Nothing Special   »   [go: up one dir, main page]

JP2012066809A - Tire - Google Patents

Tire Download PDF

Info

Publication number
JP2012066809A
JP2012066809A JP2011183311A JP2011183311A JP2012066809A JP 2012066809 A JP2012066809 A JP 2012066809A JP 2011183311 A JP2011183311 A JP 2011183311A JP 2011183311 A JP2011183311 A JP 2011183311A JP 2012066809 A JP2012066809 A JP 2012066809A
Authority
JP
Japan
Prior art keywords
tire
thermoplastic elastomer
resin material
resin
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011183311A
Other languages
Japanese (ja)
Other versions
JP5818577B2 (en
Inventor
Munenori Iizuka
宗紀 飯塚
Takayuki Yako
貴之 八子
Yoshihide Kono
好秀 河野
Chikashi Kon
誓志 今
Keiichi Hasegawa
圭一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2011183311A priority Critical patent/JP5818577B2/en
Priority to US13/818,531 priority patent/US9415636B2/en
Priority to CN201180051358.1A priority patent/CN103189215B/en
Publication of JP2012066809A publication Critical patent/JP2012066809A/en
Application granted granted Critical
Publication of JP5818577B2 publication Critical patent/JP5818577B2/en
Priority to US15/189,071 priority patent/US20160303905A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tire which is made of a thermoplastic polymeric material, has high elasticity and a low loss factor, and is superior in heat resistance.SOLUTION: The tire 10 has an annular tire case 17 made of a polyamide-based thermoplastic resin and a resin material containing a resin whose glass transition temperature (Tg) is higher than that of the polyamide. The glass transition temperature of the resin is 20°C or more higher than that of a hard segment of the thermoplastic elastomer. A mass ratio (x+y: z) between a total mass (x+y) of the hard segment (x) of the thermoplastic elastomer and the resin (y) and a mass of a soft segment (z) of the thermoplastic elastomer is 10:90 to 90:10.

Description

本発明は、リムに装着されるタイヤにかかり、特に、少なくとも一部が熱可塑性材料で形成されたタイヤに関する。   The present invention relates to a tire mounted on a rim, and particularly relates to a tire formed at least partially from a thermoplastic material.

従来、乗用車等の車両には、ゴム、有機繊維材料、スチール部材などから構成された空気入りタイヤが用いられている。
近年では、軽量化や、成形の容易さ、リサイクルのしやすさから、樹脂材料、特に熱可塑性樹脂や熱可塑性エラストマーなどをタイヤ材料として用いることが検討されている。
例えば、特許文献1および特許文献2には、熱可塑性の高分子材料を用いて成形された空気入りタイヤが開示されている。
Conventionally, pneumatic tires made of rubber, organic fiber materials, steel members, and the like are used in vehicles such as passenger cars.
In recent years, from the viewpoint of weight reduction, ease of molding, and ease of recycling, the use of resin materials, particularly thermoplastic resins and thermoplastic elastomers, as tire materials has been studied.
For example, Patent Literature 1 and Patent Literature 2 disclose pneumatic tires molded using a thermoplastic polymer material.

特開2003−104008号公報JP 2003-104008 A 特開平03−143701号公報Japanese Patent Laid-Open No. 03-143701

熱可塑性の高分子材料を用いたタイヤは、ゴム製の従来タイヤと比べて、製造が容易で且つ低コストである。また、近来、使用済みタイヤのリサイクルに対する要求も多い。しかし、従来のゴム製タイヤはリサイクルが難しく、焼却したり、破砕して道路の舗装材料に用いる等そのリサイクル用途が制限されている。これに対し、熱可塑性の高分子材料を用いたタイヤは、リサイクルという観点においても、用途の自由度が高いといった利点がある。   A tire using a thermoplastic polymer material is easier to manufacture and lower in cost than a conventional rubber tire. Recently, there are many requests for recycling of used tires. However, conventional rubber tires are difficult to recycle, and their recycling uses are limited, such as incineration or crushing to use as road pavement materials. On the other hand, a tire using a thermoplastic polymer material has an advantage that the degree of freedom of use is high from the viewpoint of recycling.

また、熱可塑性の高分子材料を用いてタイヤを製造する場合、製造効率を高め低コストを実現しつつ従来のゴム製タイヤと比して遜色のない性能(タイヤの要求特性)を実現することが求められる。前記タイヤの要求特性としては、例えば、一定範囲内の弾性率を有していること、30℃,20Hz,せん断歪み1%における力学的損失係数(転がり係数:Tanδ(以下、単に「Tanδ」と称することがある。)が低いこと、および、耐熱性に優れること等のそれぞれが重要な特性の一つとなる。しかし、高分子材料において低Tanδ化と高弾性率化とは通常二者背反の関係にある。このため、これら特性を高いレベルで両立できるタイヤの開発が望まれている。   In addition, when manufacturing tires using thermoplastic polymer materials, to achieve performance (required characteristics of tires) comparable to conventional rubber tires while increasing manufacturing efficiency and lowering costs. Is required. As the required characteristics of the tire, for example, it has an elastic modulus within a certain range, a mechanical loss coefficient at 30 ° C., 20 Hz, and a shear strain of 1% (rolling coefficient: Tan δ (hereinafter simply referred to as “Tan δ”). The low tan δ and the high modulus of elasticity are usually incompatible with each other in the polymer material. For this reason, development of tires that can achieve both of these characteristics at a high level is desired.

本発明は、前記問題を解決すべく成されたもので、熱可塑性高分子材料を用いて形成され、高弾性で且つ損失係数が低く、更に、耐熱性に優れたタイヤを提供することが目的である。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a tire formed using a thermoplastic polymer material, having high elasticity, a low loss factor, and excellent heat resistance. It is.

(1) 本発明のタイヤは、少なくとも樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、前記樹脂材料が、分子中にハードセグメントおよびソフトセグメントを有する熱可塑性エラストマーと、ガラス転移温度が前記ハードセグメントのガラス転移温度よりも高い樹脂と、を含む。 (1) The tire of the present invention is a tire formed of at least a resin material and having an annular tire skeleton, wherein the resin material includes a thermoplastic elastomer having a hard segment and a soft segment in a molecule, and a glass transition. And a resin having a temperature higher than the glass transition temperature of the hard segment.

本発明のタイヤは、分子中にハードセグメントおよびソフトセグメントを有する熱可塑性エラストマーと、ガラス転移温度(Tg)が前記ハードセグメントのガラス転移温度よりも高い樹脂(以下、「特定樹脂」称する場合がある。)と、を含む樹脂材料で形成された環状のタイヤ骨格体を有する。本発明のタイヤは、タイヤ骨格体が前記樹脂材料で形成されているため、従来のゴム製タイヤで必須工程であった加硫工程を必須とせず、例えば、射出成形等でタイヤ骨格体を成形することができる。このため、製造工程の簡素化、時間短縮およびコストダウンなどを図ることができる。更に、樹脂材料をタイヤ骨格体に用いると、従来のゴム製タイヤに比してタイヤの構造を簡素化でき、結果タイヤの軽量化を実現することが可能となる。このため、タイヤ骨格体として形成した場合にタイヤの耐摩耗性、耐久性を向上させることができる。   The tire of the present invention may be referred to as a thermoplastic elastomer having a hard segment and a soft segment in the molecule, and a resin having a glass transition temperature (Tg) higher than the glass transition temperature of the hard segment (hereinafter referred to as “specific resin”). And an annular tire skeleton formed of a resin material. In the tire of the present invention, since the tire frame is formed of the resin material, the vulcanization process that is an essential process in the conventional rubber tire is not essential. For example, the tire frame is molded by injection molding or the like. can do. For this reason, simplification of a manufacturing process, time reduction, cost reduction, etc. can be achieved. Further, when the resin material is used for the tire frame body, the structure of the tire can be simplified as compared with the conventional rubber tire, and as a result, the weight of the tire can be reduced. For this reason, when formed as a tire skeleton, the wear resistance and durability of the tire can be improved.

前記「熱可塑性エラストマー」とは、結晶性で融点の高いハードセグメント若しくは高い凝集力のハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料を意味する。
熱可塑性エラストマーの弾性率(例えば、JIS K7113:1995に規定される引張弾性率(以下、特に特定しない限り本明細書で「弾性率」とは引張弾性率を意味する。)を向上させるためにはエラストマー中のハードセグメントの含有率を高めることが考えられる。しかし、熱可塑性エラストマーの弾性率を向上させるためにハードセグメントの含有率を高めると、これに伴って熱可塑性エラストマーの損失係数(Tanδ)も高くなってしまう。
また、タイヤ骨格体の耐熱性(荷重たわみや弾性率の温度依存性等)を向上させるためには、ガラス転移温度の高い熱可塑性エラストマーや高弾性率の熱可塑性エラストマーを用いることが考えられる。しかし、上述のようにこれら熱可塑性エラストマーはTanδも高くなってしまう。
The “thermoplastic elastomer” is a copolymer having a crystalline polymer having a high melting point or a hard cohesive polymer and an amorphous polymer having a low glass transition temperature. Means a thermoplastic resin material.
In order to improve the elastic modulus of the thermoplastic elastomer (for example, the tensile elastic modulus defined in JIS K7113: 1995 (hereinafter, unless otherwise specified, “elastic modulus” means the tensile elastic modulus). However, if the hard segment content is increased in order to improve the elastic modulus of the thermoplastic elastomer, the loss factor (Tanδ) of the thermoplastic elastomer is increased accordingly. ) Will also be high.
In order to improve the heat resistance of the tire frame (such as load deflection and temperature dependency of elastic modulus), it is conceivable to use a thermoplastic elastomer having a high glass transition temperature or a thermoplastic elastomer having a high elastic modulus. However, as described above, these thermoplastic elastomers also have high Tan δ.

本発明のタイヤは、前記タイヤ骨格体を形成する樹脂材料が、熱可塑性エラストマーに加えて、ガラス転移温度(Tg)が前記ハードセグメントよりも高い特定樹脂、を含む。このため、前記熱可塑性エラストマーを単体で用いた場合に比して、タイヤ骨格体のTanδを低く維持したまま高弾性率化を達成することができる。これにより、転がり抵抗が低く、弾性率の高いタイヤを提供することができる。また、タイヤ骨格体のTanδを低く維持したまま弾性率を高くできるため、タイヤ骨格体の耐熱性も向上させることができる。   In the tire of the present invention, the resin material forming the tire frame includes a specific resin having a glass transition temperature (Tg) higher than that of the hard segment in addition to the thermoplastic elastomer. For this reason, compared with the case where the said thermoplastic elastomer is used alone, high elastic modulus can be achieved while maintaining Tanδ of the tire frame body low. As a result, a tire having a low rolling resistance and a high elastic modulus can be provided. In addition, since the elastic modulus can be increased while maintaining Tan δ of the tire frame body low, the heat resistance of the tire frame body can also be improved.

(2)本発明のタイヤは、前記樹脂として、前記熱可塑性エラストマーのハードセグメントのガラス転移温度よりも20℃以上高いものを用いることができる。本発明のタイヤは、前記熱可塑性エラストマーのハードセグメントと前記樹脂とのガラス転移温度の差20℃以上とすることで、弾性率向上の効果を十分に発揮することができる。
前記ハードセグメントがガラス転移温度(Tg)と前記特定樹脂のガラス転移温度(Tg)との差(Tg−Tg)は、20〜200℃が好ましく、30〜80℃が更に好ましい。
(2) In the tire of the present invention, a resin having a temperature 20 ° C. or more higher than the glass transition temperature of the hard segment of the thermoplastic elastomer can be used as the resin. The tire of this invention can fully exhibit the effect of an elastic modulus improvement by making the difference of the glass transition temperature of the hard segment of the said thermoplastic elastomer and the said resin into 20 degreeC or more.
The difference (Tg 1 -Tg 2 ) between the glass transition temperature (Tg 1 ) of the hard segment and the glass transition temperature (Tg 2 ) of the specific resin is preferably 20 to 200 ° C, more preferably 30 to 80 ° C.

(3)本発明のタイヤは、前記熱可塑性エラストマーのハードセグメント(x)と前記樹脂(y)との総量(x+y)に対する前記熱可塑性エラストマーのソフトセグメント(z)との質量比(x+y:z)を、10:90〜90:10とすることができる。
前記質量比(x+y:z)が10:90〜90:10の範囲内にあると、前記タイヤ骨格体のTanδを低く維持したまま、弾性率を向上させるという効果を十分に発揮することができる。
前記質量比(x+y:z)は、40:60〜80:20が好ましい。
(3) In the tire of the present invention, the mass ratio (x + y: z) of the thermoplastic elastomer soft segment (z) to the total amount (x + y) of the thermoplastic elastomer hard segment (x) and the resin (y). ) Can be 10:90 to 90:10.
When the mass ratio (x + y: z) is in the range of 10:90 to 90:10, the effect of improving the elastic modulus can be sufficiently exhibited while maintaining Tan δ of the tire frame body low. .
The mass ratio (x + y: z) is preferably 40:60 to 80:20.

(4)本発明のタイヤは、前記熱可塑性エラストマーが、ポリアミド系熱可塑性エラストマーおよびポリエステル系エラストマーから選ばれる少なくとも1種であるように構成することができる。 (4) The tire of the present invention can be configured so that the thermoplastic elastomer is at least one selected from polyamide-based thermoplastic elastomers and polyester-based elastomers.

(5) 本発明のタイヤは、前記樹脂が、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリカーボネートおよびポリアリレートから選ばれる少なくとも1種であるように構成することができる。 (5) In the tire of the present invention, the resin is at least one selected from polyphenylene ether, polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polycarbonate, and polyarylate. It can be configured to be.

また、前記熱可塑性エラストマーと前記樹脂との組合せとしては、ポリアミド系エラストマーとポリフェニレンエーテルとの組合せ、ポリアミド系熱可塑性エラストマーとポリフェニレンエーテルとの組み合わせ;ポリアミド系熱可塑性エラストマーとポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリカーボネート、ポリアリレートまたはポリスチレンのいずれかとの組み合わせ;および、ポリエステル系熱可塑性エラストマーとポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリカーボネート、ポリアリレートのいずれかとの組み合わせ、から選ばれる少なくとも1種が好ましい。   Further, the combination of the thermoplastic elastomer and the resin includes a combination of a polyamide elastomer and polyphenylene ether, a combination of a polyamide thermoplastic elastomer and polyphenylene ether; a polyamide thermoplastic elastomer and polyphenylene sulfide, polyethylene terephthalate, poly Butylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, a combination of polycarbonate, polyarylate or polystyrene; and polyester-based thermoplastic elastomer and polyphenylene ether, polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, Polyethylene naphthalate, polybutylene naphthalate , Polytrimethylene terephthalate, polycarbonate, a combination of any of the polyarylate, at least one selected from the preferred.

以上説明したように、本発明のタイヤは、高弾性で且つ損失係数が低く、更に、耐熱性に優れる。   As described above, the tire of the present invention has high elasticity, a low loss factor, and excellent heat resistance.

各材料におけるガラス転移温度と損失係数(Tanδ)との関係を示す説明図である。It is explanatory drawing which shows the relationship between the glass transition temperature and loss factor (Tanδ) in each material. (A)は本発明の一実施形態に係るタイヤの一部の断面を示す斜視図であり、(B)は、リムに装着したビード部の断面図である。(A) is a perspective view showing a section of a part of a tire concerning one embodiment of the present invention, and (B) is a sectional view of a bead part attached to a rim. 第1実施形態のタイヤのタイヤケースのクラウン部に補強コードが埋設された状態を示すタイヤ回転軸に沿った断面図である。It is sectional drawing along the tire rotating shaft which shows the state by which the reinforcement cord was embed | buried under the crown part of the tire case of the tire of 1st Embodiment. コード加熱装置、およびローラ類を用いてタイヤケースのクラウン部に補強コードを埋設する動作を説明するための説明図である。It is explanatory drawing for demonstrating the operation | movement which embeds a reinforcement cord in the crown part of a tire case using a cord heating apparatus and rollers. 他の実施形態に係るタイヤの断面図である。It is sectional drawing of the tire which concerns on other embodiment. (A)は本発明の一実施形態に係るタイヤのタイヤ幅方向に沿った断面図である。(B)はタイヤにリムを嵌合させた状態のビード部のタイヤ幅方向に沿った断面の拡大図である。(A) is sectional drawing along the tire width direction of the tire which concerns on one Embodiment of this invention. (B) is an enlarged view of a cross section along a tire width direction of a bead portion in a state where a rim is fitted to a tire. 第2実施形態のタイヤの補強層の周囲を示すタイヤ幅方向に沿った断面図である。It is sectional drawing along the tire width direction which shows the circumference | surroundings of the reinforcement layer of the tire of 2nd Embodiment.

以下、本発明におけるタイヤ骨格体を構成する樹脂材料について説明し、続いて本発明のタイヤの具体的な実施形態について図を用いて説明する。   Hereinafter, the resin material which comprises the tire frame body in this invention is demonstrated, and the specific embodiment of the tire of this invention is described using figures next.

[樹脂材料]
本発明のタイヤは、少なくとも樹脂材料で形成され且つ環状のタイヤ骨格体を有し、前記樹脂材料が、分子中にハードセグメントおよびソフトセグメントを有する熱可塑性エラストマーと、ガラス転移温度(Tg)が前記ハードセグメントのガラス転移温度よりも高い樹脂と、を含む。
[Resin material]
The tire of the present invention is formed of at least a resin material and has an annular tire skeleton, wherein the resin material has a thermoplastic elastomer having a hard segment and a soft segment in a molecule, and a glass transition temperature (Tg) of the tire. And a resin having a glass transition temperature higher than that of the hard segment.

ここで、本明細書において「樹脂」とは、熱可塑性樹脂(熱可塑性エラストマーを含む)および熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。
前記熱硬化性樹脂としては、例えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリエステル系樹脂等が挙げられる。
前記熱可塑性樹脂としては、例えば、ウレタン樹脂、オレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂、ポリエステル系樹脂等が挙げられる。
また、「熱可塑性エラストマー」とは、結晶性で融点の高いハードセグメント若しくは高い凝集力のハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料を意味する。
Here, in this specification, “resin” is a concept including a thermoplastic resin (including a thermoplastic elastomer) and a thermosetting resin, and does not include vulcanized rubber.
Examples of the thermosetting resin include phenol resin, urea resin, melamine resin, epoxy resin, polyamide resin, polyester resin, and the like.
Examples of the thermoplastic resin include urethane resin, olefin resin, vinyl chloride resin, polyamide resin, and polyester resin.
“Thermoplastic elastomer” is a co-polymer having a polymer that forms a crystalline hard segment with a high melting point or a cohesive hard segment and a polymer that forms an amorphous soft segment with a low glass transition temperature. It means a thermoplastic resin material made of coalescence.

本発明のタイヤは、タイヤ骨格体として、分子中にハードセグメントおよびソフトセグメントを有する熱可塑性エラストマーと、ガラス転移温度(Tg)が前記ハードセグメントよりも高い樹脂とを含む樹脂材料を用いることで、タイヤ骨格体の損失係数(Tanδ)を低く維持したまま、耐熱性を向上させることができる。   The tire of the present invention uses a resin material containing a thermoplastic elastomer having a hard segment and a soft segment in a molecule and a resin having a glass transition temperature (Tg) higher than that of the hard segment as a tire skeleton, The heat resistance can be improved while maintaining the loss coefficient (Tanδ) of the tire frame body low.

図1を用いて、熱可塑性エラストマーとしてPAE(ポリアミド系熱可塑性エラストマー)を用い、特定樹脂としてポリフェニレンエーテル(PPE)を用いた場合について説明する。図1は、各材料におけるガラス転移温度と損失係数(Tanδ)との関係を示す説明図である。図1においては、本発明の一実施形態であるPAE/PPEのガラス転移温度(TgPAE/PPE)を示す実線と、PAEのガラス転移温度(TgPAE)を示す一点破線と、ポリアミドのガラス転移温度(TgPA)を示す小点線と、PPEのガラス転移温度(TgPPE)と示す大点線とが、示されており、各線のピークにおいて各材料のガラス転移温度が示されている。 The case where PAE (polyamide thermoplastic elastomer) is used as the thermoplastic elastomer and polyphenylene ether (PPE) is used as the specific resin will be described with reference to FIG. FIG. 1 is an explanatory diagram showing the relationship between the glass transition temperature and the loss factor (Tanδ) in each material. In FIG. 1, the solid line which shows the glass transition temperature ( TgPAE / PPE ) of PAE / PPE which is one Embodiment of this invention, the dashed-dotted line which shows the glass transition temperature ( TgPAE ) of PAE , and the glass transition of a polyamide A small dotted line indicating the temperature (Tg PA ) and a large dotted line indicating the glass transition temperature (Tg PPE ) of PPE are shown, and the glass transition temperature of each material is shown at the peak of each line.

本発明のように、熱可塑性エラストマーとして(PAE)と特定樹脂(PPE)とを混合した樹脂材料は、図1におけるTgPAのピークとTgPAE/PPEのピークとの比較から分かるように、本発明の一実施形態であるPAE/PPEは、熱可塑性エラストマーのハードセグメントを構成するポリアミドよりもガラス転移温度が高く、耐熱性を向上させることができる。また、通常、熱可塑性エラストマーの耐熱性を向上させるとこれに伴って損失係数(Tanδ)が増加してしまう。しかし、本発明の一実施形態であるPAE/PPEは、図1の中央の矢印で示されるように、前記熱可塑性エラストマー(PAE)及びそのハードセグメントを構成するポリアミドよりも損失係数を低く維持することができる。即ち、本発明における樹脂材料のように、熱可塑性エラストマーとガラス転移温度が前記ハードセグメントよりも高い特定樹脂とを用いることで、損失係数(Tanδ)を低く維持しつつ、タイヤ骨格体の耐熱性を向上させることができる。 As in the present invention, a resin material in which (PAE) and a specific resin (PPE) are mixed as a thermoplastic elastomer, the present invention shows that the Tg PA peak and the Tg PAE / PPE peak in FIG. PAE / PPE which is one embodiment of the invention has a glass transition temperature higher than that of the polyamide constituting the hard segment of the thermoplastic elastomer, and can improve heat resistance. In general, when the heat resistance of the thermoplastic elastomer is improved, the loss factor (Tan δ) increases accordingly. However, PAE / PPE, which is an embodiment of the present invention, maintains a lower loss factor than the thermoplastic elastomer (PAE) and the polyamide constituting its hard segment, as shown by the arrows in the center of FIG. be able to. That is, by using a thermoplastic elastomer and a specific resin having a glass transition temperature higher than that of the hard segment as in the resin material in the present invention, the heat resistance of the tire frame body is maintained while maintaining a low loss coefficient (Tan δ). Can be improved.

(熱可塑性エラストマー)
前記熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるポリアミド系熱可塑性エラストマー(TPA)、ポリエステル系熱可塑性エラストマー(TPC)、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリウレタン系熱可塑性エラストマー(TPU)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。
また、以下樹脂材料において同種といった場合には、エステル系同士、スチレン系同士などの形態を指す。
(Thermoplastic elastomer)
Examples of the thermoplastic elastomer include polyamide-based thermoplastic elastomer (TPA), polyester-based thermoplastic elastomer (TPC), polyolefin-based thermoplastic elastomer (TPO), and polystyrene-based thermoplastic elastomer (specified in JIS K6418: 2007). TPS), polyurethane-based thermoplastic elastomer (TPU), crosslinked thermoplastic rubber (TPV), or other thermoplastic elastomer (TPZ).
Further, in the case where the same kind of resin material is used hereinafter, it refers to a form such as ester series or styrene series.

−ポリアミド系熱可塑性エラストマー−
前記ポリアミド系熱可塑性エラストマーとは、結晶性で融点の高いハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーの主鎖にアミド結合(−CONH−)を有するものを意味する。ポリアミド系熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等や、特開2004−346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
-Polyamide thermoplastic elastomer-
The polyamide-based thermoplastic elastomer is a thermoplastic resin material comprising a copolymer having a crystalline polymer having a high melting point and a non-crystalline polymer having a low glass transition temperature. It means that having an amide bond (—CONH—) in the main chain of the polymer constituting the hard segment. Examples of the polyamide-based thermoplastic elastomer include an amide-based thermoplastic elastomer (TPA) defined in JIS K6418: 2007, a polyamide-based elastomer described in JP-A-2004-346273, and the like.

前記ポリアミド系熱可塑性エラストマーは、少なくともポリアミドが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、ポリエステルまたはポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーはハードセグメントおよびソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いてもよい。前記ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)または一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。   The polyamide-based thermoplastic elastomer constitutes a hard segment having a high melting point and at least a polyamide being crystalline, and a soft segment having a low glass transition temperature and other polymers (for example, polyester or polyether). Materials. The polyamide thermoplastic elastomer may use a chain extender such as dicarboxylic acid in addition to the hard segment and the soft segment. Examples of the polyamide that forms the hard segment include polyamides produced from monomers represented by the following general formula (1) or general formula (2).

一般式(1)

[一般式(1)中、Rは、炭素数2〜20の炭化水素の分子鎖、または、炭素数2〜20のアルキレン基を表す。]
General formula (1)

[In General Formula (1), R 1 represents a molecular chain of a hydrocarbon having 2 to 20 carbon atoms or an alkylene group having 2 to 20 carbon atoms. ]

一般式(2)

[一般式(2)中、Rは、炭素数3〜20の炭化水素の分子鎖、または、炭素数3〜20のアルキレン基を表す。]
General formula (2)

[In General Formula (2), R 2 represents a molecular chain of a hydrocarbon having 3 to 20 carbon atoms or an alkylene group having 3 to 20 carbon atoms. ]

一般式(1)中、Rとしては、炭素数3〜18の炭化水素の分子鎖または炭素数3〜18のアルキレン基が好ましく、炭素数4〜15の炭化水素の分子鎖または炭素数4〜15のアルキレン基が更に好ましく、炭素数10〜15の炭化水素の分子鎖または炭素数10〜15のアルキレン基が特に好ましい。また、一般式(2)中、Rとしては、炭素数3〜18の炭化水素の分子鎖または炭素数3〜18のアルキレン基が好ましく、炭素数4〜15の炭化水素の分子鎖または炭素数4〜15のアルキレン基が更に好ましく、炭素数10〜15の炭化水素の分子鎖または炭素数10〜15のアルキレン基が特に好ましい。
前記一般式(1)または一般式(2)で表されるモノマーとしては、ω−アミノカルボン酸やラクタムが挙げられる。また、前記ハードセグメントを形成するポリアミドとしては、これらω−アミノカルボン酸やラクタムの重縮合体や、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
In general formula (1), R 1 is preferably a hydrocarbon chain having 3 to 18 carbon atoms or an alkylene group having 3 to 18 carbon atoms, and a hydrocarbon molecular chain having 4 to 15 carbon atoms or 4 carbon atoms. To 15 alkylene groups are more preferable, and hydrocarbon chains having 10 to 15 carbon atoms or alkylene groups having 10 to 15 carbon atoms are particularly preferable. In general formula (2), R 2 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms or an alkylene group having 3 to 18 carbon atoms, and a molecular chain or carbon having 4 to 15 carbon atoms. An alkylene group having 4 to 15 carbon atoms is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms or an alkylene group having 10 to 15 carbon atoms is particularly preferable.
Examples of the monomer represented by the general formula (1) or the general formula (2) include ω-aminocarboxylic acid and lactam. Examples of the polyamide forming the hard segment include polycondensates of these ω-aminocarboxylic acids and lactams, and co-condensation polymers of diamines and dicarboxylic acids.

前記ω−アミノカルボン酸としては、6−アミノカプロン酸、7−アミノヘプタン酸、8−アミノオクタン酸、10−アミノカプリン酸、11−アミノウンデカン酸、12−アミノドデカン酸などの炭素数5〜20の脂肪族ω−アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε−カプロラクタム、ウデカンラクタム、ω−エナントラクタム、2−ピロリドンなどの炭素数5〜20の脂肪族ラクタムなどを挙げることができる。
前記ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、3−メチルペンタメチレンジアミン、メタキシレンジアミンなどの炭素数2〜20の脂肪族ジアミンなどのジアミン化合物を挙げることができる。また、ジカルボン酸は、HOOC−(R)m−COOH(R:炭素数3〜20の炭化水素の分子鎖、m:0または1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの炭素数2〜20の脂肪族ジカルボン酸を挙げることができる。
前記ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε−カプロラクタムまたはウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
Examples of the ω-aminocarboxylic acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid. And aliphatic ω-aminocarboxylic acid. Moreover, as a lactam, C5-C20 aliphatic lactams, such as lauryl lactam, (epsilon) -caprolactam, udecan lactam, (omega) -enantolactam, 2-pyrrolidone, etc. can be mentioned.
Examples of the diamine include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2, Examples thereof include diamine compounds such as aliphatic diamines having 2 to 20 carbon atoms such as 4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, and metaxylenediamine. Further, the dicarboxylic acid can be represented by HOOC- (R 3 ) m-COOH (R 3 : a hydrocarbon molecular chain having 3 to 20 carbon atoms, m: 0 or 1). For example, oxalic acid, succinic acid And aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid.
As the polyamide forming the hard segment, a polyamide obtained by ring-opening polycondensation of lauryl lactam, ε-caprolactam or udecan lactam can be preferably used.

また、前記ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテルが挙げられ、例えば、ポリエチレングリコール、プリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられ、これらを単独でまたは2種以上を用いることができる。また、ポリエーテルの末端にアニモニア等を反応させることによって得られるポリエーテルジアミン等を用いることができる。
ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
Examples of the polymer that forms the soft segment include polyesters and polyethers, such as polyethylene glycol, propylene glycol, polytetramethylene ether glycol, ABA type triblock polyether, and the like. A single compound or two or more compounds can be used. Moreover, polyether diamine etc. which are obtained by making animonia etc. react with the terminal of polyether can be used.
Here, the “ABA type triblock polyether” means a polyether represented by the following general formula (3).

一般式(3)

[一般式(3)中、xおよびzは、1〜20の整数を表す。yは、4〜50の整数を表す。]
General formula (3)

[In general formula (3), x and z represent the integer of 1-20. y represents an integer of 4 to 50. ]

前記一般式(3)において、xおよびzとしては、それぞれ、1〜18の整数が好ましく、1〜16の整数が更に好ましく、1〜14の整数が特に好ましく、1〜12の整数が最も好ましい。また、前記一般式(3)において、yとしては、それぞれ、5〜45の整数が好ましく、6〜40の整数が更に好ましく、7〜35の整数が特に好ましく、8〜30の整数が最も好ましい。   In the general formula (3), x and z are each preferably an integer of 1 to 18, more preferably an integer of 1 to 16, particularly preferably an integer of 1 to 14, and most preferably an integer of 1 to 12. . In the general formula (3), each of y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, particularly preferably an integer of 7 to 35, and most preferably an integer of 8 to 30. .

前記ハードセグメントと前記ソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でも、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せ、が好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが特に好ましい。   Examples of the combination of the hard segment and the soft segment include the combinations of the hard segment and the soft segment mentioned above. Among these, lauryl lactam ring-opening polycondensate / polyethylene glycol combination, lauryl lactam ring-opening polycondensate / polypropylene glycol combination, lauryl lactam ring-opening polycondensate / polytetramethylene ether glycol combination, lauryl lactam The ring-opening polycondensate / ABA triblock polyether combination is preferred, and the lauryl lactam ring-opening polycondensate / ABA triblock polyether combination is particularly preferred.

前記ハードセグメントを構成するポリマー(ポリアミド)の数平均分子量としては、溶融成形性の観点から、300〜15000が好ましい。また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、強靱性および低温柔軟性の観点から、200〜6000が好ましい。更に、前記ハードセグメント(x)およびソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50〜90:10が好ましく、50:50〜80:20が更に好ましい。   The number average molecular weight of the polymer (polyamide) constituting the hard segment is preferably 300 to 15000 from the viewpoint of melt moldability. Moreover, as a number average molecular weight of the polymer which comprises the said soft segment, 200-6000 are preferable from a viewpoint of toughness and low temperature flexibility. Furthermore, the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 50:50 to 90:10, more preferably 50:50 to 80:20, from the viewpoint of moldability. preferable.

前記ポリアミド系熱可塑性エラストマーは、前記ハードセグメントを形成するポリマーおよびソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。   The polyamide-based thermoplastic elastomer can be synthesized by copolymerizing the polymer that forms the hard segment and the polymer that forms the soft segment by a known method.

前記ポリアミド系熱可塑性エラストマーとしては、例えば、市販品の宇部興産(株)の「UBESTA XPA」シリーズ(例えば、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2等)、ダイセル・エポニック(株)の「スタミド」シリーズ(例えば、E40−S3、E47−S1、E47−S3、E55−S1、E55−S3、EX9200、E50−R2)等を用いることができる。   Examples of the polyamide-based thermoplastic elastomer include, for example, “UBESTA XPA” series (for example, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2, etc.) manufactured by Ube Industries, Ltd., Daicel Eponic Corporation "Stamide" series (for example, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2) and the like can be used.

−ポリスチレン系熱可塑性エラストマー
前記ポリスチレン系熱可塑性エラストマーは、少なくともポリスチレンがハードセグメントを構成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。前記ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法で得られるものが好適に使用でき、例えば、アニオンリビング重合を持つポリスチレンが挙げられる。
-Polystyrene thermoplastic elastomer In the polystyrene thermoplastic elastomer, at least polystyrene constitutes a hard segment, and other polymers (for example, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, etc.) are amorphous. And a material constituting a soft segment having a low glass transition temperature. As the polystyrene forming the hard segment, for example, those obtained by a known radical polymerization method or ionic polymerization method can be suitably used, and examples thereof include polystyrene having anion living polymerization.

また、前記ソフトセグメントを形成するポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3−ジメチル−ブタジエン)等が挙げられる。   Examples of the polymer forming the soft segment include polybutadiene, polyisoprene, poly (2,3-dimethyl-butadiene), and the like.

上述のハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でもポリスチレン/ポリブタジエンの組合せ、ポリスチレン/ポリイソプレンの組合せが好ましい。また、熱可塑性エラストマーの意図しない架橋反応を抑制するため、ソフトセグメントは水素添加されていることが好ましい。   As a combination of the above-mentioned hard segment and a soft segment, each combination of a hard segment and a soft segment mentioned above can be mentioned. Among these, a combination of polystyrene / polybutadiene and a combination of polystyrene / polyisoprene are preferable. Moreover, in order to suppress the unintended cross-linking reaction of the thermoplastic elastomer, the soft segment is preferably hydrogenated.

前記ハードセグメントを構成するポリマー(ポリスチレン)の数平均分子量としては、5000〜500000が好ましく、10000〜200000が好ましい。
また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、5000〜1000000が好ましく、10000〜800000が更に好ましく、30000〜500000が特に好ましい。更に、前記ハードセグメント(x)およびソフトセグメント(y)との体積比(x:y)は、成形性の観点から、5:95〜80:20が好ましく、10:90〜70:30が更に好ましい。
The number average molecular weight of the polymer (polystyrene) constituting the hard segment is preferably 5,000 to 500,000, and preferably 10,000 to 200,000.
Moreover, as a number average molecular weight of the polymer which comprises the said soft segment, 5000-1 million are preferable, 10000-800000 are more preferable, and 30000-500000 are especially preferable. Furthermore, the volume ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, from the viewpoint of moldability. preferable.

前記ポリスチレン系熱可塑性エラストマーは、前記ハードセグメントを形成するポリマーおよびソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
前記ポリスチレン系熱可塑性エラストマーとしては、スチレン−ブタジエン系共重合体[SBS(ポリスチレン−ポリ(ブチレン)ブロック−ポリスチレン)、SEBS(ポリスチレン−ポリ(エチレン/ブチレン)ブロック−ポリスチレン)]、スチレン−イソプレン共重合体[ポリスチレン−ポリイソプレンブロック−ポリスチレン)、スチレン−プロピレン系共重合体[SEP(ポリスチレン−(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン−ポリ(エチレン/プロピレン)ブロック−ポリスチレン)、SEEPS(ポリスチレン−ポリ(エチレン−エチレン/プロピレン)ブロック−ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)等が挙げられる。
The polystyrene-based thermoplastic elastomer can be synthesized by copolymerizing the polymer that forms the hard segment and the polymer that forms the soft segment by a known method.
Examples of the polystyrene-based thermoplastic elastomer include styrene-butadiene copolymer [SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene-isoprene copolymer. Polymer [polystyrene-polyisoprene block-polystyrene), styrene-propylene copolymer [SEP (polystyrene- (ethylene / propylene) block-polystyrene), SEPS (polystyrene-poly (ethylene / propylene) block-polystyrene), SEEPS (polystyrene) -Poly (ethylene-ethylene / propylene) block-polystyrene), SEB (polystyrene (ethylene / butylene) block) and the like.

前記ポリスチレン系熱可塑性エラストマーとしては、例えば、市販品の旭化成社製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052、H1053、タフテックH1062、H1082、H1141、H1221、H1272)、(株)クラレ製のSEBS(8007、8076等)、SEPS(2002、2063等)等を用いることができる。   Examples of the polystyrene-based thermoplastic elastomer include commercially available “Tuftec” series manufactured by Asahi Kasei Corporation (for example, H1031, H1041, H1043, H1051, H1052, H1053, Tuftec H1062, H1082, H1141, H1221, H1272), SEBS (8007, 8076, etc.), SEPS (2002, 2063, etc.) manufactured by Kuraray Co., Ltd. can be used.

−ポリウレタン系熱可塑性エラストマー−
前記ポリウレタン系熱可塑性エラストマーは、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを構成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられ、例えば、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
-Polyurethane thermoplastic elastomer-
The polyurethane-based thermoplastic elastomer is a material in which at least polyurethane forms a hard segment in which pseudo-crosslinking is formed by physical aggregation, and other polymers are amorphous and have a soft segment having a low glass transition temperature. For example, it can be represented as a copolymer containing a soft segment containing a unit structure represented by the following formula A and a hard segment containing a unit structure represented by the following formula B.


[前記式中、Pは、長鎖脂肪族ポリエーテルまたは長鎖脂肪族ポリエステルを表す。Rは、脂肪族炭化水素、脂環族炭化水素、芳香族炭化水素を表す。P’は、短鎖脂肪族炭化水素、脂環族炭化水素、または、芳香族炭化水素を表す。]

[In the above formula, P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester. R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon. P ′ represents a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon. ]

前記式A中、Pで表される長鎖脂肪族ポリエーテルおよび長鎖脂肪族ポリエステルとしては、例えば、分子量500〜5000のものを使用することができる。前記Pは、前記Pで表される長鎖脂肪族ポリエーテルおよび長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、プリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジベート)ジオール、ポリ−ε−カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、前記ABA型トリブロックポリエーテル等が挙げられる。
これらは単独で使用されてもよく、また2種以上が併用されてもよい。
In the formula A, as the long-chain aliphatic polyether and long-chain aliphatic polyester represented by P, for example, those having a molecular weight of 500 to 5000 can be used. The P is derived from a diol compound containing a long-chain aliphatic polyether represented by the P and a long-chain aliphatic polyester. Such diol compounds include, for example, polyethylene glycol, propylene glycol, polytetramethylene ether glycol, poly (butylene adipate) diol, poly-ε-caprolactone diol, poly (hexamethylene) having a molecular weight within the above range. Carbonate) diol, the ABA type triblock polyether, and the like.
These may be used alone or in combination of two or more.

前記式Aおよび式B中、前記Rは、前記Rで表される脂肪族炭化水素、脂環族炭化水素または芳香族炭化水素を含むジイソシアネート化合物に由来する。前記Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2−エチレンジイソシアネート、1,3−プロピレンジイソシアネート、1,4−ブタンジイソシアネート、および1,6−ヘキサメチレンジイソシアネート等が挙げられる。
また、前記Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4−シクロヘキサンジイソシアネートおよび4,4−シクロヘキサンジイソシアネート等が挙げられる。更に、前記Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては例えば、4,4’−ジフェニルメタンジイソシアネート、トリレンジイソシアネートが挙げられる。
これらは単独で使用されてもよく、また2種以上が併用されてもよい。
In Formula A and Formula B, R is derived from a diisocyanate compound containing an aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by R. Examples of the aliphatic diisocyanate compound containing the aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate, and 1,6-hexamethylene diisocyanate. Etc.
Examples of the diisocyanate compound containing the alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate. Furthermore, examples of the aromatic diisocyanate compound containing the aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate.
These may be used alone or in combination of two or more.

前記式B中、P’ で表される短鎖脂肪族炭化水素、脂環族炭化水素、または、芳香族炭化水素としては、例えば、分子量500未満のものを使用することができる。また、前記P’は、前記P’ で表される短鎖脂肪族炭化水素、脂環族炭化水素または芳香族炭化水素を含むジオール化合物に由来する。前記P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、グリコールおよびポリアルキレングリコールが挙げられ、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4−ブタンジオール、1,3−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオールおよび1,10−デカンジオールが挙げられる。
また、前記P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,3−ジオール、シクロヘキサン−1,4−ジオール、およびシクロヘキサン−1,4−ジメタノール等が挙げられる。
更に、前記P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルサルファイド、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシベンゾフェノン、4,4’−ジヒドロキシジフェニルメタン、ビスフェノールA、1,1−ジ(4−ヒドロキシフェニル)シクロヘキサン、1,2−ビス(4−ヒドロキシフェノキシ)エタン、1,4−ジヒドロキシナフタリン、および2,6−ジヒドロキシナフタリン等が挙げられる。
これらは単独で使用されてもよく、また2種以上が併用されてもよい。
In the formula B, as the short chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′, for example, those having a molecular weight of less than 500 can be used. The P ′ is derived from a diol compound containing a short chain aliphatic hydrocarbon, alicyclic hydrocarbon or aromatic hydrocarbon represented by the P ′. Examples of the aliphatic diol compound containing a short-chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol, such as ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, Examples include 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol and 1,10-decanediol. It is done.
Examples of the alicyclic diol compound containing the alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, and cyclohexane-1,3-diol. , Cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol and the like.
Furthermore, examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4 ′. -Dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybenzophenone, 4,4'-dihydroxydiphenylmethane, bisphenol A, 1 , 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene, 2,6-dihydroxynaphthalene and the like. The
These may be used alone or in combination of two or more.

前記ハードセグメントを構成するポリマー(ポリウレタン)の数平均分子量としては、溶融成形性の観点から、300〜1500が好ましい。また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性および熱安定性の観点から、500〜20000が好ましく、500〜5000が更に好ましく、特に好ましくは500〜3000である。また、前記ハードセグメント(x)およびソフトセグメント(y)との質量比(x:y)は、成形性の観点から、15:85〜90:10が好ましく、30:70〜90:10が更に好ましい。
前記ポリウレタン系熱可塑性エラストマーは、前記ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。前記ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5−331256に記載の熱可塑性ポリウレタンを用いることができる。
前記ポリウレタン系熱可塑性エラストマーとして、具体的には、芳香族ジオールと芳香族ジイソシアネートとからなるハードセグメントと、ポリ炭酸エステルからなるソフトセグメントの組合せが好ましく、トリレンジイソシアネート(TDI)/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、TDI/カプロラクトン系ポリオール共重合体、TDI/ポリカーボネート系ポリオール共重合体、4,4’−ジフェニルメタンジイソシアネート(MDI)/ポリエステル系ポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI/カプロラクトン系ポリオール共重合体、MDI/ポリカーボネート系ポリオール共重合体、MDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体が好ましく、TDI/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、MDI/ポリエステルポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体が更に好ましい。
The number average molecular weight of the polymer (polyurethane) constituting the hard segment is preferably 300 to 1500 from the viewpoint of melt moldability. In addition, the number average molecular weight of the polymer constituting the soft segment is preferably 500 to 20000, more preferably 500 to 5000, and particularly preferably 500 to 5000, from the viewpoints of flexibility and thermal stability of the polyurethane-based thermoplastic elastomer. 3000. The mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 15:85 to 90:10, more preferably 30:70 to 90:10, from the viewpoint of moldability. preferable.
The polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing the polymer that forms the hard segment and the polymer that forms the soft segment by a known method. As the polyurethane-based thermoplastic elastomer, for example, thermoplastic polyurethane described in JP-A-5-331256 can be used.
As the polyurethane-based thermoplastic elastomer, specifically, a combination of a hard segment composed of an aromatic diol and an aromatic diisocyanate and a soft segment composed of a polycarbonate is preferable. Tolylene diisocyanate (TDI) / polyester-based polyol Polymer, TDI / polyether polyol copolymer, TDI / caprolactone polyol copolymer, TDI / polycarbonate polyol copolymer, 4,4′-diphenylmethane diisocyanate (MDI) / polyester polyol copolymer, MDI / Polyether-based polyol copolymer, MDI / caprolactone-based polyol copolymer, MDI / polycarbonate-based polyol copolymer, MDI + hydroquinone / polyhexamethylene carbonate copolymer TDI / polyester polyol copolymer, TDI / polyether polyol copolymer, MDI / polyester polyol copolymer, MDI / polyether polyol copolymer, MDI + hydroquinone / polyhexamethylene carbonate copolymer Is more preferable.

また、前記ポリウレタン系熱可塑性エラストマーとしては、例えば、市販品のBASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890等)、(株)クラレ社製「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台)、日本ミラクトラン(株)製の「ミラクトラン」シリーズ(例えば、XN−2001、XN−2004、P390RSUP、P480RSUI、P26MRNAT、E490、E590、P890)等を用いることができる。   Examples of the polyurethane-based thermoplastic elastomer include, for example, commercially available “Elastollan” series (for example, ET680, ET880, ET690, ET890, etc.) manufactured by BASF, and “Clamiron U” series (manufactured by Kuraray Co., Ltd.). For example, 2000 series, 3000 series, 8000 series, 9000 series, “Milactolan” series (for example, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890) manufactured by Japan Miraclan Co., Ltd. Can be used.

−ポリオレフィン系熱可塑性エラストマー−
前記ポリオレフィン系熱可塑性エラストマーは、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、前記ポリオレフィン、他のポリオレフィン、ポリビニル化合物)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。前記ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
前記ポリオレフィン系熱可塑性エラストマーとしては、オレフィン−α−オレフィンランダム共重合体、オレフィンブロック共重合体等が挙げられ、例えば、プロピレンブロック共重合体、エチレン−プロピレン共重合体、プロピレン−1−ヘキセン共重合体、プロピレン−4−メチル−1ペンテン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−ペンテン共重合体、エチレン−1−ブテン共重合体、1−ブテン−1−ヘキセン共重合体、1−ブテン−4−メチル−ペンテン、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸ブチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体、プロピレン−メタクリル酸共重合体、プロピレン−メタクリル酸メチル共重合体、プロピレン−メタクリル酸エチル共重合体、プロピレン−メタクリル酸ブチル共重合体、プロピレン−メチルアクリレート共重合体、プロピレン−エチルアクリレート共重合体、プロピレン−ブチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、プロピレン−酢酸ビニル共重合体等が挙げられる。
-Polyolefin thermoplastic elastomer-
The polyolefin-based thermoplastic elastomer is a soft segment having at least a crystalline polyolefin and a high melting point, and other polymers (for example, the polyolefin, other polyolefins, and polyvinyl compounds) are amorphous and have a low glass transition temperature. The material which comprises the segment is mentioned. Examples of the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, polybutene, and the like.
Examples of the polyolefin-based thermoplastic elastomer include olefin-α-olefin random copolymers, olefin block copolymers, and the like. For example, propylene block copolymers, ethylene-propylene copolymers, propylene-1-hexene copolymers. Polymer, propylene-4-methyl-1-pentene copolymer, propylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer Polymer, 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate copolymer, Ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, Lene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer, propylene-methyl methacrylate copolymer, propylene-ethyl methacrylate copolymer, propylene-butyl methacrylate copolymer , Propylene-methyl acrylate copolymer, propylene-ethyl acrylate copolymer, propylene-butyl acrylate copolymer, ethylene-vinyl acetate copolymer, propylene-vinyl acetate copolymer, and the like.

前記ポリオレフィン系熱可塑性エラストマーとしては、プロピレンブロック共重合体、エチレン−プロピレン共重合体、プロピレン−1−ヘキセン共重合体、プロピレン−4−メチル−1ペンテン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−ペンテン共重合体、エチレン−1−ブテン共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸ブチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体、プロピレン−メタクリル酸共重合体、プロピレン−メタクリル酸メチル共重合体、プロピレン−メタクリル酸エチル共重合体、プロピレン−メタクリル酸ブチル共重合体、プロピレン−メチルアクリレート共重合体、プロピレン−エチルアクリレート共重合体、プロピレン−ブチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、プロピレン−酢酸ビニル共重合体が好ましく、エチレン−プロピレン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ブテン共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体が更に好ましい。
また、エチレンとプロピレンといったように2種以上のポリオレフィン樹脂を組み合わせて使用してもよい。また、前記ポリオレフィン系熱可塑性エラストマー中のポリオレフィン含率は、50質量%以上100質量%以下が好ましい。
Examples of the polyolefin-based thermoplastic elastomer include a propylene block copolymer, an ethylene-propylene copolymer, a propylene-1-hexene copolymer, a propylene-4-methyl-1-pentene copolymer, and a propylene-1-butene copolymer. Polymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene- Ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer, propylene- Methyl methacrylate copolymer, propylene Ethyl tacrylate copolymer, propylene-butyl methacrylate copolymer, propylene-methyl acrylate copolymer, propylene-ethyl acrylate copolymer, propylene-butyl acrylate copolymer, ethylene-vinyl acetate copolymer, propylene- Vinyl acetate copolymers are preferred, ethylene-propylene copolymers, propylene-1-butene copolymers, ethylene-1-butene copolymers, ethylene-methyl methacrylate copolymers, ethylene-methyl acrylate copolymers, More preferred are ethylene-ethyl acrylate copolymers and ethylene-butyl acrylate copolymers.
Moreover, you may use combining 2 or more types of polyolefin resin like ethylene and propylene. The polyolefin content in the polyolefin-based thermoplastic elastomer is preferably 50% by mass or more and 100% by mass or less.

前記ポリオレフィン系熱可塑性エラストマーの数平均分子量としては、5,000〜10,000,000であることが好ましい。ポリオレフィン系熱可塑性エラストマーの数平均分子量が5,000〜10,000,000にあると、熱可塑性樹脂材料の機械的物性が十分であり、加工性にも優れる。同様の観点から、7,000〜1,000,000であることが更に好ましく、10,000〜1,000,000が特に好ましい。これにより、熱可塑性樹脂材料の機械的物性及び加工性を更に向上させることができる。また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200〜6000が好ましい。更に、前記ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50〜95:15が好ましく、50:50〜90:10が更に好ましい。   The number average molecular weight of the polyolefin-based thermoplastic elastomer is preferably 5,000 to 10,000,000. When the number average molecular weight of the polyolefin-based thermoplastic elastomer is in the range of 5,000 to 10,000,000, the mechanical properties of the thermoplastic resin material are sufficient and the processability is also excellent. From the same viewpoint, it is more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 1,000,000. Thereby, the mechanical properties and processability of the thermoplastic resin material can be further improved. Moreover, as a number average molecular weight of the polymer which comprises the said soft segment, 200-6000 are preferable from a viewpoint of toughness and low temperature flexibility. Furthermore, the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 50:50 to 95:15, more preferably 50:50 to 90:10, from the viewpoint of moldability. preferable.

前記ポリオレフィン系熱可塑性エラストマーは、公知の方法によって共重合することで合成することができる。   The polyolefin-based thermoplastic elastomer can be synthesized by copolymerization by a known method.

前記ポリオレフィン系熱可塑性エラストマーとしては、例えば、市販品の三井化学社製の「タフマー」シリーズ(例えば、A0550S、A1050S、A4050S、A1070S、A4070S,A35070S、A1085S、A4085S、A7090、A70090、MH7007、MH7010、XM−7070、XM−7080、BL4000、BL2481、BL3110、BL3450、P−0275、P−0375、P−0775、P−0180、P−0280、P−0480、P−0680)、三井・デュポンポリケミカル(株)「ニュクレル」シリーズ(例えば、AN4214C、AN4225C、AN42115C、N0903HC、N0908C、AN42012C、N410、N1050H、N1108C、N1110H、N1207C、N1214、AN4221C、N1525、N1560、N0200H、AN4228C、AN4213C、N035C、「エルバロイAC」シリーズ(例えば、1125AC、1209AC、1218AC、1609AC、1820AC、1913AC、2112AC、2116AC、2615AC、2715AC、3117AC、3427AC、3717AC)、住友化学(株)「アクリフト」シリーズ、「エバテート」シリーズ、東ソー(株)「ウルトラセン」シリーズ等を用いることができる。
更に、前記ポリオレフィン系熱可塑性エラストマーとしては、例えば、市販品のプライムポリマー製の「プライムTPO」シリーズ(例えば、E−2900H、F−3900H、E−2900、F−3900、J−5900、E−2910、F−3910、J−5910、E−2710、F−3710、J−5910、E−2740、F−3740、R110MP、R110E、T310E、M142E等)等も用いることができる。
Examples of the polyolefin-based thermoplastic elastomer include, for example, commercially available “Tuffmer” series manufactured by Mitsui Chemicals (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A700090, MH7007, MH7010, XM-7070, XM-7080, BL4000, BL2481, BL3110, BL3450, P-0275, P-0375, P-0775, P-0180, P-0280, P-0480, P-0680), Mitsui DuPont Polychemical "Nucrel" series (for example, AN4214C, AN4225C, AN42115C, N0903HC, N0908C, AN42012C, N410, N1050H, N1108C, 1110H, N1207C, N1214, AN4221C, N1525, N1560, N0200H, AN4228C, AN4213C, N035C, “Elvalloy AC” series (for example, 1125AC, 1209AC, 1218AC, 1609AC, 1820AC, 1913AC, 2112AC, 2116AC, 2615AC, 2715AC, 3117AC, 2715AC, 3117AC 3427AC, 3717AC), Sumitomo Chemical Co., Ltd. “ACRlift” series, “Evertate” series, Tosoh Corporation “Ultrasen” series, and the like.
Further, as the polyolefin-based thermoplastic elastomer, for example, “Prime TPO” series (for example, E-2900H, F-3900H, E-2900, F-3900, J-5900, E-manufactured by a commercial prime polymer). 2910, F-3910, J-5910, E-2710, F-3710, J-5910, E-2740, F-3740, R110MP, R110E, T310E, M142E, etc.) can also be used.

−ポリエステル系熱可塑性エラストマー−
前記ポリエステル系熱可塑性エラストマーは、少なくともポリエステルが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、ポリエステルまたはポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。
-Polyester thermoplastic elastomer-
The polyester-based thermoplastic elastomer comprises a hard segment having at least a crystalline polyester and a high melting point, and a soft segment having a low glass transition temperature and other polymers (for example, polyester or polyether). Materials.

前記ハードセグメントを形成するポリエステルとしては、芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸またはそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。前記芳香族ポリエステルとしては、好ましくは、テレフタル酸およびまたはジメチルテレフタレートと1,4−ブタンジオールから誘導されるポリブチレンテレフタレートであり、更に、イソフタル酸、フタル酸、ナフタレン−2,6−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、ジフェニル−4,4’−ジカルボン酸、ジフェノキシエタンジカルボン酸、5−スルホイソフタル酸、あるいはこれらのエステル形成性誘導体などのジカルボン酸成分と、分子量300以下のジオール、例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコールなどの脂肪族ジオール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメチロールなどの脂環式ジオール、キシリレングリコール、ビス(p−ヒドロキシ)ジフェニル、ビス(p−ヒドロキシフェニル)プロパン、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン、ビス[4−(2−ヒドロキシ)フェニル]スルホン、1,1−ビス[4−(2−ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’−ジヒドロキシ−p−ターフェニル、4,4’−ジヒドロキシ−p−クオーターフェニルなどの芳香族ジオールなどから誘導されるポリエステル、あるいはこれらのジカルボン酸成分およびジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分および多官能ヒドロキシ成分などを5モル%以下の範囲で共重合することも可能である。
前記ハードセグメントを形成するポリエステルとしては、例えば、ポリエチレンテレフタレート、プリブチレンテレフタレート、ポリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
An aromatic polyester can be used as the polyester that forms the hard segment. The aromatic polyester can be formed, for example, from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol. The aromatic polyester is preferably terephthalic acid and / or polybutylene terephthalate derived from dimethyl terephthalate and 1,4-butanediol, and further, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, Dicarboxylic acid components such as naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5-sulfoisophthalic acid, or ester-forming derivatives thereof, and diols having a molecular weight of 300 or less For example, aliphatic diols such as ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, 1,4-cyclohexanedimethanol, tricyclodecanedi Cycloaliphatic diols such as methylol, xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2-bis [4- (2-hydroxyethoxy) phenyl] propane, bis [4 -(2-hydroxy) phenyl] sulfone, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 4,4'-dihydroxy-p-terphenyl, 4,4'-dihydroxy-p-quarter It may be a polyester derived from an aromatic diol such as phenyl, or a copolyester in which two or more of these dicarboxylic acid components and diol components are used in combination. It is also possible to copolymerize a trifunctional or higher polyfunctional carboxylic acid component, a polyfunctional oxyacid component, a polyfunctional hydroxy component, and the like in a range of 5 mol% or less.
Examples of the polyester that forms the hard segment include polyethylene terephthalate, prebutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like, and polybutylene terephthalate is preferable.

また、前記ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル、脂肪族ポリエーテルが挙げられる。
前記脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランの共重合体等が挙げられる。
前記脂肪族ポリエステルとしては、ポリ(ε−カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペートなどが挙げられる。
これらの脂肪族ポリエーテルおよび脂肪族ポリエステルのなかでも、得られるポリエステルブロック共重合体の弾性特性の観点から、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε−カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペートなどが好ましい。
Examples of the polymer forming the soft segment include aliphatic polyesters and aliphatic polyethers.
Examples of the aliphatic polyether include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, a copolymer of ethylene oxide and propylene oxide, and poly (propylene oxide). And ethylene oxide addition polymer of glycol, and a copolymer of ethylene oxide and tetrahydrofuran.
Examples of the aliphatic polyester include poly (ε-caprolactone), polyenantlactone, polycaprylolactone, polybutylene adipate, and polyethylene adipate.
Among these aliphatic polyethers and aliphatic polyesters, poly (tetramethylene oxide) glycol, poly (propylene oxide) glycol ethylene oxide adduct, poly (ε -Caprolactone), polybutylene adipate, polyethylene adipate and the like are preferred.

また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、強靱性および低温柔軟性の観点から、300〜6000が好ましい。更に、前記ハードセグメント(x)およびソフトセグメント(y)との質量比(x:y)は、成形性の観点から、99:1〜20:80が好ましく、98:2〜30:70が更に好ましい。   Moreover, as a number average molecular weight of the polymer which comprises the said soft segment, 300-6000 are preferable from a viewpoint of toughness and low temperature flexibility. Furthermore, the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 99: 1 to 20:80, more preferably 98: 2 to 30:70, from the viewpoint of moldability. preferable.

上述のハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でもハードセグメントがポリブチレンテレフタレート、ソフトセグメント脂肪族ポリエーテルの組み合わせが好ましく、ハードセグメントがポリブチレンテレフタレート、ソフトセグメントがポリ(エチレンオキシド)グリコールが更に好ましい。   As a combination of the above-mentioned hard segment and a soft segment, each combination of a hard segment and a soft segment mentioned above can be mentioned. Among these, a combination of polybutylene terephthalate and soft segment aliphatic polyether is preferable for the hard segment, polybutylene terephthalate for the hard segment, and poly (ethylene oxide) glycol for the soft segment is more preferable.

また、前記熱可塑性エラストマーとしては、熱可塑性エラストマーを酸変性してなるものを用いてもよい。
前記「熱可塑性エラストマーを酸変性してなるもの」とは、熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることをいう。例えば、酸性基を有する不飽和化合物として、不飽和カルボン酸(一般的には、無水マレイン酸)を用いるとき、オレフィン系熱可塑性エラストマーに、不飽和カルボン酸の不飽和結合部位を結合(例えば、グラフト重合)させることが挙げられる。
Moreover, as the thermoplastic elastomer, one obtained by acid-modifying a thermoplastic elastomer may be used.
The above-mentioned “obtained by acid-modifying a thermoplastic elastomer” means that an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group is bonded to the thermoplastic elastomer. For example, when an unsaturated carboxylic acid (generally maleic anhydride) is used as the unsaturated compound having an acidic group, an unsaturated bond site of the unsaturated carboxylic acid is bonded to the olefin-based thermoplastic elastomer (for example, Graft polymerization).

酸性基を有する化合物は、ポリアミド系熱可塑性エラストマーおよびポリアミド系熱可塑性エラストマー以外の熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する化合物が好ましく、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。   The compound having an acidic group is preferably a compound having a carboxylic acid group, which is a weak acid group, from the viewpoint of suppressing deterioration of the thermoplastic elastomer other than the polyamide-based thermoplastic elastomer and the polyamide-based thermoplastic elastomer. Examples include acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid and the like.

前記ポリエステル系熱可塑性エラストマーとしては、例えば、市販品の東レ・デュポン製の「ハイトレル」シリーズ(例えば、3046、5557、6347、4047、4767等)、東洋紡社製「ベルプレン」シリーズ(P30B、P40B、P40H、P55B、P70B、P150B、P280B、P450B、P150M、S1001、S2001、S5001、S6001、S9001等))を用いることができる。   Examples of the polyester-based thermoplastic elastomer include a commercially available “Hytrel” series (for example, 3046, 5557, 6347, 4047, 4767, etc.) manufactured by Toray DuPont, and a “Velprene” series (P30B, P40B, manufactured by Toyobo Co., Ltd.). P40H, P55B, P70B, P150B, P280B, P450B, P150M, S1001, S2001, S5001, S6001, S9001, etc.) can be used.

上述の熱可塑性エラストマーは、前記ハードセグメントを形成するポリマーおよびソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。   The above-mentioned thermoplastic elastomer can be synthesized by copolymerizing the polymer forming the hard segment and the polymer forming the soft segment by a known method.

−熱可塑性エラストマーの物性−
前記タイヤ骨格体を形成する樹脂材料に含まれる熱可塑性エラストマーは、所望のタイヤ性能を発揮するものを適宜選択することができる。ここで、前記樹脂材料に含まれる前記熱可塑性エラストマーとしては、タイヤ性能としての観点およびタイヤに求められる損失係数(Tanδ)の観点を考慮すると、弾性率(JIS K7113:1995に規定される引張弾性率)が1MPa〜150MPaの熱可塑性エラストマーが好ましく、1MPa〜60MPaの熱可塑性エラストマーがさらに好ましい。
-Physical properties of thermoplastic elastomers-
As the thermoplastic elastomer contained in the resin material forming the tire skeleton, one that exhibits desired tire performance can be appropriately selected. Here, as the thermoplastic elastomer contained in the resin material, the elastic modulus (tensile elasticity defined in JIS K7113: 1995) is considered from the viewpoint of tire performance and the loss factor (Tanδ) required for the tire. Rate) is preferably 1 MPa to 150 MPa, and more preferably 1 MPa to 60 MPa.

同様に、前記熱可塑性エラストマー自体のTanδとしては、0.01〜0.1が好ましく、0.01〜0.08が更に好ましい。ここで、「損失係数(Tanδ)」は30℃,20Hz,せん断歪み1%における貯蔵剪断弾性率(G’)と損失剪断弾性率(G”)との比(G”/G‘)から算出される値であり、材料が変形する際にその材料がどの程度のエネルギーを吸収するか(熱に変わるか)を示す値である。Tanδは、値が大きい程エネルギーを吸収するため、タイヤとしての転がり抵抗が増大し、結果としてタイヤの燃費性能低下の要因となる。尚、熱可塑性エラストマーのTanδは、動的粘弾性測定装置(Dynamic−Mechanical Analysis:DMA)で測定することができる。   Similarly, Tan δ of the thermoplastic elastomer itself is preferably 0.01 to 0.1, and more preferably 0.01 to 0.08. Here, the “loss factor (Tanδ)” is calculated from the ratio (G ″ / G ′) of the storage shear modulus (G ′) and the loss shear modulus (G ″) at 30 ° C., 20 Hz, and a shear strain of 1%. It is a value indicating how much energy the material absorbs (changes to heat) when the material deforms. Tan δ absorbs energy as the value increases, so that the rolling resistance of the tire increases, and as a result, the fuel consumption performance of the tire decreases. The Tan δ of the thermoplastic elastomer can be measured with a dynamic viscoelasticity measuring device (Dynamic-Mechanical Analysis: DMA).

また、前記熱可塑性エラストマーのハードセグメントのガラス転移温度(Tg)としては、射出成型時の取り扱い性など製造性、tanδ値の観点から、0℃〜150℃が好ましく、30℃〜120℃が更に好ましい。
前記ハードセグメントのガラス転移温度は、示差走査熱量測定(Differential scanning calorimetry:DSC)で測定することができる。尚、本発明において、「ハードセグメント」のガラス転移温度とは、ハードセグメントを形成するポリマー単体のガラス転移温度を意味する。
Further, the glass transition temperature (Tg) of the hard segment of the thermoplastic elastomer is preferably 0 ° C. to 150 ° C., more preferably 30 ° C. to 120 ° C., from the viewpoint of manufacturability such as handleability during injection molding and tan δ value. preferable.
The glass transition temperature of the hard segment can be measured by differential scanning calorimetry (DSC). In the present invention, the glass transition temperature of “hard segment” means the glass transition temperature of a single polymer forming the hard segment.

前記熱可塑性エラストマーとしては、弾性率およびTanδ、並びに、後述する樹脂との組合せの観点から、ポリアミド系熱可塑性エラストマー、ポリエステル系エラストマーから選ばれる少なくとも1種が好ましい。   The thermoplastic elastomer is preferably at least one selected from polyamide-based thermoplastic elastomers and polyester-based elastomers from the viewpoint of elastic modulus, Tan δ, and a combination with a resin described later.

更に具体的には、ハードセグメントとして、ポリエチレン(Tg:−125℃)、ポリアセタール(Tg:−60℃)、エチレン酢酸ビニル共重合体(Tg:−42℃)、ポリウレタン(Tg:−20℃)、ポリプロピレン(Tg:0℃)、ポリフッ化ビニリデン(Tg:35℃)、ポリアミド6(所謂ナイロン6、Tg:48℃)、ポリアミド12(所謂ナイロン12、Tg:51℃)、ポリアミド46(所謂ナイロン46、Tg:78℃)、ポリアミド66(所謂ナイロン66、Tg:50℃)、ポリブチレンテレフタレート(Tg:50℃)、ポリ乳酸(Tg:57℃)、ポリエチレンテレフタレート(Tg:59℃)、ポリアクリロニトリルブタジエンスチレン共重合体(Tg:80〜125℃)、ポリ塩化ビニル(Tg:87℃)、ポリメタクリル酸メチル(Tg:90℃)、ポリスチレン(Tg:100℃)、ポリアクリロニトリル(Tg:104℃)、ポリフェニレンオキシド(PPO、Tg:104〜120℃)、ポリフェニレンスルフィド(Tg:92℃)、ポリテトラフルオロエチレン(Tg:126℃)、ポリカーボネート(Tg:150℃)、ポリエーテルサルホン(Tg:230℃)、ポリアミドイミド(Tg:275℃)、ポリアリレート(Tg:176℃)を有する熱可塑性エラストマーを用いることが好ましく、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネート、ポリアリレート、を有する熱可塑性エラストマーを用いることが更に好ましい。   More specifically, as hard segments, polyethylene (Tg: -125 ° C), polyacetal (Tg: -60 ° C), ethylene vinyl acetate copolymer (Tg: -42 ° C), polyurethane (Tg: -20 ° C) Polypropylene (Tg: 0 ° C.), polyvinylidene fluoride (Tg: 35 ° C.), polyamide 6 (so-called nylon 6, Tg: 48 ° C.), polyamide 12 (so-called nylon 12, Tg: 51 ° C.), polyamide 46 (so-called nylon) 46, Tg: 78 ° C., polyamide 66 (so-called nylon 66, Tg: 50 ° C.), polybutylene terephthalate (Tg: 50 ° C.), polylactic acid (Tg: 57 ° C.), polyethylene terephthalate (Tg: 59 ° C.), poly Acrylonitrile butadiene styrene copolymer (Tg: 80-125 ° C), polyvinyl chloride (Tg: 87 ° C) Polymethyl methacrylate (Tg: 90 ° C.), polystyrene (Tg: 100 ° C.), polyacrylonitrile (Tg: 104 ° C.), polyphenylene oxide (PPO, Tg: 104-120 ° C.), polyphenylene sulfide (Tg: 92 ° C.), Heat with polytetrafluoroethylene (Tg: 126 ° C), polycarbonate (Tg: 150 ° C), polyethersulfone (Tg: 230 ° C), polyamideimide (Tg: 275 ° C), polyarylate (Tg: 176 ° C) It is preferable to use a plastic elastomer, and it is more preferable to use a thermoplastic elastomer having polyphenylene oxide, polyphenylene sulfide, polybutylene terephthalate, polyethylene terephthalate, polycarbonate, polyarylate.

(特定樹脂)
前記「特定樹脂」は、ガラス転移温度(Tg)が前記ハードセグメントよりも高い樹脂である。
(Specific resin)
The “specific resin” is a resin having a glass transition temperature (Tg) higher than that of the hard segment.

これにより、熱可塑性エラストマーと特定樹脂とを含む樹脂材料を用いてタイヤ骨格体を形成したタイヤは、タイヤ骨格体のTanδを低く維持したまま弾性率を高めることができる。このため、例えば、タイヤの転がり抵抗を低減させつつ弾性率(耐熱性)を高めることができる。前記特定樹脂のガラス転移温度が、前記ハードセグメントのガラス転移温度よりも低いと、タイヤ骨格体の弾性率や耐熱性を向上させることができない。   Thereby, the tire which formed the tire frame using the resin material containing the thermoplastic elastomer and the specific resin can increase the elastic modulus while maintaining the Tan δ of the tire frame low. For this reason, for example, the elastic modulus (heat resistance) can be increased while reducing the rolling resistance of the tire. When the glass transition temperature of the specific resin is lower than the glass transition temperature of the hard segment, the elastic modulus and heat resistance of the tire skeleton cannot be improved.

前記特定樹脂は、ガラス転移温度が前記ハードセグメントよりも高いものであれば、特に限定されず本発明の効果を損なわない範囲で公知の樹脂を適宜選定できるが、例えば、下記の各物性を満たすものが好ましい。   The specific resin is not particularly limited as long as the glass transition temperature is higher than that of the hard segment, and a known resin can be appropriately selected as long as the effects of the present invention are not impaired. For example, the following specific properties are satisfied. Those are preferred.

前記特定樹脂のガラス転移温度(Tg)は、使用する熱可塑性エラストマーと特定樹脂との組合せによっても異なるが、タイヤ骨格体成型時の製造性(取り扱い性)の観点から、通常、0〜300℃であることが好ましく、30〜200℃が更に好ましい。
前記特定樹脂のガラス転移温度は、前記熱可塑性エラストマーのハードセグメントよりも高ければよい。前記特定樹脂のガラス転移温度(Tg)は前記ハードセグメントのガラス転移温度(Tg)よりも20℃以上高いことが好ましい。更に具体的に前記特定樹脂のガラス転移温度(Tg)と前記ハードセグメントのガラス転移温度(Tg)との差(Tg−Tg)が、使用する熱可塑性エラストマーと特定樹脂との組合せによっても異なるが、タイヤ骨格体成型時の製造性(取り扱い性)の観点から、通常、20〜200℃であることが好ましく、30〜80℃が更に好ましい。
Although the glass transition temperature (Tg) of the specific resin varies depending on the combination of the thermoplastic elastomer and the specific resin to be used, from the viewpoint of manufacturability (handleability) at the time of molding the tire frame, it is usually 0 to 300 ° C. It is preferable that it is 30-200 degreeC.
The glass transition temperature of the specific resin may be higher than the hard segment of the thermoplastic elastomer. The glass transition temperature (Tg 1 ) of the specific resin is preferably 20 ° C. or more higher than the glass transition temperature (Tg 2 ) of the hard segment. Moreover the difference between the glass transition temperature of the concrete the specific resin (Tg 1) and the glass transition temperature of the hard segment (Tg 2) (Tg 1 -Tg 2), a combination of a specific resin and thermoplastic elastomer used However, from the viewpoint of manufacturability (handleability) at the time of molding the tire skeleton, it is usually preferably 20 to 200 ° C, more preferably 30 to 80 ° C.

タイヤ性能としての観点およびタイヤに求められる損失係数(Tanδ)の観点を考慮すると、前記特定樹脂の弾性率(JIS K7113:1995に規定される引張弾性率)は100MPa〜2000MPaであることが好ましく、400MPa〜1200MPaであることがさらに好ましい。   Considering the viewpoint of tire performance and the loss coefficient (Tanδ) required for the tire, the elastic modulus of the specific resin (tensile elastic modulus defined in JIS K7113: 1995) is preferably 100 MPa to 2000 MPa, More preferably, it is 400 MPa to 1200 MPa.

同様に、前記特定樹脂自体のTanδとしては、0.01〜0.1が好ましく、0.01〜0.06が更に好ましい。尚、特定樹脂のTanδは、動的粘弾性測定装置(Dynamic−Mechanical Analysis:DMA)で測定することができる。   Similarly, Tan δ of the specific resin itself is preferably 0.01 to 0.1, and more preferably 0.01 to 0.06. The Tan δ of the specific resin can be measured with a dynamic viscoelasticity measuring device (Dynamic-Mechanical Analysis: DMA).

前記特定樹脂としては、例えば、ポリフェニレンエーテル(PPE、Tg:210℃)、ポリエチレン(Tg:−125℃)、ポリアセタール(Tg:−60℃)、エチレン酢酸ビニル共重合体(Tg:−42℃)、ポリウレタン(Tg:−20℃)、ポリプロピレン(Tg:0℃)、ポリフッ化ビニリデン(Tg:35℃)、ポリアミド6(所謂ナイロン6、Tg:48℃)、ポリアミド12(所謂ナイロン12、Tg:51℃)、ポリアミド46(所謂ナイロン46、Tg:78℃)、ポリアミド66(所謂ナイロン66、Tg:50℃)、ポリブチレンテレフタレート(Tg:50℃)、ポリ乳酸(Tg:57℃)、ポリエチレンテレフタレート(Tg:59℃)、ポリアクリロニトリルブタジエンスチレン共重合体(Tg:80〜125℃)、ポリ塩化ビニル(Tg:87℃)、ポリメタクリル酸メチル(Tg:90℃)、ポリスチレン(Tg:100℃)、ポリアクリロニトリル(Tg:104℃)、ポリフェニレンオキシド(PPO、Tg:104〜120℃)、ポリフェニレンスルフィド(Tg:92℃)、ポリテトラフルオロエチレン(Tg:126℃)、ポリカーボネート(Tg:050℃)、ポリエーテルサルホン(Tg:230℃)、ポリアミドイミド(Tg:275℃)が好ましく、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリカーボネートおよびポリアリレートが更に好ましい。   Examples of the specific resin include polyphenylene ether (PPE, Tg: 210 ° C.), polyethylene (Tg: −125 ° C.), polyacetal (Tg: −60 ° C.), and ethylene vinyl acetate copolymer (Tg: −42 ° C.). , Polyurethane (Tg: −20 ° C.), polypropylene (Tg: 0 ° C.), polyvinylidene fluoride (Tg: 35 ° C.), polyamide 6 (so-called nylon 6, Tg: 48 ° C.), polyamide 12 (so-called nylon 12, Tg: 51 ° C.), polyamide 46 (so-called nylon 46, Tg: 78 ° C.), polyamide 66 (so-called nylon 66, Tg: 50 ° C.), polybutylene terephthalate (Tg: 50 ° C.), polylactic acid (Tg: 57 ° C.), polyethylene Terephthalate (Tg: 59 ° C.), polyacrylonitrile butadiene styrene copolymer (Tg: 80-1) 5 ° C), polyvinyl chloride (Tg: 87 ° C), polymethyl methacrylate (Tg: 90 ° C), polystyrene (Tg: 100 ° C), polyacrylonitrile (Tg: 104 ° C), polyphenylene oxide (PPO, Tg: 104) -120 ° C), polyphenylene sulfide (Tg: 92 ° C), polytetrafluoroethylene (Tg: 126 ° C), polycarbonate (Tg: 050 ° C), polyethersulfone (Tg: 230 ° C), polyamideimide (Tg: 275) ° C), and polyphenylene ether, polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polycarbonate and polyarylate are more preferred.

また、前記熱可塑性エラストマーと前記特定樹脂との組合せとしては、損失係数(Tanδ)を低く維持しつつ弾性率を高める観点から、ポリアミド系熱可塑性エラストマーとポリフェニレンエーテルとの組合せの他に、ポリアミド系熱可塑性エラストマーとポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリカーボネートまたはポリアリレート、ポリスチレン系樹脂のいずれかとの組み合わせ;および、ポリエステル系熱可塑性エラストマーとポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリカーボネート、ポリアリレートのいずれかとの組み合わせ、が好ましい。   In addition, as a combination of the thermoplastic elastomer and the specific resin, in addition to a combination of a polyamide thermoplastic elastomer and a polyphenylene ether, a polyamide system is used from the viewpoint of increasing an elastic modulus while maintaining a low loss coefficient (Tanδ). A combination of a thermoplastic elastomer and polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polycarbonate or polyarylate, polystyrene resin; and a polyester thermoplastic elastomer Polyphenylene ether, polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene Naphthalate, polytrimethylene terephthalate, polycarbonate, a combination of any of the polyarylate, is preferred.

(樹脂材料)
前記熱可塑性エラストマーと特定樹脂とを含む樹脂材料中において、前記熱可塑性エラストマーと特定樹脂との含有比は、前記熱可塑性エラストマーのハードセグメント(x)と前記樹脂(y)との総量(x+y)に対する前記熱可塑性エラストマーのソフトセグメント(z)との質量比(x+y:z)を基準に決定することができる。前記質量比(x+y:z)としては、10:90〜90:10が好ましく、40:60〜80:20が更に好ましい。前記質量比(x+y:z)が10:90〜90:10の範囲内にあると、前記タイヤ骨格体のTanδを低く維持したまま、弾性率を向上させるという効果を十分に発揮することができる。
(Resin material)
In the resin material containing the thermoplastic elastomer and the specific resin, the content ratio of the thermoplastic elastomer and the specific resin is the total amount (x + y) of the hard segment (x) of the thermoplastic elastomer and the resin (y). The mass ratio (x + y: z) of the thermoplastic elastomer with respect to the soft segment (z) can be determined as a reference. The mass ratio (x + y: z) is preferably 10:90 to 90:10, and more preferably 40:60 to 80:20. When the mass ratio (x + y: z) is in the range of 10:90 to 90:10, the effect of improving the elastic modulus can be sufficiently exhibited while maintaining Tan δ of the tire frame body low. .

また、前記熱可塑性エラストマーのハードセグメント(x)と、前記特定樹脂(y)との質量比(x:y)は、引張弾性率とtanδのバランス、およびそれぞれの融点の差に起因する加工特性の点から、90:10〜30:70が好ましく、80:20〜40:60が更に好ましい。   Further, the mass ratio (x: y) between the hard segment (x) of the thermoplastic elastomer and the specific resin (y) is a processing characteristic due to the balance between the tensile elastic modulus and tan δ, and the difference between the melting points. From the point, 90: 10-30: 70 is preferable and 80: 20-40: 60 is still more preferable.

前記熱可塑性エラストマーと特定樹脂とを含む樹脂材料の融点としては、通常100℃〜350℃、好ましくは100℃〜250℃程度であるが、タイヤの生産性の観点から120℃〜250℃程度が好ましく、150℃〜200℃が更に好ましい。このように、融点が120〜250℃の熱可塑性エラストマーを含む熱可塑性樹脂材料を用いることで、例えばタイヤの骨格体を、その分割体(骨格片)を融着して形成する場合に、接合部の加熱温度をタイヤ骨格体を形成する熱可塑性樹脂材料の融点以上に設定することができる。本発明のタイヤは、熱可塑性エラストマーを含む熱可塑性樹脂材料を用いるため、120℃〜250℃の温度範囲で融着された骨格体であってもタイヤ骨格片同士の接着強度が十分である。このため、本発明のタイヤは耐パンク性や耐摩耗性など走行時における耐久性に優れる。尚、前記加熱温度は、タイヤ骨格片を形成する熱可塑性エラストマーを含む熱可塑性樹脂材料の融点よりも10〜150℃高い温度が好ましく、10〜100℃高い温度が更に好ましい。   The melting point of the resin material containing the thermoplastic elastomer and the specific resin is usually 100 ° C. to 350 ° C., preferably about 100 ° C. to 250 ° C., but about 120 ° C. to 250 ° C. from the viewpoint of tire productivity. Preferably, 150 to 200 ° C is more preferable. In this way, when a thermoplastic resin material containing a thermoplastic elastomer having a melting point of 120 to 250 ° C. is used, for example, when a skeleton of a tire is formed by fusing the divided bodies (frame pieces), bonding is performed. The heating temperature of the part can be set to be equal to or higher than the melting point of the thermoplastic resin material forming the tire skeleton. Since the tire of the present invention uses a thermoplastic resin material containing a thermoplastic elastomer, even if it is a skeleton body fused in a temperature range of 120 ° C. to 250 ° C., the adhesion strength between tire skeleton pieces is sufficient. For this reason, the tire of this invention is excellent in durability at the time of driving | running | working, such as puncture resistance and abrasion resistance. The heating temperature is preferably 10 to 150 ° C., more preferably 10 to 100 ° C. higher than the melting point of the thermoplastic resin material including the thermoplastic elastomer forming the tire frame piece.

また、本発明において樹脂材料中の熱可塑性エラストマーおよび特定樹脂の総含有量は、特に限定されるものではないが、樹脂材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。熱可塑性エラストマーおよび特定樹脂の総含有量が、樹脂材料の総量に対して、50質量%〜100質量%であると熱可塑性エラストマーと特定樹脂とを併用した効果を十分に発揮させることができる。前記樹脂材料には、所望に応じて、ゴム、他の熱可塑性エラストマー、熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等の各種添加剤を含有させてもよい。   In the present invention, the total content of the thermoplastic elastomer and the specific resin in the resin material is not particularly limited, but is preferably 50% by mass or more, and 90% by mass or more based on the total amount of the resin material. Further preferred. When the total content of the thermoplastic elastomer and the specific resin is 50% by mass to 100% by mass with respect to the total amount of the resin material, the effect of using the thermoplastic elastomer and the specific resin together can be sufficiently exhibited. Examples of the resin material include rubber, other thermoplastic elastomers, thermoplastic resins, various fillers (for example, silica, calcium carbonate, clay), anti-aging agents, oils, plasticizers, colorants, and weather resistance. Various additives such as an agent and a reinforcing material may be contained.

前記樹脂材料は、前記熱可塑性エラストマーと前記特定樹脂とを混合し、必要に応じて各種添加剤を添加して、公知の方法(例えば、溶融混合)で適宜混合することにより得ることができる。溶融混合して得られた熱可塑性樹脂材料は、必要に応じてペレット状にして用いることができる。   The said resin material can be obtained by mixing the said thermoplastic elastomer and the said specific resin, adding various additives as needed, and mixing suitably by a well-known method (for example, melt mixing). The thermoplastic resin material obtained by melt mixing can be used in the form of pellets if necessary.

前記熱可塑性エラストマーと特定樹脂とを含む樹脂材料のJIS K7113:1995に規定される引張弾性率(以下、特に特定しない限り本明細書で「弾性率」とは引張弾性率を意味する。)としては、100〜1000MPaが好ましく、100〜800MPaがさらに好ましく、100〜700MPaが特に好ましい。樹脂材料の引張弾性率が、100〜1000MPaであると、タイヤ骨格の形状を保持しつつリム組みを効率的におこなうことができる。   As a tensile elastic modulus defined in JIS K7113: 1995 of a resin material containing the thermoplastic elastomer and a specific resin (hereinafter, unless otherwise specified, “elastic modulus” means a tensile elastic modulus unless otherwise specified). Is preferably 100 to 1000 MPa, more preferably 100 to 800 MPa, and particularly preferably 100 to 700 MPa. When the tensile modulus of the resin material is 100 to 1000 MPa, the rim can be assembled efficiently while maintaining the shape of the tire frame.

前記熱可塑性エラストマーと特定樹脂とを含む樹脂材料のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5〜20MPaが好ましく、5〜17MPaがさらに好ましい。樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。   The tensile yield strength specified in JIS K7113: 1995 of the resin material containing the thermoplastic elastomer and the specific resin is preferably 5 MPa or more, preferably 5 to 20 MPa, and more preferably 5 to 17 MPa. When the tensile yield strength of the resin material is 5 MPa or more, the resin material can withstand deformation against a load applied to the tire during traveling.

前記熱可塑性エラストマーと特定樹脂とを含む樹脂材料のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10〜70%が好ましく、15〜60%がさらに好ましい。樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性をよくすることができる。   The tensile yield elongation defined by JIS K7113: 1995 of the resin material containing the thermoplastic elastomer and the specific resin is preferably 10% or more, preferably 10 to 70%, and more preferably 15 to 60%. When the tensile yield elongation of the resin material is 10% or more, the elastic region is large, and the rim assembly property can be improved.

前記熱可塑性エラストマーと特定樹脂とを含む樹脂材料のJIS K7113:1995に規定される引張破壊伸びとしては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。樹脂材料の引張破壊伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊しにくくすることができる。   The tensile fracture elongation defined in JIS K7113: 1995 of the resin material containing the thermoplastic elastomer and the specific resin is preferably 50% or more, preferably 100% or more, more preferably 150% or more, and 200% or more. Particularly preferred. When the tensile breaking elongation of the resin material is 50% or more, the rim assembly property is good and it is possible to make it difficult to break against a collision.

前記熱可塑性エラストマーと特定樹脂とを含む樹脂材料のISO75−2またはASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50〜150℃が好ましく、50〜130℃がさらに好ましい。樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制することができる。   The deflection temperature under load (at the time of 0.45 MPa load) defined in ISO 75-2 or ASTM D648 of the resin material containing the thermoplastic elastomer and the specific resin is preferably 50 ° C. or more, preferably 50 to 150 ° C., 50 More preferably, ˜130 ° C. When the deflection temperature under load of the resin material is 50 ° C. or higher, deformation of the tire skeleton can be suppressed even when vulcanization is performed in the manufacture of the tire.

[第1の実施形態]
以下に、図面に従って本発明のタイヤの第1の実施形態に係るタイヤを説明する。
本実施形態のタイヤ10について説明する。図2(A)は、本発明の一実施形態に係るタイヤの一部の断面を示す斜視図である。図2(B)は、リムに装着したビード部の断面図である。図2に示すように、本実施形態のタイヤ10は、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。
[First Embodiment]
A tire according to a first embodiment of the tire of the present invention will be described below with reference to the drawings.
The tire 10 of this embodiment will be described. FIG. 2A is a perspective view showing a partial cross section of a tire according to an embodiment of the present invention. FIG. 2B is a cross-sectional view of the bead portion attached to the rim. As shown in FIG. 2, the tire 10 of the present embodiment has a cross-sectional shape that is substantially the same as a conventional general rubber pneumatic tire.

図2(A)に示すように、タイヤ10は、図2(B)に示すリム20のビードシート21およびリムフランジ22に接触する1対のビード部12と、ビード部12からタイヤ径方向外側に延びるサイド部14と、一方のサイド部14のタイヤ径方向外側端と他方のサイド部14のタイヤ径方向外側端とを連結するクラウン部16(外周部)と、からなるタイヤケース17を備えている。   As shown in FIG. 2 (A), the tire 10 includes a pair of bead portions 12 that contact the bead seat 21 and the rim flange 22 of the rim 20 shown in FIG. A tire case 17 comprising: a side portion 14 extending in the direction of a tire; and a crown portion 16 (outer peripheral portion) for connecting a tire radial direction outer end of one side portion 14 and a tire radial direction outer end of the other side portion 14. ing.

ここで、本実施形態のタイヤケース17は、ポリアミド系熱可塑性エラストマー(宇部興産社製「UBESTA XPA9048X1」;ハードセグメント(ポリアミド12)のガラス転移温度(Tg):40℃)とポリフェニレンエーテル(PPE)(旭化成ケミカルズ社製「ザイロン 200H」 Tg:210℃)とをハードセグメント(ポリアミド:x)と前記樹脂(PPE:y)との総量(x+y)に対する熱可塑性エラストマーのソフトセグメント(ポリエーテル:z)との質量比(x+y:z)が72:28で形成されている。また、ハードセグメント(ポリアミド12:x)と前記樹脂(PPE:y)との質量比は48:52である。   Here, the tire case 17 of the present embodiment includes a polyamide-based thermoplastic elastomer (“UBESTA XPA9048X1” manufactured by Ube Industries, Ltd .; glass transition temperature (Tg) of hard segment (polyamide 12): 40 ° C.) and polyphenylene ether (PPE). (Asahi Kasei Chemicals "Zylon 200H" Tg: 210 ° C) and the thermoplastic elastomer soft segment (polyether: z) with respect to the total amount (x + y) of the hard segment (polyamide: x) and the resin (PPE: y) The mass ratio (x + y: z) is 72:28. The mass ratio of the hard segment (polyamide 12: x) and the resin (PPE: y) is 48:52.

本実施形態においてタイヤケース17は、単一の熱可塑性樹脂材料(ポリアミド系熱可塑性エラストマー+PPE)で形成されているが、本発明はこの構成に限定されず、従来一般のゴム製の空気入りタイヤと同様に、タイヤケース17の各部位毎(サイド部14、クラウン部16、ビード部12など)に異なる特徴を有する熱可塑性樹脂材料を用いてもよい。また、タイヤケース17(例えば、ビード部12、サイド部14、クラウン部16等)に、補強材(高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置し、補強材でタイヤケース17を補強してもよい。   In the present embodiment, the tire case 17 is formed of a single thermoplastic resin material (polyamide thermoplastic elastomer + PPE). However, the present invention is not limited to this configuration, and a conventional general rubber pneumatic tire is used. Similarly, a thermoplastic resin material having different characteristics for each part of the tire case 17 (side portion 14, crown portion 16, bead portion 12, etc.) may be used. Further, a reinforcing material (polymer material, metal fiber, cord, nonwoven fabric, woven fabric, etc.) is embedded in the tire case 17 (for example, the bead portion 12, the side portion 14, the crown portion 16 and the like), and the reinforcing material is provided. The tire case 17 may be reinforced.

本実施形態のタイヤケース17は、ポリアミド系熱可塑性エラストマーとPPEとを含む樹脂材料で形成された一対のタイヤケース半体(タイヤ骨格片)17A同士を接合させたものである。タイヤケース半体17Aは、一つのビード部12と一つのサイド部14と半幅のクラウン部16とを一体として射出成形等で成形された同一形状の円環状のタイヤケース半体17Aを互いに向かい合わせてタイヤ赤道面部分で接合することで形成されている。なお、タイヤケース17は、2つの部材を接合して形成するものに限らず、3以上の部材を接合して形成してもよい。   The tire case 17 of the present embodiment is obtained by joining a pair of tire case halves (tire frame pieces) 17A formed of a resin material containing a polyamide-based thermoplastic elastomer and PPE. The tire case half 17A is formed by injection molding or the like so that one bead portion 12, one side portion 14, and a half-width crown portion 16 are integrated with each other so as to face each other. It is formed by joining at the tire equator part. The tire case 17 is not limited to the one formed by joining two members, and may be formed by joining three or more members.

前記樹脂材料で形成されるタイヤケース半体17Aは、例えば、真空成形、圧空成形、インジェクション成形、メルトキャスティング等で成形することができる。このため、従来のようにゴムでタイヤケースを成形する場合に比較して、加硫を行う必要がなく、製造工程を大幅に簡略化でき、成形時間を省略することができる。
また、本実施形態では、タイヤケース半体17Aは左右対称形状、即ち、一方のタイヤケース半体17Aと他方のタイヤケース半体17Aとが同一形状とされているので、タイヤケース半体17Aを成形する金型が1種類で済むメリットもある。
The tire case half 17A formed of the resin material can be formed by, for example, vacuum forming, pressure forming, injection molding, melt casting, or the like. For this reason, it is not necessary to perform vulcanization compared to the case where the tire case is molded with rubber as in the prior art, the manufacturing process can be greatly simplified, and the molding time can be omitted.
In the present embodiment, the tire case half body 17A has a symmetrical shape, that is, the one tire case half body 17A and the other tire case half body 17A have the same shape. There is also an advantage that only one type of mold is required.

本実施形態において、図2(B)に示すようにビード部12には、従来一般の空気入りタイヤと同様の、スチールコードからなる円環状のビードコア18が埋設されている。しかし、本発明はこの構成に限定されず、ビード部12の剛性が確保され、リム20との嵌合に問題なければ、ビードコア18を省略することもできる。なお、スチールコード以外に、有機繊維コード、樹脂被覆した有機繊維コード、または硬質樹脂などで形成されていてもよい。   In this embodiment, as shown in FIG. 2 (B), an annular bead core 18 made of a steel cord is embedded in the bead portion 12, similar to a conventional general pneumatic tire. However, the present invention is not limited to this configuration, and the bead core 18 can be omitted if the rigidity of the bead portion 12 is ensured and there is no problem in fitting with the rim 20. In addition to the steel cord, an organic fiber cord, a resin-coated organic fiber cord, or a hard resin may be used.

本実施形態では、ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分に、タイヤケース17を構成する樹脂材料よりもシール性に優れた材料、例えば、ゴムからなる円環状のシール層24が形成されている。このシール層24はタイヤケース17(ビード部12)とビードシート21とが接触する部分にも形成されていてもよい。タイヤケース17を構成する樹脂材料よりもシール性に優れた材料としては、タイヤケース17を構成する樹脂材料に比して軟質な材料を用いることができる。シール層24に用いることのできるゴムとしては、従来一般のゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。また、タイヤケース17を形成する樹脂材料のみでリム20との間のシール性が確保できれば、ゴムのシール層24は省略してもよく、前記樹脂材料よりもシール性に優れる他の熱可塑性樹脂(熱可塑性エラストマー)を用いてもよい。このような他の熱可塑性樹脂としては、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル樹脂等の樹脂やこれら樹脂とゴム若しくはエラストマーとのブレンド物等が挙げられる。また、熱可塑性エラストマーを用いることもでき、例えば、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、或いは、これらエラストマー同士の組み合わせや、ゴムとのブレンド物等が挙げられる。   In the present embodiment, a material having a better sealing property than a resin material constituting the tire case 17 at a portion that contacts the rim 20 of the bead portion 12 or at least a portion that contacts the rim flange 22 of the rim 20, for example, rubber An annular seal layer 24 made of is formed. The seal layer 24 may also be formed at a portion where the tire case 17 (bead portion 12) and the bead sheet 21 are in contact with each other. As a material having better sealing properties than the resin material constituting the tire case 17, a softer material than the resin material constituting the tire case 17 can be used. As the rubber that can be used for the seal layer 24, it is preferable to use the same type of rubber as that used on the outer surface of the bead portion of a conventional general rubber pneumatic tire. Further, if the sealing property between the rim 20 can be ensured only by the resin material forming the tire case 17, the rubber seal layer 24 may be omitted, and other thermoplastic resins having a sealing property superior to the resin material. (Thermoplastic elastomer) may be used. Examples of such other thermoplastic resins include resins such as polyurethane resins, polyolefin resins, polystyrene resins, and polyester resins, and blends of these resins with rubbers or elastomers. Thermoplastic elastomers can also be used, for example, polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, combinations of these elastomers, and blends with rubber. Thing etc. are mentioned.

図2に示すように、クラウン部16には、タイヤケース17を構成する樹脂材料よりも剛性が高い補強コード26がタイヤケース17の周方向に巻回されている。補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、補強コード層28を形成している。補強コード層28のタイヤ径方向外周側には、タイヤケース17を構成する樹脂材料よりも耐摩耗性に優れた材料、例えばゴムからなるトレッド30が配置されている。   As shown in FIG. 2, a reinforcing cord 26 having higher rigidity than the resin material constituting the tire case 17 is wound around the crown portion 16 in the circumferential direction of the tire case 17. The reinforcing cord 26 is wound spirally in a state in which at least a part thereof is embedded in the crown portion 16 in a cross-sectional view along the axial direction of the tire case 17, thereby forming a reinforcing cord layer 28. On the outer circumferential side of the reinforcing cord layer 28 in the tire radial direction, a tread 30 made of a material having higher wear resistance than the resin material constituting the tire case 17, for example, rubber, is disposed.

図3を用いて補強コード26によって形成される補強コード層28について説明する。図3は、第1実施形態のタイヤのタイヤケースのクラウン部に補強コードが埋設された状態を示すタイヤ回転軸に沿った断面図である。図3に示されるように、補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、タイヤケース17の外周部の一部と共に図3において破線部で示される補強コード層28を形成している。補強コード26のクラウン部16に埋設された部分は、クラウン部16(タイヤケース17)を構成する樹脂材料と密着した状態となっている。補強コード26としては、金属繊維や有機繊維等のモノフィラメント(単線)、または、スチール繊維を撚ったスチールコードなどこれら繊維を撚ったマルチフィラメント(撚り線)などを用いることができる。なお、本実施形態において補強コード26としては、スチールコードが用いられている。   The reinforcing cord layer 28 formed by the reinforcing cord 26 will be described with reference to FIG. FIG. 3 is a cross-sectional view along the tire rotation axis showing a state where a reinforcing cord is embedded in a crown portion of the tire case of the tire of the first embodiment. As shown in FIG. 3, the reinforcing cord 26 is spirally wound in a state in which at least a part is embedded in the crown portion 16 in a sectional view along the axial direction of the tire case 17. A reinforcing cord layer 28 indicated by a broken line portion in FIG. 3 is formed together with a part of the outer peripheral portion 17. The portion embedded in the crown portion 16 of the reinforcing cord 26 is in close contact with the resin material constituting the crown portion 16 (tire case 17). As the reinforcing cord 26, a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (twisted wire) obtained by twisting these fibers such as a steel cord twisted with a steel fiber can be used. In the present embodiment, a steel cord is used as the reinforcing cord 26.

また、図3において埋設量Lは、タイヤケース17(クラウン部16)に対する補強コード26のタイヤ回転軸方向への埋設量を示す。補強コード26のクラウン部16に対する埋設量Lは、補強コード26の直径Dの1/5以上であれば好ましく、1/2を超えることがさらに好ましい。そして、補強コード26全体がクラウン部16に埋設されることが最も好ましい。補強コード26の埋設量Lが、補強コード26の直径Dの1/2を超えると、補強コード26の寸法上、埋設部から飛び出し難くなる。また、補強コード26全体がクラウン部16に埋設されると、表面(外周面)がフラットになり、補強コード26が埋設されたクラウン部16上に部材が載置されても補強コード周辺部に空気が入るのを抑制することができる。なお、補強コード層28は、従来のゴム製の空気入りタイヤのカーカスの外周面に配置されるベルトに相当するものである。   Further, in FIG. 3, the burying amount L indicates the burying amount of the reinforcing cord 26 in the tire rotation axis direction with respect to the tire case 17 (crown portion 16). The embedding amount L of the reinforcing cord 26 in the crown portion 16 is preferably 1/5 or more of the diameter D of the reinforcing cord 26, and more preferably more than 1/2. Most preferably, the entire reinforcing cord 26 is embedded in the crown portion 16. When the embedment amount L of the reinforcing cord 26 exceeds 1/2 of the diameter D of the reinforcing cord 26, it is difficult to jump out of the embedded portion due to the size of the reinforcing cord 26. Further, when the entire reinforcing cord 26 is embedded in the crown portion 16, the surface (outer peripheral surface) becomes flat, and even if a member is placed on the crown portion 16 where the reinforcing cord 26 is embedded, Air can be prevented from entering. The reinforcing cord layer 28 corresponds to a belt disposed on the outer peripheral surface of the carcass of a conventional rubber pneumatic tire.

上述のように補強コード層28のタイヤ径方向外周側にはトレッド30が配置されている。このトレッド30に用いるゴムは、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。なお、トレッド30の代わりに、タイヤケース17を構成する樹脂材料よりも耐摩耗性に優れる他の種類の熱可塑性樹脂材料で形成したトレッドを用いてもよい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターンが形成されている。   As described above, the tread 30 is disposed on the outer peripheral side of the reinforcing cord layer 28 in the tire radial direction. The rubber used for the tread 30 is preferably the same type of rubber as that used in conventional rubber pneumatic tires. Instead of the tread 30, a tread formed of another type of thermoplastic resin material that is more excellent in wear resistance than the resin material constituting the tire case 17 may be used. Further, the tread 30 is formed with a tread pattern including a plurality of grooves on the ground contact surface with the road surface in the same manner as a conventional rubber pneumatic tire.

以下、本発明のタイヤの製造方法について説明する。
(タイヤケース成形工程)
まず、薄い金属の支持リングに支持されたタイヤケース半体同士を互いに向かい合わせる。次いで、タイヤケース半体の突き当て部分の外周面と接するように図を省略する接合金型を設置する。ここで、前記接合金型はタイヤケース半体Aの接合部(突き当て部分)周辺を所定の圧力で押圧するように構成されている。次いで、タイヤケース半体の接合部周辺を、タイヤケースを構成する熱可塑性樹脂材料の融点以上で押圧する。タイヤケース半体の接合部が接合金型によって加熱・加圧されると、前記接合部が溶融しタイヤケース半体同士が融着しこれら部材が一体となってタイヤケース17が形成される。尚、本実施形態においては接合金型を用いてタイヤケース半体の接合部を加熱したが、本発明はこれに限定されず、例えば、別に設けた高周波加熱機等によって前記接合部を加熱したり、予め熱風、赤外線の照射等によって軟化または溶融させ、接合金型によって加圧してタイヤケース半体を接合させてもよい。
Hereinafter, the tire manufacturing method of the present invention will be described.
(Tire case molding process)
First, tire case halves supported by a thin metal support ring face each other. Next, a joining mold (not shown) is installed so as to be in contact with the outer peripheral surface of the abutting portion of the tire case half. Here, the said joining metal mold | die is comprised so that the periphery of the junction part (butting part) of the tire case half body A may be pressed with a predetermined pressure. Next, the periphery of the joint portion of the tire case half is pressed at a temperature equal to or higher than the melting point of the thermoplastic resin material constituting the tire case. When the joining portion of the tire case half is heated and pressurized by the joining mold, the joining portion is melted and the tire case halves are fused together, and the tire case 17 is formed by integrating these members. In the present embodiment, the joining portion of the tire case half is heated using a joining mold, but the present invention is not limited to this. For example, the joining portion is heated by a separately provided high-frequency heater or the like. Alternatively, the tire case halves may be joined by softening or melting in advance by irradiation with hot air, infrared rays, or the like, and pressurizing with a joining mold.

(補強コード部材巻回工程)
次に、補強コード巻回工程について図4を用いて説明する。図4は、コード加熱装置、およびローラ類を用いてタイヤケースのクラウン部に補強コードを埋設する動作を説明するための説明図である。図4において、コード供給装置56は、補強コード26を巻き付けたリール58と、リール58のコード搬送方向下流側に配置されたコード加熱装置59と、補強コード26の搬送方向下流側に配置された第1のローラ60と、第1のローラ60をタイヤ外周面に対して接離する方向に移動する第1のシリンダ装置62と、第1のローラ60の補強コード26の搬送方向下流側に配置される第2のローラ64と、および第2のローラ64をタイヤ外周面に対して接離する方向に移動する第2のシリンダ装置66と、を備えている。第2のローラ64は、金属製の冷却用ローラとして利用することができる。また、本実施形態において、第1のローラ60または第2のローラ64の表面は、溶融または軟化した樹脂材料の付着を抑制するためにフッ素樹脂(本実施形態では、テフロン(登録商標))でコーティングされている。なお、本実施形態では、コード供給装置56は、第1のローラ60または第2のローラ64の2つのローラを有する構成としているが、本発明はこの構成に限定されず、何れか一方のローラのみ(即ち、ローラ1個)を有している構成でもよい。
(Reinforcement cord member winding process)
Next, the reinforcing cord winding process will be described with reference to FIG. FIG. 4 is an explanatory diagram for explaining an operation of embedding a reinforcing cord in a crown portion of a tire case using a cord heating device and rollers. In FIG. 4, the cord supply device 56 is disposed on the reel 58 around which the reinforcing cord 26 is wound, the cord heating device 59 disposed on the downstream side of the reel 58 in the cord transport direction, and the downstream side of the reinforcing cord 26 in the transport direction. The first roller 60, the first cylinder device 62 that moves the first roller 60 in the direction of contacting and separating from the outer peripheral surface of the tire, and the downstream side in the conveying direction of the reinforcing cord 26 of the first roller 60 A second roller 64, and a second cylinder device 66 that moves the second roller 64 in a direction in which the second roller 64 comes in contact with and separates from the tire outer peripheral surface. The second roller 64 can be used as a metal cooling roller. In the present embodiment, the surface of the first roller 60 or the second roller 64 is made of fluororesin (in this embodiment, Teflon (registered trademark)) in order to suppress adhesion of a molten or softened resin material. It is coated. In the present embodiment, the cord supply device 56 is configured to have two rollers, the first roller 60 or the second roller 64, but the present invention is not limited to this configuration, and any one of the rollers. It is also possible to have only one (that is, one roller).

また、コード加熱装置59は、熱風を生じさせるヒーター70およびファン72を備えている。また、コード加熱装置59は、内部に熱風が供給される、内部空間を補強コード26が通過する加熱ボックス74と、加熱された補強コード26を排出する排出口76とを備えている。   The cord heating device 59 includes a heater 70 and a fan 72 that generate hot air. Further, the cord heating device 59 includes a heating box 74 through which the reinforcing cord 26 passes through an internal space in which hot air is supplied, and a discharge port 76 for discharging the heated reinforcing cord 26.

本工程においては、まず、コード加熱装置59のヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。次に、リール58から巻き出した補強コード26を、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、補強コード26の温度を100〜200℃程度に加熱)する。加熱された補強コード26は、排出口76を通り、図4の矢印R方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻きつけられる。ここで、加熱された補強コード26がクラウン部16の外周面に接触すると、接触部分の樹脂材料が溶融または軟化し、加熱された補強コード26の少なくとも一部がクラウン部16の外周面に埋設される。このとき、溶融または軟化した樹脂材料に加熱された補強コード26が埋設されるため、樹脂材料と補強コード26とが隙間がない状態、つまり密着した状態となる。これにより、補強コード26を埋設した部分へのエア入りが抑制される。なお、補強コード26をタイヤケース17の樹脂材料の融点よりも高温に加熱することで、補強コード26が接触した部分の樹脂材料の溶融または軟化が促進される。このようにすることで、クラウン部16の外周面に補強コード26を埋設しやすくなると共に、効果的にエア入りを抑制することができる。   In this step, first, the temperature of the heater 70 of the cord heating device 59 is raised, and the ambient air heated by the heater 70 is sent to the heating box 74 by the wind generated by the rotation of the fan 72. Next, the reinforcing cord 26 unwound from the reel 58 is fed into a heating box 74 in which the internal space is heated with hot air (for example, the temperature of the reinforcing cord 26 is heated to about 100 to 200 ° C.). The heated reinforcing cord 26 passes through the discharge port 76 and is wound spirally around the outer peripheral surface of the crown portion 16 of the tire case 17 rotating in the direction of arrow R in FIG. Here, when the heated reinforcing cord 26 comes into contact with the outer peripheral surface of the crown portion 16, the resin material at the contact portion is melted or softened, and at least a part of the heated reinforcing cord 26 is embedded in the outer peripheral surface of the crown portion 16. Is done. At this time, since the heated reinforcing cord 26 is embedded in the molten or softened resin material, there is no gap between the resin material and the reinforcing cord 26, that is, a tight contact state. Thereby, the air entering to the portion where the reinforcing cord 26 is embedded is suppressed. In addition, by heating the reinforcing cord 26 to a temperature higher than the melting point of the resin material of the tire case 17, the melting or softening of the resin material in the portion in contact with the reinforcing cord 26 is promoted. By doing in this way, it becomes easy to embed the reinforcement cord 26 in the outer peripheral surface of the crown part 16, and air entry can be effectively suppressed.

また、補強コード26の埋設量Lは、補強コード26の加熱温度、補強コード26に作用させるテンション、および第1のローラ60による押圧力等によって調整することができる。そして、本実施形態では、補強コード26の埋設量Lが、補強コード26の直径Dの1/5以上となるように設定されている。なお、補強コード26の埋設量Lとしては、直径Dの1/2を超えることがさらに好ましく、補強コード26全体が埋設されることが最も好ましい。   The embedment amount L of the reinforcing cord 26 can be adjusted by the heating temperature of the reinforcing cord 26, the tension applied to the reinforcing cord 26, the pressing force by the first roller 60, and the like. In the present embodiment, the embedding amount L of the reinforcing cord 26 is set to be 1/5 or more of the diameter D of the reinforcing cord 26. The burying amount L of the reinforcing cord 26 is more preferably more than 1/2 of the diameter D, and most preferably the entire reinforcing cord 26 is embedded.

このようにして、加熱した補強コード26をクラウン部16の外周面に埋設しながら巻き付けることで、タイヤケース17のクラウン部16の外周側に補強コード層28が形成される。   In this way, the reinforcing cord layer 28 is formed on the outer peripheral side of the crown portion 16 of the tire case 17 by winding the heated reinforcing cord 26 while being embedded in the outer peripheral surface of the crown portion 16.

次に、タイヤケース17の外周面に加硫済みの帯状のトレッド30を1周分巻き付けてタイヤケース17の外周面にトレッド30を、接着剤などを用いて接着する。なお、トレッド30は、例えば、従来知られている更生タイヤに用いられるプレキュアトレッドを用いることができる。本工程は、更生タイヤの台タイヤの外周面にプレキュアトレッドを接着する工程と同様の工程である。   Next, a vulcanized belt-like tread 30 is wound around the outer peripheral surface of the tire case 17 for one turn, and the tread 30 is bonded to the outer peripheral surface of the tire case 17 using an adhesive or the like. In addition, the precure tread used for the retread tire conventionally known can be used for the tread 30, for example. This step is the same step as the step of bonding the precure tread to the outer peripheral surface of the base tire of the retreaded tire.

そして、タイヤケース17のビード部12に、加硫済みのゴムからなるシール層24を、接着剤等を用いて接着すれば、タイヤ10の完成となる。   And if the sealing layer 24 which consists of vulcanized rubber is adhere | attached on the bead part 12 of the tire case 17 using an adhesive agent etc., the tire 10 will be completed.

(作用)
本実施形態のタイヤ10では、タイヤケース17がポリアミド系熱可塑性エラストマーとPPEとを含む樹脂材料によって形成されているため、タイヤ骨格体の損失係数(Tanδ)が低く維持されたまま、前記ポリアミド系熱可塑性エラストマーを単独で用いた場合に比して弾性率が向上している。このため、タイヤ10は、耐熱性に優れ、且つ、転がり抵抗が低減されている。また、タイヤ10は従来のゴム製のタイヤに比して構造が簡易であるため重量が軽い。このため、本実施形態のタイヤ10は、耐摩擦性および耐久性が高い。
(Function)
In the tire 10 of the present embodiment, since the tire case 17 is formed of a resin material including a polyamide-based thermoplastic elastomer and PPE, the polyamide-based material can be maintained while maintaining a low loss factor (Tanδ) of the tire skeleton. The elastic modulus is improved as compared with the case where a thermoplastic elastomer is used alone. For this reason, the tire 10 is excellent in heat resistance and has reduced rolling resistance. The tire 10 is light in weight because it has a simple structure as compared with a conventional rubber tire. For this reason, the tire 10 of this embodiment has high friction resistance and durability.

また、本実施形態のタイヤ10では、樹脂材料で形成されたタイヤケース17のクラウン部16の外周面に前記樹脂材料よりも剛性が高い補強コード26が周方向へ螺旋状に巻回されていることから耐パンク性、耐カット性、およびタイヤ10の周方向剛性が向上する。なお、タイヤ10の周方向剛性が向上することで、熱可塑性樹脂材料で形成されたタイヤケース17のクリープが防止される。   Further, in the tire 10 of the present embodiment, a reinforcing cord 26 having a rigidity higher than that of the resin material is spirally wound in the circumferential direction on the outer peripheral surface of the crown portion 16 of the tire case 17 formed of a resin material. Therefore, puncture resistance, cut resistance, and circumferential rigidity of the tire 10 are improved. In addition, the creep of the tire case 17 formed of the thermoplastic resin material is prevented by improving the circumferential rigidity of the tire 10.

また、タイヤケース17の軸方向に沿った断面視(図2に示される断面)で、樹脂材料で形成されたタイヤケース17のクラウン部16の外周面に補強コード26の少なくとも一部が埋設され且つ樹脂材料に密着していることから、製造時のエア入りが抑制されており、走行時の入力などによって補強コード26が動くのが抑制される。これにより、補強コード26、タイヤケース17、およびトレッド30に剥離などが生じるのが抑制され、タイヤ10の耐久性が向上する。   Further, at least a part of the reinforcing cord 26 is embedded in the outer peripheral surface of the crown portion 16 of the tire case 17 formed of a resin material in a cross-sectional view along the axial direction of the tire case 17 (cross section shown in FIG. 2). In addition, since it is in close contact with the resin material, entry of air at the time of manufacture is suppressed, and movement of the reinforcing cord 26 due to input during travel is suppressed. Thereby, it is suppressed that peeling etc. arise in reinforcement cord 26, tire case 17, and tread 30, and durability of tire 10 improves.

このように補強コード層28が、樹脂材料を含んで構成されていると、補強コード26をクッションゴムで固定する場合と比してタイヤケース17と補強コード層28との硬さの差を小さくできるため、更に補強コード26をタイヤケース17に密着・固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
更に、補強コード26がスチールコードの場合に、タイヤ処分時に補強コード26を加熱によって樹脂材料から容易に分離・回収が可能であるため、タイヤ10のリサイクル性の点で有利である。また、樹脂材料は加硫ゴムに比して損失係数(Tanδ)が低いため、補強コード層28が樹脂材料を多く含んでいると、タイヤの転がり性を向上させることができる。更には、樹脂材料は加硫ゴムに比して、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
When the reinforcing cord layer 28 is configured to include a resin material in this way, the difference in hardness between the tire case 17 and the reinforcing cord layer 28 is reduced as compared with the case where the reinforcing cord 26 is fixed with cushion rubber. Therefore, the reinforcing cord 26 can be further adhered and fixed to the tire case 17. Thereby, the above-mentioned air entering can be prevented effectively, and it can control effectively that a reinforcement cord member moves at the time of driving.
Furthermore, when the reinforcing cord 26 is a steel cord, the reinforcing cord 26 can be easily separated and collected from the resin material by heating at the time of disposal of the tire, which is advantageous in terms of recyclability of the tire 10. Further, since the resin material has a lower loss coefficient (Tan δ) than vulcanized rubber, if the reinforcing cord layer 28 contains a large amount of the resin material, the rolling property of the tire can be improved. Furthermore, the resin material has an advantage that the in-plane shear rigidity is larger than that of the vulcanized rubber, and the handling property and wear resistance during running of the tire are excellent.

そして、図3に示すように、補強コード26の埋設量Lが直径Dの1/5以上となっていることから、製造時のエア入りが効果的に抑制されており、走行時の入力などによって補強コード26が動くのがさらに抑制される。   And since the embedding amount L of the reinforcement cord 26 is 1/5 or more of the diameter D as shown in FIG. 3, the air entry at the time of manufacture is suppressed effectively, the input at the time of driving, etc. This further suppresses the movement of the reinforcing cord 26.

また、路面と接触するトレッド30をポリアミド系熱可塑性エラストマーとPPEとを含む樹脂材料よりも耐摩耗性のあるゴム材で構成していることから、タイヤ10の耐摩耗性が向上する。
さらに、ビード部12には、金属材料からなる環状のビードコア18が埋設されていることから、従来のゴム製の空気入りタイヤと同様に、リム20に対してタイヤケース17、すなわちタイヤ10が強固に保持される。
In addition, since the tread 30 that is in contact with the road surface is made of a rubber material that is more wear resistant than a resin material that includes a polyamide-based thermoplastic elastomer and PPE, the wear resistance of the tire 10 is improved.
Further, since an annular bead core 18 made of a metal material is embedded in the bead portion 12, the tire case 17, that is, the tire 10 is strong against the rim 20 like the conventional rubber pneumatic tire. Retained.

またさらに、ビード部12のリム20と接触する部分に、タイヤケース17を構成する樹脂材料よりもシール性のあるゴム材からなるシール層24が設けられていることから、タイヤ10とリム20との間のシール性が向上する。このため、リム20とタイヤケース17を構成する樹脂材料のみとでシールする場合と比較して、タイヤ内の空気漏れがより一層抑制される。また、シール層24を設けることでリムフィット性も向上する。   Furthermore, since a seal layer 24 made of a rubber material having a sealing property than the resin material constituting the tire case 17 is provided at a portion of the bead portion 12 that contacts the rim 20, the tire 10 and the rim 20 The sealing performance between the two is improved. For this reason, compared with the case where it seals only with the rim | limb 20 and the resin material which comprises the tire case 17, the air leak in a tire is suppressed further. Further, the rim fit property is improved by providing the seal layer 24.

上述の実施形態では、補強コード26を加熱し、加熱した補強コード26が接触する部分のポリアミド系熱可塑性エラストマー+PPEを溶融または軟化させる構成としたが、本発明はこの構成に限定されず、補強コード26を加熱せずに熱風生成装置を用い、補強コード26が埋設されるクラウン部16の外周面を加熱した後、補強コード26をクラウン部16に埋設するようにしてもよい。   In the above-described embodiment, the reinforcing cord 26 is heated, and the polyamide thermoplastic elastomer + PPE in the portion where the heated reinforcing cord 26 contacts is melted or softened. However, the present invention is not limited to this configuration, and the reinforcing cord 26 The hot cord generator may be used without heating the cord 26, and the reinforcing cord 26 may be buried in the crown portion 16 after the outer peripheral surface of the crown portion 16 in which the reinforcing cord 26 is buried is heated.

また、第1実施形態では、コード加熱装置59の熱源をヒーターおよびファンとしているが、本発明はこの構成に限定されず、補強コード26を輻射熱(例えば、赤外線など)で直接加熱する構成としてもよい。   In the first embodiment, the heat source of the cord heating device 59 is a heater and a fan. However, the present invention is not limited to this configuration, and the reinforcement cord 26 may be directly heated by radiant heat (for example, infrared rays). Good.

さらに、第1実施形態では、補強コード26を埋設した熱可塑性樹脂材料が溶融または軟化した部分を金属製の第2のローラ64で強制的に冷却する構成としたが、本発明はこの構成に限定されず、熱可塑性樹脂材料が溶融または軟化した部分に冷風を直接吹きかけて、熱可塑性樹脂材料の溶融または軟化した部分を強制的に冷却固化する構成としてもよい。   Further, in the first embodiment, the portion in which the thermoplastic resin material in which the reinforcing cord 26 is embedded is melted or softened is forcibly cooled by the metal second roller 64. However, the present invention has this configuration. It is not limited, It is good also as a structure which forcibly cools and solidifies the melt | dissolved or softened part of the thermoplastic resin material by spraying cold air directly on the part where the thermoplastic resin material was melted or softened.

また、第1実施形態では、補強コード26を加熱する構成としたが、例えば、補強コード26の外周をタイヤケース17と同じ熱可塑性樹脂材料で被覆する構成としてもよく、この場合には、被覆補強コードをタイヤケース17のクラウン部16に巻き付ける際に、補強コード26と共に被覆した熱可塑性樹脂材料も加熱することで、クラウン部16への埋設時におけるエア入りを効果的に抑制することができる。   In the first embodiment, the reinforcement cord 26 is heated. However, for example, the outer periphery of the reinforcement cord 26 may be covered with the same thermoplastic resin material as that of the tire case 17. When the reinforcing cord is wound around the crown portion 16 of the tire case 17, the thermoplastic resin material coated together with the reinforcing cord 26 is also heated, so that the air can be effectively suppressed when being embedded in the crown portion 16. .

また、補強コード26は螺旋巻きするのが製造上は容易だが、幅方向で補強コード26を不連続とする方法等も考えられる。   Further, although it is easy to manufacture the reinforcing cord 26 in a spiral manner, a method of making the reinforcing cord 26 discontinuous in the width direction is also conceivable.

第1実施形態のタイヤ10は、ビード部12をリム20に装着することで、タイヤ10とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本発明はこの構成に限定されず、完全なチューブ形状であってもよい。   The tire 10 of the first embodiment is a so-called tubeless tire in which an air chamber is formed between the tire 10 and the rim 20 by attaching the bead portion 12 to the rim 20, but the present invention is limited to this configuration. It may be a complete tube shape.

前記完全なチューブ形状のタイヤとしては、図5に示すように、円環状とされたタイヤ骨格体をタイヤ幅方向に3本配置した態様であってもよい。図5は、他の実施形態に係るタイヤの断面図である。図5に示すように、タイヤ86は、トレッドゴム層87と、第1実施形態と同様の樹脂材料からなる円環状とされた中空のチューブ(タイヤ骨格体)88と、ベルト(補強コード)89と、リム90とを備えている。チューブ88は、タイヤ86のタイヤ幅方向に3本並んで配置されている。チューブ88の外周部には、ベルト89を埋設したトレッドゴム層87が接着されている。また、チューブ88は、チューブ88と係合する凹部を備えたリム90に装着されている。なお、このタイヤ86にはビードコアは設けられていない。   As shown in FIG. 5, the complete tube-shaped tire may have a configuration in which three annular tire frames are arranged in the tire width direction. FIG. 5 is a cross-sectional view of a tire according to another embodiment. As shown in FIG. 5, the tire 86 includes a tread rubber layer 87, an annular tube (tire frame body) 88 made of a resin material similar to that of the first embodiment, and a belt (reinforcing cord) 89. And a rim 90. Three tubes 88 are arranged side by side in the tire width direction of the tire 86. A tread rubber layer 87 in which a belt 89 is embedded is bonded to the outer periphery of the tube 88. The tube 88 is attached to a rim 90 having a recess that engages with the tube 88. The tire 86 is not provided with a bead core.

以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。   The embodiments of the present invention have been described above with reference to the embodiments. However, these embodiments are merely examples, and various modifications can be made without departing from the scope of the invention. It goes without saying that the scope of rights of the present invention is not limited to these embodiments.

[第2の実施形態]
次に、図面に従って本発明のタイヤの製造方法およびタイヤの第2実施形態について説明する。本実施形態のタイヤは、上述の第1実施形態と同様に、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。このため、以下の図において、前記第1実施形態と同様の構成については同様の番号が付される。図6(A)は、第2実施形態のタイヤのタイヤ幅方向に沿った断面図であり、図6(B)は第2実施形態のタイヤにリムを嵌合させた状態のビード部のタイヤ幅方向に沿った断面の拡大図である。また、図7は、第2実施形態のタイヤの補強層の周囲を示すタイヤ幅方向に沿った断面図である。
[Second Embodiment]
Next, a tire manufacturing method and a second embodiment of the tire according to the present invention will be described with reference to the drawings. Similar to the first embodiment, the tire according to the present embodiment has a cross-sectional shape substantially similar to that of a conventional general rubber pneumatic tire. For this reason, in the following figures, the same number is attached | subjected about the structure similar to the said 1st Embodiment. FIG. 6A is a cross-sectional view along the tire width direction of the tire of the second embodiment, and FIG. 6B is a bead tire in a state where a rim is fitted to the tire of the second embodiment. It is an enlarged view of the cross section along the width direction. FIG. 7 is a cross-sectional view along the tire width direction showing the periphery of the reinforcing layer of the tire of the second embodiment.

第2実施形態のタイヤは、上述の第1実施形態と同様に、タイヤケース17が、ポリアミド系熱可塑性エラストマー(宇部興産社製「UBESTA XPA9048X1」;ハードセグメント(ポリアミド12)のガラス転移温度(Tg):40℃)とポリフェニレンエーテル(PPE)(旭化成ケミカルズ社製「ザイロン 200H」 Tg:210℃)とをハードセグメント(ポリアミド:x)と前記樹脂(PPE:y)との総量(x+y)に対する熱可塑性エラストマーのソフトセグメント(ポリエーテル:z)との質量比(x+y:z)が72:28で形成されている。また、ハードセグメント(ポリアミド12:x)と前記樹脂(PPE:y)との質量比は48:52である。   In the tire of the second embodiment, the tire case 17 is made of a polyamide-based thermoplastic elastomer (“UBESTA XPA9048X1” manufactured by Ube Industries, Ltd .; the glass transition temperature (Tg) of the hard segment (polyamide 12), as in the first embodiment described above. ): 40 ° C.) and polyphenylene ether (PPE) (“Zylon 200H” manufactured by Asahi Kasei Chemicals Corporation Tg: 210 ° C.) with respect to the total amount (x + y) of the hard segment (polyamide: x) and the resin (PPE: y). The mass ratio (x + y: z) of the plastic elastomer to the soft segment (polyether: z) is 72:28. The mass ratio of the hard segment (polyamide 12: x) and the resin (PPE: y) is 48:52.

本実施形態においてタイヤ200は、図6および図7に示すように、クラウン部16に、被覆コード部材26Bが周方向に巻回されて構成された補強コード層28(図7では破線で示されている)が積層されている。この補強コード層28は、タイヤケース17の外周部を構成し、クラウン部16の周方向剛性を補強している。なお、補強コード層28の外周面は、タイヤケース17の外周面17Sに含まれる。   In the present embodiment, as shown in FIGS. 6 and 7, the tire 200 includes a reinforcing cord layer 28 (indicated by a broken line in FIG. 7) formed by winding a covering cord member 26 </ b> B around the crown portion 16 in the circumferential direction. Are stacked). The reinforcing cord layer 28 constitutes the outer peripheral portion of the tire case 17 and reinforces the circumferential rigidity of the crown portion 16. The outer peripheral surface of the reinforcing cord layer 28 is included in the outer peripheral surface 17S of the tire case 17.

この被覆コード部材26Bは、タイヤケース17を形成する樹脂材料よりも剛性が高いコード部材26Aにタイヤケース17を形成する樹脂材料とは別体の被覆用樹脂材料27を被覆して形成されている。また、被覆コード部材26Bはクラウン部16との接触部分において、被覆コード部材26Bとクラウン部16とが接合(例えば、溶接、または接着剤で接着)されている。   The covering cord member 26B is formed by coating a covering resin material 27 separate from the resin material forming the tire case 17 on the cord member 26A having higher rigidity than the resin material forming the tire case 17. . In addition, the covering cord member 26B is joined (for example, welded or bonded with an adhesive) to the covering cord member 26B and the crown portion 16 at the contact portion with the crown portion 16.

また、被覆用樹脂材料27の弾性率は、タイヤケース17を形成する樹脂材料の弾性率の0.1倍から10倍の範囲内に設定することが好ましい。被覆用樹脂材料27の弾性率がタイヤケース17を形成する熱可塑性樹脂材料の弾性率の10倍以下の場合は、クラウン部が硬くなり過ぎずリム組み性が容易になる。また、被覆用樹脂材料27の弾性率がタイヤケース17を形成する熱可塑性樹脂材料の弾性率の0.1倍以上の場合には、補強コード層28を構成する樹脂が柔らかすぎず、ベルト面内せん断剛性に優れコーナリング力が向上する。なお、本実施形態では、被覆用樹脂材料27としてタイヤ骨格体を形成する樹脂材料と同様の材料が用いられている。   The elastic modulus of the coating resin material 27 is preferably set in the range of 0.1 to 10 times the elastic modulus of the resin material forming the tire case 17. When the elastic modulus of the coating resin material 27 is 10 times or less than the elastic modulus of the thermoplastic resin material forming the tire case 17, the crown portion does not become too hard and rim assembly is facilitated. When the elastic modulus of the coating resin material 27 is 0.1 times or more of the elastic modulus of the thermoplastic resin material forming the tire case 17, the resin constituting the reinforcing cord layer 28 is not too soft and the belt surface Excellent internal shear rigidity and improved cornering force. In the present embodiment, a material similar to the resin material forming the tire frame is used as the coating resin material 27.

また、図7に示すように、被覆コード部材26Bは、断面形状が略台形状とされている。なお、以下では、被覆コード部材26Bの上面(タイヤ径方向外側の面)を符号26Uで示し、下面(タイヤ径方向内側の面)を符号26Dで示す。また、本実施形態では、被覆コード部材26Bの断面形状を略台形状とする構成としているが、本発明はこの構成に限定されず、断面形状が下面26D側(タイヤ径方向内側)から上面26U側(タイヤ径方向外側)へ向かって幅広となる形状を除いた形状であれば、いずれの形状でもよい。   Further, as shown in FIG. 7, the covering cord member 26B has a substantially trapezoidal cross-sectional shape. In the following description, the upper surface (the surface on the outer side in the tire radial direction) of the covering cord member 26B is denoted by reference numeral 26U, and the lower surface (the surface on the inner side in the tire radial direction) is denoted by reference numeral 26D. In the present embodiment, the cross-sectional shape of the covering cord member 26B is a substantially trapezoidal shape. However, the present invention is not limited to this configuration, and the cross-sectional shape is from the lower surface 26D side (the tire radial direction inner side) to the upper surface 26U. Any shape may be used as long as the shape excluding the shape that becomes wider toward the side (the tire radial direction outer side).

図7に示すように、被覆コード部材26Bは、周方向に間隔をあけて配置されていることから、隣接する被覆コード部材26Bの間に隙間28Aが形成されている。このため、補強コード層28の外周面は、凹凸とされ、この補強コード層28が外周部を構成するタイヤケース17の外周面17Sも凹凸となっている。   As shown in FIG. 7, since the covering cord members 26B are arranged at intervals in the circumferential direction, a gap 28A is formed between the adjacent covering cord members 26B. For this reason, the outer peripheral surface of the reinforcing cord layer 28 is uneven, and the outer peripheral surface 17S of the tire case 17 in which the reinforcing cord layer 28 forms the outer peripheral portion is also uneven.

タイヤケース17の外周面17S(凹凸含む)には、微細な粗化凹凸が均一に形成され、その上に接合剤を介して、クッションゴム29が接合されている。このクッションゴム29は、径方向内側のゴム部分が粗化凹凸に流れ込んでいる。   On the outer peripheral surface 17S (including unevenness) of the tire case 17, fine roughened unevenness is uniformly formed, and a cushion rubber 29 is bonded thereon via a bonding agent. In the cushion rubber 29, the radially inner rubber portion flows into the roughened irregularities.

また、クッションゴム29の上(外周面)にはタイヤケース17を形成している樹脂材料よりも耐摩耗性に優れた材料、例えばゴムからなるトレッド30が接合されている。   In addition, a tread 30 made of a material having higher wear resistance than the resin material forming the tire case 17, for example, rubber, is joined on the cushion rubber 29 (outer peripheral surface).

なお、トレッド30に用いるゴム(トレッドゴム30A)は、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。また、トレッド30の代わりに、タイヤケース17を形成する樹脂材料よりも耐摩耗性に優れる他の種類の樹脂材料で形成したトレッドを用いてもよい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターン(図示省略)が形成されている。   The rubber used for the tread 30 (tread rubber 30A) is preferably the same type of rubber as that used for conventional rubber pneumatic tires. Instead of the tread 30, a tread formed of another type of resin material that is more excellent in wear resistance than the resin material forming the tire case 17 may be used. Further, the tread 30 is formed with a tread pattern (not shown) including a plurality of grooves on the ground contact surface with the road surface, similarly to the conventional rubber pneumatic tire.

次に本実施形態のタイヤの製造方法について説明する。
(骨格形成工程)
まず、上述の第1実施形態と同様にして、タイヤケース半体17Aを形成し、これを接合金型によって加熱・押圧し、タイヤケース17を形成する。
Next, the manufacturing method of the tire of this embodiment is demonstrated.
(Skeleton formation process)
First, in the same manner as in the first embodiment described above, the tire case half 17A is formed, and this is heated and pressed by a joining mold to form the tire case 17.

(補強コード部材巻回工程)
本実施形態におけるタイヤの製造装置は、上述の第1実施形態と同様であり、上述の第1実施形態の図4に示すコード供給装置56において、リール58にコード部材26Aを被覆用樹脂材料27(本実施形態では熱可塑性材料)で被覆した断面形状が略台形状の被覆コード部材26Bを巻き付けたものが用いられる。
(Reinforcement cord member winding process)
The tire manufacturing apparatus according to the present embodiment is the same as that of the first embodiment described above. In the cord supply apparatus 56 shown in FIG. A member obtained by winding a covering cord member 26B having a substantially trapezoidal cross-sectional shape covered with (a thermoplastic material in the present embodiment) is used.

まず、ヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。リール58から巻き出した被覆コード部材26Bを、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、被覆コード部材26Bの外周面の温度を、被覆用樹脂材料27の融点以上)とする。ここで、被覆コード部材26Bが加熱されることにより、被覆用樹脂材料27が溶融または軟化した状態となる。   First, the temperature of the heater 70 is raised, and the ambient air heated by the heater 70 is sent to the heating box 74 by the wind generated by the rotation of the fan 72. The coated cord member 26B unwound from the reel 58 is fed into the heating box 74 in which the internal space is heated with hot air (for example, the temperature of the outer peripheral surface of the coated cord member 26B is equal to or higher than the melting point of the coating resin material 27). And Here, when the covering cord member 26B is heated, the covering resin material 27 is melted or softened.

そして被覆コード部材26Bは、排出口76を通り、紙面手前方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻回される。このとき、クラウン部16の外周面に被覆コード部材26Bの下面26Dが接触する。そして、接触した部分の溶融または軟化状態の被覆用樹脂材料27はクラウン部16の外周面上に広がり、クラウン部16の外周面に被覆コード部材26Bが溶着される。これにより、クラウン部16と被覆コード部材26Bとの接合強度が向上する。   The covering cord member 26B is spirally wound around the outer peripheral surface of the crown portion 16 of the tire case 17 that rotates in the front direction of the paper through the discharge port 76 with a certain tension. At this time, the lower surface 26 </ b> D of the covering cord member 26 </ b> B contacts the outer peripheral surface of the crown portion 16. The melted or softened covering resin material 27 in the contacted portion spreads on the outer peripheral surface of the crown portion 16, and the covering cord member 26 </ b> B is welded to the outer peripheral surface of the crown portion 16. Thereby, the joint strength between the crown portion 16 and the covering cord member 26B is improved.

(粗化処理工程)
次に、図示を省略するブラスト装置にて、タイヤケース17の外周面17Sに向け、タイヤケース17側を回転させながら、外周面17Sへ投射材を高速度で射出する。射出された投射材は、外周面17Sに衝突し、この外周面17Sに算術平均粗さRaが0.05mm以上となる微細な粗化凹凸96を形成する。
このようにして、タイヤケース17の外周面17Sに微細な粗化凹凸96が形成されることで、外周面17Sが親水性となり、後述する接合剤の濡れ性が向上する。
(Roughening process)
Next, a blasting device (not shown) emits a projection material at a high speed toward the outer peripheral surface 17S while rotating the tire case 17 side toward the outer peripheral surface 17S of the tire case 17. The ejected projection material collides with the outer peripheral surface 17S, and fine roughening unevenness 96 having an arithmetic average roughness Ra of 0.05 mm or more is formed on the outer peripheral surface 17S.
Thus, by forming the fine roughening unevenness 96 on the outer peripheral surface 17S of the tire case 17, the outer peripheral surface 17S becomes hydrophilic, and the wettability of the bonding agent described later is improved.

(積層工程)
次に、粗化処理を行なったタイヤケース17の外周面17Sに接合剤を塗布する。
なお、接合剤としては、トリアジンチオール系接着剤、塩化ゴム系接着剤、フェノール系樹脂接着剤、イソシアネート系接着剤、ハロゲン化ゴム系接着剤、ゴム系接着剤など、特に制限はないが、クッションゴム29が加硫できる温度(90℃〜140℃)で反応することが好ましい。
(Lamination process)
Next, a bonding agent is applied to the outer peripheral surface 17S of the tire case 17 subjected to the roughening treatment.
The bonding agent is not particularly limited, such as triazine thiol adhesive, chlorinated rubber adhesive, phenolic resin adhesive, isocyanate adhesive, halogenated rubber adhesive, rubber adhesive, etc. It is preferable to react at a temperature (90 ° C. to 140 ° C.) at which the rubber 29 can be vulcanized.

次に、接合剤が塗布された外周面17Sに未加硫状態のクッションゴム29を1周分巻き付け、そのクッションゴム29の上に例えば、ゴムセメント組成物などの接合剤を塗布し、その上に加硫済みまたは半加硫状態のトレッドゴム30Aを1周分巻き付けて、生タイヤケース状態とする。   Next, the cushion rubber 29 in an unvulcanized state is wound around the outer peripheral surface 17S to which the bonding agent is applied for one round, and a bonding agent such as a rubber cement composition is applied on the cushion rubber 29, A vulcanized or semi-cured tread rubber 30A is wound for one turn to obtain a raw tire case state.

(加硫工程)
次に生タイヤケースを加硫缶やモールドに収容して加硫する。このとき、粗化処理によってタイヤケース17の外周面17Sに形成された粗化凹凸96に未加硫のクッションゴム29が流れ込む。そして、加硫が完了すると、粗化凹凸96に流れ込んだクッションゴム29により、アンカー効果が発揮されて、タイヤケース17とクッションゴム29との接合強度が向上する。すなわち、クッションゴム29を介してタイヤケース17とトレッド30との接合強度が向上する。
(Vulcanization process)
Next, the raw tire case is accommodated in a vulcanizing can or mold and vulcanized. At this time, the unvulcanized cushion rubber 29 flows into the roughened irregularities 96 formed on the outer peripheral surface 17S of the tire case 17 by the roughening treatment. When the vulcanization is completed, the anchor rubber is exerted by the cushion rubber 29 flowing into the roughened unevenness 96, and the bonding strength between the tire case 17 and the cushion rubber 29 is improved. That is, the bonding strength between the tire case 17 and the tread 30 is improved via the cushion rubber 29.

そして、タイヤケース17のビード部12に、樹脂材料よりも軟質である軟質材料からなるシール層24を、接着剤等を用いて接着すれば、タイヤ200の完成となる。   And if the sealing layer 24 which consists of a soft material softer than a resin material is adhere | attached on the bead part 12 of the tire case 17 using an adhesive agent etc., the tire 200 will be completed.

(作用)
本実施形態のタイヤ200では、タイヤケース17がポリアミド系熱可塑性エラストマーとPPEとを含む樹脂材料によって形成されているため、タイヤ骨格体の損失係数(Tanδ)が低く維持されたまま、前記ポリアミド系熱可塑性エラストマーを単独で用いた場合に比して弾性率が向上している。このため、タイヤ10は、耐熱性に優れ、且つ、転がり抵抗が低減されている。また、タイヤ200は従来のゴム製のタイヤに比して構造が簡易であるため重量が軽い。このため、本実施形態のタイヤ200は、耐摩擦性および耐久性が高い。
(Function)
In the tire 200 of the present embodiment, since the tire case 17 is formed of a resin material containing a polyamide-based thermoplastic elastomer and PPE, the polyamide-based material is maintained with the loss coefficient (Tanδ) of the tire skeleton maintained low. The elastic modulus is improved as compared with the case where a thermoplastic elastomer is used alone. For this reason, the tire 10 is excellent in heat resistance and has reduced rolling resistance. The tire 200 is light in weight because it has a simple structure as compared with a conventional rubber tire. For this reason, the tire 200 of this embodiment has high friction resistance and durability.

本実施形態のタイヤの製造方法では、タイヤケース17とクッションゴム29およびトレッドゴム30Aとを一体化するにあたり、タイヤケース17の外周面17Sが粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤケース17を形成する樹脂材料が投射材の衝突により掘り起こされることから、接合剤の濡れ性が向上する。これにより、タイヤケース17の外周面17Sに接合剤が均一な塗布状態で保持され、タイヤケース17とクッションゴム29との接合強度を確保することができる。   In the tire manufacturing method of the present embodiment, since the outer peripheral surface 17S of the tire case 17 is roughened when the tire case 17, the cushion rubber 29, and the tread rubber 30A are integrated, the bondability is achieved by the anchor effect. (Adhesiveness) is improved. Further, since the resin material forming the tire case 17 is dug up by the collision of the projection material, the wettability of the bonding agent is improved. Thereby, the bonding agent is held in a uniform applied state on the outer peripheral surface 17S of the tire case 17, and the bonding strength between the tire case 17 and the cushion rubber 29 can be ensured.

特に、タイヤケース17の外周面17Sに凹凸が構成されていても、凹部(隙間28A)に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤケース17とクッションゴム29との接合強度を確保することができる。   In particular, even when the outer peripheral surface 17S of the tire case 17 is uneven, the projection case is collided with the projection (gap 28A) to roughen the periphery of the recess (concave wall, bottom), so that the tire case 17 The bonding strength between the cushion rubber 29 and the cushion rubber 29 can be ensured.

一方、クッションゴム29がタイヤケース17の外周面17Sの粗化処理された領域内に積層されることから、タイヤケース17とクッションゴムとの接合強度を効果的に確保することができる。   On the other hand, since the cushion rubber 29 is laminated in the roughened region of the outer peripheral surface 17S of the tire case 17, the bonding strength between the tire case 17 and the cushion rubber can be effectively ensured.

加硫工程において、クッションゴム29を加硫した場合、粗化処理によってタイヤケース17の外周面17Sに形成された粗化凹凸にクッションゴム29が流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだクッションゴム29により、アンカー効果が発揮されて、タイヤケース17とクッションゴム29との接合強度が向上する。   In the vulcanization step, when the cushion rubber 29 is vulcanized, the cushion rubber 29 flows into the roughened irregularities formed on the outer peripheral surface 17S of the tire case 17 by the roughening process. When the vulcanization is completed, the anchor rubber is exerted by the cushion rubber 29 flowing into the roughened unevenness, and the bonding strength between the tire case 17 and the cushion rubber 29 is improved.

このような、タイヤの製造方法にて製造されたタイヤ200は、タイヤケース17とクッションゴム29との接合強度が確保される、すなわち、クッションゴム29を介してタイヤケース17とトレッド30との接合強度が確保される。これにより、走行時などにおいて、タイヤ200のタイヤケース17の外周面17Sとクッションゴム29との間の剥離が抑制される。   The tire 200 manufactured by such a tire manufacturing method ensures the bonding strength between the tire case 17 and the cushion rubber 29, that is, the bonding between the tire case 17 and the tread 30 via the cushion rubber 29. Strength is secured. Thereby, the peeling between the outer peripheral surface 17S of the tire case 17 of the tire 200 and the cushion rubber 29 is suppressed during traveling or the like.

また、タイヤケース17の外周部を補強コード層28が構成していることから、外周部を補強コード層28以外のもので構成しているものと比べて、耐パンク性および耐カット性が向上する。   Further, since the outer peripheral portion of the tire case 17 is configured by the reinforcing cord layer 28, the puncture resistance and the cut resistance are improved as compared with the outer peripheral portion configured by something other than the reinforcing cord layer 28. To do.

また、被覆コード部材26Bを巻回して補強コード層28が形成されていることから、タイヤ200の周方向剛性が向上する。周方向剛性が向上することで、タイヤケース17のクリープ(一定の応力下でタイヤケース17の塑性変形が時間とともに増加する現象)が抑制され、且つ、タイヤ径方向内側からの空気圧に対する耐圧性が向上する。   Further, since the reinforcing cord layer 28 is formed by winding the covering cord member 26B, the circumferential rigidity of the tire 200 is improved. By improving the circumferential rigidity, creep of the tire case 17 (a phenomenon in which plastic deformation of the tire case 17 increases with time under a constant stress) is suppressed, and pressure resistance against air pressure from the inner side in the tire radial direction is suppressed. improves.

更に、補強コード層28が、被覆コード部材26Bを含んで構成されていると、補強コード26Aを単にクッションゴム29で固定する場合と比してタイヤケース17と補強コード層28との硬さの差を小さくできるため、更に被覆コード部材26Bをタイヤケース17に密着・固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
更に、補強コード26Aがスチールコードの場合に、タイヤ処分時に被覆コード部材26Bからコード部材26Aを加熱によって容易に分離・回収が可能であるため、タイヤ200のリサイクル性の点で有利である。また、樹脂材料は加硫ゴムに比して損失係数(Tanδ)が低いため、補強コード層28が樹脂材料を多く含んでいると、タイヤの転がり性を向上させることができる。更には、樹脂材料は加硫ゴムに比して、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
Further, when the reinforcing cord layer 28 includes the covering cord member 26B, the hardness of the tire case 17 and the reinforcing cord layer 28 is higher than that when the reinforcing cord 26A is simply fixed by the cushion rubber 29. Since the difference can be reduced, the covering cord member 26B can be further adhered and fixed to the tire case 17. Thereby, the above-mentioned air entering can be prevented effectively, and it can control effectively that a reinforcement cord member moves at the time of driving.
Further, when the reinforcing cord 26A is a steel cord, the cord member 26A can be easily separated and recovered from the coated cord member 26B by heating at the time of disposal of the tire, which is advantageous in terms of the recyclability of the tire 200. Further, since the resin material has a lower loss coefficient (Tan δ) than vulcanized rubber, if the reinforcing cord layer 28 contains a large amount of the resin material, the rolling property of the tire can be improved. Furthermore, the resin material has an advantage that the in-plane shear rigidity is larger than that of the vulcanized rubber, and the handling property and wear resistance during running of the tire are excellent.

本実施形態では、タイヤケース17の外周面17Sに凹凸を構成したが、本発明はこれに限らず、外周面17Sを平らに形成する構成としてもよい。
また、タイヤケース17は、タイヤケースのクラウン部に巻回され且つ接合された被覆コード部材を被覆用熱可塑性材料で覆うようにして補強コード層を形成してもよい。この場合、溶融または軟化状態の被覆用熱可塑性材料を補強コード層28の上に吐出して被覆層を形成することができる。また、押出機を用いずに、溶着シートを加熱し溶融または軟化状態にして、補強コード層28の表面(外周面)に貼り付けて被覆層を形成してもよい。
In this embodiment, although the unevenness | corrugation was comprised in the outer peripheral surface 17S of the tire case 17, this invention is not restricted to this, It is good also as a structure which forms the outer peripheral surface 17S flatly.
In addition, the tire case 17 may be formed with a reinforcing cord layer so as to cover the covering cord member wound and joined to the crown portion of the tire case with a covering thermoplastic material. In this case, the coating thermoplastic material can be ejected onto the reinforcing cord layer 28 in the molten or softened state to form the coating layer. Further, without using an extruder, the welding sheet may be heated to be in a molten or softened state and attached to the surface (outer peripheral surface) of the reinforcing cord layer 28 to form a coating layer.

上述の第2実施形態では、ケース分割体(タイヤケース半体17A)を接合してタイヤケース17を形成する構成としたが、本発明はこの構成に限らず、金型などを用いてタイヤケース17を一体的に形成してもよい。   In the second embodiment described above, the case case 17 (the tire case half 17A) is joined to form the tire case 17. However, the present invention is not limited to this configuration, and the tire case is formed using a mold or the like. 17 may be integrally formed.

第2実施形態のタイヤ200は、ビード部12をリム20に装着することで、タイヤ200とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本発明はこの構成に限定されず、タイヤ200は、例えば、完全なチューブ形状(例えば図5に示す形状)であってもよい。   The tire 200 of the second embodiment is a so-called tubeless tire in which an air chamber is formed between the tire 200 and the rim 20 by attaching the bead portion 12 to the rim 20, but the present invention is limited to this configuration. Instead, the tire 200 may have, for example, a complete tube shape (for example, the shape shown in FIG. 5).

第2実施形態では、タイヤケース17とトレッド30との間にクッションゴム29を配置したが、本発明はこれに限らず、クッションゴム29を配置しない構成としてもよい。   In the second embodiment, the cushion rubber 29 is disposed between the tire case 17 and the tread 30. However, the present invention is not limited thereto, and the cushion rubber 29 may not be disposed.

また、第2実施形態では、被覆コード部材26Bをクラウン部16へ螺旋状に巻回する構成としたが、本発明はこれに限らず、被覆コード部材26Bが幅方向で不連続となるように巻回する構成としてもよい。   In the second embodiment, the covering cord member 26B is spirally wound around the crown portion 16. However, the present invention is not limited thereto, and the covering cord member 26B is discontinuous in the width direction. It is good also as a structure wound up.

第2実施形態では、被覆コード部材26Bを形成する被覆用樹脂材料27を熱可塑性材料とし、この被覆用樹脂材料27を加熱することにより溶融または軟化状態にしてクラウン部16の外周面に被覆コード部材26Bを溶着する構成としているが、本発明はこの構成に限定されず、被覆用樹脂材料27を加熱せずに接着剤などを用いてクラウン部16の外周面に被覆コード部材26Bを接着する構成としてもよい。
また、被覆コード部材26Bを形成する被覆用樹脂材料27を熱硬化性樹脂とし、被覆コード部材26Bを加熱せずに接着剤などを用いてクラウン部16の外周面に接着する構成としてもよい。
さらに、被覆コード部材26Bを形成する被覆用樹脂材料27を熱硬化性樹脂とし、タイヤケース17を熱可塑性樹脂材料で形成する構成としてもよい。この場合には、被覆コード部材26Bをクラウン部16の外周面に接着剤などを用いて接着してもよく、タイヤケース17の被覆コード部材26Bが配設される部位を加熱して溶融または軟化状態にして被覆コード部材26Bをクラウン部16の外周面に溶着してもよい。
またさらに、被覆コード部材26Bを形成する被覆用樹脂材料27を熱可塑性材料とし、タイヤケース17を熱可塑性樹脂材料で形成する構成としてもよい。この場合には、被覆コード部材26Bをクラウン部16の外周面に接着剤などを用いて接着してもよく、タイヤケース17の被覆コード部材26Bが配設される部位を加熱して溶融または軟化状態としつつ、被覆用樹脂材料27を加熱し溶融または軟化状態にして被覆コード部材26Bをクラウン部16の外周面に溶着してもよい。なお、タイヤケース17および被覆コード部材26Bの両者を加熱して溶融または軟化状態にした場合、両者が良く混ざり合うため接合強度が向上する。また、タイヤケース17を形成する樹脂材料、および被覆コード部材26Bを形成する被覆用樹脂材料27をともに熱可塑性樹脂材料とする場合には、同種の熱可塑性材料、特に同一の熱可塑性材料とすることが好ましい。
また、さらに粗化処理を行ったタイヤケース17の外周面17Sにコロナ処理やプラズマ処理等を用い、外周面17Sの表面を活性化し、親水性を高めた後に接着剤を塗布してもよい。
In the second embodiment, the covering resin material 27 forming the covering cord member 26B is made of a thermoplastic material, and the covering resin material 27 is heated to be melted or softened to be coated on the outer peripheral surface of the crown portion 16. Although the member 26B is welded, the present invention is not limited to this structure, and the covering cord member 26B is bonded to the outer peripheral surface of the crown portion 16 using an adhesive or the like without heating the covering resin material 27. It is good also as a structure.
The covering resin material 27 for forming the covering cord member 26B may be a thermosetting resin, and the covering cord member 26B may be bonded to the outer peripheral surface of the crown portion 16 using an adhesive or the like without being heated.
Further, the covering resin material 27 for forming the covering cord member 26B may be a thermosetting resin, and the tire case 17 may be formed of a thermoplastic resin material. In this case, the covering cord member 26B may be adhered to the outer peripheral surface of the crown portion 16 by using an adhesive or the like, and the portion of the tire case 17 where the covering cord member 26B is disposed is heated to be melted or softened. The covering cord member 26 </ b> B may be welded to the outer peripheral surface of the crown portion 16 in a state.
Further, the covering resin material 27 for forming the covering cord member 26B may be made of a thermoplastic material, and the tire case 17 may be made of a thermoplastic resin material. In this case, the covering cord member 26B may be adhered to the outer peripheral surface of the crown portion 16 by using an adhesive or the like, and the portion of the tire case 17 where the covering cord member 26B is disposed is heated to be melted or softened. The coating resin material 27 may be heated and melted or softened while the coating cord member 26 </ b> B is welded to the outer peripheral surface of the crown portion 16. In addition, when both the tire case 17 and the covering cord member 26B are heated and melted or softened, the two are mixed well, so that the bonding strength is improved. When both the resin material forming the tire case 17 and the covering resin material 27 forming the covering cord member 26B are thermoplastic resin materials, the same kind of thermoplastic material, particularly the same thermoplastic material is used. It is preferable.
Further, the outer peripheral surface 17S of the tire case 17 subjected to further roughening treatment may be applied with corona treatment, plasma treatment or the like to activate the surface of the outer peripheral surface 17S and increase the hydrophilicity, and then apply the adhesive.

またさらに、タイヤ200を製造するための順序は、第2実施形態の順序に限らず、適宜変更してもよい。
以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
Furthermore, the order for manufacturing the tire 200 is not limited to the order of the second embodiment, and may be changed as appropriate.
The embodiments of the present invention have been described above with reference to the embodiments. However, these embodiments are merely examples, and various modifications can be made without departing from the scope of the invention. It goes without saying that the scope of rights of the present invention is not limited to these embodiments.

また、本発明のタイヤは第1実施形態に示されるように以下のように構成することができる。
(1−1)本発明のタイヤは、タイヤ骨格体の軸方向に沿った断面視で、熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成することができる。
このように、補強コード部材の一部がタイヤ骨格体の外周部に埋設していると、補強コード部材巻回時にコード周辺に空気が残る現象(エア入り)を更に抑制することができる。補強コード部材周辺へのエア入りが抑制されると、走行時の入力などによって補強コード部材が動くのが抑制される。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)に剥離などを生じるのが抑制され耐久性が向上する。
Moreover, the tire of this invention can be comprised as follows as shown by 1st Embodiment.
(1-1) In the tire according to the present invention, at least a part of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame formed of a thermoplastic resin material in a cross-sectional view along the axial direction of the tire frame. It can be constituted as follows.
As described above, when a part of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, it is possible to further suppress a phenomenon (air entering) in which air remains around the cord when the reinforcing cord member is wound. When the entry of air into the periphery of the reinforcement cord member is suppressed, the movement of the reinforcement cord member due to input during traveling is suppressed. Thereby, for example, when the tire constituent member is provided on the outer peripheral portion of the tire skeleton body so as to cover the entire reinforcement cord member, the movement of the reinforcement cord member is suppressed. ) Is prevented from being peeled off and the durability is improved.

(1−2)本発明のタイヤは、前記補強コード層の径方向外側に前記熱可塑性樹脂材料よりも耐摩耗性を有する材料から形成されるトレッドを設けてもよい。
このように路面と接触するトレッドを熱可塑性樹脂材料よりも耐摩耗性のある材料で構成することでタイヤの耐摩耗性を更に向上させることができる。
(1-2) The tire of the present invention may be provided with a tread formed of a material that is more wear resistant than the thermoplastic resin material on the radially outer side of the reinforcing cord layer.
Thus, the abrasion resistance of the tire can be further improved by configuring the tread that contacts the road surface with a material that is more resistant to abrasion than the thermoplastic resin material.

(1−3)本発明のタイヤは、前記タイヤ骨格体の軸方向に沿った断面視で、前記補強コード部材の直径1/5以上を前記タイヤ骨格体の外周部に周方向に沿って埋設させることができる。
このようにタイヤ骨格体の軸方向に沿った断面視で補強コード部材の直径の1/5以上がタイヤ骨格体の外周部に埋設されていると、補強コード部材周辺へのエア入りを効果的に抑制することができ、走行時の入力などによって補強コード部材が動くのをより抑制することができる。
(1-3) In the tire according to the present invention, in a cross-sectional view along the axial direction of the tire frame body, a diameter 1/5 or more of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body along the circumferential direction. Can be made.
Thus, when 1/5 or more of the diameter of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body in a cross-sectional view along the axial direction of the tire frame body, it is effective to enter the air around the reinforcing cord member It is possible to suppress the movement of the reinforcing cord member due to an input during traveling.

(1−4)本発明のタイヤは、前記タイヤ骨格体は、径方向内側にリムのビードシートおよびリムフランジに接触するビード部を有し、前記ビード部に金属材料からなる環状のビードコアが埋設されるように構成することができる。
このように、タイヤ骨格体にリムとの嵌合部位であるビード部を設け、さらに、このビード部に金属材料からなる環状のビードコアを埋設することで、従来のゴム製の空気入りタイヤと同様に、リムに対して、タイヤ骨格体(すなわちタイヤ)を強固に保持させることができる。
(1-4) In the tire according to the present invention, the tire frame has a bead portion in contact with a rim bead sheet and a rim flange on a radially inner side, and an annular bead core made of a metal material is embedded in the bead portion. Can be configured.
Thus, by providing a bead portion that is a fitting portion with the rim in the tire frame body, and further by embedding an annular bead core made of a metal material in this bead portion, it is the same as a conventional rubber pneumatic tire. In addition, the tire frame (that is, the tire) can be firmly held against the rim.

(1−5)本発明のタイヤは、前記ビード部が前記リムと接触する部分に前記熱可塑性樹脂材料よりもシール性(リムとの密着性)の高い材料からなるシール部を設けることが出来る。
このように、タイヤ骨格体とリムとの接触部分に、熱可塑性樹脂材料よりもシール性の高い材料からなるシール部を設けることで、タイヤ(タイヤ骨格体)とリムとの間の密着性を向上させることができる。これにより、リムと熱可塑性樹脂材料とのみを用いた場合に比較して、タイヤ内の空気漏れを一層抑制することができる。また、前記シール部を設けることでタイヤのリムフィット性も向上させることができる。
(1-5) In the tire of the present invention, a seal portion made of a material having higher sealing properties (adhesion with the rim) than the thermoplastic resin material can be provided at a portion where the bead portion contacts the rim. .
Thus, by providing a seal portion made of a material having a higher sealing property than the thermoplastic resin material at the contact portion between the tire frame body and the rim, adhesion between the tire (tire frame body) and the rim can be improved. Can be improved. Thereby, compared with the case where only a rim | limb and a thermoplastic resin material are used, the air leak in a tire can be suppressed further. Moreover, the rim fit property of a tire can also be improved by providing the said seal part.

(1−6) 本発明のタイヤは、少なくとも前記熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程と、前記タイヤ骨格体の外周部に補強コード部材を周方向に巻回して補強コード層を形成する補強コード部材巻回工程と、を含む製造方法によって製造することができる。 (1-6) The tire of the present invention has a tire skeleton piece forming step of forming a tire skeleton piece constituting a part of an annular tire skeleton body with at least the thermoplastic resin material, and a joining surface of the tire skeleton piece. A tire skeleton piece joining step of forming two or more tire skeleton pieces to which heat is applied and paired to form the tire skeleton body, and a reinforcing cord member is wound in a circumferential direction on an outer peripheral portion of the tire skeleton body And a reinforcing cord member winding step for forming a reinforcing cord layer.

(1−7) 前記製造方法においては、前記タイヤ骨格片接合工程において、前記タイヤ骨格片の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上(例えば、融点+10℃〜+150℃)に加熱するように構成することができる。
このように、前記分割体の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱すると、タイヤ骨格片同士の融着を十分に行うことができるため、タイヤの耐久性を向上させつつ、タイヤの生産性を高めることができる。
(1-7) In the manufacturing method, in the tire frame piece bonding step, the bonding surface of the tire frame piece is equal to or higher than the melting point of the thermoplastic resin material constituting the tire frame piece (for example, melting point + 10 ° C. to + 150 ° C. ) Can be configured to be heated.
As described above, when the joining surface of the divided body is heated to a temperature equal to or higher than the melting point of the thermoplastic resin material constituting the tire frame piece, the tire frame pieces can be sufficiently fused with each other. The productivity of the tire can be increased while improving.

(1−8)前記タイヤの製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格片接合工程において形成された前記タイヤ骨格体の外周部を溶融または軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回するように構成することができる。
このように、前記タイヤ骨格体の外周部を溶融または軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回することで、埋設された補強コード部材の少なくとも一部と溶融または軟化した熱可塑性樹脂材料とを溶着させることができる。これにより、タイヤ骨格体の軸方向に沿った断面視でタイヤ骨格体の外周部と補強コード部材との間のエア入りを更に抑制することができる。また、補強コード部材を埋設した部分が冷却固化されると、タイヤ骨格体に埋設された補強コード部材の固定具合が向上する。
(1-8) In the tire manufacturing method, in the reinforcing cord member winding step, at least one of the reinforcing cord members while melting or softening an outer peripheral portion of the tire frame body formed in the tire frame piece joining step. The reinforcing cord member can be wound around the outer peripheral portion of the tire frame body by burying the portion.
In this way, at least a part of the reinforcing cord member was embedded while melting or softening the outer peripheral portion of the tire skeleton body, and the reinforcing cord member was wound around the outer peripheral portion of the tire skeleton body. At least a part of the reinforcing cord member can be welded to the molten or softened thermoplastic resin material. Thereby, the air entering between the outer peripheral part of the tire frame and the reinforcing cord member can be further suppressed in a cross-sectional view along the axial direction of the tire frame. Moreover, when the portion in which the reinforcing cord member is embedded is cooled and solidified, the fixing degree of the reinforcing cord member embedded in the tire frame body is improved.

(1−9)前記タイヤの製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格体の軸方向に沿った断面視で前記補強コードの直径の1/5以上を前記タイヤ骨格体の外周部に埋設させるように構成することができる。
このように、タイヤ骨格体の軸方向に沿った断面視で、タイヤ骨格体の外周部に補強コード部材を直径の1/5以上埋設すると、製造時の補強コード周辺へのエア入りを効果的に抑制することができ、更に、埋設された補強コード部材がタイヤ骨格体から抜け難くすることができる。
(1-9) In the tire manufacturing method, in the reinforcing cord member winding step, 1/5 or more of the diameter of the reinforcing cord in the tire cord body in a cross-sectional view along the axial direction of the tire frame body. It can comprise so that it may embed | buy in an outer peripheral part.
As described above, when the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body by 1/5 or more of the diameter in a cross-sectional view along the axial direction of the tire frame body, it is effective for the air to enter the periphery of the reinforcement cord during manufacturing In addition, the embedded reinforcing cord member can be made difficult to come off from the tire frame body.

(1−10)前記タイヤの製造方法は、前記補強コード部材巻回工程において、加熱した前記補強コード部材を前記タイヤ骨格体に埋設するように構成することができる。
このように、補強コード巻回工程において、補強コード部材を加熱しながらタイヤ骨格体に埋設させると、加熱された補強コード部材がタイヤ骨格体の外周部に接触した際に接触部分が溶融または軟化するため、補強コード部材をタイヤ骨格体の外周部に埋設し易くなる。
(1-10) The tire manufacturing method may be configured to embed the heated reinforcing cord member in the tire frame body in the reinforcing cord member winding step.
In this way, in the reinforcing cord winding process, if the reinforcing cord member is embedded in the tire frame body while heating, the contact portion melts or softens when the heated reinforcing cord member contacts the outer periphery of the tire frame body. Therefore, the reinforcing cord member can be easily embedded in the outer peripheral portion of the tire frame body.

(1−11)前記タイヤの製造方法は、前記コード部材巻回工程において、前記タイヤ骨格体の外周部の前記補強コード部材が埋設される部分を加熱するように構成することができる。
このように、タイヤ骨格体の外周部の補強コード部材が埋設される部分を加熱することで、タイヤ骨格体の加熱された部分が溶融または軟化するため、補強コード部材を埋設し易くなる。
(1-11) The tire manufacturing method may be configured to heat a portion of the outer periphery of the tire frame body where the reinforcing cord member is embedded in the cord member winding step.
Thus, by heating the portion where the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, the heated portion of the tire frame body is melted or softened, so that the reinforcing cord member is easily embedded.

(1−12)前記タイヤの製造方法は、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記タイヤ骨格体の外周部の周方向に前記補強コード部材を螺旋状に巻回するように構成することができる。
このように、補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記補強コード部材を螺旋状に巻回すると、補強コード部材のタイヤ骨格体の外周部への埋設量を調整することができる。
(1-12) In the manufacturing method of the tire, in the cord member winding step, the reinforcing cord is pressed in a circumferential direction of the outer peripheral portion of the tire frame body while pressing the reinforcing cord member against the outer peripheral portion of the tire frame body. The member can be configured to be spirally wound.
As described above, when the reinforcing cord member is spirally wound while pressing the reinforcing cord member against the outer peripheral portion of the tire frame body, the amount of the reinforcing cord member embedded in the outer peripheral portion of the tire frame body can be adjusted. it can.

(1−13)前記製造方法によれば、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体に巻回した後、前記タイヤ骨格体の外周部の溶融または軟化した部分を冷却するように構成することができる。
このように、補強コード部材が埋設された後で、タイヤ骨格体の外周部の溶融または軟化した部分を強制的に冷却することで、タイヤ骨格体の外周部の溶融または軟化した部分を自然冷却よりも早く迅速に冷却固化することができる。タイヤ外周部を自然冷却よりも早く冷却することで、タイヤ骨格体の外周部の変形を抑制できると共に、補強コード部材が動くのを抑制することができる。
(1-13) According to the manufacturing method, in the cord member winding step, after the reinforcing cord member is wound around the tire frame body, a melted or softened portion of an outer peripheral portion of the tire frame body is cooled. Can be configured to.
Thus, after the reinforcement cord member is embedded, the melted or softened portion of the outer periphery of the tire frame body is forcibly cooled to naturally cool the melted or softened portion of the outer periphery of the tire frame body. Faster and faster cooling and solidification. By cooling the tire outer peripheral portion faster than natural cooling, it is possible to suppress deformation of the outer peripheral portion of the tire frame body and to suppress movement of the reinforcing cord member.

また、本発明のタイヤは第2実施形態において説明したように以下のように構成することができる。
(2−1)本発明のタイヤは、前記製造方法において、更に、タイヤ骨格体の外周面に粒子状の投射材を衝突させて、タイヤ骨格体の外周面を粗化処理する粗化処理工程と、粗化処理された前記外周面に接合剤を介してタイヤ構成ゴム部材を積層する積層工程と、を備えて構成することができる。
このように、粗化処理工程を設けると、前記熱可塑性樹脂材料を用いて形成された環状のタイヤ骨格体の外周面に粒子状の投射材が衝突して、当該外周面に微細な粗化凹凸が形成される。なお、タイヤ骨格体の外周面に投射材を衝突させて微細な粗化凹凸を形成する処理を粗化処理という。その後、粗化処理された外周面に接合剤を介してタイヤ構成ゴム部材が積層される。ここで、タイヤ骨格体とタイヤ構成ゴム部材とを一体化するにあたり、タイヤ骨格体の外周面が粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤ骨格体を形成する樹脂材料が投射材の衝突により掘り起こされることから、外周面の濡れ性が向上する。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
In addition, as described in the second embodiment, the tire of the present invention can be configured as follows.
(2-1) The tire of the present invention may further include a roughening treatment step in which the outer peripheral surface of the tire frame body is roughened by causing the particulate projection material to collide with the outer peripheral surface of the tire frame body in the manufacturing method. And a laminating step of laminating a tire constituent rubber member on the roughened outer peripheral surface via a bonding agent.
As described above, when the roughening treatment step is provided, the particulate projection material collides with the outer peripheral surface of the annular tire skeleton formed using the thermoplastic resin material, and the outer peripheral surface is finely roughened. Unevenness is formed. In addition, the process which makes a projection material collide with the outer peripheral surface of a tire frame body and forms fine roughening unevenness | corrugation is called roughening process. Thereafter, a tire constituting rubber member is laminated on the outer peripheral surface subjected to the roughening treatment via a bonding agent. Here, since the outer peripheral surface of the tire frame is roughened when integrating the tire frame and the tire constituent rubber member, the bondability (adhesiveness) is improved by the anchor effect. In addition, since the resin material forming the tire frame is dug up by the collision of the projection material, the wettability of the outer peripheral surface is improved. Thereby, the bonding agent is held in a uniform applied state on the outer peripheral surface of the tire frame body, and the bonding strength between the tire frame body and the tire constituting rubber member can be ensured.

(2−2)本発明のタイヤは、前記タイヤ骨格体の外周面の少なくとも一部が凹凸部であり、前記凹凸部が前記粗化処理工程において粗化処理を施して作製することができる。
このように、タイヤ骨格体の外周面の少なくとも一部が凹凸部とされていても、凹凸部に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(2-2) In the tire of the present invention, at least a part of the outer peripheral surface of the tire frame body is an uneven portion, and the uneven portion can be manufactured by performing a roughening treatment in the roughening treatment step.
As described above, even when at least a part of the outer peripheral surface of the tire skeleton is an uneven portion, the projection material is collided with the uneven portion to roughen the periphery of the recessed portion (concave wall, concave bottom), and the tire Bonding strength between the skeleton body and the tire constituting rubber member can be ensured.

(2−3)本発明のタイヤは、前記タイヤ骨格体の外周部が、外周面に前記凹凸部を構成する補強層で構成されており、前記補強層が前記タイヤ骨格体を形成する樹脂材料とは同種または別の樹脂材料で補強コードを被覆して構成された被覆コード部材を前記タイヤ骨格体の周方向に巻回して構成することができる。
このように、被覆コード部材をタイヤ骨格体の周方向に巻回して構成された補強層でタイヤ骨格体の外周部を構成することで、タイヤ骨格体の周方向剛性を向上させることができる。
(2-3) In the tire according to the present invention, the outer peripheral portion of the tire frame body is formed of a reinforcing layer that forms the uneven portion on the outer peripheral surface, and the reinforcing layer forms the tire frame body. Can be configured by winding a covering cord member formed by covering a reinforcing cord with the same or different resin material in the circumferential direction of the tire frame body.
Thus, the circumferential direction rigidity of a tire frame body can be improved by constituting the perimeter part of a tire frame body with the reinforcement layer constituted by winding a covering cord member in the circumferential direction of a tire frame body.

(2−4) 本発明のタイヤは、前記被覆コード部材を構成する樹脂材料に熱可塑性樹脂材料を用いることができる。
このように、被覆コード部材を構成する樹脂材料に熱可塑性を有する熱可塑性材料を用いることで、前記樹脂材料として熱硬化性材料を用いた場合と比べて、タイヤ製造が容易になり、リサイクルしやすくなる。
(2-4) The tire of this invention can use a thermoplastic resin material for the resin material which comprises the said covering cord member.
In this way, by using a thermoplastic material having thermoplasticity as the resin material constituting the coated cord member, the tire can be easily manufactured and recycled as compared with the case where a thermosetting material is used as the resin material. It becomes easy.

(2−5) 本発明のタイヤは、前記粗化処理工程において、前記タイヤ構成ゴム部材の積層領域よりも広い領域を粗化処理するように構成することができる。
このように、粗化処理工程において、タイヤ構成ゴム部材の積層領域よりも広い領域に粗化処理を施すと、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確実に確保することができる。
(2-5) The tire of the present invention can be configured to roughen a wider area than the laminated area of the tire constituent rubber members in the roughening treatment step.
As described above, in the roughening treatment step, when the roughening treatment is performed on a region wider than the lamination region of the tire constituent rubber members, the bonding strength between the tire frame body and the tire constituent rubber members can be reliably ensured.

(2−6) 本発明のタイヤは、前記粗化処理工程において、算術平均粗さRaが0.05mm以上となるように前記外周面を粗化処理するように構成することができる。
このように、粗化処理工程において算術平均粗さRaが0.05mm以上となるようにタイヤ骨格体の外周面を粗化処理すると、粗化処理された外周面に接合剤を介して、例えば、未加硫または半加硫状態のタイヤ構成ゴム部材を積層し加硫した場合に、粗化処理により形成された粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませることができる。粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませると、外周面とタイヤ構成ゴム部材との間に十分なアンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
(2-6) The tire of the present invention can be configured to roughen the outer peripheral surface so that the arithmetic average roughness Ra is 0.05 mm or more in the roughening treatment step.
As described above, when the outer peripheral surface of the tire frame body is roughened so that the arithmetic average roughness Ra is 0.05 mm or more in the roughening treatment step, the outer peripheral surface subjected to the roughening treatment, for example, via a bonding agent, When the unvulcanized or semi-cured tire component rubber member is laminated and vulcanized, the rubber of the tire component rubber member can be poured into the bottom of the roughened irregularities formed by the roughening treatment. When the rubber of the tire constituent rubber member is poured into the bottom of the roughened unevenness, a sufficient anchor effect is exerted between the outer peripheral surface and the tire constituent rubber member, and the bonding strength between the tire skeleton and the tire constituent rubber member Can be improved.

(2−7) 本発明のタイヤは、前記タイヤ構成ゴム部材として、未加硫、または半加硫状態のゴムを用いることできる。
このように、前記タイヤ構成ゴム部材として未加硫または半加硫状態のゴムを用いると、タイヤ構成ゴム部材を加硫した際に、粗化処理によってタイヤ骨格体の外周面に形成された粗化凹凸にゴムが流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだゴム(加硫済み)により、アンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
(2-7) In the tire of the present invention, unvulcanized or semi-vulcanized rubber can be used as the tire constituent rubber member.
As described above, when an unvulcanized or semi-vulcanized rubber is used as the tire constituent rubber member, when the tire constituent rubber member is vulcanized, the roughening formed on the outer peripheral surface of the tire frame body by the roughening treatment. Rubber flows into the uneven surface. When the vulcanization is completed, the anchor effect is exhibited by the rubber (vulcanized) that has flowed into the roughened unevenness, and the bonding strength between the tire frame body and the tire constituting rubber member can be improved.

なお、加硫済みとは、最終製品として必要とされる加硫度に至っている状態をいい、半加硫状態とは、未加硫の状態よりは加硫度が高いが、最終製品として必要とされる加硫度に至っていない状態をいう。   In addition, vulcanized means the state that has reached the degree of vulcanization required for the final product, and the semi-vulcanized state has a higher degree of vulcanization than the unvulcanized state, but is required for the final product. This means that the degree of vulcanization is not reached.

(2−8) 本発明のタイヤは、前記樹脂材料を用いて形成され、外周面に粒子状の投射材を衝突させて該外周面を粗化処理した環状のタイヤ骨格体と、粗化処理された前記外周面に接合剤を介して積層されたタイヤ構成ゴム部材と、を備えるように構成することができる。
このように、粗化処理した環状のタイヤ骨格体を用いると、タイヤ骨格体とタイヤ構成ゴム部材との接合強度をアンカー効果によって向上させることができる。また、外周面が粗化処理されていることから、接合剤の濡れ性がよい。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度が確保されて、タイヤ骨格体とタイヤ構成ゴム部材との剥離を抑制することができる。
(2-8) The tire of the present invention is formed using the resin material, and an annular tire skeleton body in which the outer peripheral surface is roughened by colliding a particulate projection material on the outer peripheral surface, and the roughening treatment And a tire constituting rubber member laminated on the outer peripheral surface via a bonding agent.
As described above, when the roughened tire skeleton body is used, the bonding strength between the tire skeleton body and the tire constituting rubber member can be improved by the anchor effect. Moreover, since the outer peripheral surface is roughened, the wettability of the bonding agent is good. As a result, the bonding agent is held in a uniform application state on the outer peripheral surface of the tire frame body, the bonding strength between the tire frame body and the tire component rubber member is ensured, and the tire frame body and the tire component rubber member are separated. Can be suppressed.

以上、本発明の具体的な態様について第1実施形態および第2実施形態を用いて説明したが本発明は上述の態様に限定されるものではない。   As mentioned above, although the specific aspect of this invention was demonstrated using 1st Embodiment and 2nd Embodiment, this invention is not limited to the above-mentioned aspect.

以下、本発明について実施例を用いてより具体的に説明する。ただし、本発明はこれに限定されるものではない。
まず、上述の第2実施形態に従って、実施例および比較例のタイヤを成形した。この際、タイヤケースを形成する材料については下記表1に記載の材料を用いた。また、各実施例および比較例について、材料の物性評価およびタイヤ性能の評価を下記に従っておこなった。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to this.
First, tires of examples and comparative examples were molded according to the second embodiment described above. At this time, the materials described in Table 1 below were used as materials for forming the tire case. Moreover, about each Example and the comparative example, the physical-property evaluation of the material and evaluation of the tire performance were performed according to the following.

[ペレットの作製]
各実施例および比較例でタイヤケースに用いられた樹脂材料について、各材料を表1に示す組成(質量基準)で混合した。次いで、東洋精機製作所「LABOPLASTOMILL 50MR」2軸押出し機により前記樹脂材料を混練(混合温度230℃、混練時間3分間)し、ペレットを得た。なお、一部の比較例においては、混合系とせず、ポリアミド系熱可塑性エラストマーのペレットを用意した。
[Preparation of pellets]
About the resin material used for the tire case in each Example and the comparative example, each material was mixed by the composition (mass basis) shown in Table 1. Next, the resin material was kneaded (mixing temperature: 230 ° C., kneading time: 3 minutes) using a Toyo Seiki Seisakusho “LABOPLASTOMILL 50MR” twin screw extruder to obtain pellets. In some comparative examples, pellets of polyamide thermoplastic elastomer were prepared without using a mixed system.

<損失係数(Tanδ)、引張弾性率の評価>
作製したペレットを用いて、住友重工社製、SE30Dを用い、射出成形を行い、成形温度180℃〜260℃、金型温度50℃〜70℃とし、100mm×30mm、厚さ2.0mmのサンプルを得た。
各サンプルを打ち抜き、JISK6251:1993に規定されるダンベル状試料片(5号形試料片)を作製した。
<Evaluation of loss factor (Tanδ) and tensile modulus>
Using the produced pellets, SE30D manufactured by Sumitomo Heavy Industries, Ltd. is used for injection molding, a molding temperature of 180 ° C. to 260 ° C., a mold temperature of 50 ° C. to 70 ° C., a sample of 100 mm × 30 mm and a thickness of 2.0 mm Got.
Each sample was punched out to produce a dumbbell-shaped sample piece (No. 5 type sample piece) defined in JISK6251: 1993.

次いで、島津製作所社製、島津オートグラフAGS−J(5KN)を用いて、引張速度を200mm/minに設定し、前記各ダンベル状試料片の30℃および80℃における引張弾性率およびTanδを測定した。結果を表1に示す。   Next, using a Shimadzu Autograph AGS-J (5KN) manufactured by Shimadzu Corporation, the tensile speed was set to 200 mm / min, and the tensile elastic modulus and Tan δ at 30 ° C. and 80 ° C. of each dumbbell-shaped sample piece were measured. did. The results are shown in Table 1.


※表1において、“質量比(x+y)/z”は、熱可塑性エラストマーのハードセグメントと特定樹脂との総量とソフトセグメントの総量との質量比を示す。

* In Table 1, “mass ratio (x + y) / z” represents the mass ratio of the total amount of the hard segment of the thermoplastic elastomer and the specific resin and the total amount of the soft segment.

前記表1における略称の説明を下記に示す。
・PA−A: ポリアミド系熱可塑性エラストマー(宇部興産社製 「UBESTA XPA9048X1」ポリアミド含有率40重量%
・PA−B: ポリアミド系熱可塑性エラストマー(宇部興産社製 「UBESTA XPA9055X1」ポリアミド含有率50重量%
・PPE: ポリフェニレンエーテル
(旭化成ケミカルズ社製 「ザイロン200H」)
・PP: ポリプロピレン
(日本ポリプロ社製「ノバテックBC3H」)
・ABS: アクリロニトリル/ブタジエン/スチレン共重合体
(テクノポリマー社製「テクノABS 170」)
・AES: アクリロニトリル/エチレン/スチレン共重合体
(テクノポリマー社製「W245」)
The abbreviations in Table 1 are described below.
PA-A: polyamide-based thermoplastic elastomer (“UBESTA XPA9048X1” polyamide content 40% by weight, manufactured by Ube Industries, Ltd.)
PA-B: polyamide-based thermoplastic elastomer (“UBESTA XPA9055X1” polyamide content 50% by weight, manufactured by Ube Industries, Ltd.
・ PPE: Polyphenylene ether ("Zylon 200H" manufactured by Asahi Kasei Chemicals)
・ PP: Polypropylene ("Novatec BC3H" manufactured by Nippon Polypro Co., Ltd.)
ABS: Acrylonitrile / butadiene / styrene copolymer (Techno ABS “Techno ABS 170”)
AES: Acrylonitrile / ethylene / styrene copolymer (Technopolymer "W245")

表1から分かるように、実施例1〜実施例4のタイヤケースの材料は、これに対応する比較例1および2に比して、損失係数(Tanδ)が低く維持されたまま、引張弾性率が向上していることが分かる。また、実施例1〜実施例4のタイヤケースの材料は、30℃における引張弾性率が、同様の熱可塑性エラストマーを用いた比較例1又は2よりも高く、実施例1、3及び4は、80℃における引張弾性率が比較例1に比して高く、耐熱性が向上していることがわかる。
また、PA−Aのハードセグメント(ポリアミド12)のガラス転移温度よりも低いガラス転移温度を有している樹脂(ポリプロピレン:日本ポリプロ社製「ノバテックBC3H」)を用いた比較例3は、実施例1に比して、引張弾性率が向上しておらず、耐熱性も低いものであった。
As can be seen from Table 1, the materials of the tire cases of Examples 1 to 4 have a tensile modulus of elasticity while maintaining a low loss coefficient (Tan δ) as compared with Comparative Examples 1 and 2 corresponding thereto. It can be seen that is improved. Moreover, the material of the tire case of Examples 1 to 4 has a tensile modulus at 30 ° C. higher than that of Comparative Example 1 or 2 using the same thermoplastic elastomer. It can be seen that the tensile elastic modulus at 80 ° C. is higher than that of Comparative Example 1, and the heat resistance is improved.
Comparative Example 3 using a resin having a glass transition temperature lower than that of the hard segment of PA-A (polyamide 12) (polypropylene: “Novatech BC3H” manufactured by Nippon Polypro Co., Ltd.) Compared to 1, the tensile modulus was not improved and the heat resistance was low.

更に実施例のタイヤは転がり抵抗が少なく、耐熱性に優れていた。   Furthermore, the tires of the examples had low rolling resistance and excellent heat resistance.

10,200 タイヤ
12 ビード部
16 クラウン部(外周部)
18 ビードコア
20 リム
21 ビードシート
22 リムフランジ
17 タイヤケース(タイヤ骨格体)
24 シール層(シール部)
26 補強コード(補強コード部材)
26A コード部材(補強コード部材)
28 補強コード層
30 トレッド
D 補強コードの直径(補強コード部材の直径)
L 補強コードの埋設量(補強コード部材の埋設量)
10,200 tire 12 bead part 16 crown part (outer peripheral part)
18 Beadcore
20 Rim 21 Bead sheet 22 Rim flange 17 Tire case (tire frame)
24 Seal layer (seal part)
26 Reinforcement cord (reinforcement cord member)
26A cord member (reinforcing cord member)
28 Reinforcing cord layer 30 Tread D Diameter of reinforcing cord (diameter of reinforcing cord member)
L Embedding amount of reinforcement cord (embedding amount of reinforcement cord member)

Claims (5)

少なくとも樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、
前記樹脂材料が、分子中にハードセグメントおよびソフトセグメントを有する熱可塑性エラストマーと、ガラス転移温度が前記ハードセグメントのガラス転移温度よりも高い樹脂と、を含むタイヤ。
A tire formed of at least a resin material and having an annular tire frame,
A tire in which the resin material includes a thermoplastic elastomer having a hard segment and a soft segment in a molecule, and a resin having a glass transition temperature higher than the glass transition temperature of the hard segment.
前記樹脂は、前記熱可塑性エラストマーのハードセグメントのガラス転移温度よりも20℃以上高い請求項2に記載のタイヤ。   The tire according to claim 2, wherein the resin is higher by 20 ° C. or more than the glass transition temperature of the hard segment of the thermoplastic elastomer. 前記熱可塑性エラストマーのハードセグメント(x)と前記樹脂(y)との総量(x+y)に対する前記熱可塑性エラストマーのソフトセグメント(z)との質量比(x+y:z)が、10:90〜90:10である請求項1または2に記載のタイヤ。   The mass ratio (x + y: z) of the thermoplastic elastomer soft segment (z) to the total amount (x + y) of the thermoplastic elastomer hard segment (x) and the resin (y) is 10:90 to 90: The tire according to claim 1, wherein the tire is 10. 前記熱可塑性エラストマーが、ポリアミド系熱可塑性エラストマーおよびポリエステル系エラストマーから選ばれる少なくとも1種である請求項1〜3のいずれか1項に記載のタイヤ。   The tire according to any one of claims 1 to 3, wherein the thermoplastic elastomer is at least one selected from a polyamide-based thermoplastic elastomer and a polyester-based elastomer. 前記樹脂が、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリカーボネートおよびポリアリレートから選ばれる少なくとも1種である請求項1〜4のいずれか1項に記載のタイヤ。   5. The resin according to claim 1, wherein the resin is at least one selected from polyphenylene ether, polyphenylene sulfide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polycarbonate, and polyarylate. The tire according to claim 1.
JP2011183311A 2010-08-25 2011-08-25 tire Active JP5818577B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011183311A JP5818577B2 (en) 2010-08-25 2011-08-25 tire
US13/818,531 US9415636B2 (en) 2010-08-25 2011-08-25 Tire, and tire manufacturing method
CN201180051358.1A CN103189215B (en) 2010-08-25 2011-08-25 The manufacturing method of tire and tire
US15/189,071 US20160303905A1 (en) 2010-08-25 2016-06-22 Tire, and tire manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010188915 2010-08-25
JP2010188915 2010-08-25
JP2011183311A JP5818577B2 (en) 2010-08-25 2011-08-25 tire

Publications (2)

Publication Number Publication Date
JP2012066809A true JP2012066809A (en) 2012-04-05
JP5818577B2 JP5818577B2 (en) 2015-11-18

Family

ID=46164584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183311A Active JP5818577B2 (en) 2010-08-25 2011-08-25 tire

Country Status (1)

Country Link
JP (1) JP5818577B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157559A1 (en) * 2013-03-29 2014-10-02 株式会社ブリヂストン Tire
WO2014156740A1 (en) * 2013-03-29 2014-10-02 株式会社ブリヂストン Tire
WO2014156741A1 (en) * 2013-03-29 2014-10-02 株式会社ブリヂストン Tire
JP2016002709A (en) * 2014-06-17 2016-01-12 株式会社ブリヂストン Laminate, and tire using the same
EP2990220A4 (en) * 2013-04-25 2016-04-13 Bridgestone Corp Tire
WO2016190390A1 (en) * 2015-05-28 2016-12-01 株式会社ブリヂストン Tire and method for producing same
JP2016222051A (en) * 2015-05-28 2016-12-28 株式会社ブリヂストン tire
JP2016222050A (en) * 2015-05-28 2016-12-28 株式会社ブリヂストン Tire and method for manufacturing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980119A4 (en) * 2013-03-29 2016-04-06 Bridgestone Corp Tire
CN105073444B (en) * 2013-03-29 2016-10-19 株式会社普利司通 Tire
WO2014156741A1 (en) * 2013-03-29 2014-10-02 株式会社ブリヂストン Tire
JP2014198518A (en) * 2013-03-29 2014-10-23 株式会社ブリヂストン Tire
WO2014157559A1 (en) * 2013-03-29 2014-10-02 株式会社ブリヂストン Tire
CN105073444A (en) * 2013-03-29 2015-11-18 株式会社普利司通 Tire
WO2014156740A1 (en) * 2013-03-29 2014-10-02 株式会社ブリヂストン Tire
US10017007B2 (en) 2013-03-29 2018-07-10 Bridgestone Corporation Tire
JP2014198779A (en) * 2013-03-29 2014-10-23 株式会社ブリヂストン Tire
US20160046152A1 (en) * 2013-03-29 2016-02-18 Bridgestone Corporation Tire
EP2990220A4 (en) * 2013-04-25 2016-04-13 Bridgestone Corp Tire
JP2016002709A (en) * 2014-06-17 2016-01-12 株式会社ブリヂストン Laminate, and tire using the same
WO2016190390A1 (en) * 2015-05-28 2016-12-01 株式会社ブリヂストン Tire and method for producing same
JP2016222051A (en) * 2015-05-28 2016-12-28 株式会社ブリヂストン tire
JP2016222050A (en) * 2015-05-28 2016-12-28 株式会社ブリヂストン Tire and method for manufacturing the same
EP3305547A4 (en) * 2015-05-28 2018-06-06 Bridgestone Corporation Tire and method for producing same

Also Published As

Publication number Publication date
JP5818577B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5818577B2 (en) tire
WO2012026548A1 (en) Tire, and manufacturing method for same
WO2013129525A1 (en) Tire
JP6057981B2 (en) tire
JP6086643B2 (en) tire
JP6041859B2 (en) tire
WO2013129631A1 (en) Tire
JP6138412B2 (en) tire
JP5847555B2 (en) tire
JP5604226B2 (en) tire
WO2013129632A1 (en) Tire
WO2013122157A1 (en) Tire
JP5818578B2 (en) tire
JP5627954B2 (en) tire
JP5911731B2 (en) tire
JP5778402B2 (en) tire
JP5628003B2 (en) Tire and tire manufacturing method
JP5971889B2 (en) tire
JP2015164849A (en) tire
JP5551020B2 (en) tire
JP5778403B2 (en) tire
JP6001719B2 (en) tire
JP5905289B2 (en) tire
JP5844173B2 (en) tire
JP5628002B2 (en) Tire and tire manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150929

R150 Certificate of patent or registration of utility model

Ref document number: 5818577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250