Nothing Special   »   [go: up one dir, main page]

JP2012092458A - Ultrafine fiber for binder - Google Patents

Ultrafine fiber for binder Download PDF

Info

Publication number
JP2012092458A
JP2012092458A JP2010239659A JP2010239659A JP2012092458A JP 2012092458 A JP2012092458 A JP 2012092458A JP 2010239659 A JP2010239659 A JP 2010239659A JP 2010239659 A JP2010239659 A JP 2010239659A JP 2012092458 A JP2012092458 A JP 2012092458A
Authority
JP
Japan
Prior art keywords
fiber
sea
island
ultrafine
fiber diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010239659A
Other languages
Japanese (ja)
Inventor
Kazuhiro Morishima
一博 森島
Kumiko Tsuda
久美子 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2010239659A priority Critical patent/JP2012092458A/en
Publication of JP2012092458A publication Critical patent/JP2012092458A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide ultrafine binder fibers that have a uniform fiber diameter notwithstanding ultrafine fibers, and are uniformly dispersed in the main fibers during paper making without hindering performance that the main fibers have, and also have a good adhesiveness.SOLUTION: There is provided ultrafine fibers for a binder, wherein the ultrafine fibers are made of a thermoplastic resin and simultaneously meets the following requirements:(1) an average fiber diameter Xd is 10 to 2000 nm; (2) a coefficient of variation in fiber diameter (CVd) represented by the following formula (I) is 0 to 25%: CVd=σd/Xd×100 (%) (I) (in the formula, the average fiber diameter represents an average value of the longest diameter and the shortest diameter in a fiber cross section, and σd represents a standard deviation of a fiber diameter distribution); and (3) a crystallinity Xc by a density method is 20% or less.

Description

本発明は、熱可塑性樹脂からなる繊維径が10〜2000nmの極細繊維に関するものであり、更に詳しくは、均一な繊維径を有し、接着性に優れ、抄紙などの繊維構造体を均一に成型可能なバインダー用極細繊維に関するものである。   The present invention relates to an ultrafine fiber having a fiber diameter of 10 to 2000 nm made of a thermoplastic resin. More specifically, it has a uniform fiber diameter, excellent adhesion, and uniformly forms a fiber structure such as papermaking. The present invention relates to a possible fine fiber for a binder.

近年、ナノファイバーに代表されるように、繊維径が1000nm以下の超極細繊維がその吸湿性や低分子物質吸着性等の特異性から着目されており、超高性能フィルター、電池やキャパシタ等のセパレータ、或いはハードディスクやシリコンウェハース等の研磨材など、高機能素材の原料として採用が検討されている。   In recent years, as typified by nanofibers, ultrafine fibers with a fiber diameter of 1000 nm or less have attracted attention due to their peculiarities such as hygroscopicity and low molecular weight substance adsorption, such as ultra-high performance filters, batteries and capacitors. Adoption is considered as a raw material for high-performance materials such as separators or abrasives such as hard disks and silicon wafers.

これらは精密分離、加工用素材として厚みや空孔の均一さが要求され、素材を構成する極細繊維も径、長さとも均一なものが必要である。そのような超極細繊維の製造法としては、混合紡糸された繊維の海成分を抽出する方法、海島型の複合繊維から海成分を抽出除去する方法、分割型の複合繊維を機械的、あるいは化学的に分割極細化する方法、エレクトロスピニングによる直接紡糸方法などを挙げることができ、例えば特許文献1には、高分子アロイから海成分を抽出することによる極細繊維を用いた合成紙が提案されている。   These require precision separation and processing as well as uniform thickness and pores, and ultrafine fibers constituting the material must be uniform in diameter and length. Such ultrafine fibers can be produced by extracting the sea component of the mixed and spun fiber, extracting and removing the sea component from the sea-island type composite fiber, mechanically or chemically dividing the split type composite fiber. For example, Patent Document 1 proposes a synthetic paper using ultrafine fibers by extracting a sea component from a polymer alloy. Yes.

しかしこの方法では、2成分混合型繊維の島成分の繊維径を制御することが難しく繊維径のばらつきが大きくなるという問題を有する。
また、特許文献2には、海島型複合繊維からなる短カットナノファイバーが例示されているが、繊維同士を接着する方法については詳細に言及されておらず、セパレータやフィルターなどの、均一性に加え、素材としての強度も要求される用途については依然不十分なものであった。
However, this method has a problem that it is difficult to control the fiber diameter of the island component of the two-component mixed fiber, and the dispersion of the fiber diameter becomes large.
In addition, Patent Document 2 exemplifies short-cut nanofibers made of sea-island type composite fibers, but the method for bonding the fibers is not described in detail, and the uniformity of separators, filters, etc. In addition, the use for which strength as a material is required is still insufficient.

特開2005−264420号公報JP 2005-264420 A 特開2007−107160号公報JP 2007-107160 A

本発明の目的は、上記従来技術の有する問題点を解決し、均一な繊維径を有し、接着性に優れ、抄紙などの繊維構造体を均一に成型可能な、繊維径が10〜2000nmのバインダー用極細繊維を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art, have a uniform fiber diameter, excellent adhesion, and capable of uniformly forming a fiber structure such as papermaking, with a fiber diameter of 10 to 2000 nm. The object is to provide ultrafine fibers for binders.

本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、その繊維径の均一さと結晶性を規定することにより、上記課題が解決できることを見出し、本発明に到達した。   As a result of intensive studies in order to solve the above problems, the present inventors have found that the above problems can be solved by defining the uniformity of the fiber diameter and crystallinity, and have reached the present invention.

即ち本発明によれば、熱可塑性樹脂からなり、下記(1)〜(3)を同時に満足することを特徴とするバインダー用極細繊維が提供される。
(1)平均繊維径 Xdが10〜2000nmであること。
(2)下記式(I)で表される繊維径変動係数(CVd)が0〜25%であること。
CVd= σd / Xd ×100 (%) (I)
(但し、平均繊維径は繊維断面における最長径と最短径の平均値であり、σdは繊維径分布の標準偏差を示す。)
(3)密度法による結晶化度 Xcが20%以下であること。
That is, according to the present invention, there is provided an ultrafine fiber for a binder which is made of a thermoplastic resin and satisfies the following (1) to (3) simultaneously.
(1) The average fiber diameter Xd is 10 to 2000 nm.
(2) The fiber diameter variation coefficient (CVd) represented by the following formula (I) is 0 to 25%.
CVd = σd / Xd × 100 (%) (I)
(However, the average fiber diameter is the average value of the longest diameter and the shortest diameter in the fiber cross section, and σd indicates the standard deviation of the fiber diameter distribution.)
(3) Crystallinity Xc by density method is 20% or less.

その際、該バインダー用極細繊維は、易溶解成分を海成分、難溶解成分を島成分とする海島型複合繊維から、海成分を溶出除去することにより得られる繊維であって、海島型複合繊維形成時の見掛けドラフトが10〜1000として形成されることが望ましい。
また、該バインダー用極細繊維は、平均繊維径(Xd)と、繊維長(L)の比(L/Xd)が100〜2500であることが望ましい。
In this case, the ultrafine fiber for binder is a fiber obtained by eluting and removing the sea component from the sea-island composite fiber having the easily soluble component as the sea component and the hardly soluble component as the island component. It is desirable that the apparent draft at the time of formation is 10 to 1000.
Further, it is desirable that the binder ultrafine fibers have a ratio (L / Xd) of the average fiber diameter (Xd) to the fiber length (L) of 100 to 2500.

本発明によれば、極細繊維でありながら、均一な繊維径を有することにより、抄紙の際主体繊維中に均一に分散し、主体繊維の有する性能を妨げることなく、かつその接着性も良好な極細バインダー繊維を得ることができる。   According to the present invention, although it is an ultrafine fiber, it has a uniform fiber diameter, so that it is uniformly dispersed in the main fiber during papermaking, and does not interfere with the performance of the main fiber, and also has good adhesion. Ultra fine binder fibers can be obtained.

本発明のバインダー用極細繊維の発生前駆体である海島型複合繊維を紡糸するために用いられる、紡糸口金の一実施態様を示す概略図である。It is the schematic which shows one embodiment of the spinneret used in order to spin the sea-island type | mold composite fiber which is a generation | occurrence | production precursor of the ultrafine fiber for binders of this invention. 本発明のバインダー用極細繊維の発生前駆体である海島型複合繊維を紡糸するために用いられる、紡糸口金の他の実施態様を示す概略図である。It is the schematic which shows the other embodiment of a spinneret used in order to spin the sea-island type | mold composite fiber which is a generation | occurrence | production precursor of the ultrafine fiber for binders of this invention.

以下本発明の実施形態について詳細に説明する。
本発明の繊維は熱可塑性樹脂からなり、その繊維径Xdは10〜2000nmである。該繊維径が10nm未満であると、分子間力の影響が強くなるためか繊維構造自身が不安定となって個々の極細繊維の分繊性が低下し、極細繊維が均一に分散された繊維構造体を得ることが困難となる。
Hereinafter, embodiments of the present invention will be described in detail.
The fiber of the present invention is made of a thermoplastic resin, and its fiber diameter Xd is 10 to 2000 nm. If the fiber diameter is less than 10 nm, the fiber structure itself is unstable because the influence of intermolecular force is strong, and the fineness of the individual ultrafine fibers is reduced, so that the ultrafine fibers are uniformly dispersed. It becomes difficult to obtain a structure.

一方、該繊維径が2000nmを超えると、繊維構造体が不均一となり、接着力も低下し、主体極細繊維の有する性能を妨げることとなって、本発明が目的とする物性を得ることが困難となる。繊維径の特に好ましい範囲は50〜1500nmである。   On the other hand, when the fiber diameter exceeds 2000 nm, the fiber structure becomes non-uniform, the adhesive strength is also lowered, and the performance of the main ultrafine fibers is hindered, and it is difficult to obtain the intended physical properties of the present invention. Become. A particularly preferable range of the fiber diameter is 50 to 1500 nm.

また、本発明のバインダー繊維の繊維直径変動係数(CVd)は0〜25%の範囲であることが必要である。CVd が25%を超えると均一性が大きく低下し、紙とした際にその機能、および品位を大きく損なうこととなる。好ましい範囲は0〜20%、さらに好ましくは0〜15%である。   Further, the fiber diameter variation coefficient (CVd) of the binder fiber of the present invention needs to be in the range of 0 to 25%. When CVd exceeds 25%, the uniformity is greatly reduced, and when used as paper, its function and quality are greatly impaired. The preferred range is 0-20%, more preferably 0-15%.

さらに本発明のバインダー繊維の結晶化度は20%以下であることが必要である。結晶化度が20%を超えると、抄紙の際主体繊維との接着性が乏しくなり、紙としての強度が低下し、機能も損なうこととなる。結晶化度は好ましくは15%以下、より好ましくは10%以下である。なお、接着性能を向上させるためには結晶化度に加え、非晶部の配向度を下げることが好ましく、その尺度として繊維の伸度が高い方が良好となる。好ましい伸度は100%以上である。   Further, the crystallinity of the binder fiber of the present invention needs to be 20% or less. When the degree of crystallinity exceeds 20%, the adhesiveness with the main fiber becomes poor at the time of paper making, the strength as paper is lowered, and the function is also impaired. The degree of crystallinity is preferably 15% or less, more preferably 10% or less. In order to improve the adhesion performance, it is preferable to lower the degree of orientation of the amorphous part in addition to the degree of crystallinity, and the higher the fiber elongation, the better. A preferable elongation is 100% or more.

本発明の極細繊維は、ナノレベルの繊維径でばらつきも少なく、用途に合わせた商品設計が可能となる。例えば、フィルター用途では、極細単繊維径において吸着できる物質を選択しておけば、用途に合わせて繊維径の設計をすることが可能になり、非常に効率的に商品設計を行うことが可能になる。   The ultrafine fiber of the present invention has a nano-level fiber diameter with little variation, and it is possible to design a product suitable for the application. For example, in the filter application, if a substance that can be adsorbed in the ultrafine fiber diameter is selected, the fiber diameter can be designed according to the application, and the product design can be performed very efficiently. Become.

本発明のバインダー用極細繊維の製造方法としては、従来公知の方法を挙げることができるが、多島構造の海島型複合繊維から海成分を除去して製造する方法が最も好ましい。その際、繊維の巻き取り速度と海島型断面形状として吐出孔から吐出されるポリマーの時間当たりの速度の比であるドラフトが10〜1000、より好ましくは10〜500であることが好ましく、海島型複合繊維は延伸、熱処理されていないことが好ましい。ドラフトが1000を超えたり、繊維を延伸、熱処理すると、破断伸度が低下し、結晶化度が20%を超えることがあり、バインダー繊維としての接着性が低下するため好ましくない。   As a method for producing the ultrafine fiber for binder of the present invention, a conventionally known method can be exemplified, but a method of producing by removing sea components from a sea-island type composite fiber having a multi-island structure is most preferable. At that time, the draft which is the ratio of the speed of winding of the fiber and the speed per hour of the polymer discharged from the discharge hole as the sea-island type cross-sectional shape is preferably 10 to 1000, more preferably 10 to 500, The composite fiber is preferably not stretched or heat-treated. When the draft exceeds 1000, or when the fiber is stretched or heat-treated, the breaking elongation may decrease and the crystallinity may exceed 20%, which is not preferable because the adhesiveness as the binder fiber decreases.

また、海成分ポリマーとしては、島成分ポリマーよりも溶解性が高いポリマーである限り適宜選定できるが、特に溶解速度比(海/島)が200以上であることが好ましい。この溶解速度比が200未満の場合には、繊維断面中央部の海成分を溶解させている間に繊維断面表層部の島成分の一部も溶解されるため、海成分を完全に溶解除去するためには、島成分も減量されることになり、島成分の太さ斑や溶剤浸食による強度劣化が発生し、均一な繊径を有するバインダーとしての機能を低下させることがある。   Further, the sea component polymer can be appropriately selected as long as it is a polymer having higher solubility than the island component polymer, but the dissolution rate ratio (sea / island) is particularly preferably 200 or more. When this dissolution rate ratio is less than 200, part of the island component of the fiber cross-section surface layer is dissolved while the sea component of the fiber cross-section center is dissolved, so the sea component is completely dissolved and removed. For this purpose, the island component is also reduced, and the strength of the island component due to the unevenness of the island component or solvent erosion may occur, thereby reducing the function as a binder having a uniform fine diameter.

溶解速度比は、海成分及び島成分のポリマーを単独で製糸し、海成分を溶解減量可能な溶剤を用いてそれぞれの減量速度を算出することにより求めることができる。例えば、海成分、島成分を各々孔径0.3mm、長さ0.6mmの吐出孔を有する口金から吐出し、所定の紡糸速度で引き取り、これを所定の溶剤及び溶解温度で浴比100として、溶解時間と溶解量から減量速度を算出する。   The dissolution rate ratio can be determined by spinning the polymer of the sea component and the island component alone and calculating the respective weight loss rates using a solvent capable of dissolving and reducing the sea component. For example, the sea component and the island component are each discharged from a die having a discharge hole having a hole diameter of 0.3 mm and a length of 0.6 mm, taken at a predetermined spinning speed, and this is set to a bath ratio of 100 at a predetermined solvent and dissolution temperature, and the dissolution time The rate of weight loss is calculated from the dissolved amount.

次に島成分数は、多いほど海成分を溶解除去して極細繊維を製造する場合の生産性が高くなり、しかも得られる極細繊維も顕著に細くなり、抄紙時の分散、均一性に寄与することができるので、島成分数は100以上であることが好ましく、より好ましくは500以上である。なお、島成分数があまりに多くなりすぎると、紡糸口金の製造コストが高くなるだけでなく、紡糸口金の加工精度自体も低下しやすくなるので、島成分数を1000以下とすることが好ましい。   Next, the greater the number of island components, the higher the productivity when producing ultrafine fibers by dissolving and removing sea components, and the resulting ultrafine fibers also become significantly finer, contributing to dispersion and uniformity during papermaking. Therefore, the number of island components is preferably 100 or more, more preferably 500 or more. If the number of island components is too large, not only will the production cost of the spinneret increase, but the processing accuracy of the spinneret itself tends to decrease, so the number of island components is preferably 1000 or less.

海成分を構成するポリマーとしては、特に繊維形成性の良いポリエステル類、ポリアミド類、ポリエチレンやポリスチレン等のポリオレフィン類を好ましい例としてあげることができる。ポリアミド類は脂肪族ポリアミド類が好ましい。更に具体例を挙げれば、アルカリ水溶液易溶解性ポリマーとして、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリオキシアルキレングリコール系化合物と5−ナトリウムスルホイソフタル酸の共重合ポリエステルが最適である。しかし、共重合成分はこれらのみに限定されるわけではなく、これらを共重合した上で更に別の共重合成分が存在していても構わない。   Preferred examples of the polymer constituting the sea component include polyesters, polyamides, and polyolefins such as polyethylene and polystyrene, which are particularly good in fiber formation. The polyamide is preferably an aliphatic polyamide. As specific examples, polylactic acid, ultrahigh molecular weight polyalkylene oxide condensation polymer, polyoxyalkylene glycol compound and 5-sodium sulfoisophthalic acid copolyester are most suitable as the alkaline aqueous solution-soluble polymer. However, the copolymerization component is not limited to these, and another copolymerization component may exist after the copolymerization thereof.

ここでアルカリ水溶液とは、水酸化カリウム、水酸化ナトリウム水溶液などを言う。これ以外にも、海成分を構成するポリマーとそれを溶解する溶剤あるいは分解性薬剤の組み合わせとして、ナイロン6やナイロン6、6等の脂肪族ポリアミドに対するギ酸、ポリスチレンに対するトリクロロエチレン等やポリエチレン(特に高圧法低密度ポリエチレンや直鎖状低密度ポリエチレン)に対する熱トルエンやキシレン等の炭化水素系溶剤、ポリビニルアルコールやエチレン変性ビニルアルコール系ポリマーに対する熱水を例として挙げることができる。   Here, the alkaline aqueous solution refers to potassium hydroxide, sodium hydroxide aqueous solution and the like. In addition to this, as a combination of a polymer constituting a sea component and a solvent or degradable agent for dissolving the polymer, formic acid for aliphatic polyamide such as nylon 6, nylon 6, 6 or the like, trichloroethylene for polystyrene, or polyethylene (especially high pressure method) Hot water for hydrocarbon solvents such as hot toluene and xylene for low density polyethylene and linear low density polyethylene) and polyvinyl alcohol and ethylene-modified vinyl alcohol polymers can be given as examples.

共重合ポリエステル系ポリマーの中でも、5−ナトリウムスルホイソフタル酸6〜12mol%と分子量4000〜12000のポリエチレングリコールを3〜10重量%共重合させた固有粘度が0.3〜0.6dL/gのポリエチレンテレフタレート系共重合ポリエテルが好ましい。ここで、5−ナトリウムスルホイソフタル酸は親水性と溶融粘度向上に寄与し、ポリエチレングリコール(PEG)は親水性を向上させる。また、PEGは分子量が大きいほど、その高次構造に起因すると考えられる親水性増加作用があるが、反応性が悪くなってブレンド系になるため、耐熱性や紡糸安定性の面で問題が生じる可能性がある。また、共重合量が10重量% 以上になると、溶融粘度低下作用があるので、好ましくない。以上のことから上記の範囲が適切であると考えられる。   Among copolymerized polyester polymers, polyethylene terephthalate copolymer having an intrinsic viscosity of 0.3 to 0.6 dL / g obtained by copolymerizing 6 to 12 mol% of 5-sodium sulfoisophthalic acid and 3 to 10 wt% of polyethylene glycol having a molecular weight of 4000 to 12000. Polymerized polyether is preferred. Here, 5-sodium sulfoisophthalic acid contributes to improving hydrophilicity and melt viscosity, and polyethylene glycol (PEG) improves hydrophilicity. In addition, PEG has a hydrophilicity increasing action that is considered to be due to its higher-order structure as the molecular weight increases, but it becomes a blend system due to poor reactivity, which causes problems in terms of heat resistance and spinning stability. there is a possibility. On the other hand, when the copolymerization amount is 10% by weight or more, there is an effect of decreasing the melt viscosity, which is not preferable. From the above, it is considered that the above range is appropriate.

島成分を構成するポリマーは熱可塑性樹脂であり、溶融紡糸時の海成分粘度より小さくなり、かつ前述のような海成分との溶解速度比があれば、いかなる繊維形成性ポリマーであってもよい。中でも、ポリアミド類、ポリエステル類、ポリオレフィン類などが好適な例として挙げられる。   The polymer constituting the island component is a thermoplastic resin, and any fiber-forming polymer may be used as long as it is lower than the viscosity of the sea component at the time of melt spinning and has a dissolution rate ratio with the sea component as described above. . Among them, polyamides, polyesters, polyolefins and the like are preferable examples.

具体的には、機械的強度や耐熱性を要求される用途では、ポリエステル類では、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート又はこれらを主たる繰返し単位とし、イソフタル酸若しくは5−スルホイソフタル酸金属塩等の芳香族ジカルボン酸、アジピン酸若しくはセバシン酸等の脂肪族ジカルボン酸、ε-カプロラクトン等のヒドロキシカルボン酸縮合物、若しくはジエチレングリコール、トリメチレングリコール、テトラメチレングリコール若しくはヘキサメチレングリコール等のグリコール成分等との共重合体が好ましい。
また、ポリアミド類では、ナイロン6、ナイロン66等の脂肪族ポリアミド類が好ましい。
Specifically, in applications where mechanical strength and heat resistance are required, in polyesters, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate or the main repeating units thereof, isophthalic acid or 5- Aromatic dicarboxylic acids such as metal salts of sulfoisophthalic acid, aliphatic dicarboxylic acids such as adipic acid or sebacic acid, hydroxycarboxylic acid condensates such as ε-caprolactone, or diethylene glycol, trimethylene glycol, tetramethylene glycol or hexamethylene glycol A copolymer with a glycol component or the like is preferred.
Of the polyamides, aliphatic polyamides such as nylon 6 and nylon 66 are preferable.

一方、ポリオレフィン類は酸やアルカリ等に侵され難いことや、比較的低い融点のために繊維として取り出した後のバインダー成分として使える等の特徴があり、高密度ポリエチレン、中密度ポリエチレン、高圧法低密度ポリエチレン、直鎖状低密度ポリエチレン、アイソタクティックポリプロピレン、エチレンプロピレン共重合体、無水マレイン酸などのビニルモノマーのエチレン共重合体等を好ましい例としてあげることができる。他にはポリスルフォン、ポリイミド、ポリケトン類、ポリアリレートなどを挙げることができる。   On the other hand, polyolefins are not easily attacked by acids, alkalis, etc., and have a characteristic that they can be used as binder components after being taken out as fibers due to their relatively low melting point. Preferred examples include high density polyethylene, linear low density polyethylene, isotactic polypropylene, ethylene propylene copolymer, and ethylene copolymer of vinyl monomer such as maleic anhydride. Other examples include polysulfone, polyimide, polyketones, polyarylate and the like.

さらに島成分は丸断面に限らず、異型断面であってもよい。少量の他の重合体や酸化防止剤、制電剤、顔料、蛍光増白剤その他の添加剤が含有されていてもよい。
なお、海成分を構成するポリマー及び島成分を構成するポリマーについて、製糸性および抽出後の物性に影響を及ぼさない範囲で、必要に応じて、有機充填剤、酸化防止剤、熱安定剤、光安定剤、難燃剤、滑剤、帯電防止剤、防錆剤、架橋剤、発泡剤、蛍光剤、表面平滑剤、表面光沢改良剤、フッ素樹脂等の離型改良剤、等の各種添加剤を含んでいても良い。
Furthermore, the island component is not limited to a round cross section, and may be an irregular cross section. A small amount of other polymers, antioxidants, antistatic agents, pigments, fluorescent brighteners and other additives may be contained.
In addition, for the polymer constituting the sea component and the polymer constituting the island component, organic fillers, antioxidants, heat stabilizers, light, and so on, as long as they do not affect the spinning properties and physical properties after extraction. Contains various additives such as stabilizers, flame retardants, lubricants, antistatic agents, rust inhibitors, crosslinking agents, foaming agents, fluorescent agents, surface smoothing agents, surface gloss improvers, mold release improvers such as fluororesins, etc. You can leave.

上記の海成分ポリマーと島成分ポリマーからなる海島型複合繊維は、ポリマーの溶融粘度比(海/島)が、0.8〜2.0範囲内にあることが好ましい。溶融粘度比が0.8倍未満の場合には、海成分の複合質量比率が50%未満のように低くなると、溶融紡糸時に島成分が互いに接合しやすくなり、一方、溶融粘度比が2.0倍を越える場合には、粘度差が大きすぎるために紡糸工程の安定性が低下しやすい。   The sea-island type composite fiber composed of the sea component polymer and the island component polymer preferably has a polymer melt viscosity ratio (sea / island) in the range of 0.8 to 2.0. When the melt viscosity ratio is less than 0.8 times, when the composite mass ratio of the sea component is as low as less than 50%, the island components are easily joined to each other during melt spinning, while the melt viscosity ratio is 2. If it exceeds 0 times, the stability of the spinning process tends to decrease because the viscosity difference is too large.

さらに、本発明の海島型複合繊維は、海成分の複合質量比率が50%未満であることが好ましい。その海島複合質量比率(海:島)は、30:70〜5:95の範囲内にあることが好ましい。上記範囲内にあれば、島成分間の海成分の厚さを薄くすることができ、海成分の溶解除去が容易となり、島成分の極細繊維への転換が容易になる。ここで海成分の割合が50%を越える場合には、海成分の厚さが厚くなりすぎ、一方5%未満の場合には海成分の量が少なくなりすぎて、島間に相互接合が発生しやすくなる。
海成分、島成分は別々に溶融し、口金内で海島型に複合し、吐出される。その後、冷却風などによって固化させた後、好ましくは200〜2000m/分の速度で未延伸繊維として引き取る。
Furthermore, the sea-island composite fiber of the present invention preferably has a composite mass ratio of sea components of less than 50%. The sea-island composite mass ratio (sea: island) is preferably in the range of 30:70 to 5:95. If it exists in the said range, the thickness of the sea component between island components can be made thin, the dissolution removal of a sea component will become easy, and the conversion to an ultrafine fiber of an island component will become easy. Here, when the proportion of the sea component exceeds 50%, the thickness of the sea component becomes too thick. On the other hand, when the proportion is less than 5%, the amount of the sea component becomes too small and the mutual connection occurs between the islands. It becomes easy.
The sea component and the island component are melted separately, combined into a sea-island shape in the base, and discharged. Then, after solidifying with cooling air or the like, it is taken up as undrawn fiber, preferably at a speed of 200 to 2000 m / min.

溶融紡糸に用いられる口金としては、島成分を形成するための中空ピン群や微細孔群有するものなど任意のものを用いることができる。例えば中空ピンや微細孔より押し出された島成分流とその間を埋める形で流路を設計されている海成分流とを合流し、これを圧縮することにより海島断面が形成されるといった紡糸口金でもよい。好ましく用いられる紡糸口金例を図1および2に示すが、必ずしもこれらに限定されるものではない。なお図1は中空ピンを海成分樹脂貯め部分に吐出してそれを合流圧縮する方式であり、図2 は微細孔方式で島成分を形成する方法である。   As a die used for melt spinning, any one such as a hollow pin group or a fine hole group for forming an island component can be used. For example, a spinneret in which an island component flow extruded from a hollow pin or a fine hole and a sea component flow that is designed to fill the gap between them are merged and compressed to form a sea island cross section. Good. Examples of spinnerets that are preferably used are shown in FIGS. 1 and 2, but are not necessarily limited thereto. FIG. 1 shows a method in which a hollow pin is discharged into a sea component resin reservoir portion and is joined and compressed, and FIG. 2 is a method in which island components are formed by a fine hole method.

本発明のバインダー用極細繊維は、多島海島型複合繊維を製造した後、これを所定の繊維長にカットした短繊維の発生前駆体を経て、海成分を溶出又は分解することによって島成分からなる短繊維を取り出す方法が好ましい。海成分の溶出又は分解を予め行っておき、短繊維として抄紙工程に供給する方式もあるが、海島型複合短繊維の状態で繊維発生前駆体の形態をとり、抄紙工程のパルパー又はパルパーの前工程に海成分の溶剤や分解促進薬液によって海成分を除去する方法、あるいは前駆体の状態で抄紙を行った後、海成分を除去する方式をとることもできる。   The ultrafine fiber for a binder of the present invention is produced from the island component by eluting or decomposing the sea component after producing the island-island type composite fiber and then passing through the precursor of the short fiber cut into a predetermined fiber length. The method of taking out the short fiber which becomes is preferable. There is also a method in which sea components are eluted or decomposed in advance and supplied to the papermaking process as short fibers, but in the state of sea-island type composite short fibers, the form of the fiber generation precursor is taken, before the pulper or pulper in the papermaking process In the process, a method of removing the sea component by using a sea component solvent or a decomposition accelerating chemical solution, or a method of removing the sea component after paper making in a precursor state may be employed.

海成分を除去するには、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属化合物水溶液で処理することが好ましく、なかでも水酸化ナトリウムおよび水酸化カリウムが特に好ましく用いられる。アルカリ水溶液の濃度、処理温度、処理時間は、使用するアルカリ化合物の種類により異なるが、濃度は10〜300g/L、温度は40℃〜180℃、処理時間は2分〜20時間の範囲で行うが好ましい。   In order to remove the sea component, it is preferable to treat with an aqueous solution of an alkali metal compound such as sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate, among which sodium hydroxide and potassium hydroxide are particularly preferably used. The concentration, treatment temperature, and treatment time of the aqueous alkali solution vary depending on the type of alkali compound used, but the concentration is 10 to 300 g / L, the temperature is 40 ° C. to 180 ° C., and the treatment time is in the range of 2 minutes to 20 hours. Is preferred.

海成分の除去に続いて、中和後、抄紙工程前に、繊維の分散剤として、ポリエ−テルエステル、C8スルホサクシネ−ト、ポリオキシエチレン(POE)・ノニルフェノ−ルエ−テル・サルフェ−ト・アミン、POE・ノニルフェノ−ルエ−テル・サルフェ−ト・ナトリウム、POE・ノニルフェノ−ル、POE・オレイルエ−テル、フッソ系の活性剤、変性シリコ−ン等を使用することができる。分散剤はこれらに限定されるものではなく、複数種類用いてもよい。また、パルプ状物の分散性を高めるために、ドライ、ウエットあるいは分散剤を添加したウエットの状態で、パルパ− 、リファイナ−、ビ−タ−等にかけてパルプ状物間の絡まりを低下させることも可能である。   Following the removal of the sea component, after neutralization and before the paper making process, as a fiber dispersant, polyester ester, C8 sulfosuccinate, polyoxyethylene (POE), nonylphenol ether, sulfate, Amine, POE.nonylphenol ether sulfate sodium, POE.nonylphenol, POE.oleyl ether, fluorine-based activator, modified silicone, and the like can be used. A dispersing agent is not limited to these, You may use multiple types. In addition, in order to improve the dispersibility of the pulp-like material, the entanglement between the pulp-like materials may be reduced by applying to a pulper, refiner, beater, etc. in a wet state with dry, wet or dispersant added. Is possible.

以上の製造方法で得られたフィラメントをそのまま、或いは数十本〜 数百万本単位に束ねたトウにしてギロチンカッターやロータリーカッターなどでカットすることで特に抄紙用に適したバインダー繊維とすることができる。その際の繊維長(L)は平均繊維径(Xd)に対する比(L/Xd)が100〜2500であることが均一な不織布を得る為に好ましい。L/Xdが100を下回ると繊維脱落やシート強力が低下する可能性がある。一方、L/Xdが2500を超えると、極細短繊維としたときに絡みが生じやすく、結束や毛玉状の欠点となって、構造体の均一性を阻害する。好ましいL/Xdの範囲は200〜2000、特に好ましい範囲は500〜1500である。   The filament obtained by the above production method is used as it is, or a tow bundled in units of several tens to several millions, and cut with a guillotine cutter or a rotary cutter to make a binder fiber particularly suitable for papermaking Can do. In order to obtain a uniform nonwoven fabric, the fiber length (L) is preferably such that the ratio (L / Xd) to the average fiber diameter (Xd) is 100-2500. If L / Xd is less than 100, fiber drop and sheet strength may be reduced. On the other hand, if L / Xd exceeds 2500, entanglement is likely to occur when the fiber is made of ultrafine short fibers, resulting in defects such as bundling and pilling, and hinders the uniformity of the structure. A preferable L / Xd range is 200 to 2000, and a particularly preferable range is 500 to 1500.

繊維ウエブを形成する方法は湿式不織布法(抄紙法)に限定されることはないが、2000nm以下のバインダー短繊維をより均一に分散するには、抄紙法が最も好ましい手段である。抄紙法としては、従来公知の方法、例えば、水平長網方式、傾斜ワイヤー型短網方式、円網方式、又は長網・円網コンビネーション方式により形成することができる。なお、本発明のバインダー繊維は主体繊維と結合させるために、抄紙後の湿式不織布ウェブをカレンダーローラーやエンボスローラーを用いて圧接・熱接着する方法に好適に用いられるものである。   The method of forming the fiber web is not limited to the wet nonwoven fabric method (papermaking method), but the papermaking method is the most preferred means for more evenly dispersing the binder short fibers of 2000 nm or less. As a papermaking method, it can be formed by a conventionally known method, for example, a horizontal long net method, an inclined wire type short net method, a circular net method, or a long net / circular net combination method. The binder fiber of the present invention is suitably used for a method of pressure-bonding and heat-bonding a wet nonwoven web after paper making using a calender roller or an embossing roller in order to bind to the main fiber.

本発明のバインダー繊維は、用いられる繊維構造物としては、紙状物はもちろん、布帛状、わた状物、帯状物、紐状物、糸状物など、構造、形状はいかなるものであっても差し支えない。また織物、編物、不織布は、複数の種類の繊維を混紡、混繊、交織、交編をした複合材料であってもよい。また、これらの繊維製品であってもかまわない。用途としては、フィルター、有害物質除去製品、電池用セパレーターなどの環境・産業資材用途や、カーシートなどの車輌内装品、カーペット、ソファー、カーテンなどのインテリア製品、化粧品、化粧品マスク、ワイピングクロス、健康用品などの生活用途や研磨布、縫合糸、スキャフォールド、人工血管、血液フィルターなどの医療用途、およびジャケット、スカート、パンツ、下着などの衣料、スポーツ衣料、衣料資材などが挙げられる。   The binder fiber of the present invention may be of any structure and shape, such as a paper-like material, a cloth-like material, a wad-like material, a belt-like material, a string-like material, and a thread-like material. Absent. The woven fabric, knitted fabric, and non-woven fabric may be a composite material in which a plurality of types of fibers are mixed, mixed, woven, or knitted. Further, these textile products may be used. Applications include environmental and industrial material applications such as filters, hazardous substance removal products, battery separators, vehicle interiors such as car seats, interior products such as carpets, sofas, curtains, cosmetics, cosmetic masks, wiping cloths, health Examples include daily use such as goods, medical use such as abrasive cloths, sutures, scaffolds, artificial blood vessels, and blood filters, and clothing such as jackets, skirts, pants, and underwear, sports clothing, and clothing materials.

以下、実施例により、本発明を更に具体的に説明する。なお、実施例における各項目は次の方法で測定した。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each item in an Example was measured with the following method.

(1) 平均繊維径 Xd
透過型電子顕微鏡を用い、倍率30000倍で100本の極細繊維断面の写真を撮影し、それぞれの繊維断面における長径と短径の平均値を求めXdとした。
(1) Average fiber diameter Xd
Using a transmission electron microscope, 100 ultrafine fiber cross-section photographs were taken at a magnification of 30000 times, and the average value of the major axis and the minor axis in each fiber cross section was determined as Xd.

(2)平均繊維径の均一性
Xdを求めた値から標準偏差(σd)を算出し、次式(I)により繊維径変動係数(CVd)を求め、評価した。
CVd= σd / Xd ×100 (%) (I)
(2) Uniformity of average fiber diameter
The standard deviation (σd) was calculated from the value obtained for Xd, and the fiber diameter variation coefficient (CVd) was determined by the following formula (I) and evaluated.
CVd = σd / Xd × 100 (%) (I)

(3)結晶化度 Xc
硝酸カルシウムからなる密度勾配管を作成し、極細繊維の密度をn=3で測定しその平均値をρとした。この値、および極細繊維を構成する熱可塑性樹脂の非晶密度(ρa)、および結晶密度(ρc)を用いて結晶化度(Xc)を次式(II)により算出した。
Xc=(ρc/ρ)×(ρ−ρa)/(ρc−ρa)×100 (%) (II)
ここで、ρa、ρcは、Polymer handbookなどに記載の公知の値を用いた。例えばポリエチレンテレフタレートでは、ρa=1.335、ρc=1.455、ナイロン6では、ρa=1.08、ρ=1.23、ポリプロピレンではρa=0.850、ρc=0.936、ポリエチレンではρa=0.85、ρc=1.00、ポリエチレンナフタレートではρa=1.32、ρc=1.41、ポリフェニレンスルフィドではρa=1.32、ρc=1.43を用いるものとし、記載のない場合は、Propertires of Polymers(D.W. Van Krevelen著)のChaper 4に記載の方法により計算した値とした。
(3) Crystallinity Xc
A density gradient tube made of calcium nitrate was prepared, the density of the ultrafine fibers was measured at n = 3, and the average value was defined as ρ. Using this value, the amorphous density (ρa) of the thermoplastic resin constituting the ultrafine fiber, and the crystal density (ρc), the crystallinity (Xc) was calculated by the following formula (II).
Xc = (ρc / ρ) × (ρ−ρa) / (ρc−ρa) × 100 (%) (II)
Here, as ρa and ρc, known values described in the Polymer handbook and the like were used. For example, ρa = 1.335, ρc = 1.455 for polyethylene terephthalate, ρa = 1.08, ρ = 1.23 for nylon 6, ρa = 0.850, ρc = 0.936 for polypropylene, ρa = 0.85, ρc = 1.00 for polyethylene, ρa for polyethylene naphthalate = 1.32, ρc = 1.41, for polyphenylene sulfide, ρa = 1.32, ρc = 1.43 shall be used, and unless otherwise stated, values calculated by the method described in Chapter 4 of Propertires of Polymers (by DW Van Krevelen) .

(4)繊維長 L
走査型電子顕微鏡により、極細繊維100本の側面について20〜500倍で測定し、平均値を求めた。
(4) Fiber length L
With a scanning electron microscope, the side face of 100 ultrafine fibers was measured at 20 to 500 times, and the average value was obtained.

(5)極細繊維の伸度
極細繊維束に対し、試長200mm、引張速度=200mm/minの条件下で引張試験を行い、破断伸度(%)を求めた。
(5) Elongation of ultrafine fiber A tensile test was performed on the ultrafine fiber bundle under the conditions of a test length of 200 mm and a tensile speed of 200 mm / min to obtain the elongation at break (%).

(6)溶融粘度
ポリマーを乾燥した後紡糸時の溶融温度に設定したオリフィスにセットして5分間溶融状態に保持した後、所定水準の荷重下で押出し、この際の剪断速度と溶融粘度曲線を求めた。上記操作を複数水準の荷重下において繰り返して行い、剪断速度が1000秒-1のときの溶融粘度を見積もった。
(6) Melt viscosity After the polymer is dried, it is set in an orifice set to the melt temperature at the time of spinning and held in a melted state for 5 minutes, and then extruded under a predetermined level of load. Asked. The above operation was repeated under multiple levels of load, and the melt viscosity when the shear rate was 1000 sec- 1 was estimated.

(7)抄紙した紙の均一性
極細バインダー繊維を主体繊維前駆体に対して30wt%となる様に混合後、目付20g/m2となる様、JISに記載の手抄き装置を用いて繊維ウェブを作成し、ロータリー型乾燥機を用いて、120℃で2分間乾燥後、さらに金属ローラー間で70kgf/cmにて圧着処理を施し紙とした。得られたサンプルから5mm角の正方形を3箇所切り取って、走査型電子顕微鏡にてこの表面を20〜500倍で観察し、目視で未開繊束状、毛玉状( 糸の絡まり) 等の分散不良の数を測定した。分散不良の数が5mm角中、21箇所以上確認された場合は×(不良)、20箇所以下の場合は○(良)と判定した。
また、上記紙の20cm角の大きさについて縦、横各2cm角毎の計100ヶ所を厚み測定器(株式会社大栄科学精器製作所製、「PEACOCKモデルH」)を使用して試料1cm2当たり1.764N(180g)の荷重を加えた状態で測定し、その平均値Xtからその標準偏差σtを求め、次式により厚み変動係数(CVt)を求め、均一性を評価した。
CVt=σDt/ Xt ×100 (%)
(7) Uniformity of paper made after mixing ultrafine binder fiber to 30 wt% with respect to the main fiber precursor, and then using a hand-drawing device described in JIS so that the basis weight is 20 g / m 2. A web was prepared, dried for 2 minutes at 120 ° C. using a rotary dryer, and further subjected to pressure-bonding treatment at 70 kgf / cm between metal rollers to obtain paper. Cut out 3 squares of 5mm square from the obtained sample, observe this surface with scanning electron microscope at 20 to 500 times, and visually check for unsatisfactory dispersion such as unopened bundles, pills (strings of yarn) Number was measured. When the number of dispersion failures was confirmed at 21 or more locations in a 5 mm square, it was judged as x (defective), and when it was 20 locations or less, it was judged as ○ (good).
The vertical about the size of 20cm square of the paper, the thickness of the monitor 100 places the transverse each 2cm square per meter (manufactured Daiei Kagaku Seiki Mfg., Ltd., "PEACOCK model H") sample 1 cm 2 per Use Measurement was performed with a load of 1.764 N (180 g) applied, the standard deviation σt was determined from the average value Xt, the thickness variation coefficient (CVt) was determined by the following equation, and the uniformity was evaluated.
CVt = σDt / Xt × 100 (%)

(8)バインダー繊維の接着性
均一性評価において作成した紙を幅2cm、長さ9cmの試験片として縦方向、横方向に対してそれぞれサンプリングし、試験片をチャックで掴み、チャック間隔5cmとして、引っ張り速度5cm/分にて伸張させ、破断時の強度を、縦方向、横方向の平均値とし、幅1cm、試料目付100g/m2当たりに換算して求めた。
(8) Adhesiveness of binder fiber The paper prepared in the uniformity evaluation was sampled in the vertical direction and the horizontal direction as test pieces having a width of 2 cm and a length of 9 cm, and the test pieces were gripped with a chuck, and the chuck interval was set to 5 cm. The film was stretched at a pulling speed of 5 cm / min, and the strength at break was determined as an average value in the vertical and horizontal directions, converted to a width of 1 cm and a sample weight per 100 g / m 2 .

[参考例1]
島成分として固有粘度0.63(35℃、オルソクロロフェノール中)のポリエチレンテレフタレート、海成分として5-ナトリウムスルホイソフタル酸9mol%と数平均分子量4000のポリエチレングリコール3重量%を共重合した固有粘度0.42のポリエチレンテレフタレートを用い、別々に溶融後、複合口金内で重量比で海:島=30:70として合流させ、孔径0.5mmの口金から単孔当たりの吐出量を2.2g/分として島数900の海島型複合断面として紡糸温度290℃で吐出した。吐出した糸条を紡糸速度1000m/分で引き取った後、引き続き紡糸ローラー温度100℃、延伸倍率4.0倍で延伸し、次いで120℃のローラーにて熱セット後巻き取り、海島型複合延伸糸を得た。
海成分と島成分それぞれの溶融粘度は、130Pa・s、115Pa・sであり、ポリマーの溶融粘度比(海/島)は、1.1であった。得られた海島型複合繊維を用いて筒編みを作成し、70℃、3.5g/lのアルカリ溶液中で減量処理したところ、海成分のみが溶出され、島成分の平均繊維径690nm、伸度30%の極細繊維を発生することを確認した。この海島型複合繊維を主体繊維前駆体aとした。
[Reference Example 1]
Polyethylene terephthalate with an intrinsic viscosity of 0.63 (35 ° C, in orthochlorophenol) as an island component, polyethylene with an intrinsic viscosity of 0.42 copolymerized with 9 mol% of 5-sodium sulfoisophthalic acid and 3 wt% of polyethylene glycol with a number average molecular weight of 4000 as a sea component After melting separately using terephthalate, merged by weight ratio of sea: island = 30:70 in the composite die, sea island with 900 islands with a discharge amount per single hole of 2.2 g / min from the die with a hole diameter of 0.5 mm It was discharged at a spinning temperature of 290 ° C. as a mold composite section. After the discharged yarn is taken up at a spinning speed of 1000 m / min, it is continuously drawn at a spinning roller temperature of 100 ° C. and a draw ratio of 4.0 times, and then wound after heat setting with a 120 ° C. roller to obtain a sea-island type composite drawn yarn. It was.
The melt viscosity of each of the sea component and the island component was 130 Pa · s and 115 Pa · s, and the melt viscosity ratio (sea / island) of the polymer was 1.1. Using the obtained sea-island type composite fiber, a tubular knitting was created, and when the weight was reduced in an alkaline solution at 70 ° C. and 3.5 g / l, only the sea component was eluted, the average fiber diameter of the island component was 690 nm, and the elongation was It was confirmed that 30% extra fine fibers were generated. This sea-island type composite fiber was used as the main fiber precursor a.

[実施例1]
島成分、海成分ともに参考例1と同一のポリマーを用い、参考例1と同様にして島数400の海島型口金から吐出し、紡糸速度1500m/分にて延伸せず巻き取った。この際のドラフトは185であった。得られた海島型複合繊維を用いて用いて筒編みを作成し、70℃、3.5g/lのアルカリ溶液中で1分間減量処理したところ、海成分のみが溶出され、極細繊維として平均繊維径Xd=1060nm、CVd=13、密度1.342g/cm3、結晶化度6.3%、伸度320%の極細繊維を発生することを確認した。
この海島型複合繊維をバインダー用の極細繊維前駆体Aとして750μm長にカットし、参考例1の500μm長にカットした主体繊維前駆体aと重量比で30:70として混合後、70℃、3.5g/lのNaOH水溶液にて各海成分を溶解除去し、再度少量の抄紙助剤(分散剤:高松油脂(株)、YM−81、消泡剤:GE東芝シリコーン、TSA−730)を加えた水中に分散させ、紙を作成した。得られた紙の物性を極細繊維の物性と共に表1に示す。
[Example 1]
The same polymer as in Reference Example 1 was used for both the island component and the sea component, and was discharged from a sea-island die having 400 islands in the same manner as in Reference Example 1, and wound up without stretching at a spinning speed of 1500 m / min. The draft at this time was 185. Using the obtained sea-island type composite fiber, a cylindrical knitting was made, and when weight reduction treatment was performed for 1 minute in an alkaline solution at 70 ° C. and 3.5 g / l, only the sea component was eluted, and the average fiber diameter as an ultrafine fiber It was confirmed that ultrafine fibers having Xd = 1060 nm, CVd = 13, density 1.342 g / cm 3 , crystallinity 6.3%, elongation 320% were generated.
This sea-island type composite fiber was cut to a length of 750 μm as an ultrafine fiber precursor A for binder, mixed with a main fiber precursor a cut to a length of 500 μm in Reference Example 1 at a weight ratio of 30:70, 70 ° C., 3.5 Each sea component is dissolved and removed with an aqueous NaOH solution of g / l, and a small amount of paper making aid (dispersant: Takamatsu Yushi Co., Ltd., YM-81, antifoaming agent: GE Toshiba Silicone, TSA-730) is added again. Dispersed in water and made paper. Table 1 shows the physical properties of the obtained paper together with the physical properties of the ultrafine fibers.

[参考例2]
島成分として固有粘度0.62のポリエチレンナフタレート、海成分として5−ナトリウムスルホイソフタル酸9mol%と数平均分子量4000のポリエチレングリコール3重量%を共重合した固有粘度0.49のポリエチレンテレフタレートを用い、別々に溶融後、複合口金内で合流させ、参考例1と同様の口金、吐出量で紡糸温度300℃、紡糸速度1000m/分で溶融紡糸し、海島型複合未延伸繊維を巻き取った。
海成分と島成分それぞれの溶融粘度は、283Pa・s、250Pa・sであり、ポリマーの溶融粘度比(海/島)は、0.9であった。得られた未延伸糸を、延伸温度130℃、延伸倍率3.9倍でローラー延伸し、次いで200℃の非接触型ヒーターで熱セットして巻き取り、海島型複合延伸糸を得た。得られた海島型複合延伸糸を用いて筒編みを作成し、98℃、3.5g/lのアルカリ溶液中で減量処理したところ、海成分のみが溶出され、島成分の平均繊維径は672nm、伸度25%の極細繊維を発生することを確認した。この海島型複合繊維を主体繊維前駆体bとした。
[Reference Example 2]
Using polyethylene naphthalate with an intrinsic viscosity of 0.62 as the island component and polyethylene terephthalate with an intrinsic viscosity of 0.49 copolymerized with 9 mol% of 5-sodiumsulfoisophthalic acid and 3% by weight of polyethylene glycol with a number average molecular weight of 4000 as the sea component Then, they were merged in the composite base, melt spun at a spinning temperature of 300 ° C. and a spinning speed of 1000 m / min with the same base and discharge amount as in Reference Example 1, and the sea-island type composite unstretched fiber was wound up.
The melt viscosity of each of the sea component and the island component was 283 Pa · s and 250 Pa · s, and the melt viscosity ratio (sea / island) of the polymer was 0.9. The obtained undrawn yarn was subjected to roller drawing at a drawing temperature of 130 ° C. and a draw ratio of 3.9 times, and then heat-set with a non-contact heater at 200 ° C. to obtain a sea-island type composite drawn yarn. Using the obtained sea-island type composite drawn yarn, a cylindrical knitting was made, and when the weight was reduced in an alkaline solution of 98 ° C. and 3.5 g / l, only the sea component was eluted, and the average fiber diameter of the island component was 672 nm, It was confirmed that ultrafine fibers having an elongation of 25% were generated. This sea-island type composite fiber was used as the main fiber precursor b.

[実施例2]
島成分、海成分ともに参考例1と同一のポリマーを用い、参考例1と同様にして島数900の海島型口金から吐出し、紡糸速度1500m/分にて延伸せず巻き取った。この際のドラフトは121であった。得られた海島型複合繊維を用いて用いて筒編みを作成し、70℃、3.5g/lのアルカリ溶液中で1分間減量処理したところ、海成分のみが溶出され、極細繊維として平均繊維径Xd=1273nm、CVd=12、結晶化度10.1%、伸度290%の極細繊維を発生することを確認した。
この海島型複合繊維をバインダー用の極細繊維前駆体Bとして950μm長にカットし、参考例2の500μm長にカットした主体繊維前駆体bと重量比で30:70として混合後、70℃、3.5g/lのNaOH水溶液にて各海成分を溶解除去し、実施例1と同様にして紙を作成した。得られた紙の物性を極細繊維の物性と共に表1に示す。
[Example 2]
The same polymer as in Reference Example 1 was used for both the island component and the sea component, and was discharged from a sea-island die having 900 islands in the same manner as in Reference Example 1, and wound without stretching at a spinning speed of 1500 m / min. The draft at this time was 121. Using the obtained sea-island type composite fiber, a cylindrical knitting was made, and when weight reduction treatment was performed for 1 minute in an alkaline solution at 70 ° C. and 3.5 g / l, only the sea component was eluted, and the average fiber diameter as an ultrafine fiber It was confirmed that ultrafine fibers with Xd = 1273 nm, CVd = 12, crystallinity 10.1%, elongation 290% were generated.
This sea-island type composite fiber was cut to a length of 950 μm as an ultrafine fiber precursor B for binder, mixed with a main fiber precursor b cut to a length of 500 μm in Reference Example 2 at a weight ratio of 30:70, 70 ° C., 3.5 Each sea component was dissolved and removed with g / l NaOH aqueous solution, and paper was prepared in the same manner as in Example 1. Table 1 shows the physical properties of the obtained paper together with the physical properties of the ultrafine fibers.

[比較例1〜2]
実施例2において、海島型複合繊維の島数を200としたものを比較例1とし、得られた海島型複合繊維を極細繊維前駆体Cとした。また、実施例2において、得られた海島型複合繊維を延伸温度130℃、延伸倍率3.9倍でローラー延伸し、次いで200℃の非接触型ヒーターで熱セットして巻き取った繊維を極細繊維前駆体Dとした。これらの物性および、これらと極細繊維前駆体bを用いて実施例2と同様にして作成した紙の物性を表1に示す。
[Comparative Examples 1-2]
In Example 2, a sea island type composite fiber having 200 islands was designated as Comparative Example 1, and the obtained sea island type composite fiber was designated as an ultrafine fiber precursor C. In Example 2, the obtained sea-island type composite fiber was roller-drawn at a drawing temperature of 130 ° C. and a draw ratio of 3.9 times, and then heat-set with a non-contact heater at 200 ° C. Body D. Table 1 shows these physical properties and the physical properties of paper prepared in the same manner as in Example 2 using these and the ultrafine fiber precursor b.

[比較例3]
実施例2において、海成分として5−ナトリウムスルホイソフタル酸9mol%と数平均分子量4000のポリエチレングリコール3重量%を共重合した固有粘度0.35のものを用いた以外は実施例2と同様にして海島型複合繊維を作成し、極細繊維前駆体Eとした。
海成分と島成分それぞれの溶融粘度は、110Pa・s、250Pa・sであり、ポリマーの溶融粘度比(海/島)は、0.44であった。得られた極細繊維の物性および、極細繊維前駆体bを用いて実施例2と同様にして作成した紙の物性を表1に示す。
[Comparative Example 3]
In Example 2, the sea-island type was used in the same manner as in Example 2 except that 9 mol% of 5-sodium sulfoisophthalic acid and 3% by weight of polyethylene glycol having a number average molecular weight of 4000 were copolymerized and had an intrinsic viscosity of 0.35. A composite fiber was prepared and used as an ultrafine fiber precursor E.
The melt viscosity of each of the sea component and the island component was 110 Pa · s and 250 Pa · s, and the melt viscosity ratio (sea / island) of the polymer was 0.44. Table 1 shows the physical properties of the obtained ultrafine fibers and the properties of paper prepared in the same manner as in Example 2 using the ultrafine fiber precursor b.

Figure 2012092458
Figure 2012092458

表1に示す通り、本発明の範囲内である実施例1、2においては、バインダー用極細繊維として均一な繊維径と良好な接着性を有する為、紙として均一性に優れたものを得ることができる。繊維径が本発明の範囲外の比較例1、および繊維径変動係数が本発明の範囲外である比較例3においては、紙とした場合に均一性に劣るものとなった。一方、海島型繊維を延伸、熱セットして結晶化度が本発明の範囲外となった比較例2においては、紙としては比較的均一であるものの接着性に乏しく、紙としての強度に劣るものとなった。   As shown in Table 1, in Examples 1 and 2, which are within the scope of the present invention, since the fiber has a uniform fiber diameter and good adhesiveness, a paper having excellent uniformity can be obtained. Can do. In Comparative Example 1 in which the fiber diameter was outside the range of the present invention and in Comparative Example 3 in which the fiber diameter variation coefficient was outside the range of the present invention, the uniformity was poor when paper was used. On the other hand, in Comparative Example 2 in which the sea-island fiber was stretched and heat-set and the crystallinity was outside the scope of the present invention, the paper was relatively uniform, but the adhesiveness was poor and the paper strength was poor. It became a thing.

本発明によれば、バインダー繊維として繊維径が10〜2000μmと細く、かつ繊維径が均一であるものが得られる。この繊維を用いることによって主体繊維となる極細繊維と混抄した際、均一に分散させることが可能となり、また、接着性にも優れているため、均一性、および強度に優れた紙を得ることができる。従って、これまでにない低目付の薄葉紙が得られる可能性があり、精密ろ過、分離素材としてより一層の高性能化、小型化を図ることが可能となり、セパレータ用途やフィルター用途などへの展開が期待される。   According to the present invention, a binder fiber having a thin fiber diameter of 10 to 2000 μm and a uniform fiber diameter is obtained. By using this fiber, it becomes possible to uniformly disperse when mixed with the ultrafine fiber as the main fiber, and because it has excellent adhesiveness, it is possible to obtain a paper with excellent uniformity and strength. it can. Therefore, there is a possibility that a thin paper with a low basis weight that has never been obtained can be obtained, and it becomes possible to achieve further high performance and downsizing as a microfiltration and separation material, and it can be applied to separator applications and filter applications. Be expected.

1 : 分配前島成分ポリマー溜め部分
2 : 島成分分配用導入孔
3 : 海成分導入孔
4 : 分配前海成分ポリマー溜め部分
5 : 個別海成分/ 島成分( 鞘/ 芯構造形成部)
6 : 海島全体合流絞り部
1: Pre-distribution island component polymer reservoir part 2: Island component distribution introduction hole 3: Sea component introduction hole 4: Pre-distribution sea component polymer reservoir part 5: Individual sea component / island component (sheath / core structure forming part)
6: Whole sea island confluence throttle part

Claims (3)

熱可塑性樹脂からなり、下記(1)〜(3)を同時に満足することを特徴とするバインダー用極細繊維。
(1)平均繊維径 Xdが10〜2000nmであること。
(2)下記式(I)で表される繊維径変動係数(CVd)が0〜25%であること。
CVd= σd / Xd ×100 (%) (I)
(但し、平均繊維径は繊維断面における最長径と最短径の平均値であり、σdは繊維径分布の標準偏差を示す。)
(3)密度法による結晶化度 Xcが20%以下であること。
An ultrafine fiber for a binder, which is made of a thermoplastic resin and satisfies the following (1) to (3) simultaneously.
(1) The average fiber diameter Xd is 10 to 2000 nm.
(2) The fiber diameter variation coefficient (CVd) represented by the following formula (I) is 0 to 25%.
CVd = σd / Xd × 100 (%) (I)
(However, the average fiber diameter is the average value of the longest diameter and the shortest diameter in the fiber cross section, and σd indicates the standard deviation of the fiber diameter distribution.)
(3) Crystallinity Xc by density method is 20% or less.
易溶解成分を海成分、難溶解成分を島成分とする海島型複合繊維から、海成分を溶出除去することにより得られる繊維であって、海島型複合繊維形成時の見掛けドラフトが10〜1000であり、延伸および熱セットが施されていない請求項1記載のバインダー用極細繊維。   This is a fiber obtained by elution and removal of sea components from sea-island type composite fibers that have easy-dissolvable components as sea components and hard-dissolvable components as island components, and the apparent draft when forming sea-island type composite fibers is 10 to 1000 The ultrafine fiber for a binder according to claim 1, wherein the fiber is not stretched or heat set. 平均繊維径(Xd)と、繊維長(L)の比(L/Xd)が100〜2500である請求項1又は2記載のバインダー用極細繊維。   The ultrafine fiber for a binder according to claim 1 or 2, wherein the ratio (L / Xd) of the average fiber diameter (Xd) to the fiber length (L) is 100 to 2500.
JP2010239659A 2010-10-26 2010-10-26 Ultrafine fiber for binder Pending JP2012092458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010239659A JP2012092458A (en) 2010-10-26 2010-10-26 Ultrafine fiber for binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010239659A JP2012092458A (en) 2010-10-26 2010-10-26 Ultrafine fiber for binder

Publications (1)

Publication Number Publication Date
JP2012092458A true JP2012092458A (en) 2012-05-17

Family

ID=46386113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010239659A Pending JP2012092458A (en) 2010-10-26 2010-10-26 Ultrafine fiber for binder

Country Status (1)

Country Link
JP (1) JP2012092458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033680A (en) * 2018-08-31 2020-03-05 帝人フロンティア株式会社 Sea-island type composite fiber bundles, medical supplies containing its ultrafine fibers, and filters for food manufacturing processes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070798A (en) * 2006-11-02 2007-03-22 Teijin Fibers Ltd Polyester-based staple fiber and nonwoven fabric comprising the same
JP2007092235A (en) * 2005-09-29 2007-04-12 Teijin Fibers Ltd Staple fiber, method for producing the same and precursor for forming the fiber
JP2007211375A (en) * 2006-02-10 2007-08-23 Kuraray Co Ltd Ultra fine fiber sheet having functional group
JP2008007870A (en) * 2006-06-28 2008-01-17 Teijin Fibers Ltd Polyester fine fiber and its fiber product
WO2008130019A1 (en) * 2007-04-17 2008-10-30 Teijin Fibers Limited Wet-laid non-woven fabric and filter
WO2008130020A1 (en) * 2007-04-18 2008-10-30 Teijin Fibers Limited Thin paper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092235A (en) * 2005-09-29 2007-04-12 Teijin Fibers Ltd Staple fiber, method for producing the same and precursor for forming the fiber
JP2007211375A (en) * 2006-02-10 2007-08-23 Kuraray Co Ltd Ultra fine fiber sheet having functional group
JP2008007870A (en) * 2006-06-28 2008-01-17 Teijin Fibers Ltd Polyester fine fiber and its fiber product
JP2007070798A (en) * 2006-11-02 2007-03-22 Teijin Fibers Ltd Polyester-based staple fiber and nonwoven fabric comprising the same
WO2008130019A1 (en) * 2007-04-17 2008-10-30 Teijin Fibers Limited Wet-laid non-woven fabric and filter
WO2008130020A1 (en) * 2007-04-18 2008-10-30 Teijin Fibers Limited Thin paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033680A (en) * 2018-08-31 2020-03-05 帝人フロンティア株式会社 Sea-island type composite fiber bundles, medical supplies containing its ultrafine fibers, and filters for food manufacturing processes

Similar Documents

Publication Publication Date Title
EP2138634B1 (en) Wet-laid non-woven fabric and filter
JP4960616B2 (en) Short fiber, method for producing the same, and precursor thereof
JP5027688B2 (en) Flexible nonwoven fabric
JP2010070870A (en) Method for producing nonwoven fabric, the nonwoven fabric, nonwoven fabric structure, and textile product
JP5865058B2 (en) Filter media, method for producing the same, and filter
JP4950472B2 (en) Method for producing short cut nanofibers
US20060083917A1 (en) Soluble microfilament-generating multicomponent fibers
JPWO2012057251A1 (en) Multilayer filter media and filters
JP5329919B2 (en) Sound absorbing structure manufacturing method and sound absorbing structure
JP4994313B2 (en) Method for producing short cut nanofiber and method for producing wet nonwoven fabric
JP2014074246A (en) Wet nonwoven fabric for liquid filtration filter and liquid filtration filter
JP2010275649A (en) Fiber structure and textile product
JP2008007870A (en) Polyester fine fiber and its fiber product
JP6090156B2 (en) Composite fiber, artificial leather substrate and artificial leather
JP2013256461A (en) Sheet for body skin contact and cosmetic product
JP2012193476A (en) Polyester microfiber
JP2012092461A (en) Thin paper
JP2012237084A (en) Nonwoven fabric for filter and air filter
JP4487973B2 (en) Polyester resin composition
JP2014231650A (en) Ultra-fine fiber, substrate for artificial leather and artificial leather
JP2012092458A (en) Ultrafine fiber for binder
JP6065440B2 (en) Artificial leather
JP2010065325A (en) Polylactic acid nanofiber
JP2012207361A (en) Ultra fine fiber and wiping cloth containing ultra fine fiber
JP4453179B2 (en) Split fiber and fiber molded body using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150210