Nothing Special   »   [go: up one dir, main page]

JP2012071355A - Method of improving residual stress - Google Patents

Method of improving residual stress Download PDF

Info

Publication number
JP2012071355A
JP2012071355A JP2011264206A JP2011264206A JP2012071355A JP 2012071355 A JP2012071355 A JP 2012071355A JP 2011264206 A JP2011264206 A JP 2011264206A JP 2011264206 A JP2011264206 A JP 2011264206A JP 2012071355 A JP2012071355 A JP 2012071355A
Authority
JP
Japan
Prior art keywords
pipe
residual stress
refrigerant container
ice
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011264206A
Other languages
Japanese (ja)
Inventor
Satoshi Aoike
聡 青池
Fuminori Iwamatsu
史則 岩松
Yuka Fukuda
ゆか 福田
Osamu Saito
修 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2011264206A priority Critical patent/JP2012071355A/en
Publication of JP2012071355A publication Critical patent/JP2012071355A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of improving residual stress of a small-diameter pipe where sufficient temperature difference is hardly obtained because of its small thickness, thereby improving product reliability.SOLUTION: A pipe-fixing tool 28 is provided upstream and downstream of a welded portion, wherein the pipe-fixing tool holds the pipe from an outside surface for fixation. A tensile load in an axial direction is applied to the welded portion through the two pipe-fixing tools.

Description

本発明は、応力腐食割れを生じる可能性があるニッケル基合金やオーステナイト系ステンレス鋼製の小口径配管溶接部に対する応力腐食割れ進展性および発生感受性改善のための残留応力改善方法に関する。   The present invention relates to a residual stress improving method for improving the stress corrosion crack progressability and generation susceptibility to a small-diameter pipe weld made of nickel-base alloy or austenitic stainless steel that may cause stress corrosion cracking.

配管溶接部内面に作用する残留応力を緩和して、応力腐食割れの発生感受性を改善させる方法については、配管の外面冷却により配管を拡管して残留応力を改善させる例が、特許文献1に開示されている。   Patent Document 1 discloses an example in which residual stress acting on the inner surface of a pipe weld portion is relaxed to improve the susceptibility to stress corrosion cracking and the residual stress is improved by expanding the pipe by cooling the outer surface of the pipe. Has been.

この公報では、配管突合せ溶接部の上流および下流に氷栓作成用の冷媒容器を設置し、配管外面を冷却して氷栓を形成させた後に、氷栓間の外面冷却により内部の水を凝固させ、凝固時の体積膨張により溶接部近傍を拡管させて、配管内面に圧縮残留応力を付与している。   In this publication, a refrigerant container for making ice plugs is installed upstream and downstream of the pipe butt weld, and after cooling the outer surface of the pipe to form ice plugs, the water inside is solidified by cooling the outer surface between the ice plugs. Then, the vicinity of the weld is expanded by volume expansion during solidification, and compressive residual stress is applied to the inner surface of the pipe.

また、配管の内外面に温度差を付与して残留応力を改善させる例が、特許文献2に開示されている。   Moreover, Patent Document 2 discloses an example in which residual stress is improved by applying a temperature difference to the inner and outer surfaces of the pipe.

この公報では、配管外面を加熱するとともに内面を冷却することで、配管の内外面に大きな温度差を与え、温度差により生じる熱膨張差を利用して配管外面に圧縮降伏、内面に引張降伏を与え、配管内面に圧縮残留応力を付与している。   In this publication, the outer surface of the pipe is heated and the inner surface is cooled, thereby giving a large temperature difference to the inner and outer surfaces of the pipe. And compressive residual stress is applied to the inner surface of the pipe.

特開2006−334596号公報JP 2006-334596 A 特開昭54−060694号公報JP 54-060694 A

ニッケル基合金やオーステナイト系ステンレス鋼は、引張残留応力が負荷された状態で高温純水中に長時間曝されることにより、応力腐食割れが発生する可能性がある。   Nickel-based alloys and austenitic stainless steels may cause stress corrosion cracking when exposed to high-temperature pure water for a long time with tensile residual stress applied.

原子力発電プラントを構成する配管にはニッケル基合金やオーステナイト系ステンレス鋼製の配管があり、溶接により配管内面の残留応力が引張状態となっている溶接部近傍では、応力腐食割れ発生感受性および進展性を改善するために、残留応力を低減、さらには、圧縮化することが望まれている。   There are nickel-base alloy and austenitic stainless steel pipes in the nuclear power plant. In the vicinity of welds where the residual stress on the pipe inner surface is in a tensile state due to welding, stress corrosion cracking susceptibility and developability In order to improve this, it is desired to reduce and further compress the residual stress.

前述した配管の外面冷却により配管を拡管して残留応力を改善させる場合、拡管時に氷栓間が高圧になるため、安定した施工を行うには、氷栓の軸長を大きくしなければならない。   When the pipe is expanded by cooling the outer surface of the pipe and the residual stress is improved, the pressure between the ice plugs becomes high when the pipe is expanded. Therefore, in order to perform stable construction, the axis length of the ice plug must be increased.

また、前述した配管の内外面に温度差を付与して残留応力を改善させる場合、小口径配管では肉厚が薄く、内外面に塑性変形を付与できるほどの温度差を設けることは難しい。   In addition, when the residual stress is improved by applying a temperature difference to the inner and outer surfaces of the pipe described above, it is difficult to provide a temperature difference that can impart plastic deformation to the inner and outer surfaces of the small-diameter pipe.

本発明は上記課題を鑑みなされたものであり、その目的は、肉厚が薄いため十分な温度差が得られ難い小口径配管に対する残留応力改善方法を提供することにより、製品の信頼性を向上させることにある。   The present invention has been made in view of the above problems, and its purpose is to improve the reliability of products by providing a method for improving residual stress on small-diameter pipes where a sufficient temperature difference is difficult to obtain due to thin thickness. There is to make it.

本発明はかかる課題を解決するために、本発明の軸方向引張荷重の付与方法は、溶接部の上流と下流に、配管を外面から挟んで固定する配管固定治具を設置し、2つの配管固定治具を介して軸方向の引張荷重を溶接部に付与することを特徴とする。 In order to solve this problem , the present invention provides a method for applying an axial tensile load according to the present invention, wherein a pipe fixing jig for fixing a pipe from the outer surface is installed upstream and downstream of a welded portion. An axial tensile load is applied to the welded portion through a fixing jig.

また、本発明の残留応力改善方法は、残留応力を付与したい方向に引張方向もしくは圧縮方向の外荷重を付与した状態で、温度分布や変形により生じる分布応力を与えることで、外荷重を付与した方向に圧縮残留応力を選択的に付与することを特徴とする。   Further, the method for improving residual stress according to the present invention applies an external load by applying a distribution stress generated by temperature distribution or deformation in a state where an external load in a tensile direction or a compression direction is applied in a direction in which the residual stress is to be applied. A compressive residual stress is selectively applied in the direction.

本発明によれば、肉厚が薄く大きな温度勾配が取れない小口径配管であっても、軸方向の引張荷重により重畳される引張応力により内面に塑性ひずみを発生させることが可能となり、圧縮残留応力を付与することが可能となる。   According to the present invention, it is possible to generate plastic strain on the inner surface due to the tensile stress superimposed by the axial tensile load even in a small-diameter pipe having a thin wall thickness and a large temperature gradient. Stress can be applied.

冷媒容器中央付近の配管外面全周に断熱材を敷設して冷却することにより耐圧性に優れた氷栓ができることを説明する図。The figure explaining that the ice stopper excellent in pressure | voltage resistance can be made by laying and cooling a heat insulating material in the perimeter of the piping outer surface near the refrigerant container center. 耐圧性に優れた氷栓を作成した後、氷栓間の水の凝固により溶接部近傍を拡管させて、配管内面に圧縮残留応力を付与する方法を説明する図。FIG. 3 is a view for explaining a method of applying compressive residual stress to the inner surface of a pipe by creating an ice plug with excellent pressure resistance and then expanding the vicinity of a welded portion by solidification of water between the ice plugs. 冷媒容器1つで溶接部を拡管して、溶接部近傍の内面に圧縮残留応力を付与する方法を説明する図。The figure explaining the method of expanding a weld part with one refrigerant container and giving compressive residual stress to the inner surface near the weld part. 冷媒容器中央部に予め断熱材が取付けられた水平配管に耐圧性を向上させた氷栓を作成するための冷媒容器を説明する図。The figure explaining the refrigerant container for creating the ice stopper which improved the pressure resistance in the horizontal piping by which the heat insulating material was previously attached to the refrigerant container center part. 冷媒容器中央部に予め断熱材が取付けられた垂直配管に耐圧性を向上させた氷栓を作成するための冷媒容器を説明する図。The figure explaining the refrigerant container for creating the ice stopper which improved the pressure resistance in the vertical piping by which the heat insulating material was previously attached to the refrigerant container center part. 軸方向の引張荷重を付与した状態で、溶接部およびその近傍を拡管することで、配管内面に圧縮残留応力を付与できることを説明する図。The figure explaining that a compressive residual stress can be provided to piping inner surface by expanding a weld part and its vicinity in the state which provided the tensile load of the axial direction. 軸方向の引張荷重を付与した状態で、溶接部およびその近傍の内外面に温度差を与えることで、配管内面に圧縮残留応力を付与できることを説明する図。The figure explaining that a compressive residual stress can be provided to the pipe inner surface by giving a temperature difference to the welded part and the inner and outer surfaces in the vicinity thereof in a state where an axial tensile load is applied. 軸方向の引張荷重を配管に付与する方法の具体例を説明する図。The figure explaining the specific example of the method of providing the tensile load of an axial direction to piping. 平板に温度分布と外荷重を付与することで外荷重付与方向の平板表面における残留応力を圧縮化する例を説明する図。The figure explaining the example which compresses the residual stress in the flat plate surface of an external load provision direction by providing temperature distribution and an external load to a flat plate. 中実円筒を高温に加熱するとともに軸方向の長さを治具により拘束した状態で冷却水内に浸漬させることで、表面の残留応力を圧縮化する例を説明する図。The figure explaining the example which compresses the residual stress of a surface by being immersed in cooling water in the state which heated the solid cylinder to high temperature, and restrained the length of the axial direction with the jig | tool.

以下、本発明の実施例について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

耐圧性に優れた氷栓の作成方法について図1を用いて説明する。図1は内部が水で満たされた配管に冷媒容器を設置するとともに冷媒容器中央付近に位置する配管の外面全周に断熱材を敷設した状態で、冷媒容器内の配管外面を冷却することで氷栓の耐圧性を向上させた実施例を示すものである。   A method for producing an ice plug with excellent pressure resistance will be described with reference to FIG. FIG. 1 shows that a refrigerant container is installed in a pipe filled with water, and the outer surface of the pipe in the refrigerant container is cooled in a state where a heat insulating material is laid around the entire outer surface of the pipe located near the center of the refrigerant container. The Example which improved the pressure | voltage resistance of the ice plug is shown.

まず、配管3に冷媒容器14を取付けるとともに、冷媒容器14の中央付近に位置する配管3の外面全周に断熱材11を敷設する。この状態で冷媒容器14にエタノール10とドライアイス9を投入すると、冷媒容器14内部で断熱材11が敷設されていない配管3の内表面から水4が冷却され始め、氷6が形成し始める(ステップ1)。   First, the refrigerant container 14 is attached to the pipe 3, and the heat insulating material 11 is laid on the entire outer surface of the pipe 3 located near the center of the refrigerant container 14. When ethanol 10 and dry ice 9 are put into the refrigerant container 14 in this state, the water 4 starts to be cooled from the inner surface of the pipe 3 where the heat insulating material 11 is not laid in the refrigerant container 14, and ice 6 starts to be formed ( Step 1).

その後、時間の経過とともに断熱材11の敷設部でも氷6が形成し始めるが、冷却能力の差により断熱材11の敷設部に比べて冷媒容器14の両端近傍の凝固速度が速くなり、氷6の厚さに差が生じ始める(ステップ2)。   Thereafter, ice 6 begins to form in the laying portion of the heat insulating material 11 as time elapses, but the solidification rate near both ends of the refrigerant container 14 becomes faster than the laying portion of the heat insulating material 11 due to the difference in cooling capacity, and the ice 6 A difference begins to occur in the thickness (step 2).

さらに、時間が経過すると、凝固速度が速い冷媒容器14の両端近傍が氷6により閉塞し、断熱材11敷設部に水4が取り残され、凝固が進むにつれて当該部の内圧が上昇し始める(ステップ3)。   Further, as time elapses, the vicinity of both ends of the refrigerant container 14 having a high solidification rate is blocked by the ice 6, and the water 4 is left behind in the laying portion of the heat insulating material 11, and the internal pressure of the portion begins to rise as solidification proceeds (step) 3).

断熱材11の敷設部に取り残された水4の凝固が全て完了すると断熱材11敷設部が局所的に膨張した形状の氷栓となる。これにより、当該部における配管内壁との接触圧が上昇することにより氷栓の摩擦力が上昇するため、断熱材11を敷設しない場合に比べて耐圧性が向上する(ステップ4)。   When the solidification of the water 4 left in the laying portion of the heat insulating material 11 is completely completed, the heat insulating material 11 laying portion becomes an ice plug having a locally expanded shape. Thereby, since the frictional force of the ice plug is increased by increasing the contact pressure with the inner wall of the pipe in the part, the pressure resistance is improved as compared with the case where the heat insulating material 11 is not laid (step 4).

なお、図中13は、ドレン弁である。   In the figure, reference numeral 13 denotes a drain valve.

さらに、耐圧性に優れた氷栓を活用して溶接部近傍を拡管させて、配管内面に圧縮残留応力を付与する方法について、図2を用いて説明する。   Further, a method of applying compressive residual stress to the inner surface of the pipe by expanding the vicinity of the welded portion using an ice plug having excellent pressure resistance will be described with reference to FIG.

図2は、耐圧性に優れた氷栓を作成した後、氷栓間の水の凝固により溶接部近傍を拡管させて、配管内面に圧縮残留応力を付与する方法の実施例を示すものである。   FIG. 2 shows an embodiment of a method for applying compressive residual stress to the inner surface of a pipe by creating an ice plug with excellent pressure resistance and then expanding the vicinity of the welded portion by solidification of water between the ice plugs. .

溶接部1の上流および下流の配管3に氷栓作成用の外側冷媒容器7を設置するとともに外側冷媒容器7の中央付近に位置する配管3の外面全周に断熱材11を敷設した状態で外側冷媒容器7内の配管3外面を冷却して配管3内部に耐圧性に優れた氷栓5を作成した後、氷栓5間の配管3外面を冷却し、内部の水4を凝固させ、凝固時の体積膨張により溶接部1近傍の開先加工部2を拡管させて、配管3内面に圧縮残留応力を付与する。   The outer refrigerant container 7 for creating ice plugs is installed in the pipe 3 upstream and downstream of the welded portion 1 and the heat insulating material 11 is laid on the entire outer surface of the pipe 3 located near the center of the outer refrigerant container 7. After cooling the outer surface of the pipe 3 in the refrigerant container 7 to create an ice plug 5 having excellent pressure resistance inside the pipe 3, the outer surface of the pipe 3 between the ice plugs 5 is cooled to solidify the internal water 4 and solidify. The groove processing portion 2 in the vicinity of the welded portion 1 is expanded by volume expansion at the time, and compressive residual stress is applied to the inner surface of the pipe 3.

耐圧性に優れた氷栓を採用することにより耐圧性が向上するため、外側冷媒容器7の寸法を小型化することが可能となる。これにより、発電プラント内で狭隘かつ複雑な経路になることが多い小口径配管への施工性が大幅に向上する。   Since the pressure resistance is improved by adopting an ice plug excellent in pressure resistance, the size of the outer refrigerant container 7 can be reduced. This greatly improves the workability of small-diameter piping, which is often a narrow and complicated route in the power plant.

冷媒容器中央付近に位置する溶接部と配管の外面全周を断熱材で覆うことにより、冷媒容器1つで溶接部を拡管して溶接部近傍の内面に圧縮残留応力を付与する方法について、図3を用いて説明する。   Regarding a method of applying a compressive residual stress to the inner surface in the vicinity of the welded part by expanding the welded part with one refrigerant container by covering the entire outer surface of the welded part and the piping located near the center of the refrigerant container with a heat insulating material. 3 will be described.

図3は冷媒容器1つで溶接部を拡管して溶接部近傍の内面に圧縮残留応力を付与する方法の実施例を示すものである。   FIG. 3 shows an embodiment of a method for expanding the welded portion with one refrigerant container and applying compressive residual stress to the inner surface in the vicinity of the welded portion.

まず、内部が水4で満たされた配管3に溶接部1が冷媒容器14の中央となる様に冷媒容器14を設置する。次に、冷媒容器14の中央付近に位置する溶接部1と配管3の外面全周に断熱材11を敷設する。なお、断熱材11の寸法は配管の外径と板厚毎に、溶接部1近傍の開先加工部2に発生する周方向ひずみが0.4%以上になる厚さと軸長に調節して敷設する。この状態で冷媒容器14にエタノール10とドライアイス9を投入すると、冷媒容器14内部で断熱材11が敷設されていない溶接部1近傍の開先加工部2の内表面から水4が冷却され始め、氷6が形成し始める(ステップ1)。   First, the refrigerant container 14 is installed in the pipe 3 filled with water 4 so that the weld 1 is at the center of the refrigerant container 14. Next, the heat insulating material 11 is laid around the entire outer surface of the welded portion 1 and the pipe 3 located near the center of the refrigerant container 14. The dimensions of the heat insulating material 11 are adjusted to the thickness and axial length at which the circumferential strain generated in the groove processing portion 2 near the welded portion 1 is 0.4% or more for each outer diameter and thickness of the pipe. Lay down. When ethanol 10 and dry ice 9 are put into the refrigerant container 14 in this state, the water 4 starts to be cooled from the inner surface of the groove processing part 2 near the welded part 1 where the heat insulating material 11 is not laid in the refrigerant container 14. Ice 6 begins to form (step 1).

その後、時間の経過とともに断熱材11敷設部でも氷6が形成し始めるが、冷却能力の差により断熱材11敷設部に比べて冷媒容器14の両端近傍の凝固速度が速くなり、氷6の厚さに差が生じ始める(ステップ2)。   Thereafter, the ice 6 starts to form in the laying portion of the heat insulating material 11 as time elapses. However, the solidification rate near both ends of the refrigerant container 14 becomes faster than the laying portion of the heat insulating material 11 due to the difference in cooling capacity, and the thickness of the ice 6 is increased. A difference begins to occur (step 2).

さらに時間が経過すると、凝固速度が速い冷媒容器14の両端近傍が氷6により閉塞し、断熱材11敷設部に水4が取り残され、凝固が進むにつれて当該部の内圧が上昇し始める(ステップ3)。   As time further elapses, the vicinity of both ends of the refrigerant container 14 having a high solidification rate is blocked by the ice 6, and the water 4 is left behind in the laying portion of the heat insulating material 11, and the internal pressure of the portion begins to rise as solidification proceeds (step 3). ).

断熱材11敷設部に取り残された水4の凝固が全て完了すると断熱材11敷設部が局所的に膨張した形状の氷6となる。これにより、溶接部1近傍の開先加工部2を拡管させて、配管3内面に圧縮残留応力を付与する(ステップ4)。   When the solidification of the water 4 left in the laying portion of the heat insulating material 11 is completed, the laying portion of the heat insulating material 11 becomes ice 6 having a locally expanded shape. Thereby, the groove processing part 2 in the vicinity of the weld part 1 is expanded, and compressive residual stress is applied to the inner surface of the pipe 3 (step 4).

従来方法では少なくとも3つ以上の冷媒容器が必要であったのに対し、本形態の方法では1つの冷媒容器で施工が可能となるため、発電プラント内で狭隘かつ複雑な経路になりがちな小口径配管への施工性が大幅に向上する。   Whereas the conventional method requires at least three or more refrigerant containers, the method of this embodiment allows construction with a single refrigerant container, so that a small and complex route that tends to be a narrow and complicated route in a power plant. The workability to caliber piping is greatly improved.

耐圧性に優れた氷栓を作成するために予め冷媒容器中央付近に断熱材を設置した冷媒容器について、図4と図5を用いて説明する。   A refrigerant container in which a heat insulating material is previously installed in the vicinity of the center of the refrigerant container in order to create an ice plug with excellent pressure resistance will be described with reference to FIGS. 4 and 5.

図4は冷媒容器中央部に予め断熱材が取付けられた水平配管に対する冷媒容器の実施例を示すものである。   FIG. 4 shows an embodiment of a refrigerant container for a horizontal pipe in which a heat insulating material is previously attached to the central part of the refrigerant container.

水平配管に耐圧性を向上させた氷栓を作成するための冷媒容器34は、冷媒容器上蓋31と冷媒容器下蓋32により配管3をパッキン15と断熱材11を介して挟み、ボルト17とナット18により固定する構造をしている。   A refrigerant container 34 for creating an ice plug with improved pressure resistance in a horizontal pipe includes a refrigerant container upper lid 31 and a refrigerant container lower lid 32 sandwiching the pipe 3 through the packing 15 and the heat insulating material 11, and a bolt 17 and a nut. 18 is used for fixing.

なお、冷媒容器上蓋31と冷媒容器下蓋32には容器中央に断熱材設置具16が取付けられている。さらに、冷媒容器上蓋31と冷媒容器下蓋32の固定構造としては、冷媒容器上蓋31と冷媒容器下蓋32の1辺を蝶つがいで接続するとともに蝶つがいの対辺にバックルを取付け、配管3への脱着をバックルの解除と固定により行う構造を採用することも可能である。   A heat insulator installation tool 16 is attached to the refrigerant container upper cover 31 and the refrigerant container lower cover 32 in the center of the container. Furthermore, as a fixing structure of the refrigerant container upper lid 31 and the refrigerant container lower lid 32, one side of the refrigerant container upper lid 31 and the refrigerant container lower lid 32 is connected with a hinge, and a buckle is attached to the opposite side of the hinge to the pipe 3. It is also possible to adopt a structure in which the attachment / detachment of the buckle is performed by releasing and fixing the buckle.

図5は冷媒容器中央部に予め断熱材が取付けられた垂直配管に対する冷媒容器の実施例を示すものである。   FIG. 5 shows an embodiment of a refrigerant container for a vertical pipe in which a heat insulating material is previously attached to the central part of the refrigerant container.

垂直配管に耐圧性を向上させた氷栓を作成するための冷媒容器35は、冷媒容器側蓋(ドレン弁あり)36と冷媒容器側蓋(ドレン弁なし)37により配管3をパッキン15と断熱材11を介して挟み、ボルト17とナット18により固定する構造をしている。なお、冷媒容器側蓋(ドレン弁あり)36と冷媒容器側蓋(ドレン弁なし)37には容器中央に断熱材設置具16が取付けられている。さらに、冷媒容器側蓋(ドレン弁あり)36と冷媒容器側蓋(ドレン弁なし)37の固定構造としては、冷媒容器側蓋(ドレン弁あり)36と冷媒容器側蓋(ドレン弁なし)37の1辺を蝶つがいで接続するとともに蝶つがいの対辺にバックルを取付け、配管3への脱着をバックルの解除と固定により行う構造を採用することも可能である。   A refrigerant container 35 for creating an ice plug with improved pressure resistance in a vertical pipe has a refrigerant container side lid (with a drain valve) 36 and a refrigerant container side lid (without a drain valve) 37 to insulate the pipe 3 from the packing 15. The structure is sandwiched through the material 11 and fixed with bolts 17 and nuts 18. The refrigerant container side lid (with a drain valve) 36 and the refrigerant container side lid (without a drain valve) 37 are provided with a heat insulating material installation tool 16 at the center of the container. Further, as a fixing structure of the refrigerant container side lid (with drain valve) 36 and the refrigerant container side lid (without drain valve) 37, the refrigerant container side lid (with drain valve) 36 and the refrigerant container side lid (without drain valve) 37. It is also possible to adopt a structure in which one side is connected by a hinge and a buckle is attached to the opposite side of the hinge, and the pipe 3 is detached and fixed by releasing and fixing the buckle.

軸方向の引張荷重を付与した状態で溶接部およびその近傍を拡管することで配管内面に圧縮残留応力を付与する方法について、図6を用いて説明する。   A method for applying compressive residual stress to the inner surface of the pipe by expanding the welded portion and the vicinity thereof in a state where an axial tensile load is applied will be described with reference to FIG.

図6は溶接部およびその近傍を弾性変形の範囲内で拡管した状態に軸方向の引張荷重を付与した場合の応力分布を示したものである。   FIG. 6 shows the stress distribution when an axial tensile load is applied to the welded part and its vicinity in a state where the pipe is expanded within the range of elastic deformation.

小口径配管溶接部近傍における溶接後の残留応力分布、即ち、施工前の残留応力分布19では、配管内面の残留応力は引張となっている。これを弾性変形の範囲内で拡管した場合、施工中の応力分布(内圧による拡管のみ)20は、降伏応力σyを超過する領域が無いため、施工後の残留応力分布(内圧による拡管のみ)21は施工前の残留応力分布19と同じ残留応力分布になる。   In the residual stress distribution after welding in the vicinity of the small-diameter pipe weld, that is, the residual stress distribution 19 before construction, the residual stress on the inner surface of the pipe is tensile. When this is expanded within the range of elastic deformation, the stress distribution during construction (only pipe expansion by internal pressure) 20 does not have a region exceeding the yield stress σy, so the residual stress distribution after construction (only pipe expansion by internal pressure) 21 Becomes the same residual stress distribution as the residual stress distribution 19 before construction.

これに対し、弾性変形の範囲内で拡管した状態に軸方向の引張荷重を付与した場合、施工中の応力分布(内圧による拡管+軸方向引張荷重付与)22は、配管内面において降伏応力σyを超過するため塑性ひずみが生じ、施工後の残留応力分布(内圧による拡管+軸方向引張荷重付与)23は内面が圧縮の残留応力となる。   On the other hand, when an axial tensile load is applied to the expanded state within the range of elastic deformation, the stress distribution during construction (expanded tube due to internal pressure + axial tensile load applied) 22 has a yield stress σy on the inner surface of the pipe. Since it exceeds the maximum, plastic strain is generated, and the residual stress distribution (expansion with internal pressure + application of axial tensile load) 23 after the construction becomes a compressive residual stress on the inner surface.

なお、本発明の残留応力改善方法の施工では、拡管のための内圧と軸方向引張荷重が同時期に付与されている状態が必要であるが、施工の順序はどちらが先でも構わない。   In addition, in the construction of the method for improving residual stress according to the present invention, it is necessary that the internal pressure for the pipe expansion and the axial tensile load be applied at the same time, but the construction order may be either.

さらに、本発明の残留応力改善方法の施工には内面に作用する残留応力を増強する効果があるため、内圧による拡管だけでは十分な残留応力改善効果が得られ難い外径60mm以
上の溶接部に対する施工に適用することで、内面の残留応力を圧縮化することが可能となる。
Furthermore, since the construction of the method for improving residual stress according to the present invention has an effect of enhancing the residual stress acting on the inner surface, it is difficult to obtain a sufficient residual stress improving effect only by pipe expansion by internal pressure. By applying to the construction, it is possible to compress the residual stress on the inner surface.

また、本発明のような残留応力改善方法やエルボ溶接部の拡管と組合せることで、内面への圧縮残留応力付与効果を増強することが可能となる。   Moreover, it becomes possible to enhance the compressive residual stress imparting effect to the inner surface by combining with the residual stress improving method and elbow welded pipe expansion as in the present invention.

軸方向の引張荷重を付与した状態で溶接部およびその近傍の内外面に温度差を与えることで配管内面に圧縮残留応力を付与する方法について、図7を用いて説明する。   A method for applying compressive residual stress to the inner surface of the pipe by applying a temperature difference to the welded portion and the inner and outer surfaces in the vicinity thereof in a state where an axial tensile load is applied will be described with reference to FIG.

図7は溶接部およびその近傍の内外面に熱膨張による変形が弾性変形の範囲内となる温度差を与えた状態に軸方向の引張荷重を付与した場合の応力分布を示したものである。   FIG. 7 shows the stress distribution when an axial tensile load is applied to the welded portion and the inner and outer surfaces in the vicinity thereof in a state where a temperature difference is given such that the deformation due to thermal expansion falls within the elastic deformation range.

小口径配管溶接部近傍における溶接後の残留応力分布、即ち、施工前の残留応力分布19では、配管内面の残留応力は引張となっている。これに熱膨張による変形が弾性変形の範囲内となる温度差を与えた場合、施工中の応力分布(温度勾配のみ)24は、降伏応力σyを超過する領域が無いため、施工後の残留応力分布(温度勾配のみ)25は施工前の残留応力分布19と同じ残留応力分布になる。   In the residual stress distribution after welding in the vicinity of the small-diameter pipe weld, that is, the residual stress distribution 19 before construction, the residual stress on the inner surface of the pipe is tensile. When a temperature difference in which deformation due to thermal expansion is within the range of elastic deformation is given to this, since the stress distribution (temperature gradient only) 24 during construction has no region exceeding the yield stress σy, the residual stress after construction The distribution (temperature gradient only) 25 is the same residual stress distribution as the residual stress distribution 19 before construction.

これに対し、熱膨張による変形が弾性変形の範囲内となる温度差を与えた状態に軸方向の引張荷重を付与した場合、施工中の応力分布(温度勾配+軸方向引張荷重付与)26は、配管内面において降伏応力σyを超過するため塑性ひずみが生じ、施工後の残留応力分布(温度勾配+軸方向引張荷重付与)27は内面が圧縮の残留応力となる。   On the other hand, when an axial tensile load is applied in a state where a temperature difference in which deformation due to thermal expansion is within the range of elastic deformation is applied, the stress distribution (temperature gradient + axial tensile load applied) 26 during construction is In addition, since the yield stress σy is exceeded on the inner surface of the pipe, plastic strain is generated, and the residual stress distribution (temperature gradient + axial tensile load application) 27 after construction becomes a compressive residual stress on the inner surface.

なお、本発明の残留応力改善方法の施工では、内外面の温度差と軸方向引張荷重が同時期に付与されている状態が必要であるが、施工の順序はどちらが先でも構わない。   In addition, in the construction of the residual stress improving method of the present invention, it is necessary that the temperature difference between the inner and outer surfaces and the axial tensile load be applied at the same time, but either order of construction may be first.

さらに、本発明の残留応力改善方法では、板厚が薄く内外面に大きな温度差を付与できないため、熱膨張により生じる変形が小さく弾性変形範囲内となる小口径配管に対しても、軸方向の引張荷重付与により内面に塑性ひずみを生じさせ、施工後の内面の残留応力を圧縮化することが可能となる。   Furthermore, in the residual stress improvement method of the present invention, since the plate thickness is thin and a large temperature difference cannot be imparted to the inner and outer surfaces, the axial deformation can be applied even to a small-diameter pipe having a small deformation caused by thermal expansion and within the elastic deformation range. By applying a tensile load, plastic strain is generated on the inner surface, and the residual stress on the inner surface after construction can be compressed.

溶接部およびその近傍の配管に軸方向の引張荷重を付与する方法について、図8を用いて説明する。   A method of applying an axial tensile load to the welded portion and the piping in the vicinity thereof will be described with reference to FIG.

図8は軸方向の引張荷重を配管に付与する方法の実施例を示すものである。溶接部1の上流と下流に、配管3を外面から挟んでボルト17とナット18により固定する配管固定治具28を設置する。配管3への引張荷重は2つの配管固定治具28の間に取付けられた油圧もしくは水圧シリンダ29が軸方向に伸びることで付与される。   FIG. 8 shows an embodiment of a method for applying an axial tensile load to a pipe. A pipe fixing jig 28 is installed upstream and downstream of the weld 1 to fix the pipe 3 from the outer surface with bolts 17 and nuts 18. The tensile load on the pipe 3 is applied by extending a hydraulic or hydraulic cylinder 29 attached between the two pipe fixing jigs 28 in the axial direction.

残留応力を付与したい方向に引張方向もしくは圧縮方向の外荷重を付与した状態で、温度分布や変形により生じる分布応力を与えることで、外荷重を付与した方向に圧縮残留応力を選択的に付与する方法について、図9と図10を用いて説明する。   In the state where an external load in the tensile or compressive direction is applied in the direction in which the residual stress is to be applied, by applying a distributed stress caused by temperature distribution or deformation, the compressive residual stress is selectively applied in the direction in which the external load is applied. The method will be described with reference to FIGS.

図9は実施例の1つとして、平板に温度分布と外荷重を付与することで外荷重付与方向の平板表面における残留応力を圧縮化する例を示すものである。   FIG. 9 shows an example in which the residual stress on the flat plate surface in the direction of external load application is compressed by applying temperature distribution and external load to the flat plate as one example.

本実施例では平板38を冷却水40の中に浸漬させた状態で引張方向の外荷重41をy方向に付与するとともに、高周波加熱器42により平板38を加熱する。これにより、平板38が発熱するとともに冷却水40と接する面(1)と面(2)が冷却されるため、平板38の温度分布は外表面が低温、内部が高温の状態となる。温度差により熱膨張差が生じるため施工中の平板内応力分布43は、外面が引張、内面が圧縮の応力分布となる。平板の板厚が薄く降伏応力σyを超過する領域がない点線の応力分布となった場合、残留応力改善効果が期待できないが、引張方向の外荷重41を重畳させることにより外表面近傍の領域が降伏応力σyを超過するため、施工後の平板内残留応力分布44は外表面近傍の領域で圧縮状態となる。   In the present embodiment, an external load 41 in the tensile direction is applied in the y direction while the flat plate 38 is immersed in the cooling water 40, and the flat plate 38 is heated by the high-frequency heater 42. As a result, the flat plate 38 generates heat and the surfaces (1) and (2) in contact with the cooling water 40 are cooled, so that the temperature distribution of the flat plate 38 is in a state where the outer surface is at a low temperature and the inside is at a high temperature. Since a thermal expansion difference is caused by the temperature difference, the stress distribution 43 in the flat plate during construction is a stress distribution in which the outer surface is tensile and the inner surface is compressive. When the plate thickness is thin and the stress distribution is a dotted line with no region exceeding the yield stress σy, the residual stress improvement effect cannot be expected. However, by superimposing the external load 41 in the tensile direction, the region near the outer surface is Since the yield stress σy is exceeded, the residual stress distribution 44 in the flat plate after the construction is compressed in the region near the outer surface.

図10は実施例の1つとして、中実円筒を高温に加熱するとともに軸方向の長さを治具により拘束した状態で冷却水内に浸漬させることで、中実円筒内に温度分布を付与すると同時に軸方向の長さの拘束により引張方向の外荷重を付与することで表面に圧縮残留応力を付与する例を示すものである。   FIG. 10 shows a temperature distribution in the solid cylinder by heating the solid cylinder to a high temperature and immersing it in the cooling water with the axial length constrained by a jig as one example. At the same time, an example in which compressive residual stress is applied to the surface by applying an external load in the tensile direction by restraining the length in the axial direction is shown.

まず、室温と同じ温度の中実円筒45を高温環境47内で高温に加熱する。その後、高温になった中実円筒45を軸方向長さの拘束治具48(室温)に取付け、軸方向長さを一定に保つ。高温の中実円筒45を軸方向長さの拘束治具48に取付けた状態で冷却水40中に浸漬させると円筒の温度分布は外表面が低温、内表面が高温の状態となる。   First, the solid cylinder 45 having the same temperature as the room temperature is heated to a high temperature in the high temperature environment 47. Thereafter, the solid cylinder 45 that has become hot is attached to a restraining jig 48 (room temperature) having an axial length, and the axial length is kept constant. When the high temperature solid cylinder 45 is immersed in the cooling water 40 in a state where it is attached to the restraining jig 48 having an axial length, the temperature distribution of the cylinder becomes low on the outer surface and high on the inner surface.

さらに、温度の低下により中実円筒45は収縮するため、軸方向長さの拘束治具48による拘束により、軸方向には引張応力が生じる。この様に、温度差により生じる外面が引張、内面が圧縮の応力分布に拘束により負荷される引張方向の応力49が重畳されるため、外表面近傍において降伏応力σyを超過する領域が増加する。これにより、施工後の残留応力分布50は温度差のみで施工した場合に比べて高い圧縮残留応力となる。   Furthermore, since the solid cylinder 45 contracts due to a decrease in temperature, a tensile stress is generated in the axial direction due to restraint by the restraining jig 48 having an axial length. In this manner, since the stress 49 in the tensile direction, which is loaded by restraint, is superimposed on the stress distribution in which the outer surface caused by the temperature difference is tensile and the inner surface is compressed, the region exceeding the yield stress σy increases in the vicinity of the outer surface. Thereby, the residual stress distribution 50 after construction becomes a high compressive residual stress compared with the case where construction is performed only by a temperature difference.

本発明は応力腐食割れの発生が懸念される種々の材質および使用環境の組み合わせに対して適用することが可能であり、特にニッケル基合金やオーステナイト系ステンレス製の溶接構造物の応力腐食割れ抑制に利用できる。   The present invention can be applied to combinations of various materials and usage environments in which the occurrence of stress corrosion cracking is a concern, and in particular for the suppression of stress corrosion cracking of welded structures made of nickel-base alloys and austenitic stainless steels. Available.

1 溶接部
2 開先加工部
3 配管
4 水
5 氷栓
6 氷
7 外側冷媒容器
8 内側冷媒容器
9 ドライアイス
10 エタノール
11 断熱材
12 ひずみゲージ
13 ドレン弁
14 冷媒容器
15 パッキン
16 断熱材設置具
17 ボルト
18 ナット
19 施工前の残留応力分布
20 施工中の応力分布(内圧による拡管のみ)
21 施工後の残留応力分布(内圧による拡管のみ)
22 施工中の応力分布(内圧による拡管+軸方向引張荷重付与)
23 施工後の残留応力分布(内圧による拡管+軸方向引張荷重付与)
24 施工中の応力分布(温度勾配のみ)
25 施工後の残留応力分布(温度勾配のみ)
26 施工中の応力分布(温度勾配+軸方向引張荷重付与)
27 施工後の残留応力分布(温度勾配+軸方向引張荷重付与)
28 配管固定治具
29 油圧もしくは水圧シリンダ
30 シリンダの伸び方向
31 冷媒容器上蓋
32 冷媒容器下蓋
33 ひずみ計測器
34 水平配管に耐圧性を向上させた氷栓を作成するための冷媒容器
35 垂直配管に耐圧性を向上させた氷栓を作成するための冷媒容器
36 冷媒容器側蓋(ドレン弁あり)
37 冷媒容器側蓋(ドレン弁なし)
38 平板
39 平板内の初期残留応力分布
40 冷却水
41 引張方向の外荷重
42 高周波加熱器
43 施工中の平板内応力分布
44 施工後の平板内残留応力分布
45 中実円筒
46 初期残留応力分布
47 高温環境
48 軸方向長さの拘束治具
49 拘束により負荷される引張方向の応力
50 施工後の残留応力分布
DESCRIPTION OF SYMBOLS 1 Welding part 2 Groove processing part 3 Piping 4 Water 5 Ice plug 6 Ice 7 Outer refrigerant container 8 Inner refrigerant container 9 Dry ice 10 Ethanol 11 Heat insulating material 12 Strain gauge 13 Drain valve 14 Refrigerant container 15 Packing 16 Heat insulating material installation tool 17 Bolt 18 Nut 19 Residual stress distribution before construction 20 Stress distribution during construction (only pipe expansion by internal pressure)
21 Residual stress distribution after construction (only pipe expansion by internal pressure)
22 Stress distribution during construction (expansion of internal pressure + axial tensile load)
23 Residual stress distribution after construction (pipe expansion by internal pressure + application of axial tensile load)
24 Stress distribution during construction (temperature gradient only)
25 Residual stress distribution after construction (temperature gradient only)
26 Stress distribution during construction (temperature gradient + axial tensile load applied)
27 Residual stress distribution after construction (temperature gradient + axial tensile load applied)
28 Pipe fixing jig 29 Hydraulic or hydraulic cylinder 30 Cylinder extension direction 31 Refrigerant container upper lid 32 Refrigerant container lower lid 33 Strain measuring instrument 34 Refrigerant container 35 for creating ice plug with improved pressure resistance on horizontal pipe Vertical pipe Refrigerant container 36 for creating ice plug with improved pressure resistance Refrigerant container side lid (with drain valve)
37 Refrigerant container side lid (without drain valve)
38 Flat plate 39 Initial residual stress distribution in flat plate 40 Cooling water 41 External load 42 in the tensile direction High-frequency heater 43 Flat plate stress distribution 44 during construction Residual stress distribution in flat plate 45 after construction Solid cylinder 46 Initial residual stress distribution 47 High temperature environment 48 Axial length restraining jig 49 Tensile stress applied by restraint 50 Residual stress distribution after construction

Claims (2)

溶接部の上流と下流に、配管を外面から挟んで固定する配管固定治具を設置し、2つの配管固定治具を介して軸方向の引張荷重を溶接部に付与することを特徴とする軸方向引張荷重の付与方法。   An axis characterized by installing a pipe fixing jig for fixing the pipe sandwiched from the outer surface upstream and downstream of the welded portion, and applying an axial tensile load to the welded portion through the two pipe fixing jigs How to apply directional tensile load. 残留応力を付与する方向に引張方向もしくは圧縮方向の外荷重を付与した状態で、温度分布や変形により生じる分布応力を与えることで、外荷重を付与した方向に圧縮残留応力を選択的に付与することを特徴とする残留応力改善方法。   In the state where an external load in the tensile direction or compressive direction is applied in the direction in which the residual stress is applied, a compressive residual stress is selectively applied in the direction in which the external load is applied by applying a distributed stress caused by temperature distribution or deformation. A method for improving residual stress.
JP2011264206A 2011-12-02 2011-12-02 Method of improving residual stress Pending JP2012071355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011264206A JP2012071355A (en) 2011-12-02 2011-12-02 Method of improving residual stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011264206A JP2012071355A (en) 2011-12-02 2011-12-02 Method of improving residual stress

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009269401A Division JP2010042452A (en) 2009-11-27 2009-11-27 Method for improving residual stress of small diameter piping

Publications (1)

Publication Number Publication Date
JP2012071355A true JP2012071355A (en) 2012-04-12

Family

ID=46167720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011264206A Pending JP2012071355A (en) 2011-12-02 2011-12-02 Method of improving residual stress

Country Status (1)

Country Link
JP (1) JP2012071355A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283460A (en) * 1985-06-10 1986-12-13 Sumitomo Light Metal Ind Ltd Butt welding method for aluminum alloy pipe
JPS6270513A (en) * 1985-09-25 1987-04-01 Yutaka Iino Heat treatment of surface under preload
JPH01156419A (en) * 1987-11-09 1989-06-20 Fmc Corp Method and apparatus for enhancing fatique life of element such as rod
JPH07314170A (en) * 1992-11-13 1995-12-05 Aea Odonnell Inc Method of reducing welding tensile stress of nozzle for nuclear reactor vessel
JP2002275538A (en) * 2001-03-15 2002-09-25 Toyota Motor Corp Method and device for heat treatment of steel
JP2005060735A (en) * 2003-08-12 2005-03-10 Nippon Steel Corp Method for improving fatigue strength of metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61283460A (en) * 1985-06-10 1986-12-13 Sumitomo Light Metal Ind Ltd Butt welding method for aluminum alloy pipe
JPS6270513A (en) * 1985-09-25 1987-04-01 Yutaka Iino Heat treatment of surface under preload
JPH01156419A (en) * 1987-11-09 1989-06-20 Fmc Corp Method and apparatus for enhancing fatique life of element such as rod
JPH07314170A (en) * 1992-11-13 1995-12-05 Aea Odonnell Inc Method of reducing welding tensile stress of nozzle for nuclear reactor vessel
JP2002275538A (en) * 2001-03-15 2002-09-25 Toyota Motor Corp Method and device for heat treatment of steel
JP2005060735A (en) * 2003-08-12 2005-03-10 Nippon Steel Corp Method for improving fatigue strength of metal

Similar Documents

Publication Publication Date Title
JP4448873B2 (en) Residual stress improvement method for small diameter piping
Guo et al. Effects of the inner mould material on the aluminium–316L stainless steel explosive clad pipe
Liu et al. Mitigation of residual stress and deformation induced by TIG welding in thin-walled pipes through external constraint
Akella et al. A welding simulation of dissimilar materials SS304 and copper
Guo et al. Numerical simulations and experiments on fabricating bend pipes by push bending with local induction-heating process
JP4448791B2 (en) Method and apparatus for improving residual stress in piping
Wan et al. Using X-ray diffraction and finite element method to analyze residual stress of tube-to-tubesheet welded joints in a shell and tube heat exchanger
JP2012071355A (en) Method of improving residual stress
JP2010042452A (en) Method for improving residual stress of small diameter piping
JP5237750B2 (en) How to improve residual stress in piping
JP6367681B2 (en) Piping residual stress improvement method, antifreeze liquid supply method between ice plugs, and piping residual stress improvement device
Wang et al. Numerical investigation of creep–fatigue behavior in a steam turbine inlet valve under cyclic thermomechanical loading
Zubairuddin et al. Influence of phase transformation on thermo-mechanical analysis of modified 9Cr-1Mo steel
CN204114441U (en) Cryogenic piping ectomesoderm pipeline vacuum expansion saves
JP4972595B2 (en) Method for inhibiting crack growth in piping
Lv et al. Leak-before-break analysis of thermally aged nuclear pipe under different bending moments
Luo et al. Experimental and numerical study on the reduction of residual stress in the fillet weld by overlay welding and cutting method
Sawa et al. Effects of scattered bolt preload on the sealing performance of pipe flange connection with gaskets under external bending moment and internal pressure
JP4857375B2 (en) Equipment for improving residual stress in piping
Liu et al. Light-weight design of the tubesheet of a high pressure U-tube heat exchanger based on finite element analysis
KR101017648B1 (en) Tensile residual stresses reduction and removal method of welded pipes inside wall including different metal meterial
JP5688352B2 (en) Heat treatment method for piping
Wang et al. Fundamental study of buckling behavior in thin plate butt welding by the inherent deformation method
Wang et al. Transient thermal stress and temperature change rate analysis of fixed tubesheet
Yan et al. Study on influence of three kinds of stress on crack propagation in butt welds of spiral coil waterwall for ultra supercritical boiler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702