JP2012086286A - Thread milling cutter for machining high hardness material - Google Patents
Thread milling cutter for machining high hardness material Download PDFInfo
- Publication number
- JP2012086286A JP2012086286A JP2010233250A JP2010233250A JP2012086286A JP 2012086286 A JP2012086286 A JP 2012086286A JP 2010233250 A JP2010233250 A JP 2010233250A JP 2010233250 A JP2010233250 A JP 2010233250A JP 2012086286 A JP2012086286 A JP 2012086286A
- Authority
- JP
- Japan
- Prior art keywords
- blade
- edge
- thread
- angle
- finishing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Milling Processes (AREA)
Abstract
Description
本発明は、ねじ切りフライスに関するものであり,特に、被削材の硬さがHRC50以上(望ましくはHRC60以上)の被削材を加工する際に、ねじ切りの前工程として別の工具を使って行う下穴加工が不要な高硬度材用ねじ切りフライスに関する。 The present invention relates to a thread milling machine, and in particular, when a work material having a work material hardness of HRC 50 or higher (preferably HRC 60 or higher) is processed, a separate tool is used as a pre-process for thread cutting. The present invention relates to a thread milling cutter for high-hardness materials that does not require pilot hole machining.
近年、金型や部品の長寿命化を目的として材料の高硬度化が進んできている。例えば前記金型や部品に使用される代表的な鋼としては高速度工具鋼やSKD11といった冷間工具鋼のようなHRC50以上の高硬度材が使用される場合が多い。したがって、このような高硬度材の切削に関する切削用工具のニーズが増加している。めねじ加工においても、従来は、金型や部品を製造するときに、これらの被削材において焼き入れ前にめねじ加工を行うことが主流であったが、金型や部品の高品位化に伴い、被削材の焼き入れ後に高硬度材となった状態からめねじ加工を行うニーズが増加してきている。 In recent years, the hardness of materials has been increasing for the purpose of extending the life of dies and parts. For example, as a typical steel used for the mold and parts, a high-hardness material of HRC50 or higher such as high-speed tool steel or cold tool steel such as SKD11 is often used. Accordingly, there is an increasing need for cutting tools for cutting such hard materials. Conventionally, when manufacturing molds and parts for female threads, it has been the mainstream to process the internal threads before quenching these workpieces. Along with this, there is an increasing need for female thread processing from the state of becoming a high hardness material after quenching of the work material.
めねじを形成するための工具として、従来からねじ切りフライスがある。ねじ切りフライスは、形成すべきめねじのねじ溝に対応する断面形状のリードの無い切れ刃が外周部に設けられたもので、NCマシニングセンタなどに取り付けられて、ヘリカル送りすることにより、めねじを形成する工具である。しかし、これらの従来のねじ切りフライスの大部分が、用途上本発明とは異なる硬さの低い被削材を対象にしたものである。 As a tool for forming a female thread, there is a conventional thread milling machine. Thread milling cutters have a cutting edge without a lead with a cross-sectional shape corresponding to the thread groove of the female thread to be formed on the outer periphery, and are attached to an NC machining center etc. to form a female thread by helical feeding. It is a tool to do. However, most of these conventional threading mills are directed to work materials with low hardness, which are different from the present invention in use.
そこで、本発明の課題である高硬度材におけるめねじ加工を行う目的で、下穴加工無しで加工を行うねじ切りフライスとして、いくつかの提案がなされている。 In view of this, several proposals have been made as a thread milling machine that performs machining without preparing a pilot hole for the purpose of performing female thread machining on a high-hardness material, which is the subject of the present invention.
特許文献1には、工具本体の先端部における側部にねじ切り刃を設け、底部に凹部を形成するとともに底刃を設け、さらに凹部の裾部に、内周部では前記底刃と90°より大きい角度を持って連続し、外周部では前記ねじ切り刃と一致する角度を持って連続する外周刃を設けた形状として、下穴形成とねじ山形成とを連続して行うねじ切りフライスが記載されている。
In
特許文献2には、ねじ下穴の底部を形成するためのエンドミル形状の底刃とねじ下穴の内周面を形成する外周刃とを工具軸方向の先端部に設け、外周刃におけるねじ切り刃に荒刃、中荒刃、および仕上げ刃を備えた、下穴形成とねじ山形成とを連続して行うエンドミル型タップが記載されている。
In
特許文献3には、ねじ切りフライス切れ刃のすくい角を負の値にして刃先強度を向上させた、下穴形成とねじ山形成を連続して行う高硬度材用のねじ切りフライスが記載されている。
しかしながら、上記のような従来のねじ切りフライスには以下のような問題があった。
特許文献1に記載のねじ切りフライスは、その発明の目的と効果から明らかなように、主に切削抵抗の低減と切り屑の排出性改善を狙ったものであり、高硬度材の切削を特に意図したものではない。このねじ切りフライスは底刃と外周刃が90°以上の角度をもって連続する形状であるため、負荷のかかる底刃にある程度の刃先強度をもたせることができるが、本発明が被削材として対象にするHRC50以上の高硬度材を切削した場合には強度が足りず、その結果、刃先摩耗が進行し、切削抵抗が増大することにより、ねじ切りフライスが撓み、削り残しが発生する。そのため、加工穴数の増大とともに、オフセット(切り込み量の調整)が頻繁に必要となってくるという問題があった。
However, the conventional threading mill as described above has the following problems.
As apparent from the object and effect of the invention, the threading mill described in
特許文献2に記載のねじ切りフライスはエンドミル型タップであり、ねじ下穴を形成するためにエンドミル形状の底刃を設けているが、この底刃形状ゆえに高硬度材のねじ切りではいくつかの重要な問題が生じる。すなわち、エンドミル形状の底刃がボール形状の場合は、ボール先端部の周速が最も遅くなり、このことから切れ味の悪くなるボール先端部に最も負荷がかかる加工となるため、ボール先端部の欠損を生じやすい。また、切削抵抗も大きいため、ねじ切りフライスが撓み、ねじ精度が悪いという問題がある。エンドミル形状の底刃がスクエア形状、ラジアス形状の場合は、底刃外周部の角度が鋭角になるため、刃先強度が小さくなり、下穴加工時に底刃外周隅部での欠損が生じやすい。
The thread milling cutter described in
また、特許文献3に記載のねじ切りフライスでは、高硬度材加工を行うために、ねじ切りフライス切れ刃のすくい角を負にして刃先強度を向上させているが、下穴形成とねじ山形成とを連続して同時に行うねじ切りフライスにおいて、すくい角を負にするのみでは切削抵抗が増加し、工具の撓みが発生する。そのため加工穴数の増大とともに、オフセット(切り込み量の調整)が頻繁に必要となるという問題がある。
Further, in the thread cutting mill described in
本発明は、上記問題に鑑みてなされたもので、安定した高硬度材のめねじ加工を行うために、切削抵抗を軽減させ、高硬度材加工に耐えうる刃先強度を備えた新しい形状のねじ切りフライスを提供することを目的とする。 The present invention has been made in view of the above problems, and in order to perform stable internal thread machining of a high-hardness material, a new shape of thread cutting with a cutting edge strength that can reduce cutting resistance and withstand high-hardness material processing. The purpose is to provide milling.
本発明のねじ切りフライスは、HRC50以上の高硬度材のねじ切り用を目的として、最も負荷のかかる底刃と先行刃のつなぎ部分の形状を最適化し、かつ、めねじ精度を長期間維持できるような先行刃と仕上げ刃の相互の形状を最適化したものである。 The thread milling cutter of the present invention optimizes the shape of the connecting part between the bottom blade and the leading blade, which is the most loaded, for the purpose of threading a high hardness material of HRC50 or higher, and can maintain the accuracy of the female thread for a long period of time. It optimizes the mutual shape of the leading blade and the finishing blade.
すなわち、本発明のねじ切りフライスは、外周にねじ切り刃を備え、自転駆動されると共にワークに対して相対的にヘリカル送りされるねじ切りフライスであって、前記ねじ切り刃は複数のねじ山を有し、前記ねじ切り刃のうち、前記フライスの先端側の少なくとも1つのねじ山はワークにねじ形状の荒切削を行う先行刃で、他は仕上げ刃であり、前記先行刃は、前記仕上げ刃よりねじ山の高さが低く形成されており、前記先行刃のねじ山の角度は、前記仕上げ刃のねじ山の角度よりも小さく、前記先行刃の形状は谷底を基準にして前記仕上げ刃に図形的に重ねたときに、前記先行刃が前記仕上げ刃に含まれるようにした形状であり、前記ねじ切りフライスの底部にはワークに下穴を形成するための切れ刃である底刃を設けたことを特徴とする高硬度材加工用ねじ切りフライスである。 That is, the threading mill of the present invention is a threading mill that includes a threading blade on the outer periphery, is driven to rotate and is helically fed relative to the workpiece, and the threading blade has a plurality of threads. Among the thread cutting blades, at least one screw thread on the tip side of the milling cutter is a leading blade that performs rough cutting of a screw shape on a workpiece, and the other is a finishing blade, and the leading blade is more threaded than the finishing blade. The height of the thread of the leading edge is smaller than the angle of the thread of the finishing edge, and the shape of the leading edge is graphically superimposed on the finishing edge with respect to the valley bottom. The leading edge is included in the finishing edge, and the bottom of the threaded milling mill is provided with a bottom edge that is a cutting edge for forming a pilot hole in the workpiece. You High hardness material processing thread milling cutter.
さらに、本発明のねじ切りフライスは、外周にねじ切り刃を備え、自転駆動されると共にワークに対して相対的にヘリカル送りされるねじ切りフライスであって、前記ねじ切り刃は複数のねじ山を有し、前記ねじ切り刃のうち、前記フライスの先端側の少なくとも1つのねじ山はワークにねじ形状の荒切削を行う先行刃で、他は仕上げ刃であり、前記先行刃は、前記仕上げ刃よりねじ山の高さが低く形成されており、前記先行刃のねじ山の角度は、前記仕上げ刃のねじ山の角度よりも小さく、前記先行刃の進み側切れ刃の角度は仕上げ刃の進み側切れ刃の角度よりも2°ないし5°小さく、かつ前記先行刃の形状は谷底を基準にして前記仕上げ刃に図形的に重ねたときに、前記先行刃が前記仕上げ刃に含まれるようにした形状であり、前記ねじ切りフライスの底部にはワークに下穴を形成するための切れ刃である底刃を設けたことを特徴とする高硬度材加工用ねじ切りフライスである。 Furthermore, the threading mill of the present invention is a threading mill that includes a threading blade on the outer periphery, is driven to rotate and is helically fed relative to the workpiece, and the threading blade has a plurality of threads. Among the thread cutting blades, at least one screw thread on the tip side of the milling cutter is a leading blade that performs rough cutting of a screw shape on a workpiece, and the other is a finishing blade, and the leading blade is more threaded than the finishing blade. The angle of the thread of the leading edge is smaller than the angle of the thread of the finishing edge, and the angle of the leading edge of the leading edge is that of the leading edge of the finishing edge. 2 ° to 5 ° smaller than the angle, and the shape of the leading blade is such that the leading blade is included in the finishing blade when it is graphically superimposed on the finishing blade based on the valley bottom. The screw A threaded milling cutter for machining a high-hardness material, characterized in that a bottom blade, which is a cutting blade for forming a pilot hole in a workpiece, is provided at the bottom of the cutting miller.
さらに望ましくは、本発明のねじ切りフライスは、外周にねじ切り刃を備え、自転駆動されると共にワークに対して相対的にヘリカル送りされるねじ切りフライスであって、前記ねじ切り刃は複数のねじ山を有し、前記ねじ切り刃のうち、前記フライスの先端側の少なくとも1つのねじ山はワークにねじ形状の荒切削を行う先行刃で、他は仕上げ刃であり、前記先行刃は、前記仕上げ刃よりねじ山の高さが低く形成されており、前記先行刃のねじ山の角度は、前記仕上げ刃のねじ山の角度よりも小さく、前記先行刃の進み側切れ刃の角度は仕上げ刃の進み側切れ刃の角度よりも2°ないし5°小さく、前記先行刃と前記仕上げ刃のそれぞれの谷底と追い側切れ刃のなす角度が同一であって、前記先行刃の形状は谷底を基準にして前記仕上げ刃に図形的に重ねたときに、前記先行刃が前記仕上げ刃に含まれるようにした形状であり、かつ前記ねじ切りフライスの底部にはワークに下穴を形成するための切れ刃である底刃を設けたことを特徴とする高硬度材加工用ねじ切りフライスである。 More preferably, the thread cutting mill of the present invention has a thread cutting blade on the outer periphery, is a screw cutting mill that is driven to rotate and is helically fed relative to the workpiece, and the thread cutting blade has a plurality of screw threads. Among the thread cutting blades, at least one thread on the tip side of the milling cutter is a leading blade that performs rough cutting of a screw shape on the workpiece, and the other is a finishing blade, and the leading blade is threaded from the finishing blade. The angle of the thread of the leading edge is smaller than the angle of the thread of the finishing edge, and the angle of the leading edge of the leading edge is the leading edge of the finishing edge. 2 ° to 5 ° smaller than the angle of the blade, and the angle formed by the valley bottom and the trailing edge of each of the leading blade and the finishing blade is the same, and the shape of the leading blade is the finish based on the valley bottom. On the blade A bottom blade that is a cutting edge for forming a pilot hole in a workpiece is provided at the bottom of the threaded milling cutter so that the preceding blade is included in the finishing blade when they are overlapped graphically. A threaded milling cutter for machining a high hardness material.
本発明によれば、工具本体の先端部における外周部にねじ切り刃を設け、先端部における底部に底刃を設け、前記ねじ切り刃における先行刃のねじ山の角度を、仕上げ刃のねじ山の角度よりも小さくすることにより、先行刃の進み側切れ刃と底刃で形成される角度をより鈍角にすることが可能となる。その結果、刃先強度が向上し、HRC50以上の高硬度材のねじ切り切削において、前工程としての別の工具による下穴加工が無くても安定したねじ切り切削が可能となる。また、特に先行刃の進み側切れ刃の角度を仕上げ刃の進み側切れ刃の角度よりも2°ないし5°小さくすることにより総切れ刃長が短くなり、その結果、切削抵抗が軽減され、ねじ精度の高い加工ができるという効果がある。
According to the present invention, a thread cutting blade is provided on the outer peripheral portion of the tip end portion of the tool body, a bottom blade is provided on the bottom portion of the tip end portion, and the angle of the thread of the preceding blade in the thread cutting blade is set to the angle of the thread of the finishing blade. By making it smaller than this, the angle formed by the leading side cutting edge and the bottom edge of the leading edge can be made more obtuse. As a result, the strength of the cutting edge is improved, and stable threading can be performed even when there is no pilot hole machining by another tool as a previous process in threading cutting of a hard material having HRC50 or higher. Further, in particular, the total cutting edge length is shortened by making the angle of the leading edge of the leading
特に前記先行刃が、前記仕上げ刃よりねじ山の高さが低く形成されており、前記先行刃のねじ山の角度は、前記仕上げ刃のねじ山の角度よりも小さく、前記先行刃の進み側切れ刃の角度は仕上げ刃の進み側切れ刃の角度よりも2°ないし5°小さく、前記先行刃と前記仕上げ刃のそれぞれの谷底と追い側切れ刃のなす角が同一であって、前記先行刃が前記仕上げ刃に含まれるようにした形状とすると、仕上げ刃の摩耗を大幅に軽減することができる。 In particular, the leading blade is formed with a thread height lower than that of the finishing blade, and the angle of the thread of the leading blade is smaller than the angle of the thread of the finishing blade, and the leading side of the leading blade The angle of the cutting edge is 2 ° to 5 ° smaller than the angle of the leading edge of the finishing blade, and the angle formed between the bottom edge of each of the leading edge and the finishing edge and the trailing edge is the same, and the leading edge If the blade is shaped so as to be included in the finishing blade, the wear of the finishing blade can be greatly reduced.
本発明のねじ切りフライスは、底刃と先行刃の進み側切れ刃との交点角部の刃先強度を向上させることができるので、刃先摩耗が抑制される。また、先行刃によりねじ溝の荒切削を行うことで仕上げ刃の刃先摩耗が抑制され、従来のねじ切りフライスと比較し、切削抵抗が軽減される。 Since the thread cutting mill of the present invention can improve the edge strength at the corner of the intersection between the bottom edge and the leading edge of the preceding edge, the edge wear is suppressed. Further, rough cutting of the thread groove is performed by the leading edge, so that the wear of the edge of the finishing edge is suppressed and cutting resistance is reduced as compared with the conventional threading milling cutter.
本発明のねじ切りフライスによれば、従来のヘリカル送りにて加工を行うねじ切りフライスにおける特有の問題であった、ねじ切り工具の撓みや削り残しを抑制できるので、別の工具による下穴加工が無い条件で加工穴数が増大したときにもオフセット(切り込み量の調整)が必要でなくなるという効果がある。 According to the thread cutting mill of the present invention, it is possible to suppress the bending and uncut material of the thread cutting tool, which is a particular problem in the conventional thread cutting mill that performs processing by helical feed, so that there is no pilot hole machining by another tool. Thus, there is an effect that offset (adjustment of cutting amount) is not necessary even when the number of processed holes increases.
以下、本発明を実施するための形態を図1〜図7に基づいて説明する。図1は、本発明の一例であるねじ切りフライス全体の概略を示す正面図である。図2は図1の左側面図である。図3は図1に示す本発明のねじ切り刃を拡大した図である。図4は本発明のねじ切りフライスを用いて行う加工状態の説明図である。図5は谷底を基準にして先行刃と仕上げ刃を重ねたときの先行刃と仕上げ刃の大きさの違いを示す図である。図6は本発明の他の実施形態として、先行刃の追い側切れ刃の角度を仕上げ刃の追い側切れ刃の角度よりも小さくした形状を示す図である。図7は本発明におけるさらに他の実施形態として、仕上げ刃の追い側切れ刃の角度と先行刃の追い側切れ刃の角度は同一であるが、先行刃の追い側切れ刃が仕上げ刃の追い側切れ刃よりも内側に設けられた形状を示す図である。 Hereinafter, embodiments for carrying out the present invention will be described with reference to FIGS. FIG. 1 is a front view showing an outline of an entire thread cutting mill as an example of the present invention. FIG. 2 is a left side view of FIG. FIG. 3 is an enlarged view of the thread cutting blade of the present invention shown in FIG. FIG. 4 is an explanatory view of a machining state performed using the thread cutting mill of the present invention. FIG. 5 is a diagram showing a difference in size between the leading blade and the finishing blade when the leading blade and the finishing blade are overlapped with respect to the valley bottom. FIG. 6 is a view showing a shape in which the angle of the trailing edge of the leading edge is made smaller than the angle of the trailing edge of the finishing edge as another embodiment of the present invention. FIG. 7 shows another embodiment of the present invention, in which the angle of the trailing edge of the finishing blade is the same as the angle of the trailing edge of the leading edge, but the trailing edge of the leading edge is the trailing edge of the finishing edge. It is a figure which shows the shape provided inside the side cutting edge.
図1における符号1はねじ切りフライスを示し、このねじ切りフライス1は、把持部2、首部3、先端部13を有し、先端部13におけるねじ切り刃4の谷径より首部3の首径が小径になるように形成されている。また、ねじ切りフライス1の刃数はねじ切りフライスの直径の大きさに従って適宜選択される。例えばねじ切りフライスの直径が12mm以下のときには刃数としては4枚刃が望ましく、前記ねじ切りフライスの直径が12mmより大きいときには刃数としては6枚刃が望ましい。図1および図2では4枚刃の例を示している。
ねじ切りフライス1における把持部2は、ヘリカル送りが可能なマシニングセンタやフライス盤等のNC工作機械の主軸に保持されるもので、その形状はホルダに適合するように形成すればよい。
The gripping
前記ねじ切りフライス1の先端部13における外周部にはねじ切り刃4が設けられ、前記ねじ切り刃4は切り屑排出部8により分断された形状となっている。
A screw cutting blade 4 is provided on the outer peripheral portion of the
前記ねじ切り刃4は複数のねじ山を有し、ねじ切り刃4の先端側の少なくとも1つのねじ山はワークにねじ形状の荒切削を行う先行刃で、その他のねじ山は仕上げ刃となるように形成されている。図1に示したねじ切りフライス1は、先端側の1つのねじ山が先行刃5であり、残りの2つのねじ山は、ワークに形成するめねじのねじ山と同じ形状とした仕上げ刃6、7である。さらに、先行刃5のねじ山の高さは、仕上げ刃6、7のねじ山の高さよりも低く形成されていることが図1や図3から分かる。なお、本発明におけるねじ山の高さとは、工具軸Oが水平となるようにねじ切りフライスを配置したときにおける先行刃もしくは仕上げ刃の、谷底から測定したときの山の頂の高さを示している。また、本発明において、仕上げ刃のねじ山の高さよりも低いねじ山の高さを有するねじ山は、全て先行刃とする。
The thread cutting blade 4 has a plurality of threads, and at least one thread on the tip side of the thread cutting blade 4 is a leading blade that performs rough cutting of the workpiece on the workpiece, and the other threads are finished blades. Is formed. In the
本発明のねじ切りフライスにおいて、先行刃5とそれに隣接する先端側の仕上げ刃6が主な切削をすることになるが、先端側の仕上げ刃6の刃先摩耗により所定のねじ溝形状が得られなくなることを防止するため、仕上げ刃は2山以上設けることが望ましい。図1や図3に示すねじ切りフライスでは先行刃が一つと仕上げ刃が二つの場合を示している。
In the thread milling cutter of the present invention, the
図3に示すθ1は仕上げ刃のねじ山角度で、θ2は先行刃のねじ山角度である。本発明において、先行刃のねじ山角度θ2が仕上げ刃のねじ山角度θ1よりも小さくなるようにして、なおかつ図5に示すように、先行刃5の形状は、ねじ山の谷底12を基準にして仕上げ刃6に図形的に重ねたときに、先行刃5のねじ山が仕上げ刃6のねじ山よりも小さい、即ち先行刃5が仕上げ刃6に含まれる形状に形成する。さらに、本発明においてはねじ切りフライス1の工具軸と直角方向となる平面に対する先行刃の進み側切れ刃5aの成す角度である先行刃の進み側切れ刃の角度θ5を、ねじ切りフライス1の工具軸と直角方向となる平面に対する仕上げ刃の進み側切れ刃6aの成す角度である仕上げ刃の進み側切れ刃の角度θ6よりも小さくする。
In FIG. 3, θ1 is the thread angle of the finishing blade, and θ2 is the thread angle of the leading blade. In the present invention, the thread angle θ2 of the leading blade is made smaller than the thread angle θ1 of the finishing blade, and as shown in FIG. 5, the shape of the
図3に示すように、本発明のねじ切りフライス1の先端部における底部には凹状の底刃9が形成され、この底刃とねじ切りフライスの工具軸に対し直角方向となる平面とがなす角度θ3は、ねじのリード角より大きく形成される。また、先行刃の進み側切れ刃と底刃とで形成される角度θ4は鈍角の角度をもって連続して形成されている。
As shown in FIG. 3, a concave
次に、本発明の構成要件の一つとして、先行刃のねじ山角度θ2を仕上げ刃のねじ山角度θ1よりも小さくする理由について、前述のように構成された本発明のねじ切りフライスの切削作用を中心に図4を用いて説明する。図4に示すように、ワークである被加工物Pを固定し、ねじ切りフライス1の把持部をマシニングの主軸に装着する。そして、ねじ切りフライス1を自転させながら工具軸方向にヘリカル送りを行うと、まず、ねじ切りフライス1の先端部にある底刃と先行刃の進み側切れ刃との交点角部Aが被加工物Pに当たり、次に、底刃9および先行刃の進み側切れ刃5aの切削加工によって被加工物Pに下穴10が空けられる。
Next, as one of the structural requirements of the present invention, the cutting action of the threading mill of the present invention configured as described above is as to why the thread angle θ2 of the leading blade is smaller than the thread angle θ1 of the finishing blade. A description will be given with reference to FIG. As shown in FIG. 4, a workpiece P that is a workpiece is fixed, and a gripping portion of a
切削初期にねじ切りフライス1にある先端部の底刃と先行刃の進み側切れ刃との交点角部Aが最初に被加工物Pに当たることから、前記交点角部Aには、ねじ切削終了時まで、連続的に最も負荷が掛かることになる。高硬度材のねじ切り切削では、より大きな負荷が掛かるため前記交点角部A付近の刃先強度が重要になってくるが、先行刃のねじ山角度θ2を仕上げ刃のねじ山角度θ1よりも小さくすることにより、先行刃の進み側切れ刃の角度θ5を、仕上げ刃の進み側切れ刃の角度θ6よりも小さくすることができる。このことにより、前記交点角部A付近の刃先強度を決定する先行刃の進み側切れ刃と底刃とで形成される角度θ4をより鈍角にすることが可能となり、その結果、刃先強度が向上し、高硬度材のねじ切り切削においても安定したねじ切り切削が可能となる。
Since the intersection angle A between the bottom edge of the tip of the
また、本発明において、先行刃の進み側切れ刃の角度θ5は、仕上げ刃の進み側切れ刃の角度θ6よりも2°ないし5°小さくすることが望ましい。これにより、ねじ切り刃4と底刃9の長さを合わせた総切れ刃長が短くなり、その結果、切削抵抗が軽減され、ねじ精度の高い加工が行われる。先行刃の進み側切れ刃の角度θ5を、仕上げ刃の進み側切れ刃の角度θ6よりも5°を超えて小さくさせた場合、仕上げ刃の加工負荷が大きくなり、切削抵抗が増大する恐れがある。
In the present invention, it is desirable that the angle θ5 of the leading edge of the leading edge is 2 ° to 5 ° smaller than the angle θ6 of the leading edge of the finishing edge. Thereby, the total cutting edge length combining the lengths of the thread cutting edge 4 and the
さらに、本発明における先行刃の他の形状としては、図6に示すように、ねじ切りフライス1の工具軸Oと直角方向となる平面に対する先行刃の追い側切れ刃5bの成す角度である先行刃の追い側切れ刃の角度θ7を、ねじ切りフライス1の工具軸Oと直角方向となる平面に対する仕上げ刃の追い側切れ刃6bの成す角度である仕上げ刃の追い側切れ刃の角度θ8よりも小さくした形状でもよい。また、さらに他の形状として図7に示すような仕上げ刃の追い側切れ刃の角度θ8と先行刃の追い側切れ刃の角度θ7は同一であるが、先行刃の追い側切れ刃5bが仕上げ刃の追い側切れ刃6bよりも内側に設けられた形状でもよい。
Furthermore, as another shape of the leading edge in the present invention, as shown in FIG. 6, the leading edge is an angle formed by the trailing
しかしながら、上記の他のどちらの形状も、被削材の硬さが一段と高くなると、仕上げ刃6で切削する際の負荷が大きくなることが考えられるため、図5に示すような先行刃の追い側切れ刃5bと仕上げ刃の追い側切れ刃6bが一致する形状、すなわち、図4及び図5に示すように、それぞれの谷底12と追い側切れ刃のなす角度が同一、すなわち先行刃の追い側切れ刃の角度θ7と仕上げ刃の追い側切れ刃の角度θ8が等しく、かつねじ切りフライス1の工具軸Oに沿った方向で測定したときの谷底の長さである谷底長さ14、15が等しくなる形状が望ましい。
However, in any of the other shapes described above, if the hardness of the work material is further increased, the load when cutting with the
本発明のねじ切りフライス1を用いた切削では、底刃9および先行刃の進み側切れ刃5aによって空けられた下穴10の内周面にねじ切り刃4の先行刃5によってねじ切り切削が行われる。さらに、ねじ切りフライス1のヘリカル送りが進むと、先行刃5によって切削されたねじ溝を仕上げ刃6、7によって切削し、完全ねじ山11が形成される。このように先行刃5によって、形成すべきねじ溝の荒切削を行うことにより、仕上げ刃6、7の負荷を軽減し、それにより摩耗が抑制され、ねじ精度の高い切削ができる。
In the cutting using the
本発明のねじ切りフライスにおいて、底刃と先行刃の進み側切れ刃との交点角部Aの強度向上により刃先摩耗が抑制され、また、先行刃によりねじ溝の荒切削を行うので仕上げ刃の刃先摩耗が抑制される。これらの作用により本発明の工具では、従来のねじ切りフライスと比較して、切削抵抗が軽減され、ヘリカル送りにて加工を行うねじ切りフライスにおける特有の問題であるねじ切り工具の撓みや削り残しが抑制され、加工穴数が増大したときにもオフセット(切り込み量の調整)が必要でなくなる。 In the thread cutting mill of the present invention, the edge wear is suppressed by improving the strength of the intersection angle portion A between the bottom edge and the leading edge of the leading edge, and the cutting edge of the finished edge is roughened by rough cutting of the thread groove by the leading edge. Wear is suppressed. As a result of these actions, the cutting force of the tool of the present invention is reduced compared to the conventional threading milling machine, and the bending of the threading tool and the remaining uncut parts, which are peculiar problems in the threading milling machine that performs processing by helical feed, are suppressed. Even when the number of processed holes increases, no offset (adjustment of the cut amount) is required.
以下、本発明を下記の実施例により詳細に説明するが、それらにより本発明が限定されるものではない。 Hereinafter, the present invention will be described in detail by the following examples, but the present invention is not limited thereto.
以下の表中にある各実施例では、本発明、従来例、比較例を区分として示し、試料番号は本発明例、従来例、比較例のグループごとに、連続の通し番号で記載した。 In each of the examples in the following table, the present invention, the conventional example and the comparative example are shown as sections, and the sample numbers are described in consecutive serial numbers for each group of the present invention example, the conventional example and the comparative example.
(実施例1)
実施例1は先行刃のねじ山角度θ2と、仕上げ刃のねじ山角度θ1との関連性を確認した実施例である。
Example 1
In Example 1, the relationship between the thread angle θ2 of the leading blade and the thread angle θ1 of the finishing blade was confirmed.
本発明例1および、従来例1〜3において、ねじ切りフライスの母材はCo含有量が8重量パーセント、WC平均粒径が0.8μmの超硬合金とした。前記フライスの刃数は4枚刃、仕上げ刃と先行刃を含むねじ切り刃は左刃であり、仕上げ刃の刃径が3.1mm、ねじ切り刃のすくい角が−15°、首部の直径が2.2mmである。ねじ切り刃に設けられたそれぞれのねじ山の間隔であるピッチが0.7mm、把持部の直径が6.0mm、全長が50mm、ねじ切り刃のねじれ角が0°とし、(TiAl)N系にSiを含有させた硬質皮膜をねじ切り刃の表面に施した。 In Invention Example 1 and Conventional Examples 1 to 3, the base material of the thread cutting mill was a cemented carbide with a Co content of 8 weight percent and a WC average particle size of 0.8 μm. The number of blades of the milling cutter is 4 blades, the thread cutting blade including the finishing blade and the leading blade is the left blade, the finishing blade diameter is 3.1 mm, the thread cutting blade rake angle is −15 °, and the neck diameter is 2 .2 mm. The pitch of 0.7 mm, the gripping part diameter is 6.0 mm, the total length is 50 mm, the helix angle of the screw cutting blade is 0 °, and the (TiAl) N system is made of Si. A hard film containing selenium was applied to the surface of the thread cutting blade.
本発明例1は、一つの先行刃と二つの仕上げ刃を持ち、先行刃のねじ山角度を59°、仕上げ刃のねじ山角度を60°、底刃とねじ切りフライスの工具軸に対し直角方向となる平面とがなす角度を15°、先行刃の進み側切れ刃と底刃とで形成される角度を136°とした。先行刃のねじ山の高さは仕上げ刃のねじ山の高さよりも0.2mm低くした。先行刃の進み側切れ刃の角度は29°、仕上げ刃の進み側切れ刃の角度は30°とし、先行刃の進み側切れ刃の角度を仕上げ刃の進み側切れ刃の角度より1°小さくし、先行刃の追い側切れ刃の角度は、仕上げ刃の追い側切れ刃の角度と同一とし、谷底長さ15は谷底長さ14と同一の長さとした。また、先行刃の形状は仕上げ刃に含まれるようにした形状であり、底部にはワークに下穴を形成するための切れ刃である底刃を設けた。
Example 1 of the present invention has one leading edge and two finishing edges, the leading edge has a thread angle of 59 °, the finishing edge has a thread angle of 60 °, and is perpendicular to the bottom edge and the threading milling tool axis. The angle formed by the flat surface is 15 °, and the angle formed by the leading side cutting edge and the bottom edge of the leading edge is 136 °. The thread height of the leading blade was 0.2 mm lower than that of the finishing blade. The leading edge angle of the leading edge is 29 °, the leading edge angle of the finishing edge is 30 °, and the leading edge angle of the leading edge is 1 ° smaller than the leading edge angle of the finishing edge. The angle of the trailing edge of the leading edge was the same as the angle of the trailing edge of the finishing edge, and the
従来例1は、特許文献1に記載された発明のねじ切り工具であり、ねじ切り刃と底刃の形状を特許文献1に記載された発明のものと同様とした。ねじ切り刃として一つの先行刃と二つの仕上げ刃を設け、先行刃のねじ山角度を62°、仕上げ刃のねじ山角度を60°とし、仕上げ刃のねじ山角度より先行刃のねじ山角度が大きくなる形状とした。さらに底刃とねじ切りフライスの工具軸と直角方向となる平面とでなす角度を15°、先行刃の進み側切れ刃と底刃とで形成される角度を133°とした。先行刃のねじ山の高さは仕上げ刃のねじ山の高さよりも0.2mm低くした。先行刃の進み側切れ刃の角度は32°、仕上げ刃の進み側切れ刃の角度は30°とし、先行刃の進み側切れ刃の角度を仕上げ刃の進み側切れ刃の角度より2°大きくした。
Conventional Example 1 is the threading tool of the invention described in
従来例2は、特許文献2に記載のエンドミル型タップであり、エンドミル型タップの先端には、特許文献2の図7(b)に記載される形状の底刃を設けた。前記底刃部の後端部には二つの先行刃と一つの仕上げ刃を設け、二つの先行刃のねじ山角度を60°、仕上げ刃のねじ山角度を60°とし、仕上げ刃のねじ山角度を先行刃のねじ山角度と等しくした。さらに底刃とねじ切りフライスの工具軸と直角方向となる平面とでなす角度を3°とした。エンドミル型タップの先端から数えて一つ目にある先行刃のねじ山の高さは仕上げ刃のねじ山の高さよりも0.2mm低くし、エンドミル型タップの先端から数えて2つ目にある先行刃のねじ山の高さは仕上げ刃のねじ山の高さよりも0.1mm低くした。先行刃の進み側切れ刃の角度は30°、仕上げ刃の進み側切れ刃の角度は30°とし、先行刃の進み側切れ刃の角度を仕上げ刃の進み側切れ刃の角度と等しくした。
Conventional Example 2 is an end mill type tap described in
従来例3は、特許文献3に記載された発明のねじ切りフライスであり、三つの仕上げ刃を設け、三つの仕上げ刃のねじ山の高さは全て同じとした。また、三つの仕上げ刃のねじ山角度は全て60°とし、仕上げ刃の進み側切れ刃の角度は全て30°とした。ねじ切りフライスの先端から数えて一つ目にある仕上げ刃の進み側切れ刃と底刃とで形成される角度は135°とし、底刃とねじ切りフライスの工具軸と直角方向となる平面とでなす角度は15°とした。
Conventional example 3 is the thread cutting mill of the invention described in
本発明と従来例のフライス工具によって切削試験を行った被削材としては、いずれも幅250mm、奥行き150mm、高さ100mmのブロックを用いた。被削材の材質としては硬さがHRC58の合金工具鋼であるSKD11と、硬さがHRC62の高速度工具鋼であるSKH51の二つを用いた。切削条件は、切削速度が45m/min、一刃当たりの切込み量は0.015mm/tooth、回転数は4620min−1、送り速度は277mm/minとし、エアーブローを供給し、深さ7mmのM4のめねじを切込み量の調整をせずに、工具鋼を焼入した材料にめねじ加工する寿命として工業的に満足できる基準である30穴までの加工を行った。 As the work materials subjected to the cutting test using the milling tool of the present invention and the conventional example, blocks each having a width of 250 mm, a depth of 150 mm, and a height of 100 mm were used. As the material of the work material, two materials, SKD11, which is an alloy tool steel having a hardness of HRC58, and SKH51, which is a high speed tool steel having a hardness of HRC62, were used. The cutting conditions were a cutting speed of 45 m / min, a cutting amount per blade of 0.015 mm / tooth, a rotation speed of 4620 min-1, a feed speed of 277 mm / min, an air blow, and M4 with a depth of 7 mm. Without adjusting the depth of cut of the female screw, processing was performed up to 30 holes, which is a standard that can be industrially satisfied as the life of female screw machining on a material hardened with tool steel.
評価方法として、切削後のねじ切りフライスの底刃の逃げ面における摩耗幅を工具顕微鏡で測定した。また、ねじ精度の評価として、加工されためねじに対して通り側ねじプラグゲージを用いて通り側ねじプラグゲージが通るめねじの穴数を評価した。そして、2種類の高硬度材質の被削材にて寿命として満足できる30穴の加工を行ったときに、欠損もしくは折損が発生せず、底刃の逃げ面における摩耗幅が100μm以下であり、なおかつ通り側ねじプラグゲージが通るめねじの穴数を数え、穴数が25穴以上であったものを良好と評価した。その結果を表1に示す。 As an evaluation method, the wear width on the flank face of the bottom blade of the threaded milling machine after cutting was measured with a tool microscope. In addition, as an evaluation of the screw accuracy, the number of holes of the female screw through which the pass-side screw plug gauge passes through the thread using the pass-side screw plug gauge was evaluated. And, when processing 30 holes that can satisfy the life with two kinds of high-hardness work materials, no chipping or breakage occurs, and the wear width on the flank face of the bottom blade is 100 μm or less, In addition, the number of holes in the internal thread through which the pass side thread plug gauge passes was counted, and those having 25 or more holes were evaluated as good. The results are shown in Table 1.
結果として、先行刃のねじ山角度が仕上げ刃のねじ山角度よりも小さい本発明例1は、2種類の材質の被削材にて30穴加工を行ったときに、欠損もしくは折損が発生せず、底刃の逃げ面における摩耗幅が100μm以下であり、通り側ねじプラグゲージが通るめねじの穴数も30穴であったため、非常に良好な結果を得ることが出来ている。 As a result, the present invention example 1 in which the thread angle of the leading edge is smaller than the thread angle of the finishing edge causes breakage or breakage when 30 holes are machined with two kinds of work materials. Since the wear width on the flank face of the bottom blade is 100 μm or less and the number of holes of the female thread through which the pass-side threaded plug gauge passes is 30, very good results can be obtained.
先行刃のねじ山角度が仕上げ刃のねじ山角度よりも大きい従来例1は、SKD11の切削時には底刃の逃げ面における摩耗幅が153μmであり、通り側ねじプラグゲージが通るめねじの穴数は12穴であった。また、SKH51の切削時には底刃の逃げ面における摩耗幅が181μmであり、通り側ねじプラグゲージが通るめねじの穴数は6穴であった。
In the conventional example 1 in which the thread angle of the leading blade is larger than the thread angle of the finishing blade, the wear width on the flank face of the bottom blade is 153 μm when the
先行刃のねじ山角度が仕上げ刃のねじ山角度と等しい従来例2は、SKD11の切削時には5穴目で折損したため、底刃の逃げ面における摩耗幅は測定不可能であった。また、通り側ねじプラグゲージが通るめねじの穴数は3穴であった。同様に、SKH51の切削時においても2穴目で折損したため、底刃の摩耗幅は測定不可能であった。通り側ねじプラグゲージが通るめねじの穴数は1穴であった。
In the conventional example 2 in which the thread angle of the leading blade is equal to the thread angle of the finishing blade, the wear width on the flank face of the bottom blade could not be measured because the
先行刃が無い従来例3は、SKD11の切削時には底刃の逃げ面における摩耗幅が122μmであり、通り側ねじプラグゲージが通るめねじの穴数は6穴であった。また、SKH51の切削時には底刃の逃げ面における摩耗幅が157μmであり、通り側ねじプラグゲージが通るめねじの穴数は5穴であった。 In Conventional Example 3 without the leading blade, the wear width on the flank face of the bottom blade was 122 μm when cutting SKD11, and the number of holes in the female thread through which the pass-side screw plug gauge passed was 6. In addition, when SKH51 was cut, the wear width on the flank face of the bottom blade was 157 μm, and the number of holes in the female thread through which the pass-side screw plug gauge passed was 5.
これらのことより、本発明のフライスは先行刃のねじ山角度が仕上げ刃のねじ山角度よりも小さいため、被削材の硬さがHRC50以上の被削材を加工する際に、ねじ切りの前工程としての他の工具により下穴加工を行わなくても、一本のねじ切りフライスで安定して良好なめねじを形成できるということが確認できた。 From these facts, in the milling cutter according to the present invention, the thread angle of the leading edge is smaller than the thread angle of the finishing edge. Therefore, when machining the work material having a work material hardness of HRC50 or more, before the thread cutting, It was confirmed that a good internal thread can be stably formed with a single thread milling cutter without preparing a pilot hole with another tool as a process.
(実施例2)
実施例2はねじ切りフライス1の工具軸と直角方向となる平面に対する先行刃の進み側切れ刃の成す角度と、ねじ切りフライス1の工具軸と直角方向となる平面に対する仕上げ刃の進み側切れ刃の成す角度との差が性能に及ぼす影響を確認するための実施例である。
(Example 2)
In the second embodiment, the angle formed by the leading edge of the leading edge with respect to the plane perpendicular to the tool axis of the
本発明例1〜7において、ねじ切りフライスの母材はCo含有量が8重量パーセント、WC平均粒径が0.8μmの超硬合金とした。前記フライスの刃数は4枚刃、仕上げ刃と先行刃を含むねじ切り刃は左刃であり、仕上げ刃の刃径が3.1mm、ねじ切り刃のすくい角が−15°、首部の直径が2.2mm、ねじ切り刃に設けられたそれぞれのねじ山の間隔であるピッチが0.7mm、把持部の直径が6.0mm、全長が50mm、ねじ切り刃のねじれ角が0°とし、先行刃の追い側切れ刃の角度は、仕上げ刃の追い側切れ刃の角度と同一とし、谷底長さ15は谷底長さ14と同一の長さとした。さらに、(TiAl)N系にSiを含有させた硬質皮膜をねじ切り刃の表面に施した。なお、実施例2における本発明例1は、実施例1における本発明例1と同形状である。
In Examples 1 to 7 of the present invention, the base material of the thread cutting mill was a cemented carbide having a Co content of 8 weight percent and a WC average particle size of 0.8 μm. The number of blades of the milling cutter is 4 blades, the thread cutting blade including the finishing blade and the leading blade is the left blade, the finishing blade diameter is 3.1 mm, the thread cutting blade rake angle is −15 °, and the neck diameter is 2 .2 mm, the pitch of each thread provided on the thread cutting blade is 0.7 mm, the gripping part diameter is 6.0 mm, the overall length is 50 mm, and the twist angle of the thread cutting blade is 0 °. The angle of the side cutting edge was the same as the angle of the trailing edge of the finishing edge, and the
本発明例2は、先行刃の進み側切れ刃の角度を、仕上げ刃の進み側切れ刃の角度よりも2°小さくした。 In Invention Example 2, the angle of the leading edge of the leading edge was made 2 ° smaller than the angle of the leading edge of the finishing edge.
本発明例3は、先行刃の進み側切れ刃の角度を、仕上げ刃の進み側切れ刃の角度よりも3°小さくした。 In Invention Example 3, the angle of the leading edge of the leading edge was made 3 ° smaller than the angle of the leading edge of the finishing edge.
本発明例4は、先行刃の進み側切れ刃の角度を、仕上げ刃の進み側切れ刃の角度よりも4°小さくした。 In Invention Example 4, the angle of the leading edge of the leading edge was made 4 ° smaller than the angle of the leading edge of the finishing edge.
本発明例5は、先行刃の進み側切れ刃の角度を、仕上げ刃の進み側切れ刃の角度よりも5°小さくした。 In Invention Example 5, the angle of the leading edge of the leading edge was made 5 ° smaller than the angle of the leading edge of the finishing edge.
本発明例6は、先行刃の進み側切れ刃の角度を、仕上げ刃の進み側切れ刃の角度よりも6°小さくした。 In Invention Example 6, the angle of the leading edge of the leading edge was made 6 ° smaller than the angle of the leading edge of the finishing edge.
本発明例7は、先行刃の進み側切れ刃の角度を、仕上げ刃の進み側切れ刃の角度よりも7°小さくした。 In Example 7 of the present invention, the angle of the leading edge of the leading edge was made 7 ° smaller than the angle of the leading edge of the finishing edge.
切削試験における被削材としては、幅250mm、奥行き150mm、高さ100mmのブロックを用いた。材質としては硬さがHRC58の合金工具鋼であるSKD11と、硬さがHRC62の高速度工具鋼であるSKH51の二つを用いた。切削条件は、切削速度が45m/min、一刃当たりの切込み量は0.015mm/tooth、回転数は4620min−1、送り速度は277mm/minとし、エアーブローを供給し、深さ7mmのM4のめねじを切込み量の調整を行いながら60穴加工した。実施例1では、工具鋼を焼入した材料にめねじ加工する寿命として工業的に満足できる基準である30穴の加工を行ったが、実施例2では、さらなる長寿命加工が可能か否かの確認も行うために60穴の加工を行った。 As a work material in the cutting test, a block having a width of 250 mm, a depth of 150 mm, and a height of 100 mm was used. The materials used were SKD11 which is an alloy tool steel having a hardness of HRC58 and SKH51 which is a high speed tool steel having a hardness of HRC62. The cutting conditions were a cutting speed of 45 m / min, a cutting amount per blade of 0.015 mm / tooth, a rotation speed of 4620 min-1, a feed speed of 277 mm / min, an air blow, and M4 with a depth of 7 mm. 60 holes were machined while adjusting the depth of the female thread. In Example 1, 30 holes, which is an industrially satisfactory standard for the life of female screw machining on tool steel hardened material, was processed. In Example 2, whether or not further long-life processing is possible. In order to confirm this, 60 holes were processed.
評価方法として、切削後のねじ切りフライスの底刃の逃げ面における摩耗幅を工具顕微鏡で測定した。また、ねじ精度の評価として、60穴の加工を終了するまでに必要となったオフセット(切込み量の調整)を行った回数を評価した。そして、SKD11の被削材にて60穴加工を行ったときに、底刃の逃げ面における摩耗幅が120μm以下、60穴の加工を終了するまでに必要となったオフセット回数が5回以下であり、なおかつSKH51の被削材にて60穴加工を行ったときに、底刃の逃げ面における摩耗幅が150μm以下、60穴の加工を終了するまでに必要となったオフセット回数が6回以下であったものを良好とした。その結果を表2に示す。 As an evaluation method, the wear width on the flank face of the bottom blade of the threaded milling machine after cutting was measured with a tool microscope. Further, as an evaluation of screw accuracy, the number of times offset (adjustment of cutting amount) necessary until the machining of 60 holes was completed was evaluated. When 60 holes are machined with the SKD11 work material, the wear width on the flank face of the bottom blade is 120 μm or less, and the number of offsets required to complete the machining of the 60 holes is 5 or less. In addition, when 60 holes are machined with the SKH51 work material, the wear width on the flank face of the bottom blade is 150 μm or less, and the number of offsets required to complete the machining of 60 holes is 6 or less. Was good. The results are shown in Table 2.
結果として、本発明例1〜7において、SKD11の被削材にて60穴加工を行ったときに、底刃の逃げ面における摩耗幅が120μm以下、60穴の加工を終了するまでに必要となったオフセット回数が5回以下であり、なおかつ、SKH51の被削材にて60穴加工を行ったときに、底刃の逃げ面における摩耗幅が150μm以下、60穴の加工を終了するまでに必要となったオフセット回数が6回以下であったため、良好な結果を示した。 As a result, in the inventive examples 1 to 7, when 60 holes are machined with the work material of SKD11, the wear width on the flank face of the bottom blade is 120 μm or less, which is necessary until the machining of 60 holes is completed. The number of offsets is 5 times or less, and when 60 holes are machined with the work material of SKH51, the wear width on the flank of the bottom blade is 150 μm or less, and the machining of 60 holes is completed. Since the required number of offsets was 6 or less, good results were shown.
さらに、ねじ切りフライスの工具軸と直角方向となる平面に対する先行刃の進み側切れ刃の角度を、ねじ切りフライスの工具軸と直角方向となる平面に対する仕上げ刃の進み側切れ刃の成す角度よりも2°〜5°小さくした本発明例2〜5は、SKD11の切削時には底刃の逃げ面における摩耗幅が108μm以下、60穴の加工を終了するまでに必要となったオフセット回数は3回以下であった。また、SKH51の切削時には底刃の逃げ面における摩耗幅が138μm以下、60穴の加工を終了するまでに必要となったオフセット回数は5回以下であった。したがって、本発明例2〜5は、本発明例1および本発明例6〜7と比較して、より良好な結果を得ることが出来ているといえる。
Further, the angle of the leading edge of the leading edge with respect to the plane perpendicular to the tool axis of the thread milling cutter is set to be 2 than the angle of the leading edge of the finishing edge with respect to the plane perpendicular to the tool axis of the thread cutter. In Invention Examples 2 to 5, which are reduced by 5 ° to 5 °, the wear width on the flank face of the bottom blade is 108 μm or less when the
これらのことより、本発明はねじ切りフライスの工具軸と直角方向となる平面に対する先行刃の進み側切れ刃の角度を、ねじ切りフライスの工具軸と直角方向となる平面に対する仕上げ刃の進み側切れ刃の成す角度よりも2°〜5°小さくすることにより、より多く切削抵抗が軽減され、オフセット回数が少なくねじ精度の高い加工を行うことができるということがわかった。
Thus, the present invention determines the angle of the leading edge of the leading edge with respect to the plane perpendicular to the tool axis of the thread milling cutter and the leading edge of the finishing edge with respect to the plane perpendicular to the tool axis of the thread milling cutter. It has been found that by making the
(実施例3)
実施例3は、先行刃の進み側切れ刃の角度と仕上げ刃の進み側切れ刃の成す角度との差、先行刃の追い側切れ刃の角度と仕上げ刃の追い側切れ刃の角度との差、及びそれぞれの谷底長さの差が切込み量の調整回数に及ぼす影響を確認するための実施例である。なお、実施例3における本発明例1、2及び従来例1乃至3は、実施例1、2における本発明例1、2及び従来例1乃至3と同形状である。
(Example 3)
Example 3 is the difference between the angle of the leading edge of the leading edge and the angle formed by the leading edge of the finishing blade, the angle of the trailing edge of the leading edge and the angle of the trailing edge of the finishing edge. It is an Example for confirming the influence which a difference and the difference of each valley bottom length have on the frequency | count of adjustment of a cutting amount. Inventive Examples 1 and 2 and Conventional Examples 1 to 3 in Example 3 have the same shapes as Inventive Examples 1 and 2 and Inventive Examples 1 to 3 in Examples 1 and 2.
本発明例1は、先行刃の進み側切れ刃の角度を、仕上げ刃の進み側切れ刃の角度よりも1°小さくし、先行刃の追い側切れ刃の角度は、仕上げ刃の追い側切れ刃の角度と同一とした。谷底長さ15は谷底長さ14と同一の長さとした。
In Invention Example 1, the angle of the leading edge of the leading edge is made 1 ° smaller than the angle of the leading edge of the finishing edge, and the angle of the trailing edge of the leading edge is set to the trailing edge of the finishing edge. The angle was the same as the blade angle. The
本発明例2は、先行刃の進み側切れ刃の角度を、仕上げ刃の進み側切れ刃の角度よりも2°小さくし、先行刃の追い側切れ刃の角度は、仕上げ刃の追い側切れ刃の角度と同一とした。谷底長さ15は谷底長さ14と同一の長さとした。
In Invention Example 2, the angle of the leading edge of the leading edge is made 2 ° smaller than the angle of the leading edge of the finishing edge, and the angle of the trailing edge of the leading edge is equal to the trailing edge of the finishing edge. The angle was the same as the blade angle. The
本発明例8は、図6に示すように、先行刃の進み側切れ刃の角度を、仕上げ刃の進み側切れ刃の角度よりも2°小さくし、先行刃の追い側切れ刃の角度を、仕上げ刃の追い側切れ刃の角度よりも3°小さくし、谷底長さ15は谷底長さ14と同一の長さとした。
In Example 8 of the present invention, as shown in FIG. 6, the angle of the leading edge of the leading edge is made 2 ° smaller than the angle of the leading edge of the finishing edge, and the angle of the trailing edge of the leading edge is set. The angle of the
本発明例9は、図7に示すように、先行刃の進み側切れ刃の角度を、仕上げ刃の進み側切れ刃の角度よりも2°小さくし、先行刃の追い側切れ刃の角度を、仕上げ刃の追い側切れ刃の角度と同一とし、谷底長さ15が谷底長さ14よりも0.02mm長い、すなわち、先行刃の追い側切れ刃を仕上げ刃の追い側切れ刃よりも0.02mm内側に設けた。
In Example 9 of the present invention, as shown in FIG. 7, the angle of the leading edge of the leading edge is made 2 ° smaller than the angle of the leading edge of the finishing edge, and the angle of the trailing edge of the leading edge is set. The angle of the trailing edge of the finishing blade is the same as that of the finishing edge, and the
従来例1は、先行刃の進み側切れ刃の角度を、仕上げ刃の進み側切れ刃の角度よりも1°大きくし、先行刃の追い側切れ刃の角度は、仕上げ刃の追い側切れ刃の角度と同一とした。谷底長さ15は谷底長さ14と同一の長さとした。
In Conventional Example 1, the angle of the leading edge of the leading edge is 1 ° larger than the angle of the leading edge of the finishing edge, and the angle of the trailing edge of the leading edge is the trailing edge of the finishing edge. The angle was the same. The
従来例2は、仕上げ刃の進み側切れ刃の角度を、先行刃の進み側切れ刃の角度と同一とし、先行刃の追い側切れ刃の角度は、仕上げ刃の追い側切れ刃の角度と同一とした。谷底長さ15は谷底長さ14と同一の長さとした。
In Conventional Example 2, the angle of the leading edge of the finishing blade is the same as the angle of the leading edge of the preceding blade, and the angle of the trailing edge of the leading edge is equal to the angle of the trailing edge of the finishing blade. Identical. The
従来例3は、先行刃が無いねじ切りフライスであり、谷底長さ15は谷底長さ14と同一の長さとした。
Conventional example 3 is a thread milling cutter having no leading edge, and the
実施例3のフライスを用いた切削試験は、いずれも被削材としては、幅250mm、奥行き150mm、高さ100mmのブロックを用いた。材質としては硬さがHRC58の合金工具鋼であるSKD11と、硬さがHRC62の高速度工具鋼であるSKH51の二つを用いた。切削条件は、切削速度が45m/min、一刃当たりの切込み量は0.015mm/tooth、回転数は4620min−1、送り速度は277mm/minとし、エアーブローを供給し、深さ7mmのM4のめねじをオフセット(切込み量の調整)を行いながら60穴加工した。 In each of the cutting tests using the milling cutter of Example 3, a block having a width of 250 mm, a depth of 150 mm, and a height of 100 mm was used as a work material. The materials used were SKD11 which is an alloy tool steel having a hardness of HRC58 and SKH51 which is a high speed tool steel having a hardness of HRC62. The cutting conditions were a cutting speed of 45 m / min, a cutting amount per blade of 0.015 mm / tooth, a rotation speed of 4620 min-1, a feed speed of 277 mm / min, an air blow, and M4 with a depth of 7 mm. 60 holes were machined while offsetting the female screw (adjusting the depth of cut).
ねじ精度の評価として、オフセット(切込み量の調整)を行った回数を評価した。そして、2種類の材質の被削材にて60穴加工を行ったときに、オフセット回数が6回以下であったものを良好なねじ精度を得られたねじ切りフライスと評価した。その結果を表3に示す。 As an evaluation of screw accuracy, the number of times of offset (adjustment of cutting depth) was evaluated. Then, when 60 holes were machined with two kinds of work materials, those having an offset count of 6 or less were evaluated as threaded milling cutters with good screw accuracy. The results are shown in Table 3.
結果として、本発明例1、2、8、9は、2種類の材質の被削材にて60穴加工を行ったときのオフセット回数が6回以下に抑えられており、良好な結果を得ることが出来ている。特に図5に示すようなそれぞれの谷底と追い側切れ刃のなす角度が同一すなわち先行刃の追い側切れ刃の角度θ7と仕上げ刃の追い側切れ刃の角度θ8が等しく、かつ谷底長さ14、15が等しい本発明例2は、仕上げ刃の負荷がより小さくなったため、オフセット回数が最も少なく良好な結果であった。
As a result, Examples 1, 2, 8, and 9 of the present invention have good results because the number of offsets is reduced to 6 or less when 60 holes are machined with two kinds of work materials. It is possible. In particular, as shown in FIG. 5, the angle formed by each valley bottom and the trailing edge is the same, that is, the angle θ7 of the trailing edge of the leading edge is equal to the angle θ8 of the trailing edge of the finishing edge, and the
従来例1は、2種類の材質の被削材にて60穴の加工を行ったときのオフセット回数が8回以上であった。従来例2は、SKD11の切削時には5穴目で欠損折損し、SKH51の切削時においても3穴目で折損したため、オフセット回数の測定は不可能であった。従来例3は、2種類の材質の被削材にて60穴の加工を行ったときのオフセット回数が13回以上であった。 In Conventional Example 1, the number of offsets when machining 60 holes with two types of work materials was 8 or more. Conventional example 2 was broken at the fifth hole when cutting SKD11, and was broken at the third hole even when cutting SKH51. Therefore, it was impossible to measure the number of offsets. In Conventional Example 3, the number of offsets was 13 or more when machining 60 holes with two kinds of work materials.
これらのことより、本発明のフライスは先行刃のねじ山の角度が仕上げ刃のねじ山の角度よりも小さく、ねじ切りフライスの工具軸と直角方向となる平面に対する先行刃の進み側切れ刃の角度が、ねじ切りフライスの工具軸と直角方向となる平面に対する仕上げ刃の進み側切れ刃の成す角度よりも小さいため、被削材の硬さがHRC50以上の被削材を加工する際に、ねじ切りフライスの撓みや削り残しが抑制されること、そしてこの効果で、加工穴数が増大したときにもオフセット回数が少なく、良好なめねじを形成できるということがわかった。 From these facts, in the milling cutter according to the present invention, the angle of the leading edge of the leading edge with respect to a plane in which the angle of the thread of the leading edge is smaller than the angle of the thread of the finishing edge and is perpendicular to the tool axis of the threading miller. Is smaller than the angle formed by the leading edge of the finishing blade with respect to a plane perpendicular to the tool axis of the thread milling cutter, the thread milling machine is used when machining a workpiece having a hardness of HRC50 or higher. As a result, it was found that the bending and the uncut portion of the steel sheet are suppressed, and this effect enables a good internal thread to be formed with a small number of offsets even when the number of processed holes is increased.
本発明のねじ切りフライスを用いれば、底刃と先行刃の進み側切れ刃との交点角部の刃先強度が向上し、刃先摩耗が抑制されるため、金型や部品などの焼き入れ後でHRC50以上の硬さを有する高硬度材であっても、切削抵抗が軽減され、下穴加工無しで安定しためねじ加工を行うことができる。 If the thread cutting mill of the present invention is used, the strength of the edge of the intersection between the bottom edge and the leading edge of the leading edge is improved and the wear of the edge is suppressed. Even in the case of a high hardness material having the above hardness, the cutting resistance is reduced, and the screw processing can be performed for stability without the preparation of the pilot hole.
1 ねじ切りフライス
2 把持部
3 首部
4 ねじ切り刃
5 先行刃
5a 先行刃の進み側切れ刃
5b 先行刃の追い側切れ刃
6 仕上げ刃
6a 仕上げ刃の進み側切れ刃
6b 仕上げ刃の追い側切れ刃
7 仕上げ刃
8 切り屑排出溝
9 底刃
10 下穴
11 完全ねじ山
12 谷底
13 先端部
14 谷底長さ
15 谷底長さ
θ1 仕上げ刃のねじ山角度
θ2 先行刃のねじ山角度
θ3 底刃とねじ切りフライス工具の工具軸に対し直角方向となる平面とがなす角度
θ4 先行刃の進み側切れ刃と底刃とで形成される角度
θ5 先行刃の進み側切れ刃の角度
θ6 仕上げ刃の進み側切れ刃の角度
θ7 先行刃の追い側切れ刃の角度
θ8 仕上げ刃の追い側切れ刃の角度
A 底刃と先行刃の進み側切れ刃との交点角部
P 被加工物
O 工具軸
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010233250A JP5601464B2 (en) | 2010-10-18 | 2010-10-18 | Thread milling machine for hardened materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010233250A JP5601464B2 (en) | 2010-10-18 | 2010-10-18 | Thread milling machine for hardened materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012086286A true JP2012086286A (en) | 2012-05-10 |
JP5601464B2 JP5601464B2 (en) | 2014-10-08 |
Family
ID=46258483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010233250A Active JP5601464B2 (en) | 2010-10-18 | 2010-10-18 | Thread milling machine for hardened materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5601464B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140334888A1 (en) * | 2013-05-07 | 2014-11-13 | Dc Swiss Sa | Method for obtaining a complete threading profile by milling and milling tool |
WO2017122557A1 (en) | 2016-01-13 | 2017-07-20 | 三菱日立ツール株式会社 | Screw thread cutter |
WO2018134924A1 (en) | 2017-01-18 | 2018-07-26 | オーエスジー株式会社 | Thread milling cutter |
CN109530825A (en) * | 2018-12-06 | 2019-03-29 | 贵州劲锋精密工具有限公司 | A kind of band edge tooth thread milling cutter |
US11045889B2 (en) | 2015-09-30 | 2021-06-29 | Molding Tool Engineering, Ltd | Thread milling cutter and internal pipe thread machining method using the same |
KR102382441B1 (en) * | 2021-12-17 | 2022-04-01 | 최광준 | Complex Serration Machining Unit for Roughing and Finishing |
CN114833406A (en) * | 2022-03-24 | 2022-08-02 | 航天材料及工艺研究所 | Multi-blade grinding method for external threads of continuous fiber reinforced ceramic matrix composite |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5316520A (en) * | 1992-06-25 | 1994-05-31 | Green William P | Formation of threads with varying pitch |
JPH09225743A (en) * | 1996-02-23 | 1997-09-02 | Toshiba Tungaloy Co Ltd | Threading tool |
-
2010
- 2010-10-18 JP JP2010233250A patent/JP5601464B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5316520A (en) * | 1992-06-25 | 1994-05-31 | Green William P | Formation of threads with varying pitch |
JPH09225743A (en) * | 1996-02-23 | 1997-09-02 | Toshiba Tungaloy Co Ltd | Threading tool |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140334888A1 (en) * | 2013-05-07 | 2014-11-13 | Dc Swiss Sa | Method for obtaining a complete threading profile by milling and milling tool |
US9481044B2 (en) * | 2013-05-07 | 2016-11-01 | Dc Swiss Sa | Method for obtaining a complete threading profile by milling and milling tool |
US11045889B2 (en) | 2015-09-30 | 2021-06-29 | Molding Tool Engineering, Ltd | Thread milling cutter and internal pipe thread machining method using the same |
WO2017122557A1 (en) | 2016-01-13 | 2017-07-20 | 三菱日立ツール株式会社 | Screw thread cutter |
KR20180102074A (en) | 2016-01-13 | 2018-09-14 | 미츠비시 히타치 쓰루 가부시키가이샤 | Thread cutting cutter |
US10940553B2 (en) | 2016-01-13 | 2021-03-09 | Mitsubishi Hitachi Tool Engineering, Ltd. | Screw thread cutter |
WO2018134924A1 (en) | 2017-01-18 | 2018-07-26 | オーエスジー株式会社 | Thread milling cutter |
US11453072B2 (en) | 2017-01-18 | 2022-09-27 | Osg Corporation | Thread milling cutter |
CN109530825A (en) * | 2018-12-06 | 2019-03-29 | 贵州劲锋精密工具有限公司 | A kind of band edge tooth thread milling cutter |
KR102382441B1 (en) * | 2021-12-17 | 2022-04-01 | 최광준 | Complex Serration Machining Unit for Roughing and Finishing |
CN114833406A (en) * | 2022-03-24 | 2022-08-02 | 航天材料及工艺研究所 | Multi-blade grinding method for external threads of continuous fiber reinforced ceramic matrix composite |
Also Published As
Publication number | Publication date |
---|---|
JP5601464B2 (en) | 2014-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5601464B2 (en) | Thread milling machine for hardened materials | |
US9352400B2 (en) | Shank drill | |
JP5470478B2 (en) | Face milling | |
EP2501511B1 (en) | Cutting edge geometry in rounded nose end mills | |
EP3444059B1 (en) | Small-diameter drill bit | |
CN109641293B (en) | Cutting insert and indexable insert type rotary cutting tool | |
KR101534120B1 (en) | Ball end mill and insert | |
US20080152438A1 (en) | Ballnose end mill | |
KR20140002713A (en) | End mill for cutting of high-hardness materials | |
US11458551B2 (en) | End mill | |
JP2010162677A (en) | Small-diameter cbn ball end mill | |
KR20110073607A (en) | Spiral tap | |
WO2017138170A1 (en) | Replaceable tool edge rotary cutting tool and insert | |
Wang et al. | Effects of geometric structure of twist drill bits and cutting condition on tool life in drilling 42CrMo ultrahigh-strength steel | |
JPWO2018074542A1 (en) | Cutting insert and cutting edge exchangeable rotary cutting tool | |
JP6212863B2 (en) | Radius end mill | |
JP6825400B2 (en) | Taper ball end mill | |
JP6278170B1 (en) | Cutting insert and cutting edge exchangeable rotary cutting tool | |
JP6086180B1 (en) | Replaceable blade cutting tool and insert | |
KR101170164B1 (en) | A reamer of asymmetric construction | |
JP2013013962A (en) | Cbn end mill | |
CN112958820A (en) | Unequal helix angle end mill with gradually increased core thickness | |
JP2011020250A (en) | Cutting edge replaceable cutting tool for machining blade root groove | |
CN220943317U (en) | Double-spiral toothed strong chip breaking type flanging pagoda twist drill | |
CN221833394U (en) | Integral hard alloy milling cutter with groove on front cutter surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131015 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140717 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140723 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140805 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5601464 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |