JP2012089316A - Light source device, and lighting system - Google Patents
Light source device, and lighting system Download PDFInfo
- Publication number
- JP2012089316A JP2012089316A JP2010234179A JP2010234179A JP2012089316A JP 2012089316 A JP2012089316 A JP 2012089316A JP 2010234179 A JP2010234179 A JP 2010234179A JP 2010234179 A JP2010234179 A JP 2010234179A JP 2012089316 A JP2012089316 A JP 2012089316A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor layer
- light
- light source
- phosphor
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/16—Laser light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/176—Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S45/00—Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
- F21S45/70—Prevention of harmful light leakage
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Description
本発明は、光源装置および照明装置に関する。 The present invention relates to a light source device and an illumination device.
LED等の光半導体と蛍光体層を組み合わせた光源装置は広く普及しているが、近年では高輝度化が進み、一般照明や自動車のヘッドランプなどその応用範囲が広がってきている。このような光源装置は、今後も高輝度化することで、さらに多様な用途での普及が進むと考えられている。 A light source device combining an optical semiconductor such as an LED and a phosphor layer has been widely used. However, in recent years, the brightness has been increased, and its application range such as general lighting and automobile headlamps has been expanded. It is considered that such light source devices will continue to be widely used in various applications by increasing the luminance.
このような光半導体と蛍光体層を組み合わせた光源装置を高輝度化するための手段として、光半導体に大電流を投入し光半導体からの励起光強度を強めることが考えられるが、実際には蛍光体層で熱が発生し、蛍光体層において樹脂成分の変色や蛍光体の温度消光による蛍光強度の低下が生じてしまう。このため、結果として、発光強度は飽和、減少し、光半導体と蛍光体層を組み合わせた光源装置の高輝度化は困難であった。 As a means for increasing the brightness of a light source device combining such an optical semiconductor and a phosphor layer, it is conceivable to increase the excitation light intensity from the optical semiconductor by supplying a large current to the optical semiconductor. Heat is generated in the phosphor layer, and in the phosphor layer, the fluorescence intensity decreases due to discoloration of the resin component or temperature quenching of the phosphor. Therefore, as a result, the emission intensity is saturated and decreased, and it is difficult to increase the luminance of the light source device that combines the optical semiconductor and the phosphor layer.
ここで、蛍光体層内の樹脂成分の変色とは、通常、蛍光体層は一定の形状に再現性良く形成するため、蛍光体粉末を樹脂成分と混練してペースト状に調製し、印刷法等を用いて塗布形成しており、この樹脂成分が加熱され200℃程度以上になると変色してしまう現象のことである。樹脂成分は本来透明であるため、熱により樹脂成分に変色が起きると、光半導体からの励起光や蛍光体層からの蛍光の一部を吸収してしまい、高輝度化を妨げる要因となっていた。 Here, the discoloration of the resin component in the phosphor layer means that the phosphor layer is usually formed into a fixed shape with good reproducibility. This is a phenomenon in which the resin component is discolored when the resin component is heated to about 200 ° C. or higher. Since the resin component is inherently transparent, if the resin component is discolored by heat, it absorbs a part of the excitation light from the optical semiconductor and the fluorescence from the phosphor layer, which prevents high brightness. It was.
また、蛍光体の温度消光とは、蛍光体を加熱すると蛍光強度が低下する現象のことである。温度消光により蛍光強度が低下すると、蛍光に変換されなかったエネルギーが熱となるため蛍光体の発熱量が増加し、さらに蛍光体の温度が上昇して温度消光が進み、蛍光強度もさらに低下するという現象が起きる。このため、熱により発生する蛍光体の温度消光も、高輝度化を妨げる要因となっていた。 The temperature quenching of the phosphor is a phenomenon in which the fluorescence intensity decreases when the phosphor is heated. If the fluorescence intensity decreases due to temperature quenching, the energy that has not been converted to fluorescence becomes heat, so the amount of heat generated by the phosphor increases, the temperature of the phosphor rises, temperature quenching proceeds, and the fluorescence intensity further decreases. This happens. For this reason, temperature quenching of the phosphors generated by heat has also been a factor that hinders high brightness.
これらの問題を解決するために、特許文献1には、樹脂を含まない蛍光体層を用いた光源装置が提案されている。この場合、蛍光体層は、樹脂成分を含まないため変色は起こらず、さらに蛍光体層を温度感受性の低い蛍光体のセラミックス層とするために温度消光が起きないので、高輝度化が可能である。また、図1のように蛍光体層92を光半導体95と直接接合することで、蛍光体層92で発生した熱を光半導体(固体光源)95側に放散することを意図していた。
In order to solve these problems, Patent Document 1 proposes a light source device using a phosphor layer that does not contain a resin. In this case, since the phosphor layer does not contain a resin component, discoloration does not occur, and furthermore, temperature quenching does not occur because the phosphor layer is a ceramic layer of a phosphor with low temperature sensitivity, so that high brightness can be achieved. is there. In addition, as shown in FIG. 1, the
ところで、従来の図1に示すような光半導体95と蛍光体層92とが直接接合された光源装置では、蛍光体層92の熱を光半導体95側に放散することを意図しているが、光半導体95の励起光強度を高めた場合、蛍光体層92のみならず光半導体95でも発熱が起きるため、蛍光体層92の発熱を同じく発熱している光半導体95の側から放散させることとなり、熱放散の効率が良くなく、高輝度化には限界があった。
By the way, in the conventional light source device in which the
本願の発明者は、従来に比べて十分な高輝度化を図るため、本願の先願(特願2009−286397)において、光半導体と蛍光体層とを空間的に離して配置する構成を取り入れた。 The inventor of the present application adopts a configuration in which the optical semiconductor and the phosphor layer are spatially separated from each other in the prior application (Japanese Patent Application No. 2009-286397) of the present application in order to achieve a sufficiently high brightness as compared with the prior art. It was.
しかしながら、本願の発明者は、光半導体と蛍光体層を空間的に離して配置する構成を検討する中で、蛍光体層上の発光点内において発光色にムラが生じる現象を見出した。図2(a)には、光半導体として青色半導体レーザーを用い、蛍光体層として樹脂成分を含まない黄色蛍光体であるYAG蛍光体セラミックスを用いた場合における、蛍光体層での発光点(発光パターン)の概略が示されている。なお、ここで用いた青色半導体レーザーからの励起光の蛍光体層入射面(蛍光体層の面のうち励起光が入射する側の面)60上でのビームの断面積は、蛍光体層入射面60全体の面積よりもかなり小さいものであった。図2(a)において、符号Aで示す領域は発光点の中心部(青色半導体レーザーからの励起光の蛍光体層入射面60上でのビームの断面積に相当する部分)であり、符号Bで示す領域は発光点の周辺部である。ここで、青色半導体レーザーからの励起光の蛍光体層入射面60上でのビームの光強度(明るさ)は、ランバーシアンとなっており、発光点の中心部Aの中央Oで最も強く、発光点の中心部Aの外縁AEでは、発光点の中心部Aの中央Oの50%程度の光強度(明るさ、光量)となり、発光点の周辺部Bの外縁BEでは、発光点の中心部Aの中央Oの10%程度の光強度(明るさ、光量)となっている。図2(b)には、発光点の中心部Aと発光点の周辺部Bとの色度の測定結果が示されている。図2(b)の結果から、発光点の中心部Aは、青色半導体レーザーからの励起光の光量が十分あり、十分な量の青色の励起光と黄色の蛍光との混色によって白色であるのに対し、発光点の周辺部Bは、青色半導体レーザーからの励起光の光量が少なく(すなわち、青色の量が少なく)、発光点の中心部Aに対して黄色側の色度を示していることがわかる。
However, the inventors of the present application have found a phenomenon in which unevenness occurs in the emission color in the light emitting point on the phosphor layer while examining the configuration in which the optical semiconductor and the phosphor layer are arranged spatially apart. FIG. 2A shows a light emitting point (light emission) in a phosphor layer when a blue semiconductor laser is used as an optical semiconductor and a YAG phosphor ceramic, which is a yellow phosphor containing no resin component, is used as a phosphor layer. An outline of the pattern) is shown. The cross-sectional area of the beam on the phosphor layer incident surface (surface on the side of the phosphor layer on which the excitation light is incident) 60 of the excitation light from the blue semiconductor laser used here is the phosphor layer incident It was much smaller than the area of the
このような発光点(発光パターン)内の色ムラを有する光源装置を、実際に照明装置に用いる場合、その照明光も色ムラを有することになるため、実用上大きな問題となる。 When such a light source device having color unevenness within the light emitting point (light emission pattern) is actually used in an illumination device, the illumination light also has color unevenness, which is a serious problem in practice.
本発明は、従来に比べて十分な高輝度化を図ることが可能であり、かつ、蛍光体層での発光点(発光パターン)内の色ムラを防止することの可能な光源装置および照明装置を提供することを目的としている。 The present invention provides a light source device and an illuminating device that can achieve a sufficiently high luminance as compared with the prior art and can prevent color unevenness in a light emitting point (light emitting pattern) in a phosphor layer. The purpose is to provide.
上記目的を達成するために、請求項1記載の発明は、紫外光から可視光までの波長領域のうちの所定の波長の光を発光する固体光源と、該固体光源からの励起光により励起され該固体光源の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層と、該蛍光体層の面のうち励起光が入射する面とは反対の側の面に設けられた光反射性基板とを備え、前記固体光源と前記蛍光体層とが空間的に離れて配置されている反射型の光源装置であって、前記蛍光体層に入射する前記固体光源からの励起光の蛍光体層入射面上でのビームの形状および断面積は、前記蛍光体層入射面全体の形状および面積とほぼ等しいことを特徴としている。 In order to achieve the above object, the invention described in claim 1 is excited by a solid light source that emits light of a predetermined wavelength in a wavelength region from ultraviolet light to visible light, and excitation light from the solid light source. A phosphor layer including at least one kind of phosphor that emits fluorescence having a wavelength longer than the emission wavelength of the solid-state light source, and a surface of the phosphor layer opposite to a surface on which excitation light is incident. A reflection-type light source device including a light-reflecting substrate provided, wherein the solid-state light source and the phosphor layer are arranged spatially apart from the solid-state light source incident on the phosphor layer The shape and the cross-sectional area of the beam of the excitation light on the phosphor layer entrance surface are substantially equal to the shape and area of the entire phosphor layer entrance surface.
また、請求項2記載の発明は、請求項1記載の光源装置において、前記蛍光体層の周囲には、前記固体光源からの励起光が入射するとき該励起光を吸収する吸収手段、または、該励起光を拡散する拡散手段が設けられていることを特徴としている。
Further, the invention according to
また、請求項3記載の発明は、請求項1または請求項2に記載の光源装置が用いられていることを特徴とする照明装置である。
The invention described in claim 3 is an illumination device characterized in that the light source device described in claim 1 or
請求項1、請求項2記載の発明によれば、紫外光から可視光までの波長領域のうちの所定の波長の光を発光する固体光源と、該固体光源からの励起光により励起され該固体光源の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層と、該蛍光体層の面のうち励起光が入射する面とは反対の側の面に設けられた光反射性基板とを備え、前記固体光源と前記蛍光体層とが空間的に離れて配置されている反射型の光源装置であって、前記蛍光体層に入射する前記固体光源からの励起光の蛍光体層入射面(蛍光体層の面のうち励起光が入射する側の面)上でのビームの形状および断面積は、前記蛍光体層入射面全体の形状および面積とほぼ等しいので、従来に比べて十分な高輝度化を図ることが可能であり、かつ、蛍光体層での発光点(発光パターン)内の色ムラを防止することができる。 According to the first and second aspects of the invention, the solid light source that emits light of a predetermined wavelength in the wavelength region from ultraviolet light to visible light, and the solid that is excited by the excitation light from the solid light source A phosphor layer including at least one kind of phosphor that emits fluorescence having a wavelength longer than the emission wavelength of the light source, and a surface of the phosphor layer that is opposite to the surface on which excitation light is incident. A reflection type light source device in which the solid light source and the phosphor layer are spatially separated from each other, and excitation from the solid light source incident on the phosphor layer Since the shape and cross-sectional area of the light beam on the phosphor layer entrance surface (the surface of the phosphor layer surface on which excitation light is incident) are substantially equal to the shape and area of the entire phosphor layer entrance surface It is possible to achieve a sufficiently high brightness compared to conventional ones and It is possible to prevent the color unevenness in the light emitting point (light emission pattern) of the layer.
特に、請求項2記載の発明によれば、請求項1記載の光源装置において、前記蛍光体層の周囲には、前記固体光源からの励起光が入射するとき該励起光を吸収する吸収手段、または、該励起光を拡散する拡散手段が設けられているので、蛍光体層に入射しなかった(蛍光体層からはみ出した)励起光(例えば半導体レーザーからのコヒーレント光である励起光)を吸収手段によって吸収することができ、または、拡散手段によって拡散することができ、蛍光体層に入射しなかった(蛍光体層からはみ出した)励起光がそのまま照明光として投射されて人体に危害を及ぼす危険性を防止することができる。
In particular, according to the invention described in
また、請求項3記載の発明によれば、請求項1または請求項2に記載の光源装置が用いられていることを特徴とする照明装置であるので、照明光も色ムラを防止することができる。
Further, according to the invention described in claim 3, since the illumination device is characterized in that the light source device described in claim 1 or
以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図3(a),(b)は、本発明の光源装置の一構成例を示す図である。なお、図3(a)は全体の正面図、図3(b)は蛍光体層が設けられている部分の平面図である。図3(a)を参照すると、この光源装置10は、紫外光から可視光までの波長領域のうちの所定の波長の光を発光する固体光源5と、該固体光源5からの励起光により励起され該固体光源5の発光波長よりも長波長の蛍光を発光する少なくとも1種類の蛍光体を含む蛍光体層2と、該蛍光体層2の面のうち励起光が入射する面とは反対の側の面に設けられた光反射性基板6とを備え、固体光源5と蛍光体層2とが空間的に離れて配置されている。
FIGS. 3A and 3B are diagrams showing a configuration example of the light source device of the present invention. 3A is a front view of the whole, and FIG. 3B is a plan view of a portion where a phosphor layer is provided. Referring to FIG. 3A, the
ここで、図3(a),(b)に示すように、蛍光体層2は、接合部7によって光反射性基板6に取り付けられている。
Here, as shown in FIGS. 3 (a) and 3 (b), the
このように、この光源装置10は、基本的には、本願の先願(特願2009−286397)と同様に、固体光源5と蛍光体層2とを空間的に離して配置し、蛍光体層2の面のうち固体光源5からの励起光が入射する側の面(本発明では、この面を蛍光体層入射面という)とは反対の側の面に設けられた光反射性基板6による反射を用いて蛍光などの光を取り出す方式(以下、反射方式または反射型と称す)が採用されている。これにより、従来に比べて十分な高輝度化を図ることが可能となる。なお、反射方式または反射型の光源装置とは、より正確には、図3(a)のように蛍光体層2に固体光源5からの励起光を照射した場合に、蛍光体層2から発せられる蛍光成分のうち、固体光源5側に出てくる成分を利用する光源装置のことであり、このとき、励起光の反射成分も利用し、蛍光成分とあわせて照明光としても良い。
As described above, the
ところで、本発明では、光反射性基板6に取り付けられている蛍光体層2に入射する固体光源5からの励起光の蛍光体層入射面(蛍光体層2の面のうち固体光源5からの励起光が入射する側の面)上でのビームの形状および断面積が、蛍光体層入射面全体の形状および面積とほぼ等しいものとなるようにしている。ここで、蛍光体層2に入射する固体光源5からの励起光の蛍光体層入射面上でのビームの形状および断面積が、蛍光体層入射面全体の形状および面積とほぼ等しいとは、例えば図4(a),(b)に示すように、蛍光体層2に入射する固体光源5からの励起光の蛍光体層入射面16上でのビーム17の形状が蛍光体層入射面16全体の形状とほぼ同じであり(図4(a),(b)の例では、蛍光体層入射面16上でのビーム17の形状は、略長方形であるが、角が丸くなっている点で、いくらか相違している)、蛍光体層2に入射する固体光源5からの励起光の蛍光体層入射面16上でのビーム17の断面積が、蛍光体層入射面16全体の面積の80%〜120%の範囲であることを意味している。具体的に、図4(a),(b)の例では、励起光の蛍光体層入射面16上でのビーム17の縦方向Yの幅BYが蛍光体層入射面16全体の縦方向Yの幅PYと同じになっており、図4(a)では、励起光の蛍光体層入射面16上でのビーム17の横方向Xの長さBXが蛍光体層入射面16全体の横方向Xの長さPXの80%、図4(b)では、励起光の蛍光体層入射面16上でのビーム17の横方向Xの長さBXが蛍光体層入射面16全体の横方向Xの長さPXの120%となっている。なお、図4(a),(b)では、励起光の蛍光体層入射面16上でのビーム17の縦方向Yの幅BYが蛍光体層入射面16全体の縦方向Yの幅PYと同じになっているが、励起光の蛍光体層入射面16上でのビーム17の横方向Xの長さBXを蛍光体層入射面16全体の横方向Xの長さPXと同じにしても良い。このように、励起光の蛍光体層入射面16上での、ビーム17の縦方向Yの幅BYと蛍光体層入射面16全体の縦方向Yの幅PY、または、ビーム17の横方向Xの長さBXと蛍光体層入射面16全体の横方向Xの長さPXとを等しくすることによって、縦方向または横方向における色ムラをより減少させることができる。
By the way, in the present invention, the phosphor layer incident surface of excitation light from the solid
図4(a),(b)の例のように蛍光体層入射面16上でのビーム17の形状を略長方形のものとするためには、光半導体(発光ダイオードや半導体レーザーなど)の出射口にコリメートレンズ(図示せず)を設け、光半導体(発光ダイオードや半導体レーザーなど)からの出射光の形状(通常は円形形状)をコリメートレンズによって整形することにより、実現できる。但し、完全な長方形のビームを作ることは難しく、通常は、図4(a),(b)に示すビーム17のような略長方形の形状のものとなる。また、蛍光体層入射面16上でのビーム17の断面積とは、光半導体(発光ダイオードや半導体レーザーなど)からの励起光のビーム17を蛍光体層2に照射した場合に、蛍光体層入射面16上でのビーム17の面積をいい、蛍光体層入射面16上でのビーム17の断面積は、光半導体(発光ダイオードや半導体レーザーなど)の出射口とコリメートレンズとの距離を変化させることで、調整することが可能である。また、蛍光体層入射面16上でのビーム17の断面積は、励起光の蛍光体層2への入射角度を調整することによっても、調整可能である。例えば、励起光を90°の入射角度で蛍光体層2へ入射させた場合に比べ、45°の入射角度で入射させた場合の方が、蛍光体層入射面16上でのビーム17の断面積を大きくすることができる。また、蛍光体層入射面16上でのビーム17の形状および断面積は、コリメートレンズの曲面を任意に設計することで、調整することも可能である。それにより、例えば、蛍光体層2の形状が長方形状以外のものであっても、ビーム17の形状を任意に調節することが可能となるため、蛍光体層2と同じ形状の照射光を実現することが可能となる。なお、本発明において、固体光源5とは、光半導体(発光ダイオードや半導体レーザーなど)のみならず、コリメートレンズなどの光学系も含まれているものであるとする。また、ビーム17の断面積を測定するには、蛍光体層2の代わりに、CCDカメラを有するビームプロファイラを配置し、ビーム17をプロファイラへ入射することで測定することができる。
As shown in FIGS. 4A and 4B, in order to make the shape of the
このように、本発明では、蛍光体層に入射する固体光源からの励起光の蛍光体層入射面上でのビームの形状および断面積を、蛍光体層入射面全体の形状および面積とほぼ等しいものとすることにより、蛍光体層2全面からほぼ同じ比率で励起光と蛍光を取り出すことが可能となり(蛍光体層2全面からほぼ同じ比率で励起光の色(例えば青色)と蛍光の色(例えば黄色)とを混ぜ合わせることが可能となり)、結果として、図2(a)に示したような発光点(発光パターン)内の色ムラを抑制することができる。換言すれば、光半導体として例えば青色半導体レーザーを用い、蛍光体層2として例えば樹脂成分を含まない黄色蛍光体であるYAG蛍光体セラミックスを用いるとした場合、蛍光体層2のほぼ全面を発光点の中心部Aとすることができ、発光点の周辺部Bをほとんどなくすことができるので、十分な量の青色の励起光と黄色の蛍光との混色によって蛍光体層2のほぼ全面を白色発光のものにし、黄色発光の部分をほとんどなくすことができて、図2(a)に示したような発光点(発光パターン)内の色ムラを抑制することができる。以上のように、本発明は、励起光の色と蛍光の色とを混ぜて使う場合に適用できる。
Thus, in the present invention, the shape and cross-sectional area of the beam on the phosphor layer incident surface of the excitation light from the solid light source incident on the phosphor layer are substantially equal to the shape and area of the entire phosphor layer incident surface. Thus, excitation light and fluorescence can be extracted from the entire surface of the
さらに本発明では、固体光源5に半導体レーザーを使用する場合、蛍光体層2に入射しなかった(蛍光体層2からはみ出した)固体光源5からの励起光(コヒーレント光である励起光)がそのまま照明光として投射されてしまい人体に危害を及ぼすのを防止することを意図している。具体的には、固体光源5に半導体レーザーを使用した反射型の光源装置を構成するのに、上述したように発光強度を高めるために蛍光体層2を反射率の高い光反射性基板6上に設けるとき、固体光源5からの励起光のビーム断面積が蛍光体層入射面の面積よりも大きな場合(すなわち、固体光源5からの励起光の蛍光体層入射面16上でのビーム17の断面積が、蛍光体層入射面16全体の面積の100%〜120%の範囲である場合(例えば図4(b)のような場合))には、蛍光体層2に入射しなかった(蛍光体層2からはみ出した)励起光が光反射性基板6で反射され、コヒーレント光である励起光がそのまま照明光として投射されてしまい、人体に危害を及ぼす危険性がある。また、固体光源5からの励起光のビームの断面積と蛍光体層入射面の面積がほぼ同じか小さくなる組み合わせであっても(すなわち、固体光源5からの励起光の蛍光体層入射面16上でのビーム17の断面積が、蛍光体層入射面16全体の面積の80%〜100%の範囲であっても(例えば図4(a)のような場合であっても))、使用中に外部の振動などにより光軸がずれた場合には、同様の現象が発生する可能性がある。
Further, in the present invention, when a semiconductor laser is used for the solid
そこで、図3(a),(b)の光源装置10では、固体光源5からの励起光が入射するとき該励起光を吸収する吸収手段9を蛍光体層2の周囲に設けている。なお、図3(a),(b)の例では、吸収手段9は、光反射性基板6上に、蛍光体層2を囲んで設けられている吸収部材(例えば黒色部材)である。
Therefore, in the
このように、吸収手段9を蛍光体層2の周囲に設けることで、蛍光体層2に入射しなかった(蛍光体層2からはみ出した)励起光を吸収手段9によって吸収し、上記のような危険性を防止することができる。
In this way, by providing the absorbing
なお、吸収手段9は、図3(a),(b)の構成に限らず、種々の変形が可能である。例えば、吸収手段9を図5(a),(b)、図6(a),(b)に示すようなものにすることもできる。すなわち、図5(a),(b)の例では、吸収手段9は、蛍光体層2の周囲において光反射性基板6の凹部に設けられた吸収材(例えば黒色材)として構成され、図6(a),(b)の例では、吸収手段9は、光反射性基板6上にあって蛍光体層2を囲み、かつ、蛍光体層2の上面の一部を覆う吸収部材(例えば黒色部材)として構成されている。
The absorbing means 9 is not limited to the configuration shown in FIGS. 3A and 3B, and various modifications can be made. For example, the absorbing
また、上述の各例では、コヒーレント光である励起光が照明光として投射されて人体に危害を及ぼす危険性を防止するのに、固体光源5からの励起光が入射するとき該励起光を吸収する吸収手段9を蛍光体層2の周囲に設けたが、吸収手段9のかわりに、前記固体光源5からの励起光が入射するとき該励起光を拡散する拡散手段を蛍光体層2の周囲に設けることもできる。
Further, in each of the above-described examples, the excitation light that is coherent light is projected as illumination light and prevents the danger of harming the human body. However, when the excitation light from the solid
図7(a),(b)は、図3(a),(b)の構成において、吸収手段9のかわりに、拡散手段19が設けられた光源装置20を示す図である。すなわち、図7(a),(b)の光源装置20では、固体光源5からの励起光が入射するとき該励起光を拡散する拡散手段19を蛍光体層2の周囲に設けている。なお、図7(a),(b)の例では、拡散手段19は、光反射性基板6上に、蛍光体層2を囲んで設けられている拡散部材(例えば白色部材)である。
FIGS. 7A and 7B are views showing a
このように、拡散手段19を蛍光体層2の周囲に設けることで、蛍光体層2に入射しなかった(蛍光体層2からはみ出した)励起光を拡散手段19によって拡散し、上記のような危険性を防止することができる。
As described above, by providing the diffusing
なお、拡散手段19は、図7(a),(b)の構成に限らず、種々の変形が可能である。例えば、拡散手段19を図8(a),(b)、図9(a),(b)、図10(a),(b)に示すようなものにすることもできる。すなわち、図8(a),(b)の例では、拡散手段19は、蛍光体層2の周囲において光反射性基板6の凹部に設けられた拡散材(例えば白色材)として構成され、図9(a),(b)の例では、拡散手段19は、光反射性基板6上にあって蛍光体層2を囲み、かつ、蛍光体層2の上面の一部を覆う拡散部材(例えば白色部材)として構成され、図10(a),(b)の例では、拡散手段19は、光反射性基板6の表面に設けられた拡散性の微細構造(拡散面)として構成されている。
The diffusing means 19 is not limited to the configuration shown in FIGS. 7A and 7B, and various modifications can be made. For example, the diffusing means 19 can be as shown in FIGS. 8A, 8B, 9A, 9B, 10A, 10B. That is, in the example of FIGS. 8A and 8B, the diffusing
以上のように、蛍光体層2の周囲に吸収手段9または拡散手段19を設けることで、蛍光体層2に入射しなかった(蛍光体層2からはみ出した)固体光源5からの励起光(コヒーレント光である励起光)が照明光として投射されて人体に危害を及ぼすのを防止することができる。
As described above, by providing the absorbing
なお、本発明において、蛍光体層2とは、励起光を吸収し励起光よりも長波長の蛍光を発光する蛍光体を含むものである。蛍光体には有機物、無機物、有機無機複合体があるが、信頼性に優れる無機物の蛍光体を使用することが望ましい。蛍光体層2は、樹脂やガラスなどのマトリックス中に蛍光体を分散させる方法や、無機物のみからなる樹脂成分を実質的に含まない方法などで、形成することが出来る。また、高輝度化を実現するためには、蛍光体層2には、樹脂成分を実質的に含まない蛍光体層が用いられるのが好ましい。ここで、樹脂成分を実質的に含まない蛍光体層とは、蛍光体層の形成に通常使用される樹脂成分が蛍光体層の5wt%以下であるものを意味する。このような蛍光体層を実現するものとして、蛍光体粉末をガラス中に分散させたもの、ガラス母体に発光中心イオンを添加したガラス蛍光体、蛍光体の単結晶や蛍光体の多結晶体(以下、蛍光体セラミックスという)などが挙げられる。なお、蛍光体セラミックスには、蛍光体とそれとは異なる組成のセラミックスからなる多結晶体も含まれる。蛍光体セラミックスは、蛍光体の製造過程において、焼成前に材料を任意の形状に成形し、焼成した蛍光体の塊である。蛍光体セラミックスは、その製造工程のうち、成形工程においてバインダーとして有機物を使用する場合があるが、成形後に脱脂工程を設け有機成分を焼き飛ばすため、焼成後の蛍光体セラミックスには有機樹脂成分は5wt%以下しか残留しない。したがって、樹脂成分を実質的に含まない蛍光体層は、そのほとんどが無機物質のみから構成されているため、熱による変色が発生することがない。また、無機物質のみからなるガラスやセラミックスは、一般に樹脂よりも熱伝導率が高いため、蛍光体層から基板への熱放散においても有利である。特に蛍光体セラミックスは、一般的に、ガラスよりもさらに熱伝導率が高く、単結晶より製造コストが安いため好適である。
In the present invention, the
また、光反射性基板6とは、第一に励起光の反射面の役割を担うものであるため、励起光に対する反射率が95%以上のもの、特に99%以上のものを使用することが望ましい。また、この光反射性基板6は、蛍光体層から放散してきた熱を外部へ放散させる役割と、蛍光体層の支持基板の役割も担うものである。このため、高い光反射特性、伝熱特性、加工性が求められる。この光反射性基板6には、金属基板やアルミナなどの酸化物セラミックス、窒化アルミニウムなどの非酸化セラミックスなどが使用可能であるが、特に高い光反射特性、伝熱特性、加工性を併せ持つ金属基板を使用するのが望ましい。
In addition, since the light-reflecting
また、蛍光体層2と光反射性基板6の接合部7には、樹脂、有機接着剤、無機接着剤、低融点ガラス、金属のろう付けなどを用いることが出来る。光反射性基板6の反射率を活用するためには接合部7は透明度が高いほうが望ましく、シリコーン樹脂に代表される樹脂や無機接着剤の使用が望ましい。一方、接合部7は蛍光体層2から熱を放散させる役割を担うものであるから、伝熱特性を重視するならば金属のろう付けや金属成分を含有する導電性接着剤が望ましい。
In addition, a resin, an organic adhesive, an inorganic adhesive, a low-melting glass, a metal brazing, or the like can be used for the joint 7 between the
また、吸収手段9は、励起光を吸収できるものであればよく、黒色樹脂、もしくは、少なくとも励起光を吸収する着色したフィルタ部材(少なくとも励起光を吸収する色素をプラスチック中に混ぜたフィルタ)などが使用可能である。ここで、黒色樹脂とは、透明樹脂中に黒色粉末を分散させたものである。透明樹脂としては、シリコーン樹脂、エポキシ樹脂、シリコンエポキシ樹脂等が使用可能である。また、黒色粉末としては、金属粉末やセラミックスの黒色顔料、有機物の黒色色素などが使用可能である。作製方法は、まず、樹脂と黒色粉末を混練し、光反射性基板6上の蛍光体層2の周囲もしくは上部に、印刷やディスペンスなどの方法を用いて配置し、そのまま硬化炉で硬化する。このようにすれば図3(a),(b)のような構成を実現することが出来る。また、先に、光反射性基板6に凹部を設けておけば、同様の方法で図5(a),(b)のような構成を実現することも出来る。さらに蛍光体層2の上面の一部を覆う図6(a),(b)のような構成を実現することも出来る。また、吸収手段9に少なくとも励起光を吸収する色素をプラスチック中に混ぜたフィルタを用いる場合、例えば励起光に青色光を用いるのであれば、吸収手段9として黄色のフィルタを用いることができる。
The absorbing means 9 may be anything that can absorb excitation light, such as black resin, or a colored filter member that absorbs at least excitation light (a filter in which a dye that absorbs at least excitation light is mixed in plastic), or the like. Can be used. Here, the black resin is obtained by dispersing black powder in a transparent resin. As the transparent resin, a silicone resin, an epoxy resin, a silicon epoxy resin, or the like can be used. As the black powder, metal powder, ceramic black pigments, organic black pigments, and the like can be used. First, a resin and black powder are kneaded, placed around or on the
また、拡散手段19は、励起光を拡散できるものであればよく、白色樹脂などの付加部材を使用する場合と、光反射性基板6の表面に拡散性の微細構造を設ける場合との2つに大別できる。白色樹脂などの付加部材を使用する場合は、さらに透明樹脂中に白色粉末を分散させる方法と、樹脂成分を含まない白色の板状セラミックスを使用する場合とに分けられる。透明樹脂中に白色粉末を分散させる方法の場合、透明樹脂としては、シリコーン樹脂等が使用可能である。また、白色粉末としては、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウムなどのセラミックス粉末が使用可能である。作製方法は、まず、樹脂と白色粉末を混練し、光反射性基板6上の蛍光体層2の周囲に、印刷やディスペンスなどの方法を用いて配置し、そのまま硬化炉で硬化する。このようにすれば図7(a),(b)のような構成を実現することが出来る。また、先に、光反射性基板6に凹部を設けておけば、同様の方法で図8(a),(b)のような構成を実現することも出来る。さらに蛍光体層2の上面の一部を覆う図9(a),(b)のような構成を実現することも出来る。また、拡散手段19に樹脂成分を含まない白色の板状セラミックスを使用する場合、白色の板状セラミックスは、蛍光体セラミックスと同様の手順で作製することが出来る。蛍光体セラミックスとの違いは、材料に発光中心イオンを入れないことと、拡散性を持たせるためにポアを残して焼き上げることである。完成した板状セラミックスは切削、研磨加工により任意の形状に仕上げ、樹脂や接着剤を用いて光反射性基板6に貼り付ければよい。また、拡散手段19を、光反射性基板6の表面に拡散性の微細構造を設けて構成する場合、光反射性基板6に設ける微細構造は、励起光を拡散できれば良く、形状などは特に限定されない。例えば、光反射性基板6に設ける微細構造を、エッチングにより精密な周期構造として設けても良いし、砥粒を使用した研磨で設けても良い。また、光反射性基板6が金属基板であれば、放電加工により凹部を作製することで、図10(a),(b)のように底面が粗面状に仕上がるため、そのまま拡散部材として利用できる。
Further, the diffusing means 19 may be anything that can diffuse the excitation light, and there are two cases, that is, when an additional member such as a white resin is used and when a diffusible fine structure is provided on the surface of the light
次に、本発明の光源装置をより詳細に説明する。 Next, the light source device of the present invention will be described in more detail.
本発明の光源装置において、固体光源5には、紫外光から可視光領域に発光波長をもつ発光ダイオードや半導体レーザーなどが使用可能である。
In the light source device of the present invention, the solid-
より具体的に、固体光源5には、例えば、InGaN系の材料を用いた発光波長が約380nm乃至約400nmの近紫外光を発光する発光ダイオードや半導体レーザーなどを用いることができる。この場合、蛍光体層2の蛍光体としては、波長が約380nm乃至約400nmの紫外光により励起されるものとして、例えば、赤色蛍光体には、CaAlSiN3:Eu2+、(Ca,Sr)AlSiN3:Eu2+、Ca2Si5N8:Eu2+、(Ca,Sr)2Si5N8:Eu2+、KSiF6:Mn4+、KTiF6:Mn4+等が用いられ、黄色蛍光体には、(Sr,Ba)2SiO4:Eu2+、Cax(Si,Al)12(O,N)16:Eu2+等が用いられ、緑色蛍光体には、(Ba,Sr)2SiO4:Eu2+、Ba3Si6O12N2:Eu2+、(Si,Al)6(O,N)8:Eu2+、BaMgAl10O17:Eu2+,Mn2+等が用いられ、青色蛍光体には、BaMgAl10O17:Eu2+等を用いることができる。
More specifically, the solid-
また、固体光源5には、例えば、GaN系の材料を用いた発光波長が約460nm程度の青色光を発光する発光ダイオードや半導体レーザーなどを用いることができる。この場合、蛍光体層2の蛍光体としては、波長が約440nm乃至約470nmの青色光により励起されるものとして、例えば、赤色蛍光体には、CaAlSiN3:Eu2+、(Ca,Sr)AlSiN3:Eu2+、Ca2Si5N8:Eu2+、(Ca,Sr)2Si5N8:Eu2+、KSiF6:Mn4+、KTiF6:Mn4+等が用いられ、黄色蛍光体には、Y3Al5O12:Ce3+、(Sr,Ba)2SiO4:Eu2+、Cax(Si,Al)12(O,N)16:Eu2+等が用いられ、緑色蛍光体には、Lu3Al5O12:Ce3+、(Lu,Y)3Al5O12:Ce3+、Y3(Ga,Al)5O12:Ce3+、Ca3Sc2Si3O12:Ce3+、CaSc2O4:Eu2+、(Ba,Sr)2SiO4:Eu2+、Ba3Si6O12N2:Eu2+、(Si,Al)6(O,N)8:Eu2+等を用いることができる。
The solid-
蛍光体層2としては、これらの蛍光体粉末をガラス中に分散させたものや、ガラス母体に発光中心イオンを添加したガラス蛍光体、樹脂などの結合部材を含まない蛍光体セラミックス等を用いることができる。蛍光体粉末をガラス中に分散させたものの具体例としては、上に列挙した組成の蛍光体粉末をP2O3、SiO2、B2O3、Al2O3などの成分を含むガラス中に分散したものが挙げられる。ガラス母体に発光中心イオンを添加したガラス蛍光体としては、Ce3+やEu2+を付活剤として添加したCa−Si−Al−O−N系やY−Si−Al−O−N系などの酸窒化物系ガラス蛍光体が挙げられる。蛍光体セラミックスとしては、上に列挙した組成の蛍光体組成からなり、樹脂成分を実質的に含まない焼結体が挙げられる。これらの中でも透光性を有する蛍光体セラミックスを使用することが望ましい。これは、焼結体中に光の散乱の原因となるポアや粒界の不純物がほとんど存在しないために透光性を有するに至った蛍光体セラミックスである。ポアや不純物は熱拡散を妨げる原因にもなるため、透光性セラミックスは高い熱伝導率を示す。このため蛍光体層として利用した場合には励起光や蛍光を拡散により失うことなく蛍光体層から取り出して利用でき、さらに蛍光体層で発生した熱を効率良く放散することができる。透光性を示さない焼結体でも出来るだけポアや不純物の少ないものが望ましい。ポアの残存量を評価する指標としては蛍光体セラミックスの比重の値を用いることができ、その値が計算される理論値に対して95%以上のものが望ましい。
As the
ここで、青色励起の黄色発光蛍光体であるY3Al5O12:Ce3+蛍光体を例に、透光性を有する蛍光体セラミックスの製造方法を説明する。蛍光体セラミックスは出発原料の混合工程、成形工程、焼成工程、加工工程を経て製造される。出発原料には、酸化イットリウムや酸化セリウムやアルミナ等、Y3Al5O12:Ce3+蛍光体の構成元素の酸化物や、焼成後に酸化物となる炭酸塩、硝酸塩、硫酸塩等を用いる。出発原料の粒径はサブミクロンサイズのものが望ましい。これらの原料を化学量論比となるように秤量する。このとき焼成後のセラミックスの透過率向上を目的として、カルシウムやシリコンなどの化合物を添加することも可能である。秤量した原料は、水もしくは有機溶剤を用い、湿式ボールミルにより十分に分散、混合を行う。次に混合物を所定の形状に成形する。成形方法としては、一軸加圧法、冷間静水圧法、スリップキャスティング法や射出成形法等を用いることができる。得られた成形体を1600〜1800℃で焼成する。これにより、透光性のY3Al5O12:Ce3+蛍光体セラミックスを得ることができる。 Here, a method for producing a phosphor ceramic having translucency will be described by taking as an example a Y 3 Al 5 O 12 : Ce 3+ phosphor that is a yellow-excited phosphor emitting blue light. The phosphor ceramic is manufactured through a starting material mixing step, a forming step, a firing step, and a processing step. As starting materials, yttrium oxide, cerium oxide, alumina, and the like, oxides of constituent elements of Y 3 Al 5 O 12 : Ce 3+ phosphor, carbonates, nitrates, sulfates and the like that become oxides after firing are used. The particle size of the starting material is preferably a submicron size. These raw materials are weighed so as to have a stoichiometric ratio. At this time, for the purpose of improving the transmittance of the ceramic after firing, it is also possible to add a compound such as calcium or silicon. The weighed raw materials are sufficiently dispersed and mixed by a wet ball mill using water or an organic solvent. Next, the mixture is formed into a predetermined shape. As the molding method, a uniaxial pressing method, a cold isostatic pressing method, a slip casting method, an injection molding method, or the like can be used. The obtained molded body is fired at 1600 to 1800 ° C. Thus, translucent Y 3 Al 5 O 12: Ce 3+ phosphor ceramic can be obtained.
以上のようにして作製した蛍光体セラミックスは、自動研磨装置などを用いて、厚さ数十〜数百μmの厚みに研磨し、さらに、ダイアモンドカッターやレーザーを用いたダイシングやスクライブにより、円形や四角形や扇形、リング形など任意の形状の板に切り出して使用する。 The phosphor ceramic produced as described above is polished to a thickness of several tens to several hundreds of μm using an automatic polishing apparatus and the like, and is further rounded by dicing or scribing using a diamond cutter or laser. Cut out to a board of any shape such as a square, fan or ring.
ここで、蛍光体セラミックスは、空気に対して屈折率が高く、さらに、内部にポアなどの散乱の原因となるものが少なく、光がセラミックス内部を導波するため、板状に成形した場合には側面から出射される発光成分が増加し、正面方向へ出射される発光成分が減少してしまう。この問題を解決するために、セラミックスの表面にエッチングにより凹凸の光取出し構造を設けたり、レンズを実装したり、側面に反射層を設けることで、正面方向へ出射される発光成分を増加させることも可能である。 Here, phosphor ceramics have a high refractive index with respect to air, and there are few things that cause scattering such as pores inside, and light is guided inside the ceramics. The light emission component emitted from the side surface increases, and the light emission component emitted in the front direction decreases. In order to solve this problem, the light emission component emitted in the front direction can be increased by providing an uneven light extraction structure by etching on the ceramic surface, mounting a lens, or providing a reflective layer on the side surface. Is also possible.
また、光反射性基板6には、金属基板や酸化物セラミックス、非酸化セラミックスなどが使用可能であるが、特に高い光反射特性、伝熱特性、加工性を併せ持つ金属基板を使用するのが望ましい。金属としては、Al、Cu、Ti、Si、Ag、Au、Ni、Mo、W、Fe、Pdなどの単体やそれらを含む合金が使用可能である。光反射性基板6の表面には、増反射や腐食防止を目的としたコーティングを施しても良い。また、基板6には、放熱性を高めるためにフィンなどの構造を設けても良い。
The light-
また、蛍光体層2と光反射性基板6との接合部7には、樹脂、有機接着剤、無機接着剤、低融点ガラス、ろう付けなどを用いることが出来る。中でも、光反射性基板6の反射率を活かすために、接合部7には、励起光の透過率の高い樹脂や無機接着剤の使用が望ましい。これらを使用する場合、光反射性基板6上に樹脂もしくは無機接着剤を塗布し、その上に蛍光体層2を配置し、硬化炉内で加熱することで接着することが出来る。また放熱性も高めたい場合には、ろう付けが望ましい。セラミックスと金属の接合は、まずセラミックス側に金属膜を形成し、その金属膜と金属基板をろう付けすることで可能である。セラミックスへの金属膜の形成は、真空中での蒸着法やスパッタ法、もしくは高融点金属法などが使用可能である。なお、高融点金属法とは、セラミックスの表面に金属微粒子を含む有機バインダーを塗布し、水蒸気と水素を含む還元雰囲気下で1000〜1700℃に加熱する方法である。このとき形成される金属膜には、Si、Nb、Ti、Zr、Mo、Ni、Mn、W、Fe、Pt、Al、Au、Pd、Ta、Cuなどを含む単体や合金が用いられる。ろう材には、Ag、Cu、Zn、Ni、Sn、Ti、Mn、In、Biなどを含むろう材が使用可能である。必要であれば金属膜と金属の接合面の酸化被膜をフラックスで除去し、接合面にろう材を配置し、200〜800℃に加熱し、冷却することで接合することが出来る。また接合後にセラミックスと金属の熱膨張係数の差による接合面の破壊を防ぐために、セラミックスと金属の中間の熱膨張係数を有する物質を介在させて接合を行っても良い。
In addition, a resin, an organic adhesive, an inorganic adhesive, a low-melting glass, brazing, or the like can be used for the joint 7 between the
また、本発明の上述した光源装置を、所定のレンズ系、あるいは、ミラー、リフレクタなどと組み合わせることで、従来に比べて十分な高輝度化を図ることが可能であり、かつ、照明光に色ムラがほとんどない照明装置を提供することができる。 In addition, by combining the above-described light source device of the present invention with a predetermined lens system, a mirror, a reflector, or the like, it is possible to achieve a sufficiently high brightness as compared with the prior art, and the illumination light can be colored. A lighting device with almost no unevenness can be provided.
本発明は、ヘッドランプなどの自動車用照明、プロジェクタ、一般照明などに利用可能である。 The present invention can be used for automotive lighting such as headlamps, projectors, and general lighting.
2 蛍光体層
5 固体光源
6 光反射性基板
9 吸収手段
19 拡散手段
10、20 光源装置
2
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010234179A JP2012089316A (en) | 2010-10-19 | 2010-10-19 | Light source device, and lighting system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010234179A JP2012089316A (en) | 2010-10-19 | 2010-10-19 | Light source device, and lighting system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012089316A true JP2012089316A (en) | 2012-05-10 |
Family
ID=46260746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010234179A Pending JP2012089316A (en) | 2010-10-19 | 2010-10-19 | Light source device, and lighting system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012089316A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013239318A (en) * | 2012-05-15 | 2013-11-28 | Hitachi Ltd | Light-emitting diode lighting device |
JP2014186916A (en) * | 2013-03-25 | 2014-10-02 | Stanley Electric Co Ltd | Light emitting module and light source device |
JP2015170419A (en) * | 2014-03-05 | 2015-09-28 | シャープ株式会社 | Light source device and luminaire |
US9470895B2 (en) | 2013-06-18 | 2016-10-18 | Sharp Kabushiki Kaisha | Light-emitting device |
JP2017027019A (en) * | 2015-07-22 | 2017-02-02 | パナソニックIpマネジメント株式会社 | Light source device |
JP2017050256A (en) * | 2015-09-04 | 2017-03-09 | シャープ株式会社 | Lighting device |
WO2017068765A1 (en) * | 2015-10-20 | 2017-04-27 | パナソニックIpマネジメント株式会社 | Wavelength conversion element and light-emitting device |
WO2017090675A1 (en) * | 2015-11-27 | 2017-06-01 | 三菱電機株式会社 | Light source device, illumination device, and vehicle lamp |
WO2017154807A1 (en) * | 2016-03-08 | 2017-09-14 | パナソニックIpマネジメント株式会社 | Light source device |
WO2017195620A1 (en) * | 2016-05-13 | 2017-11-16 | パナソニックIpマネジメント株式会社 | Light source device and lighting device |
US10066809B2 (en) | 2012-01-18 | 2018-09-04 | Sharp Kabushiki Kaisha | Light emitting device with optical member for exciting fluorescence, illumination device, and vehicle headlamp having the same |
US10094529B2 (en) | 2016-04-20 | 2018-10-09 | Panasonic Intellectual Property Management Co., Ltd. | Wavelength conversion member including phosphor that converts light from semiconductor light-emitting element into longer-wavelength light |
JP2018166064A (en) * | 2017-03-28 | 2018-10-25 | 岩崎電気株式会社 | Lighting device |
WO2018198949A1 (en) * | 2017-04-27 | 2018-11-01 | パナソニックIpマネジメント株式会社 | Wavelength converting element, light-emitting device, and illumination device |
KR20190050623A (en) * | 2017-11-03 | 2019-05-13 | 엘지전자 주식회사 | Phosphor module |
WO2019193760A1 (en) * | 2018-04-06 | 2019-10-10 | シャープ株式会社 | Light source device |
WO2020126745A1 (en) * | 2018-12-20 | 2020-06-25 | Lumileds Holding B.V. | Light source, reflection luminaire and automotive headlamp |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005055328A1 (en) * | 2003-12-05 | 2005-06-16 | Mitsubishi Denki Kabushiki Kaisha | Light emitting device and illumination instrument using the same |
JP2008522225A (en) * | 2004-11-29 | 2008-06-26 | 株式会社有沢製作所 | Projection system and method |
JP2008170674A (en) * | 2007-01-11 | 2008-07-24 | Seiko Instruments Inc | Image display device |
JP2010151851A (en) * | 2008-11-28 | 2010-07-08 | Toshiba Corp | Display device |
JP2011181381A (en) * | 2010-03-02 | 2011-09-15 | Stanley Electric Co Ltd | Vehicle light |
JP2012059608A (en) * | 2010-09-10 | 2012-03-22 | Stanley Electric Co Ltd | Vehicular lighting fixture unit |
-
2010
- 2010-10-19 JP JP2010234179A patent/JP2012089316A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005055328A1 (en) * | 2003-12-05 | 2005-06-16 | Mitsubishi Denki Kabushiki Kaisha | Light emitting device and illumination instrument using the same |
JP2008522225A (en) * | 2004-11-29 | 2008-06-26 | 株式会社有沢製作所 | Projection system and method |
JP2008170674A (en) * | 2007-01-11 | 2008-07-24 | Seiko Instruments Inc | Image display device |
JP2010151851A (en) * | 2008-11-28 | 2010-07-08 | Toshiba Corp | Display device |
JP2011181381A (en) * | 2010-03-02 | 2011-09-15 | Stanley Electric Co Ltd | Vehicle light |
JP2012059608A (en) * | 2010-09-10 | 2012-03-22 | Stanley Electric Co Ltd | Vehicular lighting fixture unit |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10514151B2 (en) | 2012-01-18 | 2019-12-24 | Sharp Kabushiki Kaisha | Light-emitting device, illumination device, and vehicle headlamp |
US10066809B2 (en) | 2012-01-18 | 2018-09-04 | Sharp Kabushiki Kaisha | Light emitting device with optical member for exciting fluorescence, illumination device, and vehicle headlamp having the same |
JP2013239318A (en) * | 2012-05-15 | 2013-11-28 | Hitachi Ltd | Light-emitting diode lighting device |
JP2014186916A (en) * | 2013-03-25 | 2014-10-02 | Stanley Electric Co Ltd | Light emitting module and light source device |
US9470895B2 (en) | 2013-06-18 | 2016-10-18 | Sharp Kabushiki Kaisha | Light-emitting device |
US10054798B2 (en) | 2013-06-18 | 2018-08-21 | Sharp Kabushiki Kaisha | Light-emitting device |
JP2015170419A (en) * | 2014-03-05 | 2015-09-28 | シャープ株式会社 | Light source device and luminaire |
US10190733B2 (en) | 2014-03-05 | 2019-01-29 | Sharp Kabushiki Kaisha | Light source device and illumination apparatus |
JP2017027019A (en) * | 2015-07-22 | 2017-02-02 | パナソニックIpマネジメント株式会社 | Light source device |
JP2017050256A (en) * | 2015-09-04 | 2017-03-09 | シャープ株式会社 | Lighting device |
US10777711B2 (en) | 2015-10-20 | 2020-09-15 | Panasonic Semiconductor Solutions Co., Ltd. | Wavelength conversion element and light emitting device |
US10865955B1 (en) | 2015-10-20 | 2020-12-15 | Panasonic Semiconductor Solutions Co., Ltd. | Wavelength conversion element and light emitting device |
CN108139523A (en) * | 2015-10-20 | 2018-06-08 | 松下知识产权经营株式会社 | Wavelength changing element and light-emitting device |
WO2017068765A1 (en) * | 2015-10-20 | 2017-04-27 | パナソニックIpマネジメント株式会社 | Wavelength conversion element and light-emitting device |
JPWO2017068765A1 (en) * | 2015-10-20 | 2018-08-09 | パナソニックIpマネジメント株式会社 | Wavelength conversion element, light emitting device, and method of manufacturing wavelength conversion element |
EP3367141A4 (en) * | 2015-10-20 | 2018-10-31 | Panasonic Intellectual Property Management Co., Ltd. | Wavelength conversion element and light-emitting device |
JPWO2017090675A1 (en) * | 2015-11-27 | 2018-04-26 | 三菱電機株式会社 | LIGHT SOURCE DEVICE, LIGHTING DEVICE, AND VEHICLE LIGHT |
CN108291702A (en) * | 2015-11-27 | 2018-07-17 | 三菱电机株式会社 | Light supply apparatus, lighting device and lamps apparatus for vehicle |
WO2017090675A1 (en) * | 2015-11-27 | 2017-06-01 | 三菱電機株式会社 | Light source device, illumination device, and vehicle lamp |
CN108291702B (en) * | 2015-11-27 | 2020-08-25 | 三菱电机株式会社 | Light source device, lighting device, and vehicle lamp |
US10309601B2 (en) | 2015-11-27 | 2019-06-04 | Mitsubishi Electric Corporation | Light source device, lighting apparatus, and vehicle lamp device |
EP3428517A4 (en) * | 2016-03-08 | 2019-01-16 | Panasonic Intellectual Property Management Co., Ltd. | Light source device |
CN108779897A (en) * | 2016-03-08 | 2018-11-09 | 松下知识产权经营株式会社 | Light supply apparatus |
WO2017154807A1 (en) * | 2016-03-08 | 2017-09-14 | パナソニックIpマネジメント株式会社 | Light source device |
JPWO2017154807A1 (en) * | 2016-03-08 | 2019-01-10 | パナソニックIpマネジメント株式会社 | Light source device |
US10094529B2 (en) | 2016-04-20 | 2018-10-09 | Panasonic Intellectual Property Management Co., Ltd. | Wavelength conversion member including phosphor that converts light from semiconductor light-emitting element into longer-wavelength light |
WO2017195620A1 (en) * | 2016-05-13 | 2017-11-16 | パナソニックIpマネジメント株式会社 | Light source device and lighting device |
CN109154425A (en) * | 2016-05-13 | 2019-01-04 | 松下知识产权经营株式会社 | Light supply apparatus and lighting device |
US12018805B2 (en) | 2016-05-13 | 2024-06-25 | Nuvoton Technology Corporation Japan | Light source device and lighting device |
CN109154425B (en) * | 2016-05-13 | 2021-06-15 | 新唐科技日本株式会社 | Light source device and lighting device |
JPWO2017195620A1 (en) * | 2016-05-13 | 2019-03-14 | パナソニックIpマネジメント株式会社 | Light source device and illumination device |
US11028988B2 (en) | 2016-05-13 | 2021-06-08 | Panasonic Semiconductor Solutions Co., Ltd. | Light source device and lighting device |
JP2018166064A (en) * | 2017-03-28 | 2018-10-25 | 岩崎電気株式会社 | Lighting device |
WO2018198949A1 (en) * | 2017-04-27 | 2018-11-01 | パナソニックIpマネジメント株式会社 | Wavelength converting element, light-emitting device, and illumination device |
JPWO2018198949A1 (en) * | 2017-04-27 | 2020-03-12 | パナソニックIpマネジメント株式会社 | Wavelength conversion element, light emitting device and lighting device |
KR101984102B1 (en) * | 2017-11-03 | 2019-05-30 | 엘지전자 주식회사 | Phosphor module |
US11067242B2 (en) | 2017-11-03 | 2021-07-20 | Lg Electronics Inc. | Phosphor module |
KR20190050623A (en) * | 2017-11-03 | 2019-05-13 | 엘지전자 주식회사 | Phosphor module |
WO2019193760A1 (en) * | 2018-04-06 | 2019-10-10 | シャープ株式会社 | Light source device |
WO2020126745A1 (en) * | 2018-12-20 | 2020-06-25 | Lumileds Holding B.V. | Light source, reflection luminaire and automotive headlamp |
US10935205B2 (en) | 2018-12-20 | 2021-03-02 | Lumileds Llc | Light source, reflection luminaire and automotive headlamp |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012089316A (en) | Light source device, and lighting system | |
JP5530165B2 (en) | Light source device and lighting device | |
US8872208B2 (en) | Light source device and lighting device | |
JP5530171B2 (en) | Lighting device | |
JP5709463B2 (en) | Light source device and lighting device | |
JP5759776B2 (en) | Light source device and lighting device | |
JP5530187B2 (en) | Light source device and lighting device | |
JP6253392B2 (en) | Light emitting device and light source for projector using the same | |
JP5611690B2 (en) | Light source device, color adjustment method, lighting device | |
US8708511B2 (en) | Semiconductor light source apparatus and lighting unit | |
JP2012104267A (en) | Light source device and lighting system | |
CN111133343B (en) | Optical wavelength conversion device and optical multiplexing device | |
JP2012129135A (en) | Light source device, illumination device, and method of manufacturing phosphor layer | |
JP5550368B2 (en) | Light source device and lighting device | |
JP2012064484A (en) | Light source device | |
JP2012079989A (en) | Light source device and lighting fixture | |
JP2012243618A (en) | Light source device and lighting device | |
JP2016157905A (en) | Optical component | |
JP5917183B2 (en) | Light source device and lighting device | |
JP5695887B2 (en) | Light source device and lighting device | |
JP5781367B2 (en) | Light source device and lighting device | |
CN107689554A (en) | A kind of Wavelength converter and preparation method thereof, light-emitting device and projection arrangement | |
JP5766521B2 (en) | Lighting device | |
JP2013171623A (en) | Light source device, and lighting device | |
US20170370555A1 (en) | Phosphor Plate and Lighting Device Including the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120912 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131017 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140804 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140916 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150203 |