Nothing Special   »   [go: up one dir, main page]

JP2012069360A - Lamination type battery and manufacturing method thereof - Google Patents

Lamination type battery and manufacturing method thereof Download PDF

Info

Publication number
JP2012069360A
JP2012069360A JP2010212747A JP2010212747A JP2012069360A JP 2012069360 A JP2012069360 A JP 2012069360A JP 2010212747 A JP2010212747 A JP 2010212747A JP 2010212747 A JP2010212747 A JP 2010212747A JP 2012069360 A JP2012069360 A JP 2012069360A
Authority
JP
Japan
Prior art keywords
separator
negative electrode
positive electrode
flat plate
bent portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010212747A
Other languages
Japanese (ja)
Other versions
JP5664068B2 (en
Inventor
Yusuke Tateyama
悠介 竪山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010212747A priority Critical patent/JP5664068B2/en
Publication of JP2012069360A publication Critical patent/JP2012069360A/en
Application granted granted Critical
Publication of JP5664068B2 publication Critical patent/JP5664068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lamination type battery and a manufacturing method of the lamination type battery that relate to a manufacturing technology of the lamination type battery and desirably prevents the occurence of internal short circuit caused by displacement of a positive electrode and a negative electrode.SOLUTION: In a lamination type battery 10, a first separator 60 and a second separator 70 formed into a fanfold shape are laminated so as to be overlapped each other between a positive electrode 40 and a negative electrode 50, and the first separator and the second separator are arranged so as to be orthogonal to each other viewed from the lamination direction.

Description

本発明は、積層型電池、および積層型電池の製造方法に関する。   The present invention relates to a stacked battery and a method for manufacturing a stacked battery.

近年、環境保護運動の高まりを背景として、電気自動車(EV)、ハイブリッド電気自動車(HEV)、および燃料電池車(FCV)の開発が進められている。これらのモータ駆動用電源として、繰り返し充放電可能な積層型電池が注目されている。積層型電池は、一般的に、正極集電体の両面に正極活物質を塗布した正極と、負極集電体の両面に負極活物質を塗布した負極とが、電解質を含むセパレータ(離隔膜)を介して接続され、電池ケースに収納される構成を有している。   In recent years, the development of electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV) has been promoted against the background of the increasing environmental protection movement. As a power source for driving these motors, a multilayer battery that can be repeatedly charged and discharged has attracted attention. In a stacked battery, generally, a positive electrode in which a positive electrode active material is applied on both sides of a positive electrode current collector and a negative electrode in which a negative electrode active material is applied on both sides of a negative electrode current collector include an electrolyte (separation membrane). It has a structure which is connected via a battery and is housed in a battery case.

特許文献1に記載された双極型電池の製造方法では、正極および負極の位置ずれを防止するために、正極集電体をなす正極板および負極集電体をなす負極板を接着剤によってセパレータに固定させる技術を採用している。正極および負極の位置ずれを抑制することによって、正極および負極の接触に伴う内部短絡の発生を防止している。   In the method for manufacturing a bipolar battery described in Patent Document 1, in order to prevent displacement of the positive electrode and the negative electrode, the positive electrode plate forming the positive electrode current collector and the negative electrode plate forming the negative electrode current collector are formed into a separator by an adhesive. The technology to fix is adopted. By suppressing the displacement between the positive electrode and the negative electrode, the occurrence of an internal short circuit due to the contact between the positive electrode and the negative electrode is prevented.

特開2001−229979号公報JP 2001-229979 A

しかしながら、経年変化等によって接着剤の接着力が弱まると、正極および負極に位置ずれが生じ内部短絡が発生してしまう虞がある。そこで、積層型電池には、正極および負極の位置ずれ防止対策とは別に、位置ずれ時に内部短絡が発生することを防止し得る対策を設けることが要請される。   However, when the adhesive strength of the adhesive is weakened due to secular change or the like, the positive electrode and the negative electrode may be displaced and an internal short circuit may occur. Therefore, it is required for the stacked battery to provide a measure that can prevent the occurrence of an internal short circuit at the time of misalignment, in addition to the measure for preventing the misalignment of the positive electrode and the negative electrode.

本発明は、積層型電池の製造技術に関し、正極および負極の位置ずれに伴って生じ得る内部短絡の発生を好適に防止する積層型電池、および積層型電池の製造方法を提供することを目的としている。   The present invention relates to a manufacturing technique of a stacked battery, and an object thereof is to provide a stacked battery that suitably prevents the occurrence of an internal short circuit that can occur in association with the misalignment of a positive electrode and a negative electrode, and a method for manufacturing the stacked battery. Yes.

本発明に係る積層型電池は、葛折り状に形成された第1と第2のセパレータが、正極と負極との間で互いが重なるように積層されている。また、第1と第2のセパレータが積層方向から見て互いに直交して配置されている。   In the multilayer battery according to the present invention, the first and second separators formed in a twisted manner are stacked so as to overlap each other between the positive electrode and the negative electrode. Further, the first and second separators are arranged orthogonal to each other when viewed from the stacking direction.

本発明によれば、葛折り状に形成した2つのセパレータを互いに直交する方向に重ね合わせて積層することによって、正極および負極の移動方向を規制して正極および負極が互いに接近する方向へ移動することを防止することができる。これにより、正極および負極の位置ずれに伴う内部短絡の発生を好適に防止することができる。   According to the present invention, two separators formed in a twisted manner are stacked and stacked in a direction orthogonal to each other, thereby restricting the moving direction of the positive electrode and the negative electrode and moving the positive electrode and the negative electrode closer to each other. This can be prevented. Thereby, generation | occurrence | production of the internal short circuit accompanying the position shift of a positive electrode and a negative electrode can be prevented suitably.

図1は、実施形態に係る積層型電池の外観図であり、(A)は、平面図、(B)は、斜視図である。1A and 1B are external views of a stacked battery according to an embodiment, where FIG. 1A is a plan view and FIG. 1B is a perspective view. 図1(A)の矢印2A側から見た積層型電池の一部断面図である。FIG. 2 is a partial cross-sectional view of the stacked battery as viewed from the arrow 2A side in FIG. 図1(A)の矢印3A−3A線に沿う断面図である。It is sectional drawing which follows the arrow 3A-3A line | wire of FIG. 1 (A). 図1(A)の矢印4A−4A線に沿う断面図である。It is sectional drawing which follows the arrow 4A-4A line | wire of FIG. 1 (A). セパレータを重ね合わせる方向を説明するための概念図である。It is a conceptual diagram for demonstrating the direction which overlaps a separator. 図6は、実施形態に係る積層型電池の作用を説明するための断面図であり、(A)は、図3の矢印6A−6A線に沿う断面図、(B)は、図3の矢印6B−6B線に沿う断面図である。6A and 6B are cross-sectional views for explaining the operation of the stacked battery according to the embodiment. FIG. 6A is a cross-sectional view taken along the line 6A-6A in FIG. 3 and FIG. It is sectional drawing which follows a 6B-6B line. 変形例に係る積層型電池を示す図であり、図1(A)の矢印2A側から見た一部断面図である。It is a figure which shows the laminated battery which concerns on a modification, and is partial sectional drawing seen from the arrow 2A side of FIG. 1 (A). 変形例に係る積層型電池を示す図であり、図1(A)の矢印3A−3A線に沿う断面図である。It is a figure which shows the laminated battery which concerns on a modification, and is sectional drawing which follows the arrow 3A-3A line | wire of FIG. 1 (A). 変形例に係る積層型電池を示す図であり、図1(A)の矢印4A−4A線に沿う断面図である。It is a figure which shows the laminated battery which concerns on a modification, and is sectional drawing which follows the arrow 4A-4A line | wire of FIG. 1 (A).

以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.

まず、実施形態に係る積層型電池の全体構造について説明する。   First, the overall structure of the stacked battery according to the embodiment will be described.

図1(A)、(B)を参照して、リチウムイオン二次電池として構成された積層型電池10は、充放電反応が進行する略矩形の発電要素20を外装体90の内部に封止させた構造を備えている。   Referring to FIGS. 1A and 1B, a stacked battery 10 configured as a lithium ion secondary battery seals a substantially rectangular power generation element 20 in which a charge / discharge reaction proceeds inside an exterior body 90. It has the structure made to do.

図3を参照して、発電要素20は、正極集電体41に正極活物質層43を形成した正極40と、電解質層(図示省略する)の一部をなす2枚のセパレータ60、70と、負極集電体51に負極活物質層53を形成した負極50とを積層して構成している。より詳細には、一の正極活物質層43と、これに隣接する一の負極活物質層53とがセパレータ60、70を介して対向するように配置されている。正極40および負極50は、電池に用いられる公知の接着剤によってセパレータ60、70に対して固定させている。なお、理解の容易のため各構成部材間には空間的な隙間を図示しているが、この隙間は適宜省略することが可能なものである。   Referring to FIG. 3, the power generation element 20 includes a positive electrode 40 in which a positive electrode active material layer 43 is formed on a positive electrode current collector 41, and two separators 60 and 70 that form part of an electrolyte layer (not shown). The negative electrode current collector 51 is laminated with a negative electrode 50 having a negative electrode active material layer 53 formed thereon. More specifically, one positive electrode active material layer 43 and one negative electrode active material layer 53 adjacent thereto are arranged so as to face each other with separators 60 and 70 therebetween. The positive electrode 40 and the negative electrode 50 are fixed to the separators 60 and 70 by a known adhesive used for batteries. For easy understanding, a spatial gap is illustrated between the constituent members, but this gap can be omitted as appropriate.

2枚のセパレータ60、70と、2枚のセパレータ60、70を挟み込むように積層させた正極活物質層43および負極活物質層53とによって、1つの単電池層30を構成させている。複数の単電池層30を電気的に接続させることによって、発電要素20を構成させている。   One unit cell layer 30 is configured by the two separators 60 and 70 and the positive electrode active material layer 43 and the negative electrode active material layer 53 laminated so as to sandwich the two separators 60 and 70 therebetween. The power generation element 20 is configured by electrically connecting the plurality of unit cell layers 30.

正極集電体41、および負極集電体51には、発電した電気を外部に取り出すための集電板80を取り付けている。集電板90の一端部が外部に導出するように外装体90によって集電板80を挟み込ませている。   The positive electrode current collector 41 and the negative electrode current collector 51 are provided with a current collector plate 80 for taking out the generated electricity to the outside. The current collector plate 80 is sandwiched by the exterior body 90 so that one end of the current collector plate 90 is led out to the outside.

次に、積層型電池の各構成部材について説明する。   Next, each component of the stacked battery will be described.

正極集電体41および負極集電体51としては、いずれも電池用の集電体材料として従来用いられている部材が適宜採用されうる。一例を挙げると、正極集電体および負極集電体としては、アルミニウム、ニッケル、鉄、ステンレス鋼(SUS)、チタン、または銅が挙げられる。中でも、電子伝導性、電池作動電位という観点からは、正極集電体としてはアルミニウムが好ましく、負極集電体としては銅が好ましい。   As the positive electrode current collector 41 and the negative electrode current collector 51, any member conventionally used as a current collector material for a battery can be appropriately employed. As an example, examples of the positive electrode current collector and the negative electrode current collector include aluminum, nickel, iron, stainless steel (SUS), titanium, and copper. Among these, from the viewpoints of electron conductivity and battery operating potential, aluminum is preferable as the positive electrode current collector, and copper is preferable as the negative electrode current collector.

正極活物質層43は、正極活物質を含み、必要に応じて電気伝導性を高めるための導電助剤、バインダ、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるための電解質支持塩(リチウム塩)などを含む。正極活物質は、たとえば、リチウムの吸蔵、放出が可能な材料であれば特に限定されず、リチウムイオン二次電池に通常用いられる正極活物質を利用することができる。正極活物質は、リチウム−遷移金属複合酸化物が好ましく、LiMnなどのLi−Mn系複合酸化物、LiNiOなどのLi−Ni系複合酸化物、LiCoOなどのLi−Co系複合酸化物、LiFePOなどのLi−Fe系複合酸化物が挙げられる。 The positive electrode active material layer 43 includes a positive electrode active material, and if necessary, a conductive additive, a binder, an electrolyte (polymer matrix, ion conductive polymer, electrolytic solution, etc.) for increasing electrical conductivity, and ion conductivity. Electrolyte support salt (lithium salt) and the like. The positive electrode active material is not particularly limited as long as it is a material that can occlude and release lithium, for example, and a positive electrode active material usually used in lithium ion secondary batteries can be used. The positive electrode active material is preferably a lithium-transition metal composite oxide, a Li—Mn composite oxide such as LiMn 2 O 4, a Li—Ni composite oxide such as LiNiO 2 , or a Li—Co composite such as LiCoO 2. Examples thereof include oxides and Li—Fe-based composite oxides such as LiFePO 4 .

負極活物質層53は、負極活物質を含み、必要に応じて電気伝導性を高めるための導電助剤、バインダ、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるための電解質支持塩(リチウム塩)などを含む。負極活物質は、たとえば、リチウムの吸蔵、放出が可能な材料であれば特に限定されず、リチウムイオン二次電池に通常用いられる負極活物質を利用することができる。負極活物質には、たとえば、SiやSnなどの金属、あるいはTiO、Ti、TiO、もしくはSiO、SiO、SnOなどの金属酸化物、Li4/3Ti5/3もしくはLiMnNなどのリチウムと遷移金属との複合酸化物、Li−Pb系合金、Li−Al系合金、Li、またはグラファイト、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、もしくはハードカーボンなどの炭素材料などが挙げられる。 The negative electrode active material layer 53 includes a negative electrode active material, and if necessary, a conductive additive, binder, electrolyte (polymer matrix, ion conductive polymer, electrolyte solution, etc.) for increasing electrical conductivity, and ion conductivity are increased. Electrolyte support salt (lithium salt) and the like. The negative electrode active material is not particularly limited as long as it is a material that can occlude and release lithium, for example, and a negative electrode active material usually used in lithium ion secondary batteries can be used. Examples of the negative electrode active material include metals such as Si and Sn, or metal oxides such as TiO, Ti 2 O 3 , TiO 2 , SiO 2 , SiO, and SnO 2 , Li 4/3 Ti 5/3 O 4. Or a composite oxide of lithium and transition metal such as Li 7 MnN, Li—Pb alloy, Li—Al alloy, Li, or graphite, carbon black, activated carbon, carbon fiber, coke, soft carbon, hard carbon, etc. And carbon materials.

電解質層は、正極活物質層43と負極活物質層53との間の空間的な隔壁(スペーサ)として機能する。また、これと併せて、充放電時における正極40、負極50間でのリチウムイオンの移動媒体である電解質を保持する機能をも有する。電解質層を構成する電解質に特に制限はなく、液体電解質、ならびに高分子ゲル電解質および高分子固体電解質などのポリマー電解質などを適宜用いることが可能である。   The electrolyte layer functions as a spatial partition (spacer) between the positive electrode active material layer 43 and the negative electrode active material layer 53. In addition, it also has a function of holding an electrolyte that is a lithium ion transfer medium between the positive electrode 40 and the negative electrode 50 during charge and discharge. There is no restriction | limiting in particular in the electrolyte which comprises an electrolyte layer, Polymer electrolytes, such as a liquid electrolyte, a polymer gel electrolyte, and a polymer solid electrolyte, can be used suitably.

セパレータには、電解質を吸収保持ないし担持するポリマーからなる多孔性シートセパレータを利用している。ポリエチレン(PE)を材料とする第1のセパレータ60と第2のセパレータ70の2つのセパレータを準備している。セパレータには、その他の多孔性シートセパレータや、不織布セパレータなどを用いることも可能である。多孔性シートセパレータとしては、たとえば、ポリプロピレンなどのポリオレフィン製微多孔膜、PP/PE/PPの3層構造をした積層体、ポリエチレンテレフタレート(PET)、ポリイミドなどが挙げられる。不織布セパレータの材質としては、たとえば、レーヨン、アセテート、ナイロン、ポリエステル、ポリプロピレンやポリエチレンなどのポリオレフィン、ポリイミド、またはアラミド樹脂など従来公知のものを用いることができる。   As the separator, a porous sheet separator made of a polymer that absorbs or holds an electrolyte is used. Two separators of a first separator 60 and a second separator 70 made of polyethylene (PE) are prepared. As the separator, other porous sheet separators, nonwoven fabric separators, and the like can be used. Examples of the porous sheet separator include a polyolefin microporous film such as polypropylene, a laminate having a three-layer structure of PP / PE / PP, polyethylene terephthalate (PET), and polyimide. As the material of the nonwoven fabric separator, for example, a conventionally known material such as rayon, acetate, nylon, polyester, polyolefin such as polypropylene or polyethylene, polyimide, or aramid resin can be used.

図5に示すように、各セパレータ60、70は、帯状に準備された素材としてのセパレータ材を複数回折り曲げて葛折り状に形成している。第1のセパレータ60は、正極40および負極50を積層させる平板部61と、正極40および負極50の移動方向を規制する縦壁状の第1の折り曲げ部63、第2の折り曲げ部65とを有している。第2のセパレータ70も第1のセパレータ60と同様に、正極40および負極50を積層させる平板部71と、正極40および負極50の移動方向を規制するための縦壁状の第1の折り曲げ部73、第2の折り曲げ部75とを有している。明細書の説明において、葛折り状とは、折り曲げられた折り曲げ部と、折り曲げ部に連なる平板部とが積層方向に繰り返されるように連続する形状を意味するものである。   As shown in FIG. 5, each separator 60, 70 is formed in a twisted shape by bending a plurality of separator materials as a material prepared in a strip shape. The first separator 60 includes a flat plate portion 61 on which the positive electrode 40 and the negative electrode 50 are laminated, a vertical wall-shaped first bent portion 63 and a second bent portion 65 that regulate the moving direction of the positive electrode 40 and the negative electrode 50. Have. Similarly to the first separator 60, the second separator 70 also has a flat plate portion 71 on which the positive electrode 40 and the negative electrode 50 are stacked, and a vertical wall-shaped first bent portion for regulating the moving direction of the positive electrode 40 and the negative electrode 50. 73 and a second bent portion 75. In the description of the specification, the twisted shape means a shape in which a bent portion and a flat plate portion connected to the bent portion are continuous in a stacking direction.

図3に示すように、隣接する正極40および負極50の間には、第1のセパレータ60と第2のセパレータ70の2枚のセパレータが積層されている。このため、電解液の浸透性や、ガスの排出性を考慮し、例えば、セパレータ60、70には通常のセパレータの半分程度の厚みを備えるものを準備することが好ましい。   As shown in FIG. 3, two separators, a first separator 60 and a second separator 70, are stacked between the adjacent positive electrode 40 and negative electrode 50. For this reason, in consideration of the permeability of the electrolytic solution and the gas discharge property, for example, it is preferable to prepare separators 60 and 70 having a thickness about half that of a normal separator.

集電体を葛折り状に加工すると、電極の粉落ちによって内部短絡が発生する虞がある。このため、折り返す部分を未塗工にするなどの対策を講じることが必要となり、発電に寄与しない無駄なスペースを形成させる虞がある。積層型電池10にあっては、正極活物質層43が形成された正極40、および負極活物質層53が形成された負極50には、矩形形状に形成された公知の形態のものを利用することが可能になっており、葛折り状に加工したものを準備する必要がない。正極40および負極50の製造時に粉落ち、および粉落ちに伴う内部短絡の発生という問題が生じる虞がなく、電極に未塗工部を形成する必要がない。よって、発電に寄与しない無駄なスペースが正極40および負極50に形成されることがない。   If the current collector is processed in a twisted shape, an internal short circuit may occur due to powder falling off of the electrode. For this reason, it is necessary to take measures such as uncoating the folded portion, and there is a risk of forming a useless space that does not contribute to power generation. In the stacked battery 10, a known type formed in a rectangular shape is used for the positive electrode 40 on which the positive electrode active material layer 43 is formed and the negative electrode 50 on which the negative electrode active material layer 53 is formed. It is possible to do this, and there is no need to prepare a twisted one. There is no risk of powder falling during the production of the positive electrode 40 and the negative electrode 50 and the occurrence of an internal short circuit due to powder falling, and there is no need to form an uncoated portion on the electrode. Therefore, a useless space that does not contribute to power generation is not formed in the positive electrode 40 and the negative electrode 50.

セパレータ60、70には、葛折り状に予め製造されたものを準備することが可能であるし、製造後に葛折り状に加工されたものを準備することも可能である。   The separators 60 and 70 can be prepared in a twisted shape in advance, or can be prepared in a twisted shape after manufacturing.

集電板80には、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス、これらの合金などの高導電性部材を利用することが可能である。   For the current collector plate 80, for example, a highly conductive member such as aluminum, copper, titanium, nickel, stainless steel, or an alloy thereof can be used.

外装体90は、軽量化および熱伝導性の観点から、アルミニウム、ステンレス、ニッケル、銅などの金属(合金を含む)をポリプロピレンフィルム等の絶縁体で被覆した高分子−金属複合ラミネートフィルムなどのシート材によって構成したものを利用できる。シート材の外周部の一部を熱融着により接合することによって外装体90を封止し、外装体90の内部に発電要素20を収納させている。   The exterior body 90 is a sheet such as a polymer-metal composite laminate film in which a metal (including an alloy) such as aluminum, stainless steel, nickel, or copper is covered with an insulator such as a polypropylene film from the viewpoint of weight reduction and thermal conductivity. A material made of materials can be used. The exterior body 90 is sealed by joining a part of the outer periphery of the sheet material by thermal fusion, and the power generation element 20 is accommodated inside the exterior body 90.

次に、実施形態に係る積層型電池の積層形態について説明する。   Next, a stacked form of the stacked battery according to the embodiment will be described.

図2〜5に示すように、各セパレータ60、70は、積層させた正極40および負極50の間において互いに平板部61、71が重なり合うように積層されている。また、第1のセパレータ60の平板部61が第1の折り曲げ部63および第2の折り曲げ部65に伸びる方向(図5中矢印a−a′方向)と、第2のセパレータ70の平板部71が第1の折り曲げ部73および第2の折り曲げ部75に伸びる方向(図5中矢印b−b′方向)とが、積層方向(図5中矢印A方向)から見て互いに直交するようにセパレータを配置させている。より詳細には、第2のセパレータ70の第1の折り曲げ部73が第1のセパレータ60の隣接する平板部61の間に位置するようにセパレータ60、70同士を重ね合わせて積層している(図4を参照)。   As shown in FIGS. 2 to 5, the separators 60 and 70 are stacked such that the flat plate portions 61 and 71 overlap each other between the stacked positive electrode 40 and negative electrode 50. In addition, the direction in which the flat plate portion 61 of the first separator 60 extends to the first bent portion 63 and the second bent portion 65 (the direction of the arrow aa ′ in FIG. 5), and the flat plate portion 71 of the second separator 70. The separator extends so that the direction (arrow bb ′ direction in FIG. 5) extending to the first bent portion 73 and the second bent portion 75 is orthogonal to each other when viewed from the stacking direction (arrow A direction in FIG. 5). Is placed. More specifically, the separators 60 and 70 are stacked and laminated so that the first bent portion 73 of the second separator 70 is positioned between the adjacent flat plate portions 61 of the first separator 60 ( (See FIG. 4).

図6(A)に示すように、第1のセパレータ60の第1の折り曲げ部63と第2のセパレータ70の第1の折り曲げ部73とは、互いが向かい合わないように、かつ、それぞれの第1の折り曲げ部63、73によって正極40の隣接する2辺が囲まれるように配置している。積層させた正極40は、第1のセパレータ60の第1の折り曲げ部63によって図中右方向への移動が規制されることになる。さらに、正極40は第2のセパレータ70の第1の折り曲げ部73によって図中下方向への移動が規制されることになる。   As shown in FIG. 6 (A), the first bent portion 63 of the first separator 60 and the first bent portion 73 of the second separator 70 do not face each other and each It arrange | positions so that two adjacent sides of the positive electrode 40 may be enclosed by the one bending parts 63 and 73. FIG. The stacked positive electrode 40 is restricted from moving in the right direction in the drawing by the first bent portion 63 of the first separator 60. Further, the movement of the positive electrode 40 in the downward direction in the figure is restricted by the first bent portion 73 of the second separator 70.

図6(B)に示すように、第1のセパレータ60の第2の折り曲げ部65と第2のセパレータ70の第2の折り曲げ部75とは、互いが重なり合わないように、かつ、それぞれの第2の折り曲げ部65、75によって負極50の隣接する2辺が囲まれるように配置している。積層させた負極50は、第1のセパレータ60の第2の折り曲げ部65によって図中左方向への移動が規制されることになる。さらに、負極50は第2のセパレータ70の第2の折り曲げ部75によって図中上方向への移動が規制されることになる。   As shown in FIG. 6B, the second bent portion 65 of the first separator 60 and the second bent portion 75 of the second separator 70 are arranged so that they do not overlap each other. The second bent portions 65 and 75 are arranged so that two adjacent sides of the negative electrode 50 are surrounded. The laminated negative electrode 50 is restricted from moving leftward in the figure by the second bent portion 65 of the first separator 60. Further, the movement of the negative electrode 50 in the upward direction in the figure is restricted by the second bent portion 75 of the second separator 70.

このように、実施形態に係る積層型電池10によれば、葛折り状に形成した2つのセパレータ60、70を互いに直交する方向に重ね合わせて積層することによって、正極40および負極50の移動方向を規制して正極40および負極50が互いに接近する方向へ移動することを防止することができる。これにより、正極40および負極50に位置ずれが生じた場合においても、位置ずれに伴う正極40および負極50の接触を防止して内部短絡が発生することを好適に防止することができる。   Thus, according to the multilayer battery 10 according to the embodiment, the moving directions of the positive electrode 40 and the negative electrode 50 are obtained by stacking the two separators 60 and 70 formed in a twisted manner in a direction orthogonal to each other. It is possible to prevent the positive electrode 40 and the negative electrode 50 from moving toward each other. As a result, even when the positive electrode 40 and the negative electrode 50 are misaligned, it is possible to prevent the occurrence of an internal short circuit by preventing contact between the positive electrode 40 and the negative electrode 50 due to the misalignment.

また、第1のセパレータ60の平板部61および第2のセパレータ70の平板部71において正極40、負極50をそれぞれ安定的に保持させつつ正極40および負極50の移動方向の規制を行うことができる。   Further, the movement direction of the positive electrode 40 and the negative electrode 50 can be regulated while stably holding the positive electrode 40 and the negative electrode 50 in the flat plate portion 61 of the first separator 60 and the flat plate portion 71 of the second separator 70. .

ここで、例えば、袋状に加工されたセパレータ内に電極板を収納し、これを複数回折り畳んだ構造とすることによって、電極板自体が位置ずれすることを防止することが可能になるとも考えられる。しかしながら、袋状に加工したセパレータ内に電極板を収納させる作業や、セパレータとともに電極板を折り畳む作業が必要になるため、製造作業が煩雑なものとなる。積層型電池10にあっては、正極40、負極50、および葛折状に形成した2枚のセパレータ60、70を重ね合わせて積層させる簡単な作業によって内部短絡の発生が防止されるため、内部短絡の防止対策に伴う製造作業の煩雑化を抑制することができる。   Here, for example, it is considered that the electrode plate itself can be prevented from being displaced by storing the electrode plate in a bag-shaped separator and folding the electrode plate a plurality of times. It is done. However, since the operation | work which accommodates an electrode plate in the separator processed into the bag shape and the operation | work which folds an electrode plate with a separator are needed, a manufacture operation becomes complicated. In the laminated battery 10, since the occurrence of an internal short circuit is prevented by a simple operation in which the positive electrode 40, the negative electrode 50, and the two separators 60 and 70 formed in a twisted manner are stacked and stacked, The complication of the manufacturing work associated with the short-circuit prevention measures can be suppressed.

(変形例)
次に、上述した実施形態の変形例について説明する。説明中において上述した実施形態と同一の部材には同一の符号を付し、その説明を一部省略する。
(Modification)
Next, a modification of the above-described embodiment will be described. In the description, the same members as those in the above-described embodiment are denoted by the same reference numerals, and a part of the description is omitted.

図7〜9に示すように、変形例にあっては、第1のセパレータ60の隣接する平板部61の間に、第2のセパレータ70の平板部71と、正極40または負極50とが位置するように第1のセパレータ60と第2のセパレータ70とを積層している。また、上述した実施形態と同様に、各セパレータ60、70は、積層させた正極40および負極50の間において互いに平板部61、71が重なり合うように積層させている。そして、第1のセパレータ60の平板部61が第1の折り曲げ部63および第2の折り曲げ部65に伸びる方向と、第2のセパレータ70の平板部71が第1の折り曲げ部73および第2の折り曲げ部75に伸びる方向とが、積層方向から見て互いに直交するようにセパレータ60、70を配置している。   As shown in FIGS. 7 to 9, in the modification, the flat plate portion 71 of the second separator 70 and the positive electrode 40 or the negative electrode 50 are positioned between the adjacent flat plate portions 61 of the first separator 60. Thus, the first separator 60 and the second separator 70 are laminated. Similarly to the above-described embodiment, the separators 60 and 70 are laminated so that the flat plate portions 61 and 71 overlap each other between the laminated positive electrode 40 and negative electrode 50. The flat plate portion 61 of the first separator 60 extends in the first bent portion 63 and the second bent portion 65, and the flat plate portion 71 of the second separator 70 is connected to the first bent portion 73 and the second bent portion 73. The separators 60 and 70 are arranged so that the direction extending to the bent portion 75 is orthogonal to each other when viewed from the stacking direction.

変形例に示す積層形態を採用することにより、上述した実施形態と同様に積層した2つのセパレータ60、70によって正極40および負極50の移動方向を規制し、正極40および負極50が互いに接近する方向へ移動することを防止することができる。これにより、正極40および負極50の位置ずれに伴う内部短絡の発生を好適に防止することができる。   By adopting the laminated form shown in the modification, the moving direction of the positive electrode 40 and the negative electrode 50 is regulated by the two separators 60 and 70 laminated in the same manner as in the above-described embodiment, and the positive electrode 40 and the negative electrode 50 approach each other. Can be prevented. Thereby, generation | occurrence | production of the internal short circuit accompanying the position shift of the positive electrode 40 and the negative electrode 50 can be prevented suitably.

セパレータを折り返す回数や、セパレータを折り曲げる角度等は、適宜変更することが可能であり、実施形態に示したものに特に限定されるものではない。例えば、折り曲げ部が平板部に対して直角に折り曲げられた葛折り状のセパレータなどを利用することが可能である。   The number of times the separator is folded, the angle at which the separator is folded, and the like can be changed as appropriate, and are not particularly limited to those shown in the embodiment. For example, it is possible to use a folded separator in which the bent portion is bent at a right angle with respect to the flat plate portion.

10 積層型電池、
20 発電要素、
30 単電池層、
40 正極、
41 正極集電体、
43 正極活物質層、
50 負極、
51 負極集電体、
53 負極活物質層、
60 第1のセパレータ、
61 平板部、
63 第1の折り曲げ部(折り曲げ部)、
65 第2の折り曲げ部(折り曲げ部)、
70 第2のセパレータ、
71 平板部、
73 第1の折り曲げ部(折り曲げ部)、
75 第2の折り曲げ部(折り曲げ部)、
80 集電板、
90 外装体。
10 stacked battery,
20 power generation elements,
30 cell layer,
40 positive electrode,
41 positive electrode current collector,
43 positive electrode active material layer,
50 negative electrode,
51 negative electrode current collector,
53 negative electrode active material layer,
60 first separator,
61 flat plate part,
63 1st bending part (bending part),
65 2nd bending part (bending part),
70 second separator,
71 flat plate part,
73 1st bending part (bending part),
75 2nd bending part (bending part),
80 current collector,
90 exterior body.

Claims (3)

葛折り状に形成された第1と第2のセパレータが、正極と負極との間で互いが重なるように積層され、かつ、前記第1と第2のセパレータが積層方向から見て互いに直交して配置されたことを特徴とする積層型電池。   The first and second separators formed in a twisted manner are stacked so as to overlap each other between the positive electrode and the negative electrode, and the first and second separators are orthogonal to each other when viewed from the stacking direction. A laminated battery characterized by being arranged. 前記葛折り状は、帯状のセパレータ材が折り曲げられた折り曲げ部と前記折り曲げ部に連なる平板部とが繰り返された形状を有し、
前記第1のセパレータの平板部と前記第2のセパレータの平板部とが互いに重なるように積層され、かつ、前記第1のセパレータの平板部が前記第1のセパレータの折り曲げ部に伸びる方向と前記第2のセパレータの平板部が前記第2のセパレータの折り曲げ部に伸びる方向とが積層方向から見て互いに直交するように配置されたことを特徴とする請求項1に記載の積層型電池。
The twisted shape has a shape in which a bent portion obtained by bending a strip-shaped separator material and a flat plate portion connected to the bent portion are repeated,
The flat plate portion of the first separator and the flat plate portion of the second separator are laminated so as to overlap each other, and the flat plate portion of the first separator extends in the bent portion of the first separator, and 2. The stacked battery according to claim 1, wherein the flat plate portion of the second separator is disposed so that a direction in which the flat plate portion of the second separator extends to the bent portion of the second separator is orthogonal to each other when viewed from the stacking direction.
葛折り状に形成された第1と第2のセパレータを、それぞれが正極と負極の間で互いに重なるように、かつ、積層方向から見て互いに直交するように積層する工程を含む積層型電池の製造方法。   A multilayer battery comprising a step of laminating first and second separators formed in a twisted manner so as to overlap each other between a positive electrode and a negative electrode and so as to be orthogonal to each other when viewed from the laminating direction. Production method.
JP2010212747A 2010-09-22 2010-09-22 Multilayer battery and method of manufacturing multilayer battery Expired - Fee Related JP5664068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010212747A JP5664068B2 (en) 2010-09-22 2010-09-22 Multilayer battery and method of manufacturing multilayer battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010212747A JP5664068B2 (en) 2010-09-22 2010-09-22 Multilayer battery and method of manufacturing multilayer battery

Publications (2)

Publication Number Publication Date
JP2012069360A true JP2012069360A (en) 2012-04-05
JP5664068B2 JP5664068B2 (en) 2015-02-04

Family

ID=46166371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010212747A Expired - Fee Related JP5664068B2 (en) 2010-09-22 2010-09-22 Multilayer battery and method of manufacturing multilayer battery

Country Status (1)

Country Link
JP (1) JP5664068B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038711A (en) * 2012-08-10 2014-02-27 Toyota Industries Corp Power storage device
JP2016511522A (en) * 2013-03-14 2016-04-14 シオン・パワー・コーポレーション Electrochemical cell having folded electrodes and separator, battery comprising the cell, and method of forming the same
JP2021022421A (en) * 2019-07-24 2021-02-18 Tdk株式会社 Nonaqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4320754B1 (en) * 1963-07-17 1968-09-05 Accumulateurs Fixes Improvements in or relating to the production of electrical cells
JPS5055842A (en) * 1973-09-18 1975-05-16
JPH0917441A (en) * 1995-06-27 1997-01-17 Sanyo Electric Co Ltd Square battery having folded electrode plate therein
JPH1140202A (en) * 1997-07-23 1999-02-12 Samsung Display Devices Co Ltd Manufacture of electrode plate assembly of battery and the electrode plate assembly manufactured by the same
JP2009218105A (en) * 2008-03-11 2009-09-24 Nec Tokin Corp Stacked battery and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4320754B1 (en) * 1963-07-17 1968-09-05 Accumulateurs Fixes Improvements in or relating to the production of electrical cells
JPS5055842A (en) * 1973-09-18 1975-05-16
JPH0917441A (en) * 1995-06-27 1997-01-17 Sanyo Electric Co Ltd Square battery having folded electrode plate therein
JPH1140202A (en) * 1997-07-23 1999-02-12 Samsung Display Devices Co Ltd Manufacture of electrode plate assembly of battery and the electrode plate assembly manufactured by the same
JP2009218105A (en) * 2008-03-11 2009-09-24 Nec Tokin Corp Stacked battery and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038711A (en) * 2012-08-10 2014-02-27 Toyota Industries Corp Power storage device
JP2016511522A (en) * 2013-03-14 2016-04-14 シオン・パワー・コーポレーション Electrochemical cell having folded electrodes and separator, battery comprising the cell, and method of forming the same
JP2019145514A (en) * 2013-03-14 2019-08-29 シオン・パワー・コーポレーション Electrochemical cell including folded electrode and separator, battery including the cell, and method of forming them
JP2021022421A (en) * 2019-07-24 2021-02-18 Tdk株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5664068B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
JP6315269B2 (en) Sealed battery module and manufacturing method thereof
US20130029201A1 (en) Cell module
JP6757499B2 (en) Rechargeable battery
JP4852882B2 (en) Secondary battery and method for manufacturing secondary battery
KR101487092B1 (en) Pouch for secondary battery and secondary battery using the same
KR101821488B1 (en) Battery
US10468638B2 (en) Method for forming a pouch for a secondary battery
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP2012069283A (en) Method for manufacturing stacked cell and stacked cell separator
KR101484369B1 (en) Secondary battery and electrochemical cell having the same
JP3711962B2 (en) Thin battery
JP5664068B2 (en) Multilayer battery and method of manufacturing multilayer battery
JP6619594B2 (en) Lithium ion secondary battery and manufacturing method thereof
CN113711406A (en) Secondary battery
JP2014032937A (en) Laminated cell
JP2005129393A (en) Secondary battery
JP5526514B2 (en) Bipolar battery and battery pack using the same
JP7194334B2 (en) Laminated secondary battery and assembled battery comprising said secondary battery
JP5119615B2 (en) Secondary battery and assembled battery
JP2022110189A (en) Power storage element
JP2007048668A (en) Battery and battery pack
JP2014044920A (en) Flat battery
CN108701867B (en) Laminated nonaqueous electrolyte secondary battery
JP6726398B2 (en) Storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

LAPS Cancellation because of no payment of annual fees