JP2012062560A - Resin-coated steel sheet for electronic equipment excellent in thermal conductivity and heat radiation - Google Patents
Resin-coated steel sheet for electronic equipment excellent in thermal conductivity and heat radiation Download PDFInfo
- Publication number
- JP2012062560A JP2012062560A JP2010210133A JP2010210133A JP2012062560A JP 2012062560 A JP2012062560 A JP 2012062560A JP 2010210133 A JP2010210133 A JP 2010210133A JP 2010210133 A JP2010210133 A JP 2010210133A JP 2012062560 A JP2012062560 A JP 2012062560A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- resin
- thermal conductivity
- base steel
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Laminated Bodies (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、高い熱伝導性と放熱性が要求される電子機器用鋼板に関するものである。この様な鋼板の用途としては、代表的に電気機器部品や光学機器部品が挙げられる。具体的にはヒートシンク、プラズマディスプレイテレビのバックシャーシ、熱源を内蔵する電子機器部品や複写機の光源カバーなどの光学機器部品、これらを収納する金属製筺体(ケーシング)等が挙げられる。 The present invention relates to a steel sheet for electronic equipment that requires high thermal conductivity and heat dissipation. Typical applications of such steel sheets include electrical equipment parts and optical equipment parts. Specific examples include a heat sink, a back chassis of a plasma display television, an electronic device component incorporating a heat source, an optical device component such as a light source cover of a copying machine, and a metal casing (casing) for housing these components.
以下では、電子機器部品類を中心に説明するが、本発明はこの用途に限定する趣旨ではない。 In the following, the electronic device parts will be mainly described, but the present invention is not limited to this application.
ICチップや回路基板を内蔵する電子機器では、これら部品から発生する熱によって部品に局部的な高温箇所が生じたり、筐体内の温度が上昇するという問題がある。例えば液晶テレビやプラズマディスプレイテレビ(PDP−TV)は薄型化が進む中で、熱問題が深刻化している。特にPDP−TVでは、バックシャーシの熱伝導率が低いとプラズマ放電により発生した熱によってパネル内の温度が高くなると共に、温度勾配が生じて発光面の色ムラやガラス基板に割れが生じるなどの不具合が生じる原因となる。 In an electronic device incorporating an IC chip or a circuit board, there is a problem that local high-temperature spots are generated in the components due to heat generated from these components, or the temperature in the housing is increased. For example, liquid crystal televisions and plasma display televisions (PDP-TVs) are becoming more and more serious as they become thinner. In particular, in the PDP-TV, if the thermal conductivity of the back chassis is low, the temperature in the panel is increased due to the heat generated by the plasma discharge, and a temperature gradient is generated, causing color unevenness of the light emitting surface and cracking of the glass substrate. It causes a malfunction.
こうした電子部品等の熱問題の対策としては、熱伝導率の高いアルミ製ヒートシンクや放熱シートなどの熱対策部材を介して筐体に熱伝導を促す処置等が施されている。 As countermeasures against such heat problems of electronic parts and the like, measures are taken to promote heat conduction to the housing through heat countermeasure members such as an aluminum heat sink and a heat radiating sheet having high thermal conductivity.
一方、コスト競争も激化しており、高価なアルミニウム部品から安価な鋼材部品に代えることができれば製品の大幅なコストダウンが可能となる。また熱対策部品の使用は設計自由度を低下させることから、その使用量を減らすことができれば、設計の自由度が向上するだけでなく、部品点数減少による低コスト化も図ることができる。 On the other hand, cost competition is intensifying, and if an expensive aluminum part can be replaced with an inexpensive steel part, the cost of the product can be greatly reduced. In addition, since the use of heat countermeasure components lowers the degree of freedom in design, if the amount of use can be reduced, not only the degree of freedom in design can be improved, but also the cost can be reduced by reducing the number of components.
これまでにもアルミニウム部品に代替する鋼材部品が提案されているが、アルミニウム部品のほうが鋼材部品よりも熱伝導率が高いため、単純にどの様な鋼板でも良いという訳ではない。また例えば筐体に使用する鋼板の放射率を高くする手法も提案されているが、放射率のみを高めても、その効果は不十分であることが分かっている。 To date, steel parts that replace aluminum parts have been proposed, but since aluminum parts have higher thermal conductivity than steel parts, it is not necessarily possible to use any steel plate. Further, for example, a technique for increasing the emissivity of a steel plate used for a housing has been proposed, but it has been found that the effect is insufficient even when only the emissivity is increased.
近年、電子機器部品に用いられる鋼材部品について、様々提案されている。例えば、特許文献1には、放熱性塗膜を素地鋼板に形成した金属板を用いた放熱構造体とすることによって、筐体内に収容されているCPU等の発熱電子部品の温度上昇を抑制する技術が提案されている。しかしながら、この技術では鋼板の熱伝導率が50W/m・K程度であり、鋼板面内の温度勾配を下げる効果が十分得られていない。 In recent years, various steel material parts used for electronic device parts have been proposed. For example, Patent Document 1 discloses that a heat dissipation structure using a metal plate with a heat-dissipating coating film formed on a base steel plate suppresses a temperature increase of a heat-generating electronic component such as a CPU housed in a housing. Technology has been proposed. However, in this technique, the thermal conductivity of the steel sheet is about 50 W / m · K, and the effect of lowering the temperature gradient in the steel sheet surface is not sufficiently obtained.
一方、特許文献2には、熱伝導率10W/m・K〜100W/m・Kのシャーシを備えるプラズマディスプレイ装置用シャーシ組立体が提案されており、この技術では、熱伝導率の高い方が、熱放出能力において有利であることが開示されている。しかしながらこの技術は、気温が降下することに起因して生じる放電遅延現象を減少させるという観点からなされたものであって、十分な効果が発揮されているとは限らない。 On the other hand, Patent Document 2 proposes a chassis assembly for a plasma display device having a chassis with a thermal conductivity of 10 W / m · K to 100 W / m · K. In this technique, the one with higher thermal conductivity is proposed. It is disclosed that it is advantageous in terms of heat release capability. However, this technique has been made from the viewpoint of reducing the discharge delay phenomenon caused by the temperature drop, and does not always have a sufficient effect.
また特許文献3には、100℃で80W/m・K以上の熱伝導率を有する熱伝導性物質を含み、赤外線放射率0.7以上有する熱吸収性皮膜を形成した表面処理金属板が提案されている。しかしながらこの技術は、表面処理鋼板の熱吸収率と熱放射率を高めることによって、筐体内部の電子部品等の発熱部と非接触状態で、該部品から発せられる熱を吸収・放射して筐体内部の温度上昇を抑制するものであって、熱放射性が考慮されているにすぎない。 Patent Document 3 proposes a surface-treated metal plate that includes a thermally conductive material having a thermal conductivity of 80 W / m · K or higher at 100 ° C. and has a heat-absorbing film having an infrared emissivity of 0.7 or higher. Has been. However, this technology increases the heat absorption rate and thermal emissivity of the surface-treated steel sheet, thereby absorbing and radiating the heat generated from the component in a non-contact state with a heat generating part such as an electronic component inside the case. It suppresses the temperature rise inside the body and only considers heat radiation.
また特許文献4には、合金化溶融亜鉛めっき鋼板の片面に2層以上の塗膜を形成した鋼板が提案されている。しかしながらこの鋼板は熱放射率は40%以上であるものの、この技術も特許文献3と同様、鋼板の熱放射率を高めることによって、筐体内部の電子部品等の発熱部と非接触状態で、該部品から発せられる熱を吸収・放射して筐体内部の温度上昇を抑制するものであって、熱放射性が考慮されているにすぎない。 Patent Document 4 proposes a steel sheet in which two or more coating films are formed on one side of an alloyed hot-dip galvanized steel sheet. However, although this steel plate has a thermal emissivity of 40% or more, this technique also increases the thermal emissivity of the steel plate, as in Patent Document 3, so that it is in a non-contact state with a heating part such as an electronic component inside the housing. The heat generated from the component is absorbed and radiated to suppress the temperature rise inside the housing, and only thermal radiation is taken into consideration.
更に電子機器類の筺体は、指紋が付着すると目立ちやすいという問題を抱えており、使用箇所によっては耐指紋性も要求されるが、上記放熱性等の問題と共に、こうした耐指紋性の改善も図る技術は提供されていないのが現状である。 Furthermore, the housing of electronic devices has a problem that it is easily noticeable when fingerprints are attached, and fingerprint resistance is also required depending on the place of use, but in addition to the above problems such as heat dissipation, such fingerprint resistance is also improved. The technology is currently not provided.
本発明はこうした状況の下でなされたものであって、その目的は、熱伝導性と放熱性に優れた特性を発揮し、更に必要に応じて要求される耐指紋性を兼ね備えており、電子機器部品の素材として有用な電子機器用樹脂被覆鋼板を提供することにある。 The present invention has been made under these circumstances, and its purpose is to exhibit excellent characteristics in thermal conductivity and heat dissipation, and also has fingerprint resistance required as required, An object of the present invention is to provide a resin-coated steel sheet for electronic equipment that is useful as a material for equipment parts.
上記課題を達成し得た本発明の鋼板は、素地鋼板の少なくとも片面に樹脂皮膜を有する電子機器用樹脂被覆鋼板であって、前記素地鋼板は熱伝導率が60W/m・K以上有すると共に、前記樹脂皮膜の厚さは0.3〜11μmであることに要旨を有する。 The steel sheet of the present invention that has achieved the above-mentioned problem is a resin-coated steel sheet for electronic equipment having a resin film on at least one side of the base steel sheet, and the base steel sheet has a thermal conductivity of 60 W / m · K or more, The gist of the resin film is 0.3 to 11 μm.
前記素地鋼板は、C:0.1%以下(0%を含まない)(「質量%」の意味、以下同じ)、Si:0.1%以下(0%を含まない)、Mn:0.05〜0.90%、及びsol−Al:0.01〜0.1%、を夫々含有し、残部が鉄および不可避的不純物からなるものであることが好ましい。 The base steel plate has C: 0.1% or less (not including 0%) (meaning “mass%”, the same applies hereinafter), Si: 0.1% or less (not including 0%), Mn: 0.00%. It is preferable that it each contain 05-0.90% and sol-Al: 0.01-0.1%, and the remainder consists of iron and an unavoidable impurity.
また本発明の鋼板は、Tiを含有する素地鋼板の少なくとも片面に樹脂皮膜を有する電子機器用樹脂被覆鋼板であって、前記素地鋼板は熱伝導率が60W/m・K以上有すると共に、前記樹脂皮膜の厚さは0.1〜15μmであることに要旨を有する。 The steel sheet of the present invention is a resin-coated steel sheet for electronic equipment having a resin film on at least one side of a base steel sheet containing Ti, and the base steel sheet has a thermal conductivity of 60 W / m · K or more and the resin. The gist of the film is 0.1 to 15 μm.
前記素地鋼板は、C:0.1%以下(0%を含まない)、Si:0.1%以下(0%を含まない)、Mn:0.05〜0.90%、sol−Al:0.01〜0.1%、及びTi:0.01〜0.1%、を夫々含有し、残部が鉄および不可避的不純物からなるものであることが好ましい。 The base steel plate is C: 0.1% or less (excluding 0%), Si: 0.1% or less (not including 0%), Mn: 0.05 to 0.90%, sol-Al: It is preferable to contain 0.01 to 0.1% and Ti: 0.01 to 0.1%, respectively, with the balance being iron and inevitable impurities.
前記素地鋼板の少なくとも片面に片面当たりの付着量が10g/m2以上の亜鉛めっき皮膜が形成されていることも望ましい実施態様である。 It is also a desirable embodiment that a galvanized film having an adhesion amount per side of 10 g / m 2 or more is formed on at least one side of the base steel plate.
更に本発明の鋼板は、素地鋼板の少なくとも片面に合金化溶融亜鉛めっき皮膜を有し、前記素地鋼板の他方の面、または前記合金化溶融亜鉛めっき皮膜の少なくとも片面に樹脂皮膜を有する電子機器用樹脂被覆鋼板であって、素地鋼板は熱伝導率が60W/m・K以上有すると共に、前記合金化溶融亜鉛めっき皮膜の片面当たりの付着量は30g/m2以上であり、前記樹脂皮膜の厚さは0.1〜15μmであることに要旨を有する。 Furthermore, the steel sheet of the present invention has an alloyed hot-dip galvanized film on at least one surface of the base steel sheet, and has an resin film on the other surface of the base steel sheet or at least one surface of the alloyed hot-dip galvanized film. It is a resin-coated steel sheet, and the base steel sheet has a thermal conductivity of 60 W / m · K or more, and the adhesion amount per side of the alloyed hot-dip galvanized film is 30 g / m 2 or more, and the thickness of the resin film The gist is that the thickness is 0.1 to 15 μm.
前記素地鋼板は、C:0.1%以下(0%を含まない)、Si:0.1%以下(0%を含まない)、Mn:0.05〜0.90%、及びsol−Al:0.01〜0.1%、を夫々含有し、残部が鉄および不可避的不純物からなるものであることに要旨を有する。 The base steel plate is C: 0.1% or less (not including 0%), Si: 0.1% or less (not including 0%), Mn: 0.05 to 0.90%, and sol-Al : 0.01 to 0.1%, respectively, with the remainder being composed of iron and inevitable impurities.
前記素地鋼板は、更にTiを0.01〜0.1%含有するものであることも望ましい実施態様である。 In another preferred embodiment, the base steel sheet further contains 0.01 to 0.1% of Ti.
本発明に係る第1の鋼板によれば、素地鋼板の少なくとも片面に樹脂皮膜を有する樹脂被覆鋼板において、好ましくは素地鋼板の化学成分組成を適切に制御することによって熱伝導性が高められ、且つ、樹脂皮膜の膜厚を適切に制御することによって当該素地鋼板の高い熱伝導性を損なうことなく放熱性が高められた電子機器用樹脂被覆鋼板を実現できた。上記鋼板は、更にめっき皮膜(めっきの種類は限定されない)を有していても良く、当該めっき皮膜のめっき付着量を適切に制御することにより熱伝導性が一層高められる。更に上記のように樹脂皮膜の膜厚を適切に制御することによって耐指紋性も向上した。 According to the first steel sheet of the present invention, in the resin-coated steel sheet having a resin film on at least one side of the base steel sheet, preferably the thermal conductivity is enhanced by appropriately controlling the chemical composition of the base steel sheet, and In addition, by appropriately controlling the film thickness of the resin film, it was possible to realize a resin-coated steel sheet for electronic equipment in which heat dissipation was improved without impairing the high thermal conductivity of the base steel sheet. The steel sheet may further have a plating film (the type of plating is not limited), and the thermal conductivity can be further improved by appropriately controlling the amount of plating deposited on the plating film. Furthermore, fingerprint resistance was also improved by appropriately controlling the film thickness of the resin film as described above.
また本発明に係る第2の鋼板によれば、素地鋼板の少なくとも片面に合金化溶融亜鉛めっき皮膜を有し、前記素地鋼板の他方の面、または前記合金化溶融亜鉛めっき皮膜の少なくとも片面に樹脂皮膜を有する樹脂被覆鋼板において、好ましくは素地鋼板の化学成分組成を適切に制御することによって熱伝導性が高められ、且つ、樹脂皮膜の膜厚およびめっき付着量を適切に制御することによって、熱伝導性および放熱性が高められた電子機器用樹脂被覆鋼板を実現できた。更に上記のように樹脂皮膜の膜厚を適切に制御することによって耐指紋性も向上した。 Moreover, according to the 2nd steel plate which concerns on this invention, it has an alloying hot-dip galvanization membrane | film | coat on at least one side of a base steel plate, and resin is provided on the other side of the said base steel plate, or at least one side of the said alloying hot-dip galvanization membrane | film | coat. In the resin-coated steel sheet having a coating, preferably, the thermal conductivity is enhanced by appropriately controlling the chemical composition of the base steel sheet, and the film thickness of the resin film and the plating adhesion amount are controlled appropriately. A resin-coated steel sheet for electronic equipment with improved conductivity and heat dissipation was realized. Furthermore, fingerprint resistance was also improved by appropriately controlling the film thickness of the resin film as described above.
本発明の鋼板は、後記するレーザーフラッシュ法で熱伝導性を評価したとき、熱伝導率が60W/m・K以上の高い熱伝導性を発揮できる。 The steel sheet of the present invention can exhibit a high thermal conductivity of 60 W / m · K or higher when the thermal conductivity is evaluated by a laser flash method described later.
本発明の鋼板は熱伝導性と放熱性に優れており、電子機器に好適に用いることができ、特に熱源に局部的に接する電子機器に用いることができる。 The steel sheet of the present invention is excellent in thermal conductivity and heat dissipation, and can be suitably used for electronic equipment, and in particular, can be used for electronic equipment that is in local contact with a heat source.
本発明者らは、高い熱伝導性、放熱性と耐指紋性を兼ね備えた電子機器用鋼板を実現するべく、様々な角度から検討した。 The present inventors have studied from various angles in order to realize a steel sheet for electronic equipment having both high thermal conductivity, heat dissipation, and fingerprint resistance.
そして、樹脂皮膜を形成した鋼板の放熱性、耐指紋性、及び熱伝導率の関係を調査した結果、樹脂皮膜の厚みが放熱性、更には耐指紋性に影響を及ぼし、素地鋼板の化学成分組成が熱伝導性に影響を及ぼすこと、まためっき皮膜のめっき付着量も熱伝導性に影響を及ぼすことを見出した。また、種々のめっき皮膜のなかでも合金化溶融亜鉛めっき皮膜は、高い放熱性を有しており、上記素地鋼板に合金化溶融亜鉛めっき皮膜および樹脂皮膜が形成された鋼板は、熱伝導性、放熱性、耐指紋性のすべてに優れることを見出し、本発明を完成した。 And as a result of investigating the relationship between heat dissipation, fingerprint resistance, and thermal conductivity of the steel sheet on which the resin film is formed, the thickness of the resin film affects the heat dissipation, and further the fingerprint resistance, and the chemical composition of the base steel sheet It has been found that the composition affects the thermal conductivity, and that the plating adhesion amount of the plating film also affects the thermal conductivity. In addition, among various plating films, the alloyed hot-dip galvanized film has high heat dissipation, and the steel sheet in which the alloyed hot-dip galvanized film and the resin film are formed on the base steel sheet has thermal conductivity, The present invention has been completed by finding that it has excellent heat dissipation and fingerprint resistance.
以下では、素地鋼板の少なくとも片面に樹脂皮膜を有する樹脂被覆鋼板を第1の鋼板と呼び、素地鋼板の少なくとも片面に合金化溶融亜鉛めっき皮膜を有し、前記素地鋼板の他方の面、または前記合金化溶融亜鉛めっき皮膜の少なくとも片面に樹脂皮膜を有する樹脂被覆鋼板を第2の鋼板と呼び、両者を区別する場合がある。 In the following, a resin-coated steel sheet having a resin film on at least one side of the base steel sheet is referred to as a first steel sheet, and has an alloyed hot-dip galvanized film on at least one side of the base steel sheet, A resin-coated steel sheet having a resin film on at least one surface of the alloyed hot-dip galvanized film is referred to as a second steel sheet and may be distinguished from each other.
まず、上記第1および第2の鋼板に共通する素地鋼板について、説明する。 First, the base steel plate common to the first and second steel plates will be described.
(素地鋼板の熱伝導率)
本発明に用いられる素地鋼板は、60W/m・K以上の熱伝導率を有するものとした。素地鋼板の熱伝導率が60W/m・K未満だと、鋼板面内の温度勾配を下げる効果が得られないからである。熱伝導率は好ましくは65W/m・K以上、より好ましくは68W/m・K以上である。
(Thermal conductivity of the base steel sheet)
The base steel plate used in the present invention has a thermal conductivity of 60 W / m · K or more. This is because if the thermal conductivity of the base steel sheet is less than 60 W / m · K, the effect of reducing the temperature gradient in the steel sheet surface cannot be obtained. The thermal conductivity is preferably 65 W / m · K or more, more preferably 68 W / m · K or more.
本発明における熱伝導率は、レーザーフラッシュ法で測定したときの熱伝導率であるが、具体的な測定条件、測定方法については後記実施例に記載の通りである。 The thermal conductivity in the present invention is the thermal conductivity when measured by a laser flash method, and specific measurement conditions and measurement methods are as described in Examples below.
(素地鋼板の化学成分組成)
本発明に用いられる素地鋼板は、その化学成分組成を適切に規定することが必要である。これら各成分の限定理由は、以下の通りである。
(Chemical composition of the base steel sheet)
The base steel sheet used in the present invention needs to appropriately define its chemical composition. The reasons for limiting these components are as follows.
[C:0.1%以下(0%を含まない)]
Cは、鋼板(素地鋼板)の熱伝導率に大きな悪影響を及ぼす元素である。C含有量が少ないほど熱伝導率は高くなるため、Cは0.1%以下とする必要がある。好ましくは、0.06%以下、より好ましくは0.04%以下である。その一方で、Cは薄鋼板としたときの強度を確保する上で有用な元素である。強度が不足した鋼板では、バックシャーシのような大型の電子機器部品として用いる場合、構造を支持したり、鋼板の平坦度を確保することが難しくなる。そこで、他の元素との組み合わせによって、バックシャーシとして必要な強度を確保する必要があるが、強度を低下させることなくバックシャーシとして使用できる範囲のC含有量の下限として、0.001%とする。好ましくは0.0015%以上、より好ましくは0.0020%以上である。
[C: 0.1% or less (excluding 0%)]
C is an element having a great adverse effect on the thermal conductivity of a steel plate (base steel plate). Since the thermal conductivity increases as the C content decreases, C must be 0.1% or less. Preferably, it is 0.06% or less, more preferably 0.04% or less. On the other hand, C is an element useful for securing strength when a thin steel plate is used. When a steel sheet with insufficient strength is used as a large-sized electronic device component such as a back chassis, it becomes difficult to support the structure or to ensure the flatness of the steel sheet. Therefore, it is necessary to ensure the strength required for the back chassis by combining with other elements, but the lower limit of the C content in the range that can be used as the back chassis without reducing the strength is 0.001%. . Preferably it is 0.0015% or more, More preferably, it is 0.0020% or more.
[Si:0.1%以下(0%を含まない)]
Siは、鋼板の熱伝導率に悪影響を及ぼす元素である。Si含有量が少ないほど熱伝導率は高くなるため、Siは0.1%以下とする必要がある。好ましくは0.05%以下、より好ましくは0.03%以下である。一方、Siは固溶強化元素として作用し、薄鋼板の強度を確保するのに作用する元素でもある。したがって鋼板の強度を確保するためには、Siは好ましくは0.001%以上、より好ましくは0.002%以上、更に好ましくは0.003%以上である。
[Si: 0.1% or less (excluding 0%)]
Si is an element that adversely affects the thermal conductivity of the steel sheet. Since the thermal conductivity increases as the Si content decreases, Si needs to be 0.1% or less. Preferably it is 0.05% or less, More preferably, it is 0.03% or less. On the other hand, Si acts as a solid solution strengthening element and is also an element that acts to ensure the strength of the thin steel sheet. Therefore, in order to ensure the strength of the steel sheet, Si is preferably 0.001% or more, more preferably 0.002% or more, and further preferably 0.003% or more.
[Mn:0.05〜0.90%]
Mnは、鋼板の熱伝導率に悪影響を及ぼす元素である。Mn含有量が少ないほど熱伝導率は高くなるため、Mnは0.90%以下とする必要がある。好ましくは、0.40%以下、より好ましくは0.30%以下である。一方、Mnは焼入れ性の向上に作用する元素でもある。従って、鋼板の強度を確保するためには、Mnは0.05%以上含有させることが必要である。好ましくは、0.08%以上、より好ましくは0.10%以上である。
[Mn: 0.05-0.90%]
Mn is an element that adversely affects the thermal conductivity of the steel sheet. The thermal conductivity increases as the Mn content decreases, so Mn needs to be 0.90% or less. Preferably, it is 0.40% or less, more preferably 0.30% or less. On the other hand, Mn is an element that acts to improve hardenability. Therefore, in order to ensure the strength of the steel sheet, it is necessary to contain 0.05% or more of Mn. Preferably, it is 0.08% or more, more preferably 0.10% or more.
[sol−Al:0.01〜0.1%]
Alは、鋼板の熱伝導率に大きな悪影響を及ぼす元素の一つである。熱伝導率を良好に維持するためには、sol−Al含有量は0.1%以下とする必要がある。好ましくは0.07%以下、より好ましくは0.06%以下である。しかしながら、Alは脱酸元素として作用し、こうした作用を有効に発揮させるには、sol−Alの含有量は0.01%以上とする必要がある。好ましくは0.015%以上、より好ましくは0.020%以上である。
[Sol-Al: 0.01 to 0.1%]
Al is one of the elements having a great adverse effect on the thermal conductivity of the steel sheet. In order to maintain good thermal conductivity, the sol-Al content needs to be 0.1% or less. Preferably it is 0.07% or less, More preferably, it is 0.06% or less. However, Al acts as a deoxidizing element, and the content of sol-Al needs to be 0.01% or more in order to exert such an effect effectively. Preferably it is 0.015% or more, More preferably, it is 0.020% or more.
素地鋼板の好ましい基本成分は上記の通りであり、残部は鉄および不可避的不純物である。不可避的不純物として、代表的なものとしては、P、S、N等が挙げられるが、これらの不可避的不純物は下記のように調整することが好ましい。 Preferred basic components of the base steel sheet are as described above, and the balance is iron and inevitable impurities. Typical examples of unavoidable impurities include P, S, and N, but these unavoidable impurities are preferably adjusted as follows.
[S:0.04%以下(0%を含む)]
Sは不可避的不純物であるが、Mnと結合して鋼板の延性を劣化させるため、少ないほど好ましく、こうした観点から0.04%以下とすることが好ましい。より好ましくは0.02%以下であり、更に好ましくは0.01%以下である。また、この範囲であれば、鋼板の熱伝導率には悪影響を及ぼすこともない。
[S: 0.04% or less (including 0%)]
S is an inevitable impurity, but it is preferably as small as possible because it combines with Mn to deteriorate the ductility of the steel sheet. From this viewpoint, it is preferably 0.04% or less. More preferably, it is 0.02% or less, More preferably, it is 0.01% or less. Moreover, if it is this range, it will not have a bad influence on the heat conductivity of a steel plate.
[P:0.05%以下(0%を含む)]
Pは不可避的不純物であるが、粒界偏析による粒界破壊を助長させるので、その含有量はできるだけ少ない方が望ましい。こうした観点から、P含有量は0.05%以下とすることが好ましい。より好ましくは0.04%以下であり、更に好ましくは0.025%以下である。また、この範囲であれば、鋼板の熱伝導率には悪影響を及ぼすこともない。
[P: 0.05% or less (including 0%)]
P is an unavoidable impurity, but promotes grain boundary destruction due to grain boundary segregation, so the content is preferably as small as possible. From this point of view, the P content is preferably 0.05% or less. More preferably, it is 0.04% or less, More preferably, it is 0.025% or less. Moreover, if it is this range, it will not have a bad influence on the heat conductivity of a steel plate.
[N:0.01%以下(0%を含まない)]
Nは不可避的不純物である。Nは、粗大な介在物(TiNなど)を形成し、鋼板の靭性を劣化させる元素であるため、できるだけ低減することが望ましい。こうした観点から、N含有量は、0.01%以下とするのが良い。より好ましくは0.008%以下であり、更に好ましくは0.004%以下である。また、この範囲であれば、熱伝導率には悪影響を及ぼさない。
[N: 0.01% or less (excluding 0%)]
N is an inevitable impurity. N is an element that forms coarse inclusions (such as TiN) and degrades the toughness of the steel sheet, so it is desirable to reduce it as much as possible. From such a viewpoint, the N content is preferably 0.01% or less. More preferably, it is 0.008% or less, More preferably, it is 0.004% or less. Moreover, if it is this range, it will not have a bad influence on thermal conductivity.
上記以外の不可避的不純物としては、Cu、Ni、Mo、Cr等が挙げられる。これらの元素は下記範囲で制御することも好ましい。 Cu, Ni, Mo, Cr etc. are mentioned as unavoidable impurities other than the above. These elements are also preferably controlled within the following range.
[Cu、Ni、Mo、及びCrよりなる群から選ばれる少なくとも1種:各0.1%以下(0%を含まない)]
Cu、Ni、Mo、Crは、もともと鋼中に不可避的不純物として含まれ得る元素であるが、いずれも焼き入れ性を向上させる元素であると共に、熱伝導率が鉄(Fe:80W/m・K)よりも高い(Cu:401W/m・K、Ni:91W/m・K、Mo:138W/m・K、Cr:94W/m・K)ことから、鋼板の熱伝導率向上に寄与する元素である。鋼板の強度や加工性に影響を及ぼさない範囲で、熱伝導特性を改善させるために、Cu、Ni、Mo、及びCrよりなる群から選ばれる少なくとも1種を0.01%以上添加するのが好ましい。これらの元素は単独、或いは2種以上を併用してもよい。但し、これらの元素の含有量が過剰になると鋼板の強度や加工性に悪影響を及ぼすだけでなく、めっき性も悪くなるため、各々0.1%以下とする。Crの好ましい上限は0.08%、Ni、Mo、Cuの好ましい上限はいずれも0.05%である。
[At least one selected from the group consisting of Cu, Ni, Mo, and Cr: 0.1% or less for each (excluding 0%)]
Cu, Ni, Mo, and Cr are elements that can be included as inevitable impurities in steel, but all are elements that improve hardenability and have a thermal conductivity of iron (Fe: 80 W / m ·). K) (Cu: 401 W / m · K, Ni: 91 W / m · K, Mo: 138 W / m · K, Cr: 94 W / m · K), which contributes to improving the thermal conductivity of the steel sheet. It is an element. In order not to affect the strength and workability of the steel sheet, in order to improve the heat conduction characteristics, at least one selected from the group consisting of Cu, Ni, Mo, and Cr is added 0.01% or more. preferable. These elements may be used alone or in combination of two or more. However, if the content of these elements is excessive, not only the strength and workability of the steel sheet are adversely affected, but also the plating properties are deteriorated. A preferable upper limit of Cr is 0.08%, and a preferable upper limit of Ni, Mo and Cu is 0.05%.
本発明で用いる素地鋼板には、上記基本元素以外に、必要に応じて、更に他の元素として、Tiを含有させることも有用であり、これによって本発明の鋼板(素地鋼板)の特性が更に改善される。Tiを含有させる場合の好ましい範囲とその限定理由は次の通りである。 In addition to the basic elements described above, the base steel plate used in the present invention is also useful to contain Ti as another element, if necessary, thereby further improving the characteristics of the steel plate (base steel plate) of the present invention. Improved. The preferable range when Ti is contained and the reason for the limitation are as follows.
[Ti:0.01〜0.1%]
Tiは、鋼板の熱伝導率の向上に寄与する元素である。Cとカーバイドを形成して固溶Cを低減させ、またNと窒化物を形成して熱伝導率向上に寄与する元素である。こうした効果を発揮させるためには0.01%以上含有させることが好ましい。より好ましくは0.02%以上、更に好ましくは0.03%以上である。しかしながら、Ti含有量が過剰になると、鋼板の強度を劣化させるので、その上限は0.1%とする。Ti含有量のより好ましい上限は0.07%であり、更に好ましい上限は0.06%である。
[Ti: 0.01 to 0.1%]
Ti is an element that contributes to improving the thermal conductivity of the steel sheet. It is an element that contributes to the improvement of thermal conductivity by forming carbide with C to reduce solid solution C, and forming nitride with N. In order to exhibit such an effect, it is preferable to make it contain 0.01% or more. More preferably it is 0.02% or more, and still more preferably 0.03% or more. However, if the Ti content is excessive, the strength of the steel sheet is deteriorated, so the upper limit is made 0.1%. A more preferred upper limit of the Ti content is 0.07%, and a more preferred upper limit is 0.06%.
次に、第1の鋼板における樹脂皮膜、更には好ましく形成される亜鉛めっき皮膜について説明する。 Next, the resin film on the first steel plate, and further preferably formed galvanized film will be described.
(第1の鋼板に用いられる樹脂皮膜)
本発明の電子機器用樹脂被覆鋼板は、素地鋼板の少なくとも片面に樹脂皮膜を有する。具体的には素地鋼板の表面、或いは後記するめっき鋼板(「めっき」には電気亜鉛めっき、溶融亜鉛めっき等の亜鉛めっきを含む意味である。以下、同じ)のめっき表面に樹脂皮膜を形成する。樹脂皮膜で被覆すると放熱性と耐指紋性が向上するからである。
(Resin film used for the first steel plate)
The resin-coated steel sheet for electronic equipment of the present invention has a resin film on at least one surface of the base steel sheet. Specifically, a resin film is formed on the surface of the base steel plate or on the plated surface of the plated steel plate described later (“plating” includes galvanization such as electrogalvanization and hot dip galvanization. The same applies hereinafter). . This is because heat dissipation and fingerprint resistance are improved when covered with a resin film.
なお、素地鋼板のTi含有量と樹脂被膜の膜厚の関係を調べたところ、所定量のTiを含有する場合、素地鋼板の熱伝導性の特性が高くなり、十分な熱伝導率を確保できることが分かった。 In addition, when the relationship between the Ti content of the base steel sheet and the film thickness of the resin coating was examined, when a predetermined amount of Ti was contained, the thermal conductivity characteristics of the base steel sheet were increased, and sufficient thermal conductivity could be ensured. I understood.
樹脂皮膜の膜厚は、放熱性と耐指紋性を向上させるという観点から、厚くすることが望ましく、樹脂皮膜を素地鋼板又は亜鉛めっき鋼板に形成する場合、樹脂皮膜の膜厚(上記Ti含有量の素地鋼板の場合)は片面あたり、少なくとも0.1μm以上とすることが必要である。一方、Ti含有量が上記範囲を外れる素地鋼板の場合、樹脂皮膜の膜厚は片面当たり、少なくとも0.3μm以上とすることが必要である。いずれの場合も好ましくは0.8μm以上、更に好ましくは2.0μm以上である。 The film thickness of the resin film is preferably increased from the viewpoint of improving heat dissipation and fingerprint resistance. When the resin film is formed on a base steel sheet or a galvanized steel sheet, the resin film thickness (Ti content described above) In the case of a base steel sheet), it is necessary that at least 0.1 μm or more per one side. On the other hand, in the case of a base steel plate having a Ti content outside the above range, the thickness of the resin film needs to be at least 0.3 μm or more per side. In any case, the thickness is preferably 0.8 μm or more, more preferably 2.0 μm or more.
但し、樹脂皮膜は鋼板よりも熱伝導率が低いため、樹脂皮膜が厚すぎると熱伝導率が低下する。そのため、樹脂皮膜を素地鋼板または亜鉛めっき鋼板に形成する場合、樹脂皮膜の膜厚(上記Ti含有量の素地鋼板の場合)は片面あたり、15μm以下とすることが必要である。一方、Ti含有量が上記範囲を外れる素地鋼板の場合、樹脂皮膜の膜厚は片面当たり、11μm以下とすることが必要である。いずれの場合も好ましくは8.0μm以下、より好ましくは4.0μm以下である。 However, since the resin film has a lower thermal conductivity than the steel sheet, if the resin film is too thick, the thermal conductivity is lowered. Therefore, when forming a resin film on a base steel plate or a galvanized steel plate, the film thickness of the resin film (in the case of a base steel plate having the above Ti content) needs to be 15 μm or less per side. On the other hand, in the case of a base steel plate whose Ti content is outside the above range, the film thickness of the resin film needs to be 11 μm or less per side. In any case, the thickness is preferably 8.0 μm or less, more preferably 4.0 μm or less.
本発明において、素地鋼板又はめっき皮膜の表面を被覆する樹脂皮膜の種類は、放熱性の観点からは特に限定されず、ICチップや回路基板を内蔵する電子機器等の部品から発生する熱に起因して溶融しない樹脂であればよい。このような樹脂としては、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、フッ素樹脂、シリコーン系樹脂、およびこれらの混合または変性した樹脂等を適宜使用することができ、これらの中でも加工性に優れているポリエステル系樹脂が好ましい。また樹脂には各種添加材を所望の特性を得るために添加してもよく、例えば樹脂皮膜強度を確保するメラミン系樹脂等の架橋材、耐食性や硬度を強化するシリカ、タルク等の添加材、色調調整や熱放射性を有するカーボンブラック等の顔料、導電性を付与する金属微粒子などの導電性材料などを適宜添加することも可能である。これらの中でも特にカーボンブラックは樹脂皮膜の放熱性向上作用を有する添加剤として好適である。 In the present invention, the type of the resin film that covers the surface of the base steel plate or the plating film is not particularly limited from the viewpoint of heat dissipation, and is caused by heat generated from components such as an electronic device incorporating an IC chip or a circuit board. Any resin that does not melt can be used. As such resins, polyester resins, acrylic resins, urethane resins, polyolefin resins, fluororesins, silicone resins, and mixed or modified resins thereof can be appropriately used. A polyester resin excellent in processability is preferable. Various additives may be added to the resin in order to obtain desired characteristics, for example, a cross-linking material such as a melamine resin that ensures resin film strength, an additive such as silica or talc that enhances corrosion resistance and hardness, It is also possible to appropriately add a conductive material such as a pigment such as carbon black having color tone adjustment or thermal radiation, or a metal fine particle imparting conductivity. Among these, carbon black is particularly suitable as an additive having an effect of improving the heat dissipation of the resin film.
また、樹脂皮膜には任意のコーティング材で被覆されていてもよく、例えば耐指紋性を更に高める観点から、クリアーコートなどが施されていてもよい。 Further, the resin film may be coated with an arbitrary coating material, and for example, from the viewpoint of further improving the fingerprint resistance, a clear coat or the like may be applied.
さらに、樹脂皮膜形成前に、素地鋼板またはめっき鋼板に、密着性を向上させるため、本発明の目的を損なわない範囲で、公知の下地処理を行ってもよい。 Furthermore, in order to improve adhesion to the base steel plate or the plated steel plate before the resin film is formed, a known ground treatment may be performed within a range not impairing the object of the present invention.
(第1の鋼板に用いられるめっき皮膜)
本発明の電子機器用樹脂被覆鋼板は、素地鋼板に好ましくは亜鉛めっき皮膜が形成されていてもよい。亜鉛の熱伝導率(116W/m・K)は、鉄の熱伝導率(80W/m・K)よりも高いことから、めっき皮膜を素地鋼板の表面に形成すると、素地鋼板の熱伝導性を向上できる。めっき皮膜は素地鋼板の少なくとも片面に形成すればよい。
(Plating film used for the first steel plate)
The resin-coated steel sheet for electronic equipment of the present invention may preferably have a galvanized film formed on the base steel sheet. Since the thermal conductivity of zinc (116 W / m · K) is higher than the thermal conductivity of iron (80 W / m · K), when a plating film is formed on the surface of the base steel plate, the thermal conductivity of the base steel plate is reduced. It can be improved. The plating film may be formed on at least one side of the base steel plate.
片面当たりの亜鉛めっき付着量(目付け量)は、熱伝導率を向上させるという観点から、できるだけ多くすることが望ましく、亜鉛めっき付着量は、片面当り10g/m2以上とすることが望ましい。好ましくは15g/m2以上、より好ましくは20g/m2以上である。但し、亜鉛めっき付着量が過剰になると、表面外観が非常に悪化するため、亜鉛めっき付着量の上限値は200g/m2とすることが好ましい。より好ましくは180g/m2以下、更に好ましくは150g/m2以下である。 From the viewpoint of improving the thermal conductivity, it is desirable to increase the amount of galvanized coating per side (weight per unit area) as much as possible, and the amount of galvanized coating is desirably 10 g / m 2 or more per side. Preferably it is 15 g / m 2 or more, more preferably 20 g / m 2 or more. However, if the amount of galvanized coating becomes excessive, the surface appearance is very deteriorated, so the upper limit of the amount of galvanized coating is preferably 200 g / m 2 . More preferably, it is 180 g / m < 2 > or less, More preferably, it is 150 g / m < 2 > or less.
次に、第2の鋼板における樹脂皮膜および合金化溶融亜鉛めっき皮膜について説明する。 Next, the resin film and the alloyed hot dip galvanized film on the second steel plate will be described.
(第2の鋼板に用いられる樹脂皮膜)
第2の鋼板に用いられる樹脂皮膜は、前述した第1の鋼板(Tiを所定量含有しない鋼板)に用いられる樹脂皮膜と、厚さが異なること以外は同じである。
以下では、第2の鋼板の膜厚設定理由について説明する。その他の要件は、前述した第1の鋼板に用いられる樹脂皮膜の説明を参照することができる。
(Resin film used for the second steel plate)
The resin film used for the second steel plate is the same as the resin film used for the first steel plate (a steel plate not containing a predetermined amount of Ti) described above except that the thickness is different.
Hereinafter, the reason for setting the film thickness of the second steel plate will be described. For other requirements, reference can be made to the description of the resin film used for the first steel plate.
樹脂皮膜を形成する母材が、素地鋼板又は亜鉛めっき鋼板(合金化亜鉛めっき鋼板は含まない)である場合(Tiを所定量含有しない鋼板)と、合金化溶融亜鉛めっき鋼板の場合とで形成する樹脂皮膜の厚みの範囲は異なる理由は、めっきを合金化することで放射率(実施例において測定している赤外線積分放射率)が高くなり、鋼板の放熱性が良好となるからである。したがって合金化溶融亜鉛めっき鋼板は亜鉛めっき鋼板(Tiを所定量含有しない鋼板)よりも形成する樹脂皮膜の膜厚が薄くても優れた放熱性を確保することができる。 Formed when the base material for forming the resin film is a base steel plate or a galvanized steel plate (not including an alloyed galvanized steel plate) (a steel plate not containing a predetermined amount of Ti) and an alloyed hot-dip galvanized steel plate The reason why the range of the thickness of the resin film is different is that the emissivity (infrared integrated emissivity measured in the examples) is increased by alloying the plating, and the heat dissipation of the steel sheet is improved. Therefore, the alloyed hot-dip galvanized steel sheet can ensure excellent heat dissipation even when the resin film formed is thinner than the galvanized steel sheet (steel sheet not containing a predetermined amount of Ti).
したがって、素地鋼板に合金化溶融亜鉛めっきを施した鋼板は上記したように放射率が高くなることから、樹脂被膜が薄くても十分な放熱性が得られることから、樹脂皮膜が厚くても十分な熱伝導性を確保できる。そのため亜鉛めっき鋼板(合金化亜鉛めっき鋼板は含まない)とは異なり、素地鋼板にTi含有の有無に係わらず、樹脂皮膜が下記範囲であれば優れた効果を発揮する。 Therefore, since the steel sheet obtained by galvannealing the base steel sheet has high emissivity as described above, sufficient heat dissipation can be obtained even if the resin film is thin. High thermal conductivity. Therefore, unlike a galvanized steel sheet (not including an alloyed galvanized steel sheet), an excellent effect is exhibited if the resin film is in the following range regardless of whether or not the base steel sheet contains Ti.
第2の鋼板に用いられる樹脂皮膜は、放熱性向上の観点から、樹脂皮膜の膜厚は片面当たり、少なくとも0.1μm以上とすることが必要である。樹脂皮膜の膜厚は好ましくは0.4μm以上、より好ましく0.8μm以上である。一方、樹脂皮膜の膜厚を厚くしすぎると素地鋼板の熱伝導率が低下することから、樹脂皮膜の膜厚は片面当たり、15μm以下とすることが必要である。樹脂皮膜の膜厚は好ましくは12μm以下、より好ましく8μm以下である。 The resin film used for the second steel sheet needs to have a film thickness of at least 0.1 μm per side from the viewpoint of improving heat dissipation. The film thickness of the resin film is preferably 0.4 μm or more, more preferably 0.8 μm or more. On the other hand, if the film thickness of the resin film is excessively increased, the thermal conductivity of the base steel sheet is lowered. Therefore, the film thickness of the resin film needs to be 15 μm or less per side. The film thickness of the resin film is preferably 12 μm or less, more preferably 8 μm or less.
第2の鋼板は、素地鋼板の少なくとも片面に合金化溶融亜鉛めっき皮膜を有するものであるが、素地鋼板の片面に合金化溶融亜鉛めっき皮膜が形成されている場合は、該めっき皮膜の表面、或いは素地鋼板の他方の面(該めっき皮膜が施されていない面)に樹脂皮膜を形成することができる。また素地鋼板の両面に合金化溶融亜鉛めっき皮膜が形成されている場合は、少なくとも片面に樹脂皮膜を形成することができる。 The second steel sheet has an alloyed hot-dip galvanized film on at least one side of the base steel sheet. When the alloyed hot-dip galvanized film is formed on one side of the base steel sheet, the surface of the plated film, Alternatively, a resin film can be formed on the other surface (the surface on which the plating film is not applied) of the base steel plate. Moreover, when the alloyed hot-dip galvanized film is formed on both surfaces of the base steel sheet, a resin film can be formed on at least one surface.
(第2の鋼板に用いられる合金化溶融亜鉛めっき皮膜)
第2の鋼板は、素地鋼板の少なくとも片面に合金化溶融亜鉛めっき皮膜を有する。上記した様に亜鉛めっきを合金化することで放射率が高くなり、鋼板の放熱性が良好となることから、鋼板の熱伝導性が向上する。このような効果を得るには合金化溶融亜鉛めっき付着量は、片面当たり30g/m2以上とする必要がある。好ましくは45g/m2以上、より好ましく50g/m2以上である。但し、合金化溶融亜鉛めっき付着量が過剰になると、めっき密着性が低下するため、合金化溶融亜鉛めっき付着量の上限は80g/m2以下とすることが好ましく、より好ましく60g/m2以下である。
(Alloyed hot-dip galvanized film used for the second steel plate)
The second steel plate has an alloyed hot-dip galvanized film on at least one side of the base steel plate. As described above, alloying the galvanizing increases the emissivity and improves the heat dissipation of the steel sheet, thereby improving the thermal conductivity of the steel sheet. In order to obtain such an effect, the amount of galvannealed coating needs to be 30 g / m 2 or more per side. Preferably it is 45 g / m 2 or more, more preferably 50 g / m 2 or more. However, if the alloying hot dip galvanized coating amount becomes excessive, the plating adhesion is lowered, so the upper limit of the alloying hot dip galvanizing coating amount is preferably 80 g / m 2 or less, more preferably 60 g / m 2 or less. It is.
上記第1の鋼板、及び第2の鋼板に用いられるめっき皮膜としては、片面あたりのめっき付着量が上記要件を満足していればよく、必ずしも両面にめっき付着量を同じにする必要はない。本発明においては亜鉛めっきの付着量はICP発光分析装置を用いて測定する。 As a plating film used for the first steel plate and the second steel plate, it is only necessary that the plating adhesion amount per one surface satisfies the above requirements, and the plating adhesion amount is not necessarily the same on both surfaces. In the present invention, the amount of galvanized adhesion is measured using an ICP emission analyzer.
素地鋼板にめっきを施す方法については特に限定されず、電気亜鉛めっき処理(EG)、溶融亜鉛めっき処理(GI)、合金化溶融亜鉛めっき処理(GA)など各種公知のめっき処理、及び合金化処理を採用できる。 The method for plating the base steel sheet is not particularly limited, and various known plating processes such as electrogalvanizing (EG), hot dip galvanizing (GI), and galvannealing (GA), and alloying. Can be adopted.
第1の鋼板に用いられる亜鉛めっきの組成は、特に限定されず、例えば純亜鉛、或いは亜鉛に微量のAl(例えば0.08〜0.3%程度)を含有したものであってもよく、またSi、Pb、Fe、Ti、Cr、Ni、希土類元素などの補助成分を1種以上含むものであってもよい。 The composition of the galvanizing used for the first steel plate is not particularly limited, and may be, for example, pure zinc or zinc containing a trace amount of Al (for example, about 0.08 to 0.3%), Further, it may contain one or more auxiliary components such as Si, Pb, Fe, Ti, Cr, Ni, rare earth elements.
なお、本発明の樹脂被覆鋼板は、必要に応じて素地鋼板の少なくとも片面にめっき皮膜を形成するものであるが、樹脂皮膜はめっき皮膜上に必ずしも形成しなくてもよい。例えば素地鋼板の片面にめっき皮膜を形成した場合、該めっき皮膜の直上に樹脂皮膜を形成してもよいし、めっき皮膜を形成していない側の素地鋼板表面に樹脂皮膜を形成してもよい。本発明ではいずれの構成でも高い熱伝導性と放熱性を発揮することができるからである。 The resin-coated steel sheet of the present invention forms a plating film on at least one side of the base steel sheet as necessary, but the resin film does not necessarily have to be formed on the plating film. For example, when a plating film is formed on one side of the base steel sheet, a resin film may be formed directly on the plating film, or a resin film may be formed on the surface of the base steel sheet on which the plating film is not formed. . This is because the present invention can exhibit high thermal conductivity and heat dissipation in any configuration.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
鋼板の成分が下記表1に示す化学成分組成(残部:鉄及び不可避的不純物、単位は質量%である)となるように化学成分組成について調整したスラブを1200℃で熱間圧延、900℃で仕上げ圧延を行い、500〜700℃で巻き取りを行った後、得られた熱延鋼板を酸洗し、圧下率が30〜60%になるように冷間圧延して、板厚:0.8mmの薄鋼板(縦150mm×横250mm)とした。各成分の分析については、C、Sについては燃焼−赤外線吸収法、Nについては不活性ガス融解−熱伝導度法、その他の成分については誘導結合プラズマ発光分光分析法によった。 The slab adjusted for the chemical composition so that the components of the steel plate have the chemical composition shown in Table 1 below (remainder: iron and inevitable impurities, the unit is mass%) is hot-rolled at 1200 ° C. and 900 ° C. After finishing rolling and winding up at 500 to 700 ° C., the obtained hot-rolled steel sheet is pickled and cold-rolled so that the reduction ratio is 30 to 60%. An 8 mm thin steel plate (length 150 mm × width 250 mm) was used. Regarding the analysis of each component, the combustion-infrared absorption method was used for C and S, the inert gas melting-thermal conductivity method was used for N, and the inductively coupled plasma emission spectroscopic analysis method was used for the other components.
得られた各薄鋼板の両面に下記条件の電気亜鉛めっき処理(鋼種:EG)、溶融亜鉛めっき処理(鋼種:GI)、合金化溶融亜鉛めっき処理(鋼種:GA)を施して試験片を作製した。めっき付着量(表中、めっき単位はg/m2)は、片面をシールした50cm角のサンプルを希釈した塩酸で亜鉛めっき層を溶解し、溶解した液をICP発光分析装置(島津製作所製ICPS−7510)で分析した。一部試験片(No.55〜72にはめっき皮膜を施さなかった。また一部試験片(1、10、19、28、37、46、55、64)には樹脂皮膜を形成しなかった。なお、No.73と74は、熱伝導シミュレーション用の数値として熱伝導率の値を設定したものであり、具体的な材料の測定値ではない。 Electrolytic galvanizing treatment (steel type: EG), hot dip galvanizing treatment (steel type: GI), and alloying hot dip galvanizing treatment (steel type: GA) under the following conditions are performed on both surfaces of the obtained thin steel sheets to produce test pieces. did. The plating adhesion amount (in the table, the plating unit is g / m 2 ) is obtained by dissolving the galvanized layer with hydrochloric acid diluted with a 50 cm square sample sealed on one side, and dissolving the dissolved liquid with an ICP emission analyzer (ICPS manufactured by Shimadzu Corporation). -7510). Some test pieces (Nos. 55 to 72 were not coated with a plating film. Further, some test pieces (1, 10, 19, 28, 37, 46, 55, 64) were not formed with a resin film. Note that Nos. 73 and 74 set thermal conductivity values as numerical values for thermal conduction simulations, and are not measured values of specific materials.
[電気亜鉛めっき処理(EG)]
(1) アルカリ水溶液浸漬脱脂:3質量%苛性ソーダ水溶液、60℃、2秒
(2) アルカリ水溶液電解脱脂:3質量%苛性ソーダ水溶液、60℃、2秒、10〜30A/dm2
(3) 水洗
(4) 酸洗 :3〜7質量%硫酸水溶液、40℃、2秒
(5) 水洗
(6) 電気亜鉛めっき :下記[電気亜鉛めっき条件]の通り
(7) 水洗
(8) 乾燥
[Electrogalvanizing (EG)]
(1) Alkaline aqueous solution degreasing: 3% by mass caustic soda aqueous solution, 60 ° C., 2 seconds (2) Alkaline aqueous solution electrolytic degreasing: 3% by mass caustic soda aqueous solution, 60 ° C., 2 seconds, 10-30 A / dm 2
(3) Washing with water (4) Pickling: 3-7 mass% sulfuric acid aqueous solution, 40 ° C., 2 seconds (5) Washing with water (6) Electrogalvanizing: As per [Electrogalvanizing conditions] below (7) Washing with water (8) Dry
(電気亜鉛めっき条件)
めっきセル :横型めっきセル
めっき浴組成:ZnSO4・7H2O 300〜400g/L
Na2SO4 50〜100g/L
H2SO4 25〜35g/L
電流密度:50〜200A/dm2
めっき浴温度:60℃
めっき浴流速:1〜2m/秒
電極(陽極):IrO2合金電極
めっき付着量:15〜30g/m2(片面当たり)
(Electro-galvanizing conditions)
Plating cell: Horizontal plating cell Plating bath composition: ZnSO 4 .7H 2 O 300-400 g / L
Na 2 SO 4 50-100 g / L
H 2 SO 4 25~35g / L
Current density: 50 to 200 A / dm 2
Plating bath temperature: 60 ° C
Plating bath flow rate: 1-2 m / sec Electrode (anode): IrO 2 alloy electrode plating coverage: 15-30 g / m 2 (per one side)
[溶融亜鉛めっき処理(GI)]
上記冷延鋼板を、酸洗工程を通すことなく、溶融亜鉛めっきを施した。溶融亜鉛めっきは、還元性ガス雰囲気中での加熱による還元、めっき浴浸漬、ガスワイピングする装置を使用し、溶融亜鉛めっきを施した。
[Hot galvanizing treatment (GI)]
The cold-rolled steel sheet was hot dip galvanized without passing through the pickling process. For hot dip galvanization, hot dip galvanization was performed using an apparatus for reduction in heating in a reducing gas atmosphere, immersion in a plating bath, and gas wiping.
[溶融めっき条件]
還元温度:780℃〜860℃
還元時間:10〜80秒
めっき浴組成:Zn−0.2%Al
めっき浴温度:455〜465℃
亜鉛付着量:60〜133g/m2(片面当たり)
[Hot plating conditions]
Reduction temperature: 780 ° C to 860 ° C
Reduction time: 10 to 80 seconds Plating bath composition: Zn-0.2% Al
Plating bath temperature: 455-465 ° C
Zinc adhesion amount: 60 to 133 g / m 2 (per one side)
[合金化溶融亜鉛めっき処理(GA)]
(合金化溶融亜鉛めっき鋼板(GA)の作製)
上記溶融亜鉛めっき鋼板に下記条件にて合金化加熱処理を施して合金化溶融亜鉛めっき鋼板を作製した。具体的にはFe−ZnおよびFe−Al合金化速度の違いによる粒界内の空洞発生を抑制するため、加熱速度は10〜30℃/s、合金化温度を550〜700℃の範囲で制御した。また、合金化反応が停止する400℃までの冷却は、めっき層表面にFe−Zn皮膜が生成し、めっき層中に液状で残留したZnが最後に合金化して体積収縮による空洞発生を抑制するため、冷却速度を10〜30℃/sの範囲で制御した。合金めっき層中のFe%はパウダリングなど加工性を考慮して5〜20%の範囲で制御した。
[Alloyed hot-dip galvanizing treatment (GA)]
(Production of galvannealed steel sheet (GA))
The above hot dip galvanized steel sheet was subjected to alloying heat treatment under the following conditions to produce an alloyed hot dip galvanized steel sheet. Specifically, the heating rate is controlled in the range of 10 to 30 ° C./s and the alloying temperature in the range of 550 to 700 ° C. in order to suppress the generation of cavities in the grain boundaries due to the difference in the alloying rate of Fe—Zn and Fe—Al. did. In addition, cooling to 400 ° C. at which the alloying reaction stops causes an Fe—Zn film to be formed on the surface of the plating layer, and the liquid remaining Zn in the plating layer is finally alloyed to suppress the generation of cavities due to volume shrinkage. Therefore, the cooling rate was controlled in the range of 10 to 30 ° C./s. Fe% in the alloy plating layer was controlled in the range of 5 to 20% in consideration of workability such as powdering.
[合金化条件]
・加熱速度:25℃/s
・合金化加熱温度:650℃
・冷却速度:25℃/s
・合金めっき中のFe%:12%
[Alloying conditions]
・ Heating rate: 25 ℃ / s
-Alloying heating temperature: 650 ° C
・ Cooling rate: 25 ℃ / s
-Fe% in alloy plating: 12%
[樹脂皮膜の被覆処理]
(下地処理)
上記各めっき鋼板(めっき処理を施していない場合は素地鋼板)に、下地処理としてノンクロメート皮膜(CTE−213A:日本パーカーライジング社製)を用い、その付着量が100mg/m2となるように下地処理を行った。
[Resin film coating treatment]
(surface treatment)
A non-chromate film (CTE-213A: manufactured by Nihon Parker Rising Co., Ltd.) is used as a base treatment for each of the above plated steel plates (base steel plate when no plating treatment is applied) so that the adhesion amount becomes 100 mg / m 2. The ground treatment was performed.
(樹脂皮膜)
樹脂は、有機溶剤型ポリエステル樹脂(「バイロン(登録商標)29」東洋紡績社製)を用いた。架橋剤として、メラミン樹脂(「スミマール(登録商標)M−40ST」:住友化学社製・固形分80%)を用いた。更にシンナーとしてキシレン50%+シクロヘキサノン50%混合溶剤(大伸化学製)を用いた。ポリエステル樹脂と架橋剤を質量比(ドライ)100:20で混合した。希釈溶剤としてキシレン/シクロヘキサノン混合溶剤を用い、樹脂固形分濃度が5〜15%となるよう溶剤で希釈した後、ディスパー攪拌機で3000rpm×5分攪拌して樹脂皮膜用原料組成物を調整した。
(Resin film)
As the resin, an organic solvent-type polyester resin (“Byron (registered trademark) 29” manufactured by Toyobo Co., Ltd.) was used. As a crosslinking agent, a melamine resin (“Sumimar (registered trademark) M-40ST”: manufactured by Sumitomo Chemical Co., Ltd., solid content: 80%) was used. Further, as a thinner, a mixed solvent of 50% xylene and 50% cyclohexanone (manufactured by Daishin Chemical) was used. The polyester resin and the crosslinking agent were mixed at a mass ratio (dry) of 100: 20. A xylene / cyclohexanone mixed solvent was used as a diluting solvent, diluted with a solvent so that the resin solid content concentration was 5 to 15%, and then stirred with a dispers stirrer at 3000 rpm × 5 minutes to prepare a resin film raw material composition.
上記樹脂皮膜用原料組成物を、皮膜厚さが所望の膜厚(下記表参照)となるように、各めっき鋼板(或いは素地鋼板)の裏面側にバーコーターで塗布し、熱風乾燥炉内にて到達温度220℃で約120秒間焼付けて試験片を作製した。このときの樹脂皮膜の厚さは皮膜の質量を測定し、比重換算で算出した値である。 The resin film raw material composition is applied to the back side of each plated steel sheet (or base steel sheet) with a bar coater so that the film thickness becomes a desired film thickness (see the table below), and is then placed in a hot air drying furnace. The test piece was then baked at an ultimate temperature of 220 ° C. for about 120 seconds. The thickness of the resin film at this time is a value calculated by measuring the mass of the film and converted to specific gravity.
各試験片について、下記方法によって、各種特性を評価した。 About each test piece, the various characteristics were evaluated by the following method.
[熱伝導率の評価]
得られた各鋼板について、レーザーフラッシュ法によって熱伝導率を測定した。この方法の概要は次の通りである。
[Evaluation of thermal conductivity]
About each obtained steel plate, thermal conductivity was measured by the laser flash method. The outline of this method is as follows.
(レーザーフラッシュ法)
測定装置:レーザーフラッシュ法熱定数測定装置 「TC−7000アルバック 理工株式会社製」
まず下記の方法によって各鋼板の熱拡散率を測定する。
(Laser flash method)
Measuring device: Laser flash method thermal constant measuring device “TC-7000 ULVAC, manufactured by Riko Co., Ltd.”
First, the thermal diffusivity of each steel sheet is measured by the following method.
(熱拡散率の測定)
(1)25mm角の試料(鋼板)を作製し、その表面をカーボンスプレーによって黒化する。
(2)試料の黒化した面に赤外線レーザー光を瞬間的に照射し、裏面の温度変化を熱電対または赤外線検出器を用いて測定する。
(3)得られた時間−温度上昇曲線から熱拡散率を求める。
(4)レーザー光照射点と温度検出点との距離(即ち、各鋼板の厚さに相当)をL(mm)、試料裏面での最高到達温度の1/2の温度に到達するまでの時間をt1/2(sec)とすると、熱拡散率α[m2/sec]は下記の式で示される(このような測定方法をハーフタイム法と呼ぶ)。
熱拡散率α=1.37(L/π)2・1/t1/2 [m2/sec]
(Measurement of thermal diffusivity)
(1) A 25 mm square sample (steel plate) is prepared, and the surface is blackened by carbon spray.
(2) An infrared laser beam is instantaneously irradiated on the blackened surface of the sample, and the temperature change on the back surface is measured using a thermocouple or an infrared detector.
(3) The thermal diffusivity is determined from the obtained time-temperature rise curve.
(4) L (mm) is the distance between the laser beam irradiation point and the temperature detection point (that is, equivalent to the thickness of each steel plate), and the time until the temperature reaches half the maximum temperature reached on the back of the sample Is t 1/2 (sec), the thermal diffusivity α [m 2 / sec] is expressed by the following equation (this measurement method is called a half-time method).
Thermal diffusivity α = 1.37 (L / π) 2 · 1 / t 1/2 [m 2 / sec]
次に、下記の方法によって各鋼板の比熱を測定する。 Next, the specific heat of each steel plate is measured by the following method.
(比熱の測定)
試料にレーザー光を瞬間的に照射したときに、試料に吸収された熱量をQ[J/cm2]、試料の質量をM(g)、温度上昇量をΔT(K)とすると、比熱Cp[J/(g・K)]は以下の式で示される。なお、各試料の質量は50〜60gであり、示差走査熱量計(セイコーインスツルメンツ製 DSC220C)を用いて室温、アルゴン雰囲気下における比熱を測定した。
比熱Cp=Q/(M・ΔT) [J/(g・K)]
(Measurement of specific heat)
When the sample is instantaneously irradiated with laser light, the heat quantity absorbed by the sample is Q [J / cm 2 ], the sample mass is M (g), and the temperature rise is ΔT (K). [J / (g · K)] is represented by the following equation. In addition, the mass of each sample was 50-60g, and the specific heat in room temperature and argon atmosphere was measured using the differential scanning calorimeter (Seiko Instruments DSC220C).
Specific heat Cp = Q / (M · ΔT) [J / (g · K)]
(密度の測定)
25mm角の試料を作製し、該試料を用いて室温で水中置換法により密度を測定した。
(Density measurement)
A 25 mm square sample was prepared, and the density was measured using the sample at room temperature by an underwater substitution method.
上記によって得られた熱拡散率α[m2/sec]および比熱Cp[J/(g・K)]、密度ρ[g/cm3]に基づいて、下記の方法によって各鋼板の熱伝導率を測定した。 Based on the thermal diffusivity α [m 2 / sec], the specific heat C p [J / (g · K)], and the density ρ [g / cm 3 ] obtained as described above, the thermal conductivity of each steel sheet is obtained by the following method. Was measured.
(熱伝導率の測定)
熱拡散率をα[m2/sec]、比熱をCp[J/(g・K)]、密度をρ[g/cm3]とすると、熱伝導率η[W/m・K]は以下の式で示される。密度ρはアルキメデス法によって測定した値を採用した。
熱伝導率η=Cp・α・ρ [W/m・K]
(Measurement of thermal conductivity)
When the thermal diffusivity is α [m 2 / sec], the specific heat is Cp [J / (g · K)], and the density is ρ [g / cm 3 ], the thermal conductivity η [W / m · K] is It is shown by the formula of As the density ρ, a value measured by the Archimedes method was adopted.
Thermal conductivity η = Cp · α · ρ [W / m · K]
[放射率(赤外線放射率)の評価]
「赤外線積分放射率」とは、換言すれば、赤外線(熱エネルギー)の放出し易さ(吸収し易さ)を意味する。従って、上記赤外線積分放射率が高い程、放出(吸収)される熱エネルギー量は大きくなることを示す。例えば物体(本発明では樹脂皮膜)に与えられた熱エネルギーを100%放射する場合には、当該赤外線積分放射率は1となる。
[Evaluation of emissivity (infrared emissivity)]
In other words, “infrared integrated emissivity” means ease of emission (easy absorption) of infrared rays (thermal energy). Therefore, the higher the infrared integrated emissivity, the greater the amount of heat energy released (absorbed). For example, when 100% of heat energy applied to an object (resin film in the present invention) is radiated, the infrared integrated emissivity is 1.
本発明では、100℃に加熱したときの赤外線積分放射率を定めているが、これは、本発明の表面処理鋼板は電子機器部品用途(部品等によっても相違するが、通常の雰囲気温度は概ね、50〜70℃で、最高で約100℃)に適用されることを考慮し、当該実用レベルの温度と一致させるべく、加熱温度を100℃に定めたものである。 In the present invention, the infrared integrated emissivity when heated to 100 ° C. is determined, but this is because the surface-treated steel sheet of the present invention is used for electronic equipment parts (although it differs depending on the parts etc., the normal ambient temperature is generally The heating temperature is set to 100 ° C. in order to match the temperature of the practical level.
以下の方法によって試験片の赤外線積分放射率を算出した。 The infrared integrated emissivity of the test piece was calculated by the following method.
装置:日本電子(株)製「JIR−5500型フーリエ変換赤外分光光度計」および放射測定ユニット「IRR−200」
測定波長範囲:4.5〜15.4μm
測定温度:試料の加熱温度を100℃に設定する
積算回数:200回
分解能 :16cm-1
Apparatus: “JIR-5500 type Fourier transform infrared spectrophotometer” manufactured by JEOL Ltd. and radiation measurement unit “IRR-200”
Measurement wavelength range: 4.5 to 15.4 μm
Measurement temperature: set the heating temperature of the sample to 100 ° C. Integration count: 200 times Resolution: 16 cm −1
上記装置を用い、赤外線波長域(4.5〜15.4μm)における試験片の分光放射強度(実測値)を測定した。尚、上記試験片の実測値は、バックグラウンドの放射強度および装置関数が加算/付加された数値として測定される為、これらを補正する目的で、放射率測定プログラム[日本電子(株)製放射率測定プログラム]を用い、積分放射率を算出した。算出方法の詳細は以下の通りである。 Using the above apparatus, the spectral radiant intensity (measured value) of the test piece in the infrared wavelength region (4.5 to 15.4 μm) was measured. In addition, since the measured value of the above-mentioned test piece is measured as a numerical value obtained by adding / adding the background radiation intensity and the instrument function, an emissivity measurement program [radiation manufactured by JEOL Ltd.] The integral emissivity was calculated using a rate measurement program. Details of the calculation method are as follows.
式中、
ε(λ) :波長λにおける試料の分光放射率(%)
E(T) :温度T(℃)における試料の積分放射率(%)
M(λ,T) :波長λ、温度T(℃)における試料の分光放射強度(実測値)
A(λ) :装置関数
KFB(λ) :波長λにおける固定バックグラウンド(試料によって変化しないバックグラウンド)の分光放射強度
KTB(λ,TTB):波長λ、温度TTB(℃)におけるトラップ黒体の分光放射強度
KB(λ,T) :波長λ、温度T(℃)における黒体の分光放射強度(ブランクの理論式からの計算値)
λ1,λ2 :積分する波長の範囲を夫々、意味する。
Where
ε (λ): Spectral emissivity of sample at wavelength λ (%)
E (T): Integrated emissivity (%) of sample at temperature T (° C.)
M (λ, T): Spectral radiant intensity of sample at wavelength λ and temperature T (° C.) (actual measured value)
A (λ): Instrument function K FB (λ): Spectral radiant intensity of fixed background at wavelength λ (background that does not vary with sample) K TB (λ, T TB ): at wavelength λ, temperature T TB (° C.) Spectral radiant intensity of trapped black body K B (λ, T): Spectral radiant intensity of black body at wavelength λ and temperature T (° C.) (calculated from theoretical formula of blank)
λ 1 , λ 2 : Means the range of wavelengths to be integrated, respectively.
ここで、上記A(λ:装置関数)、および上記KFB(λ:固定バックグラウンドの分光放射強度)は、2つの黒体炉(80℃、160℃)の分光放射強度の実測値、および当該温度域における黒体の分光放射強度(ブランクの理論式からの計算値)に基づき、下記式によって算出したものである。 Here, A (λ: instrument function) and K FB (λ: spectral radiant intensity of fixed background) are measured values of spectral radiant intensity of two blackbody furnaces (80 ° C., 160 ° C.), and Based on the spectral radiant intensity of the black body in the temperature range (calculated value from the theoretical formula of the blank), it is calculated by the following formula.
式中、
M160℃(λ,160℃):波長λにおける160℃の黒体炉の分光放射強度(実測値)
M80℃(λ,80℃) :波長λにおける80℃の黒体炉の分光放射強度(実測値)
K160℃(λ,160℃):波長λにおける160℃の黒体炉の分光放射強度(ブランクの理論式からの計算値)
K80℃(λ,80℃):波長λにおける80℃の黒体炉の分光放射強度(ブランクの理論式からの計算値)を夫々、意味する。
Where
M 160 ° C. (λ, 160 ° C.): Spectral radiation intensity of 160 ° C. blackbody furnace at wavelength λ (actual measured value)
M 80 ° C. (λ, 80 ° C.): Spectral radiant intensity of 80 ° C. blackbody furnace at wavelength λ (actual measured value)
K 160 ° C. (λ, 160 ° C.): spectral radiant intensity of a black body furnace at 160 ° C. at a wavelength λ (calculated from the theoretical formula of the blank)
K 80 ° C. (λ, 80 ° C.): Means the spectral radiant intensity (calculated from the theoretical formula of the blank) of the black body furnace at 80 ° C. at the wavelength λ.
尚、赤外線積分放射率E(T=100℃)の算出に当たり、KTB(λ,TTB)を考慮しているのは、測定に当たり、試料の周囲に、水冷したトラップ黒体を配置しているためである。上記トラップ黒体の設置により、変動バックグランド放射(試料によって変化するバックグラウンド放射を意味する。試料の周囲からの放射が試料表面で反射されるので、試料の分光放射強度の実測値は、このバックグランド放射が加算された数値として表れる)の分光放射強度を低くコントロールすることができる。上記のトラップ黒体は、放射率0.96の疑似黒体を使用しており、前記KTB[(λ,TTB):波長λ、温度TTB(℃)におけるトラップ黒体の分光放射強度]は、以下の様にして算出する。
KTB(λ,TTB)=0.96×KB(λ,TTB)
式中、KB(λ,TTB)は、波長λ、温度TTB(℃)における黒体の分光放射強度を意味する。
In calculating the infrared integrated emissivity E (T = 100 ° C.), K TB (λ, T TB ) is taken into consideration when a trapped black body cooled with water is placed around the sample. Because it is. Due to the installation of the trap black body, variable background radiation (meaning background radiation that varies depending on the sample. Since the radiation from around the sample is reflected by the sample surface, the measured value of the spectral radiant intensity of the sample is Spectral radiation intensity (which appears as a numerical value with background radiation added) can be controlled low. The above trap black body uses a pseudo black body with an emissivity of 0.96, and K TB [(λ, T TB ): spectral radiant intensity of the trap black body at wavelength λ and temperature T TB (° C.). ] Is calculated as follows.
K TB (λ, T TB ) = 0.96 × K B (λ, T TB )
In the formula, K B (λ, T TB ) means the spectral radiant intensity of a black body at a wavelength λ and a temperature T TB (° C.).
[熱伝導シミュレーション]
図1Aに示すような軸対称2次元モデルを用い、長さ100mm×厚さ0.8mmの鋼板を設定し、熱伝導性を熱伝導シミュレーションによって評価した。
[Heat conduction simulation]
A steel plate having a length of 100 mm and a thickness of 0.8 mm was set using an axisymmetric two-dimensional model as shown in FIG. 1A, and the thermal conductivity was evaluated by a thermal conduction simulation.
鋼板は均一な熱伝導率を有すると仮定し、上記レーザーフラッシュ法による測定値を採用した。鋼板の中心とヒーターの中心が接触するようにヒーター(縦30mm×幅5mm:発熱量60W:熱伝導率20W/m・K)を設定した。この際、鋼板と接触しないヒーターの他の部分には断熱材を設けてヒーター発熱部の鋼板接触面から鋼板側へ全ての熱が移動するようにした。また鋼板側面(厚み側)を断熱とし、ヒーターからの受熱は、ヒーター設置面と反対面(ヒーター設置面と反対側)にのみ移動するようにした。また鋼板内部の伝熱経路は、鋼板の中心から垂直方向の軸を介してヒータ設置面から反対面に至る任意の直線とした。外部環境として鋼板の中心から半径1000mmの空間を設定した(図1B)。雰囲気(空気)温度を35℃、外部境界の放射率を0.01に設定し、鋼板と雰囲気の熱伝達、鋼板と外部境界の放射、空間内の流動も計算に含めた。鋼板の温度評価は、次の部分の温度とした。
発熱体温度(T0):ヒーターと鋼板の接触面の中心温度
面内最高温度(Tmax):鋼板の反対面の中心温度
最低温度(Tmin):鋼板の反対面の周辺端部(角部)温度
面内温度差(Tdiff):面内最高温度(Tmax)から最低温度(Tmin)を引いた値
Assuming that the steel sheet has a uniform thermal conductivity, the measured value by the laser flash method was adopted. A heater (length 30 mm × width 5 mm: calorific value 60 W: thermal conductivity 20 W / m · K) was set so that the center of the steel plate and the center of the heater were in contact. At this time, a heat insulating material was provided in the other part of the heater that was not in contact with the steel plate, so that all the heat was transferred from the steel plate contact surface of the heater heating section to the steel plate side. In addition, the steel plate side surface (thickness side) was insulated, and the heat received from the heater was moved only to the surface opposite to the heater installation surface (the side opposite to the heater installation surface). The heat transfer path inside the steel plate was an arbitrary straight line from the center of the steel plate through the vertical axis to the opposite surface from the heater installation surface. A space having a radius of 1000 mm from the center of the steel plate was set as an external environment (FIG. 1B). The atmosphere (air) temperature was set to 35 ° C., the emissivity of the outer boundary was set to 0.01, and heat transfer between the steel plate and the atmosphere, radiation between the steel plate and the outer boundary, and flow in the space were included in the calculation. The temperature of the steel sheet was evaluated as the temperature of the next part.
Heating element temperature (T0): Center temperature maximum temperature (Tmax) of the contact surface between the heater and the steel plate: Center temperature minimum temperature (Tmin) of the opposite surface of the steel plate: Peripheral edge (corner) temperature of the opposite surface of the steel plate In-plane temperature difference (Tdiff): value obtained by subtracting the minimum temperature (Tmin) from the in-plane maximum temperature (Tmax)
尚、計算には汎用流体解析コードFLUENT6.3(ANSYS社)を用いて、乱流モデルはK−ωSSTモデル、放射はD0モデルを採用した。 For the calculation, a general-purpose fluid analysis code FLUENT 6.3 (ANSYS) was used, and the K-ωSST model was used as the turbulent flow model and the D0 model was used as the radiation.
(発熱体温度(T0)の評価基準)
鋼板No.74(アルミ板:熱伝導率120W/m・K)のシミュレーション値(T0=94.5℃)を基準値として、鋼板の発熱体温度(T0)が95.5℃(94.5℃+1℃)以下の場合を合格とし(○:T0≦95.5℃)、更に94.5℃以下の場合を、特に優れているとした(◎:T0≦94.5℃)。また95.5℃を超える場合を不合格(×:T0>95.5℃)と評価した。
(Evaluation criteria for heating element temperature (T0))
Steel plate No. The heating value (T0) of the steel sheet is 95.5 ° C. (94.5 ° C. + 1 ° C.) with a simulation value (T0 = 94.5 ° C.) of 74 (aluminum plate: thermal conductivity 120 W / m · K) as a reference value. ) The following cases were regarded as acceptable (O: T0 ≦ 95.5 ° C.), and the cases of 94.5 ° C. or lower were particularly excellent (A: T0 ≦ 94.5 ° C.). Moreover, the case where it exceeded 95.5 degreeC was evaluated as the disqualification (x: T0> 95.5 degreeC).
(面内温度差(Tdiff)の評価基準)
鋼板No.74のシミュレーション値(Tdiff=14.6℃)と、鋼板No.73のシミュレーション値(Tdiff=21.9℃)の中間値18.3℃を基準値として、鋼板の面内温度差(Tdiff)が19.3℃以下の場合を合格とし(○:Tdiff≦19.3℃)、更に18.3℃以下の場合を特に優れているとした(◎:Tdiff≦18.3℃)。また面内温度差(Tdiff)が19.3℃を超える場合を不合格(×:Tdiff>19.3℃)と評価した。
(Evaluation criteria for in-plane temperature difference (Tdiff))
Steel plate No. 74 simulation value (Tdiff = 14.6 ° C.) and steel plate No. The case where the in-plane temperature difference (Tdiff) of the steel sheet is 19.3 ° C. or less is determined to be acceptable with the intermediate value 18.3 ° C. of the simulation value of 73 (Tdiff = 21.9 ° C.) as the reference value (◯: Tdiff ≦ 19 .3 ° C.) and 18.3 ° C. or lower were particularly excellent (特 に: Tdiff ≦ 18.3 ° C.). Moreover, the case where an in-plane temperature difference (Tdiff) exceeded 19.3 degreeC was evaluated as rejection (*: Tdiff> 19.3 degreeC).
[耐指紋性の評価]
鋼板(50×120mm)をワセリン飽和アセトン溶液(50℃)に浸漬した(浸漬時間10秒)。浸漬後乾燥させた後、鋼板について同時測定光方式分光式色差計(日本電色工業製SQ−2000)を用いて色差(ΔE)を算出して評価した。
[Evaluation of fingerprint resistance]
A steel plate (50 × 120 mm) was immersed in a petroleum jelly saturated acetone solution (50 ° C.) (immersion time 10 seconds). After dipping and drying, the steel sheet was evaluated by calculating the color difference (ΔE) using a simultaneous measurement light method spectroscopic color difference meter (SQ-2000 manufactured by Nippon Denshoku Industries Co., Ltd.).
浸漬前後の試験片の色差(ΔE)が3以下を合格とし(○:ΔE≦3)、色差が1以下の場合を特に優れるとした(◎:ΔE≦1)。また色差が3を超える場合を不合格(×:ΔE>3)と評価した。 The color difference (ΔE) of the test piece before and after immersion was determined to be 3 or less (◯: ΔE ≦ 3), and the case where the color difference was 1 or less was particularly excellent (E: ΔE ≦ 1). Moreover, the case where a color difference exceeded 3 was evaluated as rejection (x: (DELTA) E> 3).
以上の結果を表2に示す。 The results are shown in Table 2.
この結果から、次のように考察できる。 From this result, it can be considered as follows.
まず、No.2〜8、12〜16、20〜26、30〜34、38〜44、47〜53は、本発明で規定する素地鋼板の化学成分組成、樹脂皮膜の膜厚、めっき付着量を満足する例である。これらの例では熱伝導率、放熱性、耐指紋性に優れた特性が発揮されていることが分かる。 First, no. Examples 2 to 8, 12 to 16, 20 to 26, 30 to 34, 38 to 44, and 47 to 53 satisfy the chemical composition of the base steel sheet, the film thickness of the resin film, and the plating adhesion amount defined in the present invention. It is. In these examples, it can be seen that characteristics excellent in thermal conductivity, heat dissipation, and fingerprint resistance are exhibited.
No.1、10、19、28、37、46は、本発明で規定する素地鋼板の化学成分組成、及びめっき付着量を満足するが、樹脂皮膜を形成していない例である。 No. 1, 10, 19, 28, 37, and 46 are examples in which the resin composition is not formed, although the chemical composition of the base steel sheet and the plating adhesion amount specified in the present invention are satisfied.
No.1と10は、素地鋼板に電気亜鉛めっき処理を施して亜鉛めっき皮膜を形成したものであるが、樹脂皮膜が形成されていないため、放熱性が低く、また発熱体温度(T0)が高くなっており、耐指紋性も劣っていた。 No. Nos. 1 and 10 are formed by subjecting the base steel sheet to electrogalvanization to form a galvanized film, but since the resin film is not formed, the heat dissipation is low and the heating element temperature (T0) is high. The fingerprint resistance was poor.
No.19と28は、素地鋼板に溶融亜鉛めっき処理を施して亜鉛めっき皮膜を形成したものであるが、樹脂皮膜が形成されていないため、放熱性が低く、発熱体温度(T0)が高くなっていた。 No. Nos. 19 and 28 are formed by subjecting the base steel sheet to a hot dip galvanizing process to form a galvanized film, but since the resin film is not formed, the heat dissipation is low and the heating element temperature (T0) is high. It was.
No.37と46は、素地鋼板に合金化溶融亜鉛めっき処理を施して亜鉛めっき合金皮膜を形成したものであるが、樹脂皮膜が形成されていないため、耐指紋性が劣っていた。 No. Nos. 37 and 46 were formed by subjecting the base steel sheet to a galvanized alloy coating to form a galvanized alloy coating, but since the resin coating was not formed, the fingerprint resistance was inferior.
No.9、18、27、36、45、54は、本発明で規定する素地鋼板の化学成分組成、及びめっき付着量を満足するが、樹脂皮膜の膜厚が本発明で規定する範囲を超えている例である。 No. 9, 18, 27, 36, 45, and 54 satisfy the chemical composition of the base steel sheet defined by the present invention and the amount of plating adhered, but the film thickness of the resin film exceeds the range defined by the present invention. It is an example.
これらの例ではいずれも本発明で規定する樹脂皮膜の膜厚が厚すぎるため、素地鋼板の熱伝導性が低くなり、面内温度差(Tdiff)を小さくすることができなかった。 In any of these examples, since the film thickness of the resin film specified in the present invention is too thick, the thermal conductivity of the base steel sheet was lowered, and the in-plane temperature difference (Tdiff) could not be reduced.
またNo.11、17、29、35は、本発明で規定する素地鋼板の化学成分組成、及びめっき付着量を満足するが、樹脂皮膜の膜厚が本発明で規定する範囲を超えている例である。 No. Nos. 11, 17, 29, and 35 are examples in which the chemical composition of the base steel sheet and the plating adhesion amount specified in the present invention are satisfied, but the film thickness of the resin film exceeds the range specified in the present invention.
No.11、29は、本発明で規定する樹脂皮膜の膜厚が薄いため、放熱性が低く、また発熱体温度(T0)が高くなっている。 No. Nos. 11 and 29 have a low heat dissipation property and a high heating element temperature (T0) because the resin film thickness defined in the present invention is thin.
No.17、35は、本発明で規定する樹脂皮膜の膜厚が厚いため、素地鋼板の熱伝導性が低くなり、面内温度差(Tdiff)を小さくすることができなかった。 No. In Nos. 17 and 35, since the resin film thickness defined in the present invention is thick, the thermal conductivity of the base steel sheet is low, and the in-plane temperature difference (Tdiff) cannot be reduced.
なお、No.11、20と同様のめっき処理が施され、樹脂皮膜の膜厚も同じであるNo.2(No.11に対応)、No.20(No.29に対応)は、樹脂皮膜の膜厚が薄いにもかかわらず、発熱体温度(T0)が悪化していないのは、素地鋼板に添加が望ましい元素であるTiを本発明で規定する範囲内で含有させているからである。Tiを含有させることによって素地鋼板の熱伝導率が向上するため、発熱体温度(T0)が悪化していない。 In addition, No. No. 11 and 20 are subjected to the same plating treatment, and the film thickness of the resin film is the same. 2 (corresponding to No. 11), No. 11 No. 20 (corresponding to No. 29), although the film thickness of the resin film is thin, the heating element temperature (T0) is not deteriorated because Ti, which is an element that is desirably added to the base steel sheet, is used in the present invention. It is because it is contained within the specified range. Since the thermal conductivity of the base steel sheet is improved by containing Ti, the heating element temperature (T0) is not deteriorated.
またNo.8(No.17に対応)、No.26(No.35に対応)についても、樹脂皮膜の膜厚が厚いにもかかわらず、面内温度差(Tdiff)を小さくできたのは、素地鋼板に本発明で規定する範囲のTiを含有させることによって、素地鋼板の熱伝導率が向上しているからである。 No. 8 (corresponding to No. 17), No. 17 26 (corresponding to No. 35), the in-plane temperature difference (Tdiff) was able to be reduced even though the resin film was thick, because the base steel sheet contained Ti in the range specified in the present invention. This is because the thermal conductivity of the base steel sheet is improved.
No.55〜63は、めっき皮膜は形成せずに、素地鋼板の表面に樹脂皮膜を形成した例である(No.55は樹脂皮膜を形成していない素地鋼板のみの例である)。 No. Nos. 55 to 63 are examples in which a resin film is formed on the surface of the base steel sheet without forming a plating film (No. 55 is an example of only the base steel sheet without the resin film).
No.56〜61は、本発明で規定する素地鋼板の化学成分組成、樹脂皮膜の膜厚を満足する例である。これらの例では熱伝導率、放熱性、耐指紋性に優れた特性が発揮されていることが分かる。 No. 56 to 61 are examples satisfying the chemical composition of the base steel sheet and the film thickness of the resin film defined in the present invention. In these examples, it can be seen that characteristics excellent in thermal conductivity, heat dissipation, and fingerprint resistance are exhibited.
No.55は、本発明で規定する素地鋼板の化学成分組成を満足するが、樹脂皮膜を形成していないため、放熱性が低く、発熱体温度(T0)が高くなっており、また耐指紋性も劣っていた。 No. No. 55 satisfies the chemical composition of the base steel sheet specified in the present invention, but does not form a resin film, so has low heat dissipation, high heating element temperature (T0), and fingerprint resistance. It was inferior.
No.62、63は、本発明で規定する素地鋼板の化学成分組成を満足するが、樹脂皮膜の膜厚が本発明で規定する範囲を超えている例である。これらの例は本発明で規定する樹脂皮膜の膜厚が厚すぎるため、素地鋼板の熱伝導性が低くなり、面内温度差(Tdiff)を小さくすることができなかった。 No. 62 and 63 are examples in which the chemical composition of the base steel sheet defined by the present invention is satisfied, but the film thickness of the resin film exceeds the range defined by the present invention. In these examples, since the film thickness of the resin film specified in the present invention is too thick, the thermal conductivity of the base steel sheet is lowered, and the in-plane temperature difference (Tdiff) cannot be reduced.
No.64〜72は、本発明で規定する化学成分組成を満足しない(C、Mn含有量が高い)鋼板を用い、まためっき皮膜を形成せずに、素地鋼板の表面に樹脂皮膜を形成した例である(No.64は樹脂皮膜を形成していない素地鋼板のみの例である)。 No. 64 to 72 are examples in which a resin film is formed on the surface of the base steel sheet without using a steel sheet that does not satisfy the chemical composition defined in the present invention (the C and Mn contents are high) and without forming a plating film. Yes (No. 64 is an example of only a base steel sheet on which no resin film is formed).
これらの例はいずれも本発明で規定する化学成分組成を満足しないため、素地鋼板の熱伝導性が低くなり、面内温度差(Tdiff)を小さくできなかった。特に樹脂皮膜を形成していないNo.64は面内温度勾配が劣るだけでなく、放熱性が低く、発熱体温度(T0)が高くなっており、また耐指紋性にも劣っていた。 None of these examples satisfied the chemical composition defined in the present invention, so the thermal conductivity of the base steel sheet was low, and the in-plane temperature difference (Tdiff) could not be reduced. In particular, no. In addition to inferior in-plane temperature gradient, No. 64 had low heat dissipation, high heating element temperature (T0), and poor fingerprint resistance.
Claims (8)
前記素地鋼板は熱伝導率が60W/m・K以上有すると共に、前記樹脂皮膜の厚さは0.3〜11μmであることを特徴とする熱伝導性及び放熱性に優れた電子機器用樹脂被覆鋼板。 A resin-coated steel sheet for electronic equipment having a resin film on at least one side of the base steel sheet,
The base steel sheet has a thermal conductivity of 60 W / m · K or more, and the resin film has a thickness of 0.3 to 11 μm. steel sheet.
C:0.1%以下(0%を含まない)(「質量%」の意味、以下同じ)、
Si:0.1%以下(0%を含まない)、
Mn:0.05〜0.90%、及び
sol−Al:0.01〜0.1%、
を夫々含有し、残部が鉄および不可避的不純物からなるものである請求項1に記載の電子機器用樹脂被覆鋼板。 The base steel plate is
C: 0.1% or less (excluding 0%) (meaning “mass%”, the same shall apply hereinafter),
Si: 0.1% or less (excluding 0%),
Mn: 0.05-0.90%, and sol-Al: 0.01-0.1%,
The resin-coated steel sheet for electronic equipment according to claim 1, wherein the balance is made of iron and inevitable impurities.
前記素地鋼板は熱伝導率が60W/m・K以上有すると共に、前記樹脂皮膜の厚さは0.1〜15μmであることを特徴とする熱伝導性及び放熱性に優れた電子機器用樹脂被覆鋼板。 A resin-coated steel sheet for electronic equipment having a resin film on at least one side of a base steel sheet containing Ti,
The base steel sheet has a thermal conductivity of 60 W / m · K or more, and the resin film has a thickness of 0.1 to 15 μm. steel sheet.
C:0.1%以下(0%を含まない)、
Si:0.1%以下(0%を含まない)、
Mn:0.05〜0.90%、
sol−Al:0.01〜0.1%、及び
Ti:0.01〜0.1%、
を夫々含有し、残部が鉄および不可避的不純物からなるものである請求項3に記載の電子機器用樹脂被覆鋼板。 The base steel plate is
C: 0.1% or less (excluding 0%),
Si: 0.1% or less (excluding 0%),
Mn: 0.05-0.90%
sol-Al: 0.01 to 0.1%, and Ti: 0.01 to 0.1%,
The resin-coated steel sheet for electronic equipment according to claim 3, wherein the remainder is made of iron and inevitable impurities.
素地鋼板は熱伝導率が60W/m・K以上有すると共に、
前記合金化溶融亜鉛めっき皮膜の片面当たりの付着量は30g/m2以上であり、
前記樹脂皮膜の厚さは0.1〜15μmであることを特徴とする熱伝導性及び放熱性に優れた電子機器用樹脂被覆鋼板。 A resin-coated steel sheet for electronic equipment having an alloyed hot-dip galvanized film on at least one side of the base steel sheet, and having a resin film on the other side of the base steel sheet, or at least one side of the alloyed hot-dip galvanized film,
The base steel sheet has a thermal conductivity of 60 W / m · K or more,
The amount of adhesion per one side of the alloyed hot-dip galvanized film is 30 g / m 2 or more,
A resin-coated steel sheet for electronic equipment having excellent thermal conductivity and heat dissipation, wherein the resin film has a thickness of 0.1 to 15 µm.
C:0.1%以下(0%を含まない)、
Si:0.1%以下(0%を含まない)、
Mn:0.05〜0.90%、及び
sol−Al:0.01〜0.1%、
を夫々含有し、残部が鉄および不可避的不純物からなるものである請求項6に記載の電子機器用樹脂被覆鋼板。 The base steel plate is
C: 0.1% or less (excluding 0%),
Si: 0.1% or less (excluding 0%),
Mn: 0.05-0.90%, and sol-Al: 0.01-0.1%,
The resin-coated steel sheet for electronic devices according to claim 6, wherein the balance is made of iron and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010210133A JP5749908B2 (en) | 2010-09-17 | 2010-09-17 | Resin-coated steel sheet for electronic equipment with excellent thermal conductivity and heat dissipation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010210133A JP5749908B2 (en) | 2010-09-17 | 2010-09-17 | Resin-coated steel sheet for electronic equipment with excellent thermal conductivity and heat dissipation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012062560A true JP2012062560A (en) | 2012-03-29 |
JP5749908B2 JP5749908B2 (en) | 2015-07-15 |
Family
ID=46058565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010210133A Expired - Fee Related JP5749908B2 (en) | 2010-09-17 | 2010-09-17 | Resin-coated steel sheet for electronic equipment with excellent thermal conductivity and heat dissipation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5749908B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102492148B1 (en) * | 2018-01-03 | 2023-01-30 | 삼성전자주식회사 | Display apparatus and manufacturing method for the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1046305A (en) * | 1996-07-30 | 1998-02-17 | Sumitomo Metal Ind Ltd | Galvannealed steel sheet |
JPH10176238A (en) * | 1996-12-18 | 1998-06-30 | Sumitomo Metal Ind Ltd | Zinc-aluminum alloy plated steel sheet excellent in workability |
JP2004074412A (en) * | 2001-07-25 | 2004-03-11 | Kobe Steel Ltd | Coating material for electronic instrument member excellent in thermal radiation and electric conductivity |
JP2004103700A (en) * | 2002-09-06 | 2004-04-02 | Toyota Industries Corp | Low expansion member and its producing method and semiconductor device employing low expansion member |
JP2004346375A (en) * | 2003-05-22 | 2004-12-09 | Jfe Steel Kk | Galvanized steel plate, and method for manufacturing the same |
WO2005105432A1 (en) * | 2004-04-28 | 2005-11-10 | Sumitomo Metal Industries, Ltd. | Coated steel sheet with excellent heat dissipation |
JP2006283070A (en) * | 2005-03-31 | 2006-10-19 | Nippon Steel Corp | Method for producing galvannealed steel sheet having good workability |
JP2009108373A (en) * | 2007-10-30 | 2009-05-21 | Nippon Steel Corp | Steel sheet for galvannealed steel sheet, and galvannealed steel sheet |
-
2010
- 2010-09-17 JP JP2010210133A patent/JP5749908B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1046305A (en) * | 1996-07-30 | 1998-02-17 | Sumitomo Metal Ind Ltd | Galvannealed steel sheet |
JPH10176238A (en) * | 1996-12-18 | 1998-06-30 | Sumitomo Metal Ind Ltd | Zinc-aluminum alloy plated steel sheet excellent in workability |
JP2004074412A (en) * | 2001-07-25 | 2004-03-11 | Kobe Steel Ltd | Coating material for electronic instrument member excellent in thermal radiation and electric conductivity |
JP2004103700A (en) * | 2002-09-06 | 2004-04-02 | Toyota Industries Corp | Low expansion member and its producing method and semiconductor device employing low expansion member |
JP2004346375A (en) * | 2003-05-22 | 2004-12-09 | Jfe Steel Kk | Galvanized steel plate, and method for manufacturing the same |
WO2005105432A1 (en) * | 2004-04-28 | 2005-11-10 | Sumitomo Metal Industries, Ltd. | Coated steel sheet with excellent heat dissipation |
JP2006283070A (en) * | 2005-03-31 | 2006-10-19 | Nippon Steel Corp | Method for producing galvannealed steel sheet having good workability |
JP2009108373A (en) * | 2007-10-30 | 2009-05-21 | Nippon Steel Corp | Steel sheet for galvannealed steel sheet, and galvannealed steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP5749908B2 (en) | 2015-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7279218B2 (en) | Coated body having excellent thermal radiation property used for members of electronic device | |
CN100441647C (en) | Coating metal with excellent heat diffusion character | |
TWI660054B (en) | Frame of electronic parts | |
Qin | Microstructure and corrosion behavior of electroless Ni–P coatings on 6061 aluminum alloys | |
JP5723103B2 (en) | High thermal conductivity steel sheet | |
JP5749908B2 (en) | Resin-coated steel sheet for electronic equipment with excellent thermal conductivity and heat dissipation | |
JP3563731B2 (en) | Painted body for electronic equipment with excellent heat dissipation and conductivity | |
JP5608047B2 (en) | Painted steel sheet for LED bulb and LED bulb | |
JP2010069748A (en) | Resin-coated aluminum sheet | |
JP5671438B2 (en) | High thermal conductivity steel plate | |
JP4188857B2 (en) | Coated body for electronic device members with excellent heat dissipation and electronic device parts | |
JP2007022058A (en) | Metal sheet coated with electroconductive film | |
WO2005002844A1 (en) | Resin-coated metal sheet | |
JP5632692B2 (en) | High thermal conductivity steel plate | |
KR100563919B1 (en) | High thermal emissive coated bodies for electronic equipment parts | |
JP4194041B2 (en) | Resin-coated metal plate and electronic device parts with excellent scratch resistance and fingerprint resistance | |
JP5368396B2 (en) | Resin-coated metal material and electronic device parts using the metal material | |
JP5292962B2 (en) | Surface-treated steel sheet and manufacturing method thereof | |
JP2005001393A (en) | Coated element for electronic instrument member showing excellence in heat radiation and self-cooling, and electronic instrument part | |
JP3796232B2 (en) | Painted body for electronic equipment with excellent heat dissipation | |
JP3796249B2 (en) | Coated body for electronic equipment members having excellent heat dissipation, self-cooling and electrical conductivity, and electronic equipment parts | |
JP2004250787A (en) | Black galvanized steel sheet | |
JP2004224017A (en) | Painted steel sheet with high cooling power | |
JP2010024473A (en) | Surface-treated steel sheet and method for producing the same | |
JP2004134722A (en) | Cabinet for electric/electronic apparatus with high cooling power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120828 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140421 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150218 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150420 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150512 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150515 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5749908 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |