value was marked with ◯, and a case where there was a coverlay appearance abnormality and circuit resistance value change was marked as x.

[耐熱性]
ポリイミド金属積層体の片面にライン100μm、スペース100μmの回路を形成し、100μmの回路の先に、直径3mmの電極を形成した。回路面と反対側の銅箔を全て残した耐熱性試験片を作成した。直径3mmの電極に350℃に加熱したはんだごてを10秒押し当てて、外観を観察した。試験は10個の電極で実施した。全電極で異常無しを○とし、1箇所でも異常があれば×とした。
[Heat-resistant]
A circuit having a line of 100 μm and a space of 100 μm was formed on one surface of the polyimide metal laminate, and an electrode having a diameter of 3 mm was formed at the tip of the 100 μm circuit. A heat-resistant test piece was prepared in which all the copper foil on the side opposite to the circuit surface was left. A soldering iron heated to 350 ° C. was pressed against an electrode having a diameter of 3 mm for 10 seconds, and the appearance was observed. The test was performed with 10 electrodes. If no abnormality was found in all the electrodes, a circle was marked.

[熱圧着可能なポリアミド酸ワニスの合成]
ステンレス容器に攪拌器、窒素ガス導入管を取り付け、窒素ガス気流中で反応させた。
N−メチル−2−ピロリドン中に1,3−ビス(3−アミノフェノキシ)ベンゼンと3,3’,4,4’−ビフェニルテトラカルボン酸二無水物をモル比1:0.998の割合で加え、N−メチル−2−ピロリドンに対する固形分濃度を14質量%として攪拌した。これにN−メチル−2−ピロリドンとメシチレンを質量比10:6の割合で加え、固形分濃度10質量%の熱圧着可能なポリアミド酸ワニスを得た。
[Synthesis of thermocompressible polyamic acid varnish]
A stainless steel vessel was equipped with a stirrer and a nitrogen gas inlet tube, and reacted in a nitrogen gas stream.
1,3-bis (3-aminophenoxy) benzene and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride in N-methyl-2-pyrrolidone at a molar ratio of 1: 0.998 In addition, the solid content concentration with respect to N-methyl-2-pyrrolidone was set to 14% by mass and stirred. N-methyl-2-pyrrolidone and mesitylene were added at a mass ratio of 10: 6 to obtain a polyamic acid varnish capable of thermocompression bonding with a solid content concentration of 10% by mass.

[実施例1]
バックアップロールを有するクローズドエッジダイコーター(井上金属工業社製)を用いて、非熱可塑性ポリイミドフィルム(カネカ社製、アピカル10NPI)の両面に上記の条件で合成した熱圧着可能なポリアミド酸ワニスを、予備乾燥後の塗布膜厚みが片面あたり3.5μmになるように、ライン速度14m/minで片面ずつ塗布し、150℃で予備乾燥した。さらに溶剤を揮発させるため、ロールtoロール式遠赤外線加熱炉を用い、温度295℃、ライン速度3m/minで乾燥した。得られた多層ポリイミドフィルムの厚みを測定し、非熱可塑性ポリイミドフィルムの分を差し引いたところ、熱圧着可能な接着性ポリイミド層の厚みは、片面2.5μmであった。その後、ダブルベルトプレス機(加圧媒体:加熱オイル)を用いて、最高温度を330℃に設定し、5MPaの圧力、3m/分の速度で多層ポリイミドフィルムの両面に銅箔(三井金属鉱業社製:NA−DFF(12μm厚)、接着性ポリイミド層と接する側のRzは0.6μm)を積層し、ポリイミド銅箔積層体Aを得た。
[Example 1]
Using a closed edge die coater (manufactured by Inoue Metal Industry Co., Ltd.) having a backup roll, a thermocompression-bondable polyamic acid varnish synthesized under the above conditions on both surfaces of a non-thermoplastic polyimide film (manufactured by Kaneka Corporation, Apical 10 NPI) Each surface was coated at a line speed of 14 m / min so that the thickness of the coating film after the preliminary drying was 3.5 μm per side, and preliminarily dried at 150 ° C. Furthermore, in order to volatilize the solvent, it was dried at a temperature of 295 ° C. and a line speed of 3 m / min using a roll-to-roll type far infrared heating furnace. When the thickness of the obtained multilayer polyimide film was measured and the amount of the non-thermoplastic polyimide film was subtracted, the thickness of the adhesive polyimide layer capable of thermocompression bonding was 2.5 μm on one side. Then, using a double belt press (pressurization medium: heated oil), the maximum temperature was set to 330 ° C., and copper foil (Mitsui Metal Mining Co., Ltd.) was applied to both sides of the multilayer polyimide film at a pressure of 5 MPa and a speed of 3 m / min. Manufactured: NA-DFF (12 μm thick), Rz on the side in contact with the adhesive polyimide layer is 0.6 μm), and polyimide copper foil laminate A was obtained.

ポリイミド銅箔積層体Aに上記方法に基づき回路を形成し、カバーレイ(ニッカン工業社製、CISV1215)を用いて、カバーレイ付きプリント配線板Bを形成した。   A circuit was formed on the polyimide copper foil laminate A based on the above method, and a printed wiring board B with a coverlay was formed using a coverlay (Niskan Kogyo Co., Ltd., CISV1215).

上記試験方法に基づいて行った試験結果に用いた非熱可塑性ポリイミドフィルム、カバーレイの弾性率測定結果、耐熱性試験結果、はぜ折り耐性試験結果を下記表1に示す。   Table 1 below shows the non-thermoplastic polyimide film and coverlay elastic modulus measurement results, heat resistance test results, and shell fold resistance test results used in the test results based on the above test methods.

ポリイミド銅箔積層体Aのはぜ折り耐性試験において、回路面と反対側の金属層をエッチングで除去した試験片は、8回のはぜ折り耐性試験後に回路断線が発生した。回路面と反対側の金属層を全て残した試験片は、2回のはぜ折り耐性試験後に回路断線が発生した。回路面と反対側の銅箔の有無に関わらず、1回のはぜ折り耐性試験値を示した。   In the shell fold resistance test of the polyimide copper foil laminate A, the test piece from which the metal layer on the side opposite to the circuit surface was removed by etching was subject to circuit breakage after eight shell fold resistance tests. The test piece in which all the metal layer on the side opposite to the circuit surface was left had circuit breakage after two helix fold resistance tests. A single fold resistance test value was shown regardless of the presence or absence of copper foil on the side opposite to the circuit surface.

カバーレイ付きプリント配線板Bを用いたカバーレイ付きプリント配線板はぜ折り耐性試験において、回路面と反対側の金属層をエッチングで除去した試験片、回路面と反対側の金属層を全て残した試験片ともに、4回のはぜ折り耐性試験後、カバーレイ外観異常なし、回路抵抗値変化なしと、回路面と反対側の銅箔の有無に関わらず、良好なはぜ折り耐性を示した。   The printed wiring board with coverlay using the printed wiring board B with coverlay is a test specimen in which the metal layer on the side opposite to the circuit surface is removed by etching and all the metal layer on the side opposite to the circuit surface is left in the fold resistance test. Both test pieces showed good helix fold resistance after four helix fold resistance tests, with no coverlay appearance abnormality and no change in circuit resistance, regardless of the presence or absence of copper foil on the opposite side of the circuit surface. It was.

[実施例2]
接着性ポリイミド層の厚みを片面3.0μmに、銅箔の厚みを9μm(接着性ポリイミド層と接する側のRzは0.6μm)に変更した以外は実施例1と同じ条件で、ポリイミド銅箔積層体Cとカバーレイ付きプリント配線板Dを得た。
[Example 2]
A polyimide copper foil under the same conditions as in Example 1 except that the thickness of the adhesive polyimide layer was changed to 3.0 μm on one side and the thickness of the copper foil was changed to 9 μm (Rz on the side in contact with the adhesive polyimide layer was 0.6 μm). A laminate C and a printed wiring board D with a coverlay were obtained.

上記試験方法に基づいて行った試験結果に用いた非熱可塑性ポリイミドフィルム、カバーレイの弾性率測定結果、耐熱性試験結果、はぜ折り耐性試験結果を下記表1に示す。   Table 1 below shows the non-thermoplastic polyimide film and coverlay elastic modulus measurement results, heat resistance test results, and shell fold resistance test results used in the test results based on the above test methods.

ポリイミド銅箔積層体Cのはぜ折り耐性試験において、回路面と反対側の金属層をエッチングで除去した試験片は、3回のはぜ折り耐性試験後に回路断線が発生した。回路面と反対側の金属層を全て残した試験片は、2回のはぜ折り耐性試験後に回路断線が発生した。回路面と反対側の銅箔の有無に関わらず、1回のはぜ折り耐性試験値を示した。   In the shell fold resistance test of the polyimide copper foil laminate C, the test piece from which the metal layer opposite to the circuit surface was removed by etching was subject to circuit disconnection after the three shell fold resistance tests. The test piece in which all the metal layer on the side opposite to the circuit surface was left had circuit breakage after two helix fold resistance tests. A single fold resistance test value was shown regardless of the presence or absence of copper foil on the side opposite to the circuit surface.

カバーレイ付きプリント配線板Dを用いたカバーレイ付きプリント配線板はぜ折り耐性試験において、回路面と反対側の金属層をエッチングで除去した試験片、回路面と反対側の金属層を全て残した試験片ともに、4回のはぜ折り耐性試験後、カバーレイ外観異常なし、回路抵抗値変化なしと、回路面と反対側の銅箔の有無に関わらず、良好なはぜ折り耐性を示した。   A printed wiring board with a coverlay using a printed wiring board D with a coverlay is a test specimen in which the metal layer on the side opposite to the circuit surface is removed by etching and all the metal layer on the side opposite to the circuit surface remains in the fold resistance test. Both test pieces showed good helix fold resistance after four helix fold resistance tests, with no coverlay appearance abnormality and no change in circuit resistance, regardless of the presence or absence of copper foil on the opposite side of the circuit surface. It was.

[実施例3]
接着性ポリイミド層の厚みを片面1.0μmに、銅箔の厚みを9μm(接着性ポリイミド層と接する側のRzは0.6μm)に変更した以外は実施例1と同じ条件で、ポリイミド銅箔積層体Eとカバーレイ付きプリント配線板Fを得た。
[Example 3]
A polyimide copper foil under the same conditions as in Example 1 except that the thickness of the adhesive polyimide layer was changed to 1.0 μm on one side and the thickness of the copper foil was changed to 9 μm (Rz on the side in contact with the adhesive polyimide layer was 0.6 μm). A laminate E and a printed wiring board F with a coverlay were obtained.

上記試験方法に基づいて行った試験結果に用いた非熱可塑性ポリイミドフィルム、カバーレイの弾性率測定結果、耐熱性試験結果、はぜ折り耐性試験結果を下記表1に示す。   Table 1 below shows the non-thermoplastic polyimide film and coverlay elastic modulus measurement results, heat resistance test results, and shell fold resistance test results used in the test results based on the above test methods.

ポリイミド銅箔積層体Eのはぜ折り耐性試験において、回路面と反対側の金属層をエッチングで除去した試験片は、5回のはぜ折り耐性試験後に回路断線が発生した。回路面と反対側の金属層を全て残した試験片は、2回のはぜ折り耐性試験後に回路断線が発生した。回路面と反対側の銅箔の有無に関わらず、1回のはぜ折り耐性試験値を示した。   In the shell fold resistance test of the polyimide copper foil laminate E, the test piece from which the metal layer opposite to the circuit surface was removed by etching showed circuit breakage after the five fold resistance tests. The test piece in which all the metal layer on the side opposite to the circuit surface was left had circuit breakage after two helix fold resistance tests. A single fold resistance test value was shown regardless of the presence or absence of copper foil on the side opposite to the circuit surface.

カバーレイ付きプリント配線板Fを用いたカバーレイ付きプリント配線板はぜ折り耐性試験において、回路面と反対側の金属層をエッチングで除去した試験片、回路面と反対側の金属層を全て残した試験片ともに、4回のはぜ折り耐性試験後、カバーレイ外観異常なし、回路抵抗値変化なしと、回路面と反対側の銅箔の有無に関わらず、良好なはぜ折り耐性を示した。   A printed wiring board with a coverlay using a printed wiring board F with a coverlay is a test specimen in which the metal layer on the side opposite to the circuit surface is removed by etching and all the metal layer on the side opposite to the circuit surface is left in the fold resistance test. Both test pieces showed good helix fold resistance after four helix fold resistance tests, with no coverlay appearance abnormality and no change in circuit resistance, regardless of the presence or absence of copper foil on the opposite side of the circuit surface. It was.

[実施例4]
接着性ポリイミド層の厚みを片面1.5μmに、銅箔の厚みを9μm(接着性ポリイミド層と接する側のRzは0.6μm)に変更した以外は実施例1と同じ条件で、ポリイミド銅箔積層体Gとカバーレイ付きプリント配線板Hを得た。
[Example 4]
A polyimide copper foil under the same conditions as in Example 1 except that the thickness of the adhesive polyimide layer was changed to 1.5 μm on one side and the thickness of the copper foil was changed to 9 μm (Rz on the side in contact with the adhesive polyimide layer was 0.6 μm). A laminate G and a printed wiring board H with a coverlay were obtained.

上記試験方法に基づいて行った試験結果に用いた非熱可塑性ポリイミドフィルム、カバーレイの弾性率測定結果、耐熱性試験結果、はぜ折り耐性試験結果を下記表1に示す。   Table 1 below shows the non-thermoplastic polyimide film and coverlay elastic modulus measurement results, heat resistance test results, and shell fold resistance test results used in the test results based on the above test methods.

ポリイミド銅箔積層体Gのはぜ折り耐性試験において、回路面と反対側の金属層をエッチングで除去した試験片は、5回のはぜ折り耐性試験後に回路断線が発生した。回路面と反対側の金属層を全て残した試験片は、2回のはぜ折り耐性試験後に回路断線が発生した。回路面と反対側の銅箔の有無に関わらず、1回のはぜ折り耐性試験値を示した。   In the shell fold resistance test of the polyimide copper foil laminate G, the test piece from which the metal layer opposite to the circuit surface was removed by etching was subject to circuit disconnection after the five shell fold resistance tests. The test piece in which all the metal layer on the side opposite to the circuit surface was left had circuit breakage after two helix fold resistance tests. A single fold resistance test value was shown regardless of the presence or absence of copper foil on the side opposite to the circuit surface.

カバーレイ付きプリント配線板Hを用いたカバーレイ付きプリント配線板はぜ折り耐性試験において、回路面と反対側の金属層をエッチングで除去した試験片、回路面と反対側の金属層を全て残した試験片ともに、4回のはぜ折り耐性試験後、カバーレイ外観異常なし、回路抵抗値変化なしと、回路面と反対側の銅箔の有無に関わらず、良好なはぜ折り耐性を示した。   The printed wiring board with coverlay using the printed wiring board H with coverlay is a test specimen in which the metal layer on the side opposite to the circuit surface is removed by etching and all the metal layer on the side opposite to the circuit surface is left in the fold resistance test. Both test pieces showed good helix fold resistance after four helix fold resistance tests, with no coverlay appearance abnormality and no change in circuit resistance, regardless of the presence or absence of copper foil on the opposite side of the circuit surface. It was.

[実施例5]
接着性ポリイミド層の厚みを片面2.5μmに、銅箔の厚みを9μm(接着性ポリイミド層と接する側のRzは0.6μm)に変更した以外は実施例1と同じ条件で、ポリイミド銅箔積層体Iとカバーレイ付きプリント配線板Jを得た。
[Example 5]
A polyimide copper foil under the same conditions as in Example 1 except that the thickness of the adhesive polyimide layer was changed to 2.5 μm on one side and the thickness of the copper foil was changed to 9 μm (Rz on the side in contact with the adhesive polyimide layer was 0.6 μm). Laminated body I and printed wiring board J with coverlay were obtained.

上記試験方法に基づいて行った試験結果を用いた非熱可塑性ポリイミドフィルム、カバーレイの弾性率測定結果、耐熱性試験結果、はぜ折り耐性試験結果を表1に示す。   Table 1 shows the non-thermoplastic polyimide film using the test results based on the above test method, the elastic modulus measurement results of the coverlay, the heat resistance test results, and the shell fold resistance test results.

ポリイミド銅箔積層体Iのはぜ折り耐性試験において、回路面と反対側の金属層をエッチングで除去した試験片は、3回のはぜ折り耐性試験後に回路断線が発生した。回路面と反対側の金属層を全て残した試験片は、2回のはぜ折り耐性試験後に回路断線が発生した。回路面と反対側の銅箔の有無に関わらず、1回のはぜ折り耐性試験値を示した。   In the shell fold resistance test of the polyimide copper foil laminate I, the test piece from which the metal layer opposite to the circuit surface was removed by etching was subject to circuit breakage after the three shell fold resistance tests. The test piece in which all the metal layer on the side opposite to the circuit surface was left had circuit breakage after two helix fold resistance tests. A single fold resistance test value was shown regardless of the presence or absence of copper foil on the side opposite to the circuit surface.

カバーレイ付きプリント配線板Jを用いたカバーレイ付きプリント配線板はぜ折り耐性試験において、回路面と反対側の金属層をエッチングで除去した試験片、回路面と反対側の金属層を全て残した試験片ともに、4回のはぜ折り耐性試験後、カバーレイ外観異常なし、回路抵抗値変化なしと、回路面と反対側の銅箔の有無に関わらず、良好なはぜ折り耐性を示した。   The printed wiring board with coverlay using the printed wiring board J with coverlay is a test piece in which the metal layer on the side opposite to the circuit surface is removed by etching and the metal layer on the side opposite to the circuit surface remains in the fold resistance test. Both test pieces showed good helix fold resistance after four helix fold resistance tests, with no coverlay appearance abnormality and no change in circuit resistance, regardless of the presence or absence of copper foil on the opposite side of the circuit surface. It was.

[比較例1]
接着性ポリイミド層の厚みを片面3.1μmに変更した以外は実施例1と同じ条件で、ポリイミド銅箔積層体Kとカバーレイ付きプリント配線板Lを得た。
[Comparative Example 1]
A polyimide copper foil laminate K and a printed wiring board L with a coverlay were obtained under the same conditions as in Example 1 except that the thickness of the adhesive polyimide layer was changed to 3.1 μm on one side.

上記試験方法に基づいて行った試験結果に用いた非熱可塑性ポリイミドフィルム、カバーレイの弾性率測定結果、耐熱性試験結果、はぜ折り耐性試験結果を下記表1に示す。耐熱性試験において、10電極中1電極で、電極のずれが発生し、耐熱性に劣る結果となった。   Table 1 below shows the non-thermoplastic polyimide film and coverlay elastic modulus measurement results, heat resistance test results, and shell fold resistance test results used in the test results based on the above test methods. In the heat resistance test, 1 electrode out of 10 electrodes was displaced, resulting in poor heat resistance.

[比較例2]
接着性ポリイミド層の厚みを片面0.9μmに変更した以外は実施例1と同じ条件で、ポリイミド銅箔積層体Mとカバーレイ付きプリント配線板Nを得た。ポリイミド銅箔積層体Mの銅箔をエッチングすると、接着性ポリイミド層にボイドが見られ、良好なプリント配線板を得られなかった。上記試験方法に基づいて行った試験結果に用いた非熱可塑性ポリイミドフィルム、カバーレイの弾性率測定結果、耐熱性試験結果を下記表1に示す。
[Comparative Example 2]
A polyimide copper foil laminate M and a printed wiring board N with a coverlay were obtained under the same conditions as in Example 1 except that the thickness of the adhesive polyimide layer was changed to 0.9 μm on one side. When the copper foil of the polyimide copper foil laminate M was etched, voids were seen in the adhesive polyimide layer, and a good printed wiring board could not be obtained. Table 1 below shows the non-thermoplastic polyimide film, the elastic modulus measurement results of the coverlay, and the heat resistance test results used for the test results based on the above test method.

[比較例3]
銅箔を(日本電解社製:USLPSE(12μm厚)、接着性ポリイミド層と接する側のRzは1.6μm)に変更した以外は実施例1と同じ条件で、ポリイミド銅箔積層体Oとカバーレイ付きプリント配線板Pを得た。
[Comparative Example 3]
Polyimide copper foil laminate O and cover under the same conditions as in Example 1 except that the copper foil was changed to (made by Nippon Electrolytic Co., Ltd .: USLPSE (12 μm thick), Rz on the side in contact with the adhesive polyimide layer was 1.6 μm) A printed wiring board P with a lay was obtained.

上記試験方法に基づいて行った試験結果を用いた非熱可塑性ポリイミドフィルム、カバーレイの弾性率測定結果、耐熱性試験結果、はぜ折り耐性試験結果を下記表1に示す。   Table 1 below shows the non-thermoplastic polyimide film using the test results based on the above test method, the elastic modulus measurement results of the coverlay, the heat resistance test results, and the shell fold resistance test results.

ポリイミド銅箔積層体Oのはぜ折り耐性試験において、回路面と反対側の金属層をエッチングで除去した試験片は、3回のはぜ折り耐性試験後に回路断線が発生した。回路面と反対側の金属層を全て残した試験片は、1回のはぜ折り耐性試験後に回路断線が発生した。   In the shell fold resistance test of the polyimide copper foil laminate O, the test piece from which the metal layer opposite to the circuit surface was removed by etching was subject to circuit breakage after three shell fold resistance tests. The test piece in which all the metal layer on the side opposite to the circuit surface was left had circuit breakage after a single shell fold resistance test.

カバーレイ付きプリント配線板Pを用いたカバーレイ付きプリント配線板はぜ折り耐性試験において、回路面と反対側の金属層を全て残した試験片に、4回のはぜ折り耐性試験後、回路断線が発生した。   A printed wiring board with a coverlay using a printed wiring board P with a coverlay was subjected to a test after four rounds of folding resistance tests on a test piece in which all the metal layer on the side opposite to the circuit surface was left. Disconnection occurred.

Figure 2012006200
Figure 2012006200

表1に示すように、本実施の形態に係るポリイミド金属積層体は、良好な耐熱性及びはぜ折り耐性を示した(実施例1〜実施例5)。一方、接着性ポリイミド層の厚みが大きい場合には、耐熱性が低下した(比較例1)。これは、ガラス転移温度以上の温度で接着性ポリイミド層の軟化により、回路の沈み込み等が発生したためと考えられる。また、接着性ポリイミド層の厚みが小さい場合には、ポリイミド金属積層体にボイドが生じたため、良好なポリイミド金属積層体は得られなかった(比較例2)。さらに、金属層の表面粗さが大きい場合には、ポリイミド金属積層体のはぜ折り耐性回数及びカバーレイ付きプリント配線板のはぜ折り耐性試験結果が悪化した(比較例3)。これは、金属層の粗化されている部分に応力集中が働き、金属層の破断が発生したためと考えられる。   As shown in Table 1, the polyimide metal laminate according to the present embodiment showed good heat resistance and shell fold resistance (Examples 1 to 5). On the other hand, when the thickness of the adhesive polyimide layer was large, the heat resistance decreased (Comparative Example 1). This is presumably because circuit subsidence or the like occurred due to softening of the adhesive polyimide layer at a temperature higher than the glass transition temperature. Moreover, when the thickness of the adhesive polyimide layer was small, voids were generated in the polyimide metal laminate, so that a good polyimide metal laminate was not obtained (Comparative Example 2). Furthermore, when the surface roughness of the metal layer was large, the number of times of folding resistance of the polyimide metal laminate and the results of the resistance testing of the printed wiring board with coverlay deteriorated (Comparative Example 3). This is presumably because the stress concentration acts on the roughened portion of the metal layer and the metal layer breaks.

本発明のポリイミド金属積層体及びプリント配線板は、耐熱性及びはぜ折り耐性に優れるので、高密度配線や高信頼性のフレキシブルプリント配線板やICパッケージ基板等の配線基材に好適である。また、フレキシブルプリント配線板は、小型電子機器用途に好適である。   Since the polyimide metal laminate and the printed wiring board of the present invention are excellent in heat resistance and folding resistance, they are suitable for wiring substrates such as high-density wiring, highly reliable flexible printed wiring boards and IC package substrates. Moreover, the flexible printed wiring board is suitable for small electronic equipment.

1 ポリイミド金属積層体
11 ポリイミド層
12、15 金属層
12a、14a、15a、16a 接触面
12b、15b 非接触面
13 非熱可塑性ポリイミドフィルム
14、16 接着性ポリイミド層
DESCRIPTION OF SYMBOLS 1 Polyimide metal laminated body 11 Polyimide layer 12, 15 Metal layer 12a, 14a, 15a, 16a Contact surface 12b, 15b Non-contact surface 13 Non-thermoplastic polyimide film 14, 16 Adhesive polyimide layer

Claims (6)

非熱可塑性ポリイミドフィルムと、前記非熱可塑性ポリイミドフィルムの少なくとも一方の面上に設けられた接着性ポリイミド層と、前記接着性ポリイミド層上に設けられた金属層とを備え、前記非熱可塑性ポリイミドフィルムの弾性率が4GPa以下であり、接着性ポリイミド層の厚みが1μm〜3μmであり、且つ、前記金属層は、前記接着性ポリイミド層と接する接触面の十点平均粗さRzが1.0μm以下であることを特徴とするポリイミド金属積層体。   A non-thermoplastic polyimide film, a non-thermoplastic polyimide film, an adhesive polyimide layer provided on at least one surface of the non-thermoplastic polyimide film, and a metal layer provided on the adhesive polyimide layer. The elastic modulus of the film is 4 GPa or less, the thickness of the adhesive polyimide layer is 1 μm to 3 μm, and the metal layer has a ten-point average roughness Rz of a contact surface in contact with the adhesive polyimide layer of 1.0 μm. A polyimide metal laminate characterized by the following. はぜ折耐性試験値が1回以上であることを特徴とする請求項1記載のポリイミド金属積層体。   The polyimide metal laminate according to claim 1, wherein the fracture resistance test value is one or more times. 請求項1又は請求項2記載のポリイミド金属積層体の金属層に回路を形成してなることを特徴とするプリント配線板。   A printed wiring board comprising a circuit formed on a metal layer of the polyimide metal laminate according to claim 1. 請求項3に記載のプリント配線板と、前記プリント配線板の回路形成面上に設けられたカバーレイとを備えたことを特徴とするカバーレイ付プリント配線板。   A printed wiring board with a cover lay comprising the printed wiring board according to claim 3 and a cover lay provided on a circuit forming surface of the printed wiring board. はぜ折り耐性試験値が4回以上であることを特徴とする請求項4記載のカバーレイ付プリント配線板。   The printed wiring board with coverlay according to claim 4, wherein the test value of the shell fold resistance is 4 times or more. 前記カバーレイの弾性率が4GPa以下であることを特徴とする請求項4又は請求項5に記載のカバーレイ付きプリント配線板。   The printed wiring board with a cover lay according to claim 4 or 5, wherein an elastic modulus of the cover lay is 4 GPa or less.
JP2010142817A 2010-06-23 2010-06-23 Polyimide metal laminate and printed wiring board obtained by using the same Pending JP2012006200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142817A JP2012006200A (en) 2010-06-23 2010-06-23 Polyimide metal laminate and printed wiring board obtained by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142817A JP2012006200A (en) 2010-06-23 2010-06-23 Polyimide metal laminate and printed wiring board obtained by using the same

Publications (1)

Publication Number Publication Date
JP2012006200A true JP2012006200A (en) 2012-01-12

Family

ID=45537341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142817A Pending JP2012006200A (en) 2010-06-23 2010-06-23 Polyimide metal laminate and printed wiring board obtained by using the same

Country Status (1)

Country Link
JP (1) JP2012006200A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140086899A (en) 2012-12-28 2014-07-08 신닛테츠 수미킨 가가쿠 가부시키가이샤 Flexible copper-clad laminate
JP2015520523A (en) * 2012-06-22 2015-07-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Circuit board
KR20150143407A (en) 2013-04-16 2015-12-23 도요보 가부시키가이샤 Metal foil laminate
KR20180114532A (en) 2016-07-12 2018-10-18 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil
WO2020145695A1 (en) * 2019-01-11 2020-07-16 주식회사 엘지화학 Film, metal-clad laminate, flexible substrate, manufacturing method for film, manufacturing method for metal-clad laminate, and manufacturing method for flexible substrate
JP2021057395A (en) * 2019-09-27 2021-04-08 株式会社タムラ製作所 Method for manufacturing flexible print wiring board

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015520523A (en) * 2012-06-22 2015-07-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Circuit board
KR20140086899A (en) 2012-12-28 2014-07-08 신닛테츠 수미킨 가가쿠 가부시키가이샤 Flexible copper-clad laminate
JP2014141083A (en) * 2012-12-28 2014-08-07 Nippon Steel & Sumikin Chemical Co Ltd Flexible copper-clad laminate sheet
KR20200015643A (en) 2012-12-28 2020-02-12 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Flexible printed circuit
KR20150143407A (en) 2013-04-16 2015-12-23 도요보 가부시키가이샤 Metal foil laminate
KR20180114532A (en) 2016-07-12 2018-10-18 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil
WO2020145695A1 (en) * 2019-01-11 2020-07-16 주식회사 엘지화학 Film, metal-clad laminate, flexible substrate, manufacturing method for film, manufacturing method for metal-clad laminate, and manufacturing method for flexible substrate
CN112020427A (en) * 2019-01-11 2020-12-01 株式会社Lg化学 Film, clad laminate, flexible substrate, method for producing film, method for producing clad laminate, and method for producing flexible substrate
EP3769959A4 (en) * 2019-01-11 2021-07-14 Lg Chem, Ltd. Film, metal-clad laminate, flexible substrate, manufacturing method for film, manufacturing method for metal-clad laminate, and manufacturing method for flexible substrate
US20210268781A1 (en) * 2019-01-11 2021-09-02 Lg Chem, Ltd. Film, metal-clad laminate, flexible substrate, manufacturing method for film, manufacturing method for metal-clad laminate, and manufacturing method for flexible substrate
US11845246B2 (en) 2019-01-11 2023-12-19 Lg Chem, Ltd. Film, metal-clad laminate, flexible substrate, manufacturing method for film, manufacturing method for metal-clad laminate, and manufacturing method for flexible substrate
JP2021057395A (en) * 2019-09-27 2021-04-08 株式会社タムラ製作所 Method for manufacturing flexible print wiring board
JP7344067B2 (en) 2019-09-27 2023-09-13 株式会社タムラ製作所 Manufacturing method of flexible printed wiring board

Similar Documents

Publication Publication Date Title
US8313831B2 (en) Thermoplastic polyimide resin film, multilayer body and method for manufacturing printed wiring board composed of same
US7285321B2 (en) Multilayer substrates having at least two dissimilar polyimide layers, useful for electronics-type applications, and compositions relating thereto
US20060068211A1 (en) Low temperature polyimide adhesive compositions and methods relating thereto
JP2004189981A (en) Thermoplastic polyimide resin material and laminated body, and manufacturing method of printed wiring board
JPWO2009054456A1 (en) Method for manufacturing printed wiring board
JP2006224644A (en) Insulating sheet, metallic layer and insulating sheet laminate, and printed wiring board using same
KR101278342B1 (en) Material for plating and use thereof
KR20130072145A (en) Both sides metal-clad laminate and method of producing the same
JP4907580B2 (en) Flexible copper clad laminate
JP2012006200A (en) Polyimide metal laminate and printed wiring board obtained by using the same
KR20080054442A (en) Process for producing metal wiring board
JP2005101269A (en) Multilayer printed wiring board
KR100728150B1 (en) Bonding sheet and one-side metal-clad laminate
JP2010208322A (en) Polyimide metal laminate, and printed wiring board using the same
JP2007062274A (en) Flexible laminated board cladded with copper layer on single site and manufacturing method of it
KR20140081143A (en) Multi-layer flexible metal-clad laminate and manufacturing method for thereof
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
CN107428146B (en) Polyimide laminate film, method for producing thermoplastic polyimide, and method for producing flexible metal-clad laminate
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
JP2011037157A (en) Metal foil polyimide laminate
JP4911296B2 (en) Manufacturing method of metal wiring heat-resistant resin substrate
JP2007320083A (en) Copper-lad laminate
JP2005193404A (en) Manufacturing method of flexible metal clad laminate
JP2007313854A (en) Copper-clad laminated sheet
JP2005178242A (en) Method for producing flexible metal-clad laminated plate improved in dimensional stability